Index: celt/celt_decoder.c |
diff --git a/celt/celt_decoder.c b/celt/celt_decoder.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..4424b97098788dcba437b431a4f941b1ed02d4d6 |
--- /dev/null |
+++ b/celt/celt_decoder.c |
@@ -0,0 +1,1195 @@ |
+/* Copyright (c) 2007-2008 CSIRO |
+ Copyright (c) 2007-2010 Xiph.Org Foundation |
+ Copyright (c) 2008 Gregory Maxwell |
+ Written by Jean-Marc Valin and Gregory Maxwell */ |
+/* |
+ Redistribution and use in source and binary forms, with or without |
+ modification, are permitted provided that the following conditions |
+ are met: |
+ |
+ - Redistributions of source code must retain the above copyright |
+ notice, this list of conditions and the following disclaimer. |
+ |
+ - Redistributions in binary form must reproduce the above copyright |
+ notice, this list of conditions and the following disclaimer in the |
+ documentation and/or other materials provided with the distribution. |
+ |
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
+ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+*/ |
+ |
+#ifdef HAVE_CONFIG_H |
+#include "config.h" |
+#endif |
+ |
+#define CELT_DECODER_C |
+ |
+#include "cpu_support.h" |
+#include "os_support.h" |
+#include "mdct.h" |
+#include <math.h> |
+#include "celt.h" |
+#include "pitch.h" |
+#include "bands.h" |
+#include "modes.h" |
+#include "entcode.h" |
+#include "quant_bands.h" |
+#include "rate.h" |
+#include "stack_alloc.h" |
+#include "mathops.h" |
+#include "float_cast.h" |
+#include <stdarg.h> |
+#include "celt_lpc.h" |
+#include "vq.h" |
+ |
+/**********************************************************************/ |
+/* */ |
+/* DECODER */ |
+/* */ |
+/**********************************************************************/ |
+#define DECODE_BUFFER_SIZE 2048 |
+ |
+/** Decoder state |
+ @brief Decoder state |
+ */ |
+struct OpusCustomDecoder { |
+ const OpusCustomMode *mode; |
+ int overlap; |
+ int channels; |
+ int stream_channels; |
+ |
+ int downsample; |
+ int start, end; |
+ int signalling; |
+ int arch; |
+ |
+ /* Everything beyond this point gets cleared on a reset */ |
+#define DECODER_RESET_START rng |
+ |
+ opus_uint32 rng; |
+ int error; |
+ int last_pitch_index; |
+ int loss_count; |
+ int postfilter_period; |
+ int postfilter_period_old; |
+ opus_val16 postfilter_gain; |
+ opus_val16 postfilter_gain_old; |
+ int postfilter_tapset; |
+ int postfilter_tapset_old; |
+ |
+ celt_sig preemph_memD[2]; |
+ |
+ celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */ |
+ /* opus_val16 lpc[], Size = channels*LPC_ORDER */ |
+ /* opus_val16 oldEBands[], Size = 2*mode->nbEBands */ |
+ /* opus_val16 oldLogE[], Size = 2*mode->nbEBands */ |
+ /* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */ |
+ /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */ |
+}; |
+ |
+int celt_decoder_get_size(int channels) |
+{ |
+ const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); |
+ return opus_custom_decoder_get_size(mode, channels); |
+} |
+ |
+OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels) |
+{ |
+ int size = sizeof(struct CELTDecoder) |
+ + (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig) |
+ + channels*LPC_ORDER*sizeof(opus_val16) |
+ + 4*2*mode->nbEBands*sizeof(opus_val16); |
+ return size; |
+} |
+ |
+#ifdef CUSTOM_MODES |
+CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error) |
+{ |
+ int ret; |
+ CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels)); |
+ ret = opus_custom_decoder_init(st, mode, channels); |
+ if (ret != OPUS_OK) |
+ { |
+ opus_custom_decoder_destroy(st); |
+ st = NULL; |
+ } |
+ if (error) |
+ *error = ret; |
+ return st; |
+} |
+#endif /* CUSTOM_MODES */ |
+ |
+int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels) |
+{ |
+ int ret; |
+ ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels); |
+ if (ret != OPUS_OK) |
+ return ret; |
+ st->downsample = resampling_factor(sampling_rate); |
+ if (st->downsample==0) |
+ return OPUS_BAD_ARG; |
+ else |
+ return OPUS_OK; |
+} |
+ |
+OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels) |
+{ |
+ if (channels < 0 || channels > 2) |
+ return OPUS_BAD_ARG; |
+ |
+ if (st==NULL) |
+ return OPUS_ALLOC_FAIL; |
+ |
+ OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels)); |
+ |
+ st->mode = mode; |
+ st->overlap = mode->overlap; |
+ st->stream_channels = st->channels = channels; |
+ |
+ st->downsample = 1; |
+ st->start = 0; |
+ st->end = st->mode->effEBands; |
+ st->signalling = 1; |
+ st->arch = opus_select_arch(); |
+ |
+ st->loss_count = 0; |
+ |
+ opus_custom_decoder_ctl(st, OPUS_RESET_STATE); |
+ |
+ return OPUS_OK; |
+} |
+ |
+#ifdef CUSTOM_MODES |
+void opus_custom_decoder_destroy(CELTDecoder *st) |
+{ |
+ opus_free(st); |
+} |
+#endif /* CUSTOM_MODES */ |
+ |
+static inline opus_val16 SIG2WORD16(celt_sig x) |
+{ |
+#ifdef FIXED_POINT |
+ x = PSHR32(x, SIG_SHIFT); |
+ x = MAX32(x, -32768); |
+ x = MIN32(x, 32767); |
+ return EXTRACT16(x); |
+#else |
+ return (opus_val16)x; |
+#endif |
+} |
+ |
+#ifndef RESYNTH |
+static |
+#endif |
+void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem, celt_sig * OPUS_RESTRICT scratch) |
+{ |
+ int c; |
+ int Nd; |
+ int apply_downsampling=0; |
+ opus_val16 coef0; |
+ |
+ coef0 = coef[0]; |
+ Nd = N/downsample; |
+ c=0; do { |
+ int j; |
+ celt_sig * OPUS_RESTRICT x; |
+ opus_val16 * OPUS_RESTRICT y; |
+ celt_sig m = mem[c]; |
+ x =in[c]; |
+ y = pcm+c; |
+#ifdef CUSTOM_MODES |
+ if (coef[1] != 0) |
+ { |
+ opus_val16 coef1 = coef[1]; |
+ opus_val16 coef3 = coef[3]; |
+ for (j=0;j<N;j++) |
+ { |
+ celt_sig tmp = x[j] + m; |
+ m = MULT16_32_Q15(coef0, tmp) |
+ - MULT16_32_Q15(coef1, x[j]); |
+ tmp = SHL32(MULT16_32_Q15(coef3, tmp), 2); |
+ scratch[j] = tmp; |
+ } |
+ apply_downsampling=1; |
+ } else |
+#endif |
+ if (downsample>1) |
+ { |
+ /* Shortcut for the standard (non-custom modes) case */ |
+ for (j=0;j<N;j++) |
+ { |
+ celt_sig tmp = x[j] + m; |
+ m = MULT16_32_Q15(coef0, tmp); |
+ scratch[j] = tmp; |
+ } |
+ apply_downsampling=1; |
+ } else { |
+ /* Shortcut for the standard (non-custom modes) case */ |
+ for (j=0;j<N;j++) |
+ { |
+ celt_sig tmp = x[j] + m + VERY_SMALL; |
+ m = MULT16_32_Q15(coef0, tmp); |
+ y[j*C] = SCALEOUT(SIG2WORD16(tmp)); |
+ } |
+ } |
+ mem[c] = m; |
+ |
+ if (apply_downsampling) |
+ { |
+ /* Perform down-sampling */ |
+ for (j=0;j<Nd;j++) |
+ y[j*C] = SCALEOUT(SIG2WORD16(scratch[j*downsample])); |
+ } |
+ } while (++c<C); |
+} |
+ |
+/** Compute the IMDCT and apply window for all sub-frames and |
+ all channels in a frame */ |
+#ifndef RESYNTH |
+static |
+#endif |
+void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X, |
+ celt_sig * OPUS_RESTRICT out_mem[], int C, int LM) |
+{ |
+ int b, c; |
+ int B; |
+ int N; |
+ int shift; |
+ const int overlap = OVERLAP(mode); |
+ |
+ if (shortBlocks) |
+ { |
+ B = shortBlocks; |
+ N = mode->shortMdctSize; |
+ shift = mode->maxLM; |
+ } else { |
+ B = 1; |
+ N = mode->shortMdctSize<<LM; |
+ shift = mode->maxLM-LM; |
+ } |
+ c=0; do { |
+ /* IMDCT on the interleaved the sub-frames, overlap-add is performed by the IMDCT */ |
+ for (b=0;b<B;b++) |
+ clt_mdct_backward(&mode->mdct, &X[b+c*N*B], out_mem[c]+N*b, mode->window, overlap, shift, B); |
+ } while (++c<C); |
+} |
+ |
+static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec) |
+{ |
+ int i, curr, tf_select; |
+ int tf_select_rsv; |
+ int tf_changed; |
+ int logp; |
+ opus_uint32 budget; |
+ opus_uint32 tell; |
+ |
+ budget = dec->storage*8; |
+ tell = ec_tell(dec); |
+ logp = isTransient ? 2 : 4; |
+ tf_select_rsv = LM>0 && tell+logp+1<=budget; |
+ budget -= tf_select_rsv; |
+ tf_changed = curr = 0; |
+ for (i=start;i<end;i++) |
+ { |
+ if (tell+logp<=budget) |
+ { |
+ curr ^= ec_dec_bit_logp(dec, logp); |
+ tell = ec_tell(dec); |
+ tf_changed |= curr; |
+ } |
+ tf_res[i] = curr; |
+ logp = isTransient ? 4 : 5; |
+ } |
+ tf_select = 0; |
+ if (tf_select_rsv && |
+ tf_select_table[LM][4*isTransient+0+tf_changed] != |
+ tf_select_table[LM][4*isTransient+2+tf_changed]) |
+ { |
+ tf_select = ec_dec_bit_logp(dec, 1); |
+ } |
+ for (i=start;i<end;i++) |
+ { |
+ tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; |
+ } |
+} |
+ |
+/* The maximum pitch lag to allow in the pitch-based PLC. It's possible to save |
+ CPU time in the PLC pitch search by making this smaller than MAX_PERIOD. The |
+ current value corresponds to a pitch of 66.67 Hz. */ |
+#define PLC_PITCH_LAG_MAX (720) |
+/* The minimum pitch lag to allow in the pitch-based PLC. This corresponds to a |
+ pitch of 480 Hz. */ |
+#define PLC_PITCH_LAG_MIN (100) |
+ |
+static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, opus_val16 * OPUS_RESTRICT pcm, int N, int LM) |
+{ |
+ int c; |
+ int i; |
+ const int C = st->channels; |
+ celt_sig *decode_mem[2]; |
+ celt_sig *out_syn[2]; |
+ opus_val16 *lpc; |
+ opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE; |
+ const OpusCustomMode *mode; |
+ int nbEBands; |
+ int overlap; |
+ int start; |
+ int downsample; |
+ int loss_count; |
+ int noise_based; |
+ const opus_int16 *eBands; |
+ VARDECL(celt_sig, scratch); |
+ SAVE_STACK; |
+ |
+ mode = st->mode; |
+ nbEBands = mode->nbEBands; |
+ overlap = mode->overlap; |
+ eBands = mode->eBands; |
+ |
+ c=0; do { |
+ decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap); |
+ out_syn[c] = decode_mem[c]+DECODE_BUFFER_SIZE-N; |
+ } while (++c<C); |
+ lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*C); |
+ oldBandE = lpc+C*LPC_ORDER; |
+ oldLogE = oldBandE + 2*nbEBands; |
+ oldLogE2 = oldLogE + 2*nbEBands; |
+ backgroundLogE = oldLogE2 + 2*nbEBands; |
+ |
+ loss_count = st->loss_count; |
+ start = st->start; |
+ downsample = st->downsample; |
+ noise_based = loss_count >= 5 || start != 0; |
+ ALLOC(scratch, noise_based?N*C:N, celt_sig); |
+ if (noise_based) |
+ { |
+ /* Noise-based PLC/CNG */ |
+ celt_sig *freq; |
+ VARDECL(celt_norm, X); |
+ opus_uint32 seed; |
+ opus_val16 *plcLogE; |
+ int end; |
+ int effEnd; |
+ |
+ end = st->end; |
+ effEnd = IMAX(start, IMIN(end, mode->effEBands)); |
+ |
+ /* Share the interleaved signal MDCT coefficient buffer with the |
+ deemphasis scratch buffer. */ |
+ freq = scratch; |
+ ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ |
+ |
+ if (loss_count >= 5) |
+ plcLogE = backgroundLogE; |
+ else { |
+ /* Energy decay */ |
+ opus_val16 decay = loss_count==0 ? |
+ QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT); |
+ c=0; do |
+ { |
+ for (i=start;i<end;i++) |
+ oldBandE[c*nbEBands+i] -= decay; |
+ } while (++c<C); |
+ plcLogE = oldBandE; |
+ } |
+ seed = st->rng; |
+ for (c=0;c<C;c++) |
+ { |
+ for (i=start;i<effEnd;i++) |
+ { |
+ int j; |
+ int boffs; |
+ int blen; |
+ boffs = N*c+(eBands[i]<<LM); |
+ blen = (eBands[i+1]-eBands[i])<<LM; |
+ for (j=0;j<blen;j++) |
+ { |
+ seed = celt_lcg_rand(seed); |
+ X[boffs+j] = (celt_norm)((opus_int32)seed>>20); |
+ } |
+ renormalise_vector(X+boffs, blen, Q15ONE); |
+ } |
+ } |
+ st->rng = seed; |
+ |
+ denormalise_bands(mode, X, freq, plcLogE, start, effEnd, C, 1<<LM); |
+ |
+ c=0; do { |
+ int bound = eBands[effEnd]<<LM; |
+ if (downsample!=1) |
+ bound = IMIN(bound, N/downsample); |
+ for (i=bound;i<N;i++) |
+ freq[c*N+i] = 0; |
+ } while (++c<C); |
+ c=0; do { |
+ OPUS_MOVE(decode_mem[c], decode_mem[c]+N, |
+ DECODE_BUFFER_SIZE-N+(overlap>>1)); |
+ } while (++c<C); |
+ compute_inv_mdcts(mode, 0, freq, out_syn, C, LM); |
+ } else { |
+ /* Pitch-based PLC */ |
+ const opus_val16 *window; |
+ opus_val16 fade = Q15ONE; |
+ int pitch_index; |
+ VARDECL(opus_val32, etmp); |
+ VARDECL(opus_val16, exc); |
+ |
+ if (loss_count == 0) |
+ { |
+ VARDECL( opus_val16, lp_pitch_buf ); |
+ ALLOC( lp_pitch_buf, DECODE_BUFFER_SIZE>>1, opus_val16 ); |
+ pitch_downsample(decode_mem, lp_pitch_buf, DECODE_BUFFER_SIZE, C); |
+ pitch_search(lp_pitch_buf+(PLC_PITCH_LAG_MAX>>1), lp_pitch_buf, |
+ DECODE_BUFFER_SIZE-PLC_PITCH_LAG_MAX, |
+ PLC_PITCH_LAG_MAX-PLC_PITCH_LAG_MIN, &pitch_index); |
+ pitch_index = PLC_PITCH_LAG_MAX-pitch_index; |
+ st->last_pitch_index = pitch_index; |
+ } else { |
+ pitch_index = st->last_pitch_index; |
+ fade = QCONST16(.8f,15); |
+ } |
+ |
+ ALLOC(etmp, overlap, opus_val32); |
+ ALLOC(exc, MAX_PERIOD, opus_val16); |
+ window = mode->window; |
+ c=0; do { |
+ opus_val16 decay; |
+ opus_val16 attenuation; |
+ opus_val32 S1=0; |
+ celt_sig *buf; |
+ int extrapolation_offset; |
+ int extrapolation_len; |
+ int exc_length; |
+ int j; |
+ |
+ buf = decode_mem[c]; |
+ for (i=0;i<MAX_PERIOD;i++) { |
+ exc[i] = ROUND16(buf[DECODE_BUFFER_SIZE-MAX_PERIOD+i], SIG_SHIFT); |
+ } |
+ |
+ if (loss_count == 0) |
+ { |
+ opus_val32 ac[LPC_ORDER+1]; |
+ /* Compute LPC coefficients for the last MAX_PERIOD samples before |
+ the first loss so we can work in the excitation-filter domain. */ |
+ _celt_autocorr(exc, ac, window, overlap, LPC_ORDER, MAX_PERIOD); |
+ /* Add a noise floor of -40 dB. */ |
+#ifdef FIXED_POINT |
+ ac[0] += SHR32(ac[0],13); |
+#else |
+ ac[0] *= 1.0001f; |
+#endif |
+ /* Use lag windowing to stabilize the Levinson-Durbin recursion. */ |
+ for (i=1;i<=LPC_ORDER;i++) |
+ { |
+ /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/ |
+#ifdef FIXED_POINT |
+ ac[i] -= MULT16_32_Q15(2*i*i, ac[i]); |
+#else |
+ ac[i] -= ac[i]*(0.008f*0.008f)*i*i; |
+#endif |
+ } |
+ _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER); |
+ } |
+ /* We want the excitation for 2 pitch periods in order to look for a |
+ decaying signal, but we can't get more than MAX_PERIOD. */ |
+ exc_length = IMIN(2*pitch_index, MAX_PERIOD); |
+ /* Initialize the LPC history with the samples just before the start |
+ of the region for which we're computing the excitation. */ |
+ { |
+ opus_val16 lpc_mem[LPC_ORDER]; |
+ for (i=0;i<LPC_ORDER;i++) |
+ { |
+ lpc_mem[i] = |
+ ROUND16(buf[DECODE_BUFFER_SIZE-exc_length-1-i], SIG_SHIFT); |
+ } |
+ /* Compute the excitation for exc_length samples before the loss. */ |
+ celt_fir(exc+MAX_PERIOD-exc_length, lpc+c*LPC_ORDER, |
+ exc+MAX_PERIOD-exc_length, exc_length, LPC_ORDER, lpc_mem); |
+ } |
+ |
+ /* Check if the waveform is decaying, and if so how fast. |
+ We do this to avoid adding energy when concealing in a segment |
+ with decaying energy. */ |
+ { |
+ opus_val32 E1=1, E2=1; |
+ int decay_length; |
+#ifdef FIXED_POINT |
+ int shift = IMAX(0,2*celt_zlog2(celt_maxabs16(&exc[MAX_PERIOD-exc_length], exc_length))-20); |
+#endif |
+ decay_length = exc_length>>1; |
+ for (i=0;i<decay_length;i++) |
+ { |
+ opus_val16 e; |
+ e = exc[MAX_PERIOD-decay_length+i]; |
+ E1 += SHR32(MULT16_16(e, e), shift); |
+ e = exc[MAX_PERIOD-2*decay_length+i]; |
+ E2 += SHR32(MULT16_16(e, e), shift); |
+ } |
+ E1 = MIN32(E1, E2); |
+ decay = celt_sqrt(frac_div32(SHR32(E1, 1), E2)); |
+ } |
+ |
+ /* Move the decoder memory one frame to the left to give us room to |
+ add the data for the new frame. We ignore the overlap that extends |
+ past the end of the buffer, because we aren't going to use it. */ |
+ OPUS_MOVE(buf, buf+N, DECODE_BUFFER_SIZE-N); |
+ |
+ /* Extrapolate from the end of the excitation with a period of |
+ "pitch_index", scaling down each period by an additional factor of |
+ "decay". */ |
+ extrapolation_offset = MAX_PERIOD-pitch_index; |
+ /* We need to extrapolate enough samples to cover a complete MDCT |
+ window (including overlap/2 samples on both sides). */ |
+ extrapolation_len = N+overlap; |
+ /* We also apply fading if this is not the first loss. */ |
+ attenuation = MULT16_16_Q15(fade, decay); |
+ for (i=j=0;i<extrapolation_len;i++,j++) |
+ { |
+ opus_val16 tmp; |
+ if (j >= pitch_index) { |
+ j -= pitch_index; |
+ attenuation = MULT16_16_Q15(attenuation, decay); |
+ } |
+ buf[DECODE_BUFFER_SIZE-N+i] = |
+ SHL32(EXTEND32(MULT16_16_Q15(attenuation, |
+ exc[extrapolation_offset+j])), SIG_SHIFT); |
+ /* Compute the energy of the previously decoded signal whose |
+ excitation we're copying. */ |
+ tmp = ROUND16( |
+ buf[DECODE_BUFFER_SIZE-MAX_PERIOD-N+extrapolation_offset+j], |
+ SIG_SHIFT); |
+ S1 += SHR32(MULT16_16(tmp, tmp), 8); |
+ } |
+ |
+ { |
+ opus_val16 lpc_mem[LPC_ORDER]; |
+ /* Copy the last decoded samples (prior to the overlap region) to |
+ synthesis filter memory so we can have a continuous signal. */ |
+ for (i=0;i<LPC_ORDER;i++) |
+ lpc_mem[i] = ROUND16(buf[DECODE_BUFFER_SIZE-N-1-i], SIG_SHIFT); |
+ /* Apply the synthesis filter to convert the excitation back into |
+ the signal domain. */ |
+ celt_iir(buf+DECODE_BUFFER_SIZE-N, lpc+c*LPC_ORDER, |
+ buf+DECODE_BUFFER_SIZE-N, extrapolation_len, LPC_ORDER, |
+ lpc_mem); |
+ } |
+ |
+ /* Check if the synthesis energy is higher than expected, which can |
+ happen with the signal changes during our window. If so, |
+ attenuate. */ |
+ { |
+ opus_val32 S2=0; |
+ for (i=0;i<extrapolation_len;i++) |
+ { |
+ opus_val16 tmp = ROUND16(buf[DECODE_BUFFER_SIZE-N+i], SIG_SHIFT); |
+ S2 += SHR32(MULT16_16(tmp, tmp), 8); |
+ } |
+ /* This checks for an "explosion" in the synthesis. */ |
+#ifdef FIXED_POINT |
+ if (!(S1 > SHR32(S2,2))) |
+#else |
+ /* The float test is written this way to catch NaNs in the output |
+ of the IIR filter at the same time. */ |
+ if (!(S1 > 0.2f*S2)) |
+#endif |
+ { |
+ for (i=0;i<extrapolation_len;i++) |
+ buf[DECODE_BUFFER_SIZE-N+i] = 0; |
+ } else if (S1 < S2) |
+ { |
+ opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1)); |
+ for (i=0;i<overlap;i++) |
+ { |
+ opus_val16 tmp_g = Q15ONE |
+ - MULT16_16_Q15(window[i], Q15ONE-ratio); |
+ buf[DECODE_BUFFER_SIZE-N+i] = |
+ MULT16_32_Q15(tmp_g, buf[DECODE_BUFFER_SIZE-N+i]); |
+ } |
+ for (i=overlap;i<extrapolation_len;i++) |
+ { |
+ buf[DECODE_BUFFER_SIZE-N+i] = |
+ MULT16_32_Q15(ratio, buf[DECODE_BUFFER_SIZE-N+i]); |
+ } |
+ } |
+ } |
+ |
+ /* Apply the pre-filter to the MDCT overlap for the next frame because |
+ the post-filter will be re-applied in the decoder after the MDCT |
+ overlap. */ |
+ comb_filter(etmp, buf+DECODE_BUFFER_SIZE, |
+ st->postfilter_period, st->postfilter_period, overlap, |
+ -st->postfilter_gain, -st->postfilter_gain, |
+ st->postfilter_tapset, st->postfilter_tapset, NULL, 0); |
+ |
+ /* Simulate TDAC on the concealed audio so that it blends with the |
+ MDCT of the next frame. */ |
+ for (i=0;i<overlap/2;i++) |
+ { |
+ buf[DECODE_BUFFER_SIZE+i] = |
+ MULT16_32_Q15(window[i], etmp[overlap-1-i]) |
+ + MULT16_32_Q15(window[overlap-i-1], etmp[i]); |
+ } |
+ } while (++c<C); |
+ } |
+ |
+ deemphasis(out_syn, pcm, N, C, downsample, |
+ mode->preemph, st->preemph_memD, scratch); |
+ |
+ st->loss_count = loss_count+1; |
+ |
+ RESTORE_STACK; |
+} |
+ |
+int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec) |
+{ |
+ int c, i, N; |
+ int spread_decision; |
+ opus_int32 bits; |
+ ec_dec _dec; |
+ VARDECL(celt_sig, freq); |
+ VARDECL(celt_norm, X); |
+ VARDECL(int, fine_quant); |
+ VARDECL(int, pulses); |
+ VARDECL(int, cap); |
+ VARDECL(int, offsets); |
+ VARDECL(int, fine_priority); |
+ VARDECL(int, tf_res); |
+ VARDECL(unsigned char, collapse_masks); |
+ celt_sig *out_mem[2]; |
+ celt_sig *decode_mem[2]; |
+ celt_sig *out_syn[2]; |
+ opus_val16 *lpc; |
+ opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE; |
+ |
+ int shortBlocks; |
+ int isTransient; |
+ int intra_ener; |
+ const int CC = st->channels; |
+ int LM, M; |
+ int effEnd; |
+ int codedBands; |
+ int alloc_trim; |
+ int postfilter_pitch; |
+ opus_val16 postfilter_gain; |
+ int intensity=0; |
+ int dual_stereo=0; |
+ opus_int32 total_bits; |
+ opus_int32 balance; |
+ opus_int32 tell; |
+ int dynalloc_logp; |
+ int postfilter_tapset; |
+ int anti_collapse_rsv; |
+ int anti_collapse_on=0; |
+ int silence; |
+ int C = st->stream_channels; |
+ const OpusCustomMode *mode; |
+ int nbEBands; |
+ int overlap; |
+ const opus_int16 *eBands; |
+ ALLOC_STACK; |
+ |
+ mode = st->mode; |
+ nbEBands = mode->nbEBands; |
+ overlap = mode->overlap; |
+ eBands = mode->eBands; |
+ frame_size *= st->downsample; |
+ |
+ c=0; do { |
+ decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap); |
+ out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD; |
+ } while (++c<CC); |
+ lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*CC); |
+ oldBandE = lpc+CC*LPC_ORDER; |
+ oldLogE = oldBandE + 2*nbEBands; |
+ oldLogE2 = oldLogE + 2*nbEBands; |
+ backgroundLogE = oldLogE2 + 2*nbEBands; |
+ |
+#ifdef CUSTOM_MODES |
+ if (st->signalling && data!=NULL) |
+ { |
+ int data0=data[0]; |
+ /* Convert "standard mode" to Opus header */ |
+ if (mode->Fs==48000 && mode->shortMdctSize==120) |
+ { |
+ data0 = fromOpus(data0); |
+ if (data0<0) |
+ return OPUS_INVALID_PACKET; |
+ } |
+ st->end = IMAX(1, mode->effEBands-2*(data0>>5)); |
+ LM = (data0>>3)&0x3; |
+ C = 1 + ((data0>>2)&0x1); |
+ data++; |
+ len--; |
+ if (LM>mode->maxLM) |
+ return OPUS_INVALID_PACKET; |
+ if (frame_size < mode->shortMdctSize<<LM) |
+ return OPUS_BUFFER_TOO_SMALL; |
+ else |
+ frame_size = mode->shortMdctSize<<LM; |
+ } else { |
+#else |
+ { |
+#endif |
+ for (LM=0;LM<=mode->maxLM;LM++) |
+ if (mode->shortMdctSize<<LM==frame_size) |
+ break; |
+ if (LM>mode->maxLM) |
+ return OPUS_BAD_ARG; |
+ } |
+ M=1<<LM; |
+ |
+ if (len<0 || len>1275 || pcm==NULL) |
+ return OPUS_BAD_ARG; |
+ |
+ N = M*mode->shortMdctSize; |
+ |
+ effEnd = st->end; |
+ if (effEnd > mode->effEBands) |
+ effEnd = mode->effEBands; |
+ |
+ if (data == NULL || len<=1) |
+ { |
+ celt_decode_lost(st, pcm, N, LM); |
+ RESTORE_STACK; |
+ return frame_size/st->downsample; |
+ } |
+ |
+ if (dec == NULL) |
+ { |
+ ec_dec_init(&_dec,(unsigned char*)data,len); |
+ dec = &_dec; |
+ } |
+ |
+ if (C==1) |
+ { |
+ for (i=0;i<nbEBands;i++) |
+ oldBandE[i]=MAX16(oldBandE[i],oldBandE[nbEBands+i]); |
+ } |
+ |
+ total_bits = len*8; |
+ tell = ec_tell(dec); |
+ |
+ if (tell >= total_bits) |
+ silence = 1; |
+ else if (tell==1) |
+ silence = ec_dec_bit_logp(dec, 15); |
+ else |
+ silence = 0; |
+ if (silence) |
+ { |
+ /* Pretend we've read all the remaining bits */ |
+ tell = len*8; |
+ dec->nbits_total+=tell-ec_tell(dec); |
+ } |
+ |
+ postfilter_gain = 0; |
+ postfilter_pitch = 0; |
+ postfilter_tapset = 0; |
+ if (st->start==0 && tell+16 <= total_bits) |
+ { |
+ if(ec_dec_bit_logp(dec, 1)) |
+ { |
+ int qg, octave; |
+ octave = ec_dec_uint(dec, 6); |
+ postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1; |
+ qg = ec_dec_bits(dec, 3); |
+ if (ec_tell(dec)+2<=total_bits) |
+ postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2); |
+ postfilter_gain = QCONST16(.09375f,15)*(qg+1); |
+ } |
+ tell = ec_tell(dec); |
+ } |
+ |
+ if (LM > 0 && tell+3 <= total_bits) |
+ { |
+ isTransient = ec_dec_bit_logp(dec, 3); |
+ tell = ec_tell(dec); |
+ } |
+ else |
+ isTransient = 0; |
+ |
+ if (isTransient) |
+ shortBlocks = M; |
+ else |
+ shortBlocks = 0; |
+ |
+ /* Decode the global flags (first symbols in the stream) */ |
+ intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0; |
+ /* Get band energies */ |
+ unquant_coarse_energy(mode, st->start, st->end, oldBandE, |
+ intra_ener, dec, C, LM); |
+ |
+ ALLOC(tf_res, nbEBands, int); |
+ tf_decode(st->start, st->end, isTransient, tf_res, LM, dec); |
+ |
+ tell = ec_tell(dec); |
+ spread_decision = SPREAD_NORMAL; |
+ if (tell+4 <= total_bits) |
+ spread_decision = ec_dec_icdf(dec, spread_icdf, 5); |
+ |
+ ALLOC(cap, nbEBands, int); |
+ |
+ init_caps(mode,cap,LM,C); |
+ |
+ ALLOC(offsets, nbEBands, int); |
+ |
+ dynalloc_logp = 6; |
+ total_bits<<=BITRES; |
+ tell = ec_tell_frac(dec); |
+ for (i=st->start;i<st->end;i++) |
+ { |
+ int width, quanta; |
+ int dynalloc_loop_logp; |
+ int boost; |
+ width = C*(eBands[i+1]-eBands[i])<<LM; |
+ /* quanta is 6 bits, but no more than 1 bit/sample |
+ and no less than 1/8 bit/sample */ |
+ quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); |
+ dynalloc_loop_logp = dynalloc_logp; |
+ boost = 0; |
+ while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i]) |
+ { |
+ int flag; |
+ flag = ec_dec_bit_logp(dec, dynalloc_loop_logp); |
+ tell = ec_tell_frac(dec); |
+ if (!flag) |
+ break; |
+ boost += quanta; |
+ total_bits -= quanta; |
+ dynalloc_loop_logp = 1; |
+ } |
+ offsets[i] = boost; |
+ /* Making dynalloc more likely */ |
+ if (boost>0) |
+ dynalloc_logp = IMAX(2, dynalloc_logp-1); |
+ } |
+ |
+ ALLOC(fine_quant, nbEBands, int); |
+ alloc_trim = tell+(6<<BITRES) <= total_bits ? |
+ ec_dec_icdf(dec, trim_icdf, 7) : 5; |
+ |
+ bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1; |
+ anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0; |
+ bits -= anti_collapse_rsv; |
+ |
+ ALLOC(pulses, nbEBands, int); |
+ ALLOC(fine_priority, nbEBands, int); |
+ |
+ codedBands = compute_allocation(mode, st->start, st->end, offsets, cap, |
+ alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses, |
+ fine_quant, fine_priority, C, LM, dec, 0, 0, 0); |
+ |
+ unquant_fine_energy(mode, st->start, st->end, oldBandE, fine_quant, dec, C); |
+ |
+ /* Decode fixed codebook */ |
+ ALLOC(collapse_masks, C*nbEBands, unsigned char); |
+ ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ |
+ |
+ quant_all_bands(0, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks, |
+ NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res, |
+ len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng); |
+ |
+ if (anti_collapse_rsv > 0) |
+ { |
+ anti_collapse_on = ec_dec_bits(dec, 1); |
+ } |
+ |
+ unquant_energy_finalise(mode, st->start, st->end, oldBandE, |
+ fine_quant, fine_priority, len*8-ec_tell(dec), dec, C); |
+ |
+ if (anti_collapse_on) |
+ anti_collapse(mode, X, collapse_masks, LM, C, N, |
+ st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng); |
+ |
+ ALLOC(freq, IMAX(CC,C)*N, celt_sig); /**< Interleaved signal MDCTs */ |
+ |
+ if (silence) |
+ { |
+ for (i=0;i<C*nbEBands;i++) |
+ oldBandE[i] = -QCONST16(28.f,DB_SHIFT); |
+ for (i=0;i<C*N;i++) |
+ freq[i] = 0; |
+ } else { |
+ /* Synthesis */ |
+ denormalise_bands(mode, X, freq, oldBandE, st->start, effEnd, C, M); |
+ } |
+ c=0; do { |
+ OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap/2); |
+ } while (++c<CC); |
+ |
+ c=0; do { |
+ int bound = M*eBands[effEnd]; |
+ if (st->downsample!=1) |
+ bound = IMIN(bound, N/st->downsample); |
+ for (i=bound;i<N;i++) |
+ freq[c*N+i] = 0; |
+ } while (++c<C); |
+ |
+ c=0; do { |
+ out_syn[c] = out_mem[c]+MAX_PERIOD-N; |
+ } while (++c<CC); |
+ |
+ if (CC==2&&C==1) |
+ { |
+ for (i=0;i<N;i++) |
+ freq[N+i] = freq[i]; |
+ } |
+ if (CC==1&&C==2) |
+ { |
+ for (i=0;i<N;i++) |
+ freq[i] = HALF32(ADD32(freq[i],freq[N+i])); |
+ } |
+ |
+ /* Compute inverse MDCTs */ |
+ compute_inv_mdcts(mode, shortBlocks, freq, out_syn, CC, LM); |
+ |
+ c=0; do { |
+ st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD); |
+ st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD); |
+ comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, mode->shortMdctSize, |
+ st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset, |
+ mode->window, overlap); |
+ if (LM!=0) |
+ comb_filter(out_syn[c]+mode->shortMdctSize, out_syn[c]+mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-mode->shortMdctSize, |
+ st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset, |
+ mode->window, overlap); |
+ |
+ } while (++c<CC); |
+ st->postfilter_period_old = st->postfilter_period; |
+ st->postfilter_gain_old = st->postfilter_gain; |
+ st->postfilter_tapset_old = st->postfilter_tapset; |
+ st->postfilter_period = postfilter_pitch; |
+ st->postfilter_gain = postfilter_gain; |
+ st->postfilter_tapset = postfilter_tapset; |
+ if (LM!=0) |
+ { |
+ st->postfilter_period_old = st->postfilter_period; |
+ st->postfilter_gain_old = st->postfilter_gain; |
+ st->postfilter_tapset_old = st->postfilter_tapset; |
+ } |
+ |
+ if (C==1) { |
+ for (i=0;i<nbEBands;i++) |
+ oldBandE[nbEBands+i]=oldBandE[i]; |
+ } |
+ |
+ /* In case start or end were to change */ |
+ if (!isTransient) |
+ { |
+ for (i=0;i<2*nbEBands;i++) |
+ oldLogE2[i] = oldLogE[i]; |
+ for (i=0;i<2*nbEBands;i++) |
+ oldLogE[i] = oldBandE[i]; |
+ for (i=0;i<2*nbEBands;i++) |
+ backgroundLogE[i] = MIN16(backgroundLogE[i] + M*QCONST16(0.001f,DB_SHIFT), oldBandE[i]); |
+ } else { |
+ for (i=0;i<2*nbEBands;i++) |
+ oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); |
+ } |
+ c=0; do |
+ { |
+ for (i=0;i<st->start;i++) |
+ { |
+ oldBandE[c*nbEBands+i]=0; |
+ oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); |
+ } |
+ for (i=st->end;i<nbEBands;i++) |
+ { |
+ oldBandE[c*nbEBands+i]=0; |
+ oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); |
+ } |
+ } while (++c<2); |
+ st->rng = dec->rng; |
+ |
+ /* We reuse freq[] as scratch space for the de-emphasis */ |
+ deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, freq); |
+ st->loss_count = 0; |
+ RESTORE_STACK; |
+ if (ec_tell(dec) > 8*len) |
+ return OPUS_INTERNAL_ERROR; |
+ if(ec_get_error(dec)) |
+ st->error = 1; |
+ return frame_size/st->downsample; |
+} |
+ |
+ |
+#ifdef CUSTOM_MODES |
+ |
+#ifdef FIXED_POINT |
+int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size) |
+{ |
+ return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL); |
+} |
+ |
+#ifndef DISABLE_FLOAT_API |
+int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size) |
+{ |
+ int j, ret, C, N; |
+ VARDECL(opus_int16, out); |
+ ALLOC_STACK; |
+ |
+ if (pcm==NULL) |
+ return OPUS_BAD_ARG; |
+ |
+ C = st->channels; |
+ N = frame_size; |
+ |
+ ALLOC(out, C*N, opus_int16); |
+ ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL); |
+ if (ret>0) |
+ for (j=0;j<C*ret;j++) |
+ pcm[j]=out[j]*(1.f/32768.f); |
+ |
+ RESTORE_STACK; |
+ return ret; |
+} |
+#endif /* DISABLE_FLOAT_API */ |
+ |
+#else |
+ |
+int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size) |
+{ |
+ return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL); |
+} |
+ |
+int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size) |
+{ |
+ int j, ret, C, N; |
+ VARDECL(celt_sig, out); |
+ ALLOC_STACK; |
+ |
+ if (pcm==NULL) |
+ return OPUS_BAD_ARG; |
+ |
+ C = st->channels; |
+ N = frame_size; |
+ ALLOC(out, C*N, celt_sig); |
+ |
+ ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL); |
+ |
+ if (ret>0) |
+ for (j=0;j<C*ret;j++) |
+ pcm[j] = FLOAT2INT16 (out[j]); |
+ |
+ RESTORE_STACK; |
+ return ret; |
+} |
+ |
+#endif |
+#endif /* CUSTOM_MODES */ |
+ |
+int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...) |
+{ |
+ va_list ap; |
+ |
+ va_start(ap, request); |
+ switch (request) |
+ { |
+ case CELT_SET_START_BAND_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ if (value<0 || value>=st->mode->nbEBands) |
+ goto bad_arg; |
+ st->start = value; |
+ } |
+ break; |
+ case CELT_SET_END_BAND_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ if (value<1 || value>st->mode->nbEBands) |
+ goto bad_arg; |
+ st->end = value; |
+ } |
+ break; |
+ case CELT_SET_CHANNELS_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ if (value<1 || value>2) |
+ goto bad_arg; |
+ st->stream_channels = value; |
+ } |
+ break; |
+ case CELT_GET_AND_CLEAR_ERROR_REQUEST: |
+ { |
+ opus_int32 *value = va_arg(ap, opus_int32*); |
+ if (value==NULL) |
+ goto bad_arg; |
+ *value=st->error; |
+ st->error = 0; |
+ } |
+ break; |
+ case OPUS_GET_LOOKAHEAD_REQUEST: |
+ { |
+ opus_int32 *value = va_arg(ap, opus_int32*); |
+ if (value==NULL) |
+ goto bad_arg; |
+ *value = st->overlap/st->downsample; |
+ } |
+ break; |
+ case OPUS_RESET_STATE: |
+ { |
+ int i; |
+ opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2; |
+ lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels); |
+ oldBandE = lpc+st->channels*LPC_ORDER; |
+ oldLogE = oldBandE + 2*st->mode->nbEBands; |
+ oldLogE2 = oldLogE + 2*st->mode->nbEBands; |
+ OPUS_CLEAR((char*)&st->DECODER_RESET_START, |
+ opus_custom_decoder_get_size(st->mode, st->channels)- |
+ ((char*)&st->DECODER_RESET_START - (char*)st)); |
+ for (i=0;i<2*st->mode->nbEBands;i++) |
+ oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); |
+ } |
+ break; |
+ case OPUS_GET_PITCH_REQUEST: |
+ { |
+ opus_int32 *value = va_arg(ap, opus_int32*); |
+ if (value==NULL) |
+ goto bad_arg; |
+ *value = st->postfilter_period; |
+ } |
+ break; |
+ case CELT_GET_MODE_REQUEST: |
+ { |
+ const CELTMode ** value = va_arg(ap, const CELTMode**); |
+ if (value==0) |
+ goto bad_arg; |
+ *value=st->mode; |
+ } |
+ break; |
+ case CELT_SET_SIGNALLING_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ st->signalling = value; |
+ } |
+ break; |
+ case OPUS_GET_FINAL_RANGE_REQUEST: |
+ { |
+ opus_uint32 * value = va_arg(ap, opus_uint32 *); |
+ if (value==0) |
+ goto bad_arg; |
+ *value=st->rng; |
+ } |
+ break; |
+ default: |
+ goto bad_request; |
+ } |
+ va_end(ap); |
+ return OPUS_OK; |
+bad_arg: |
+ va_end(ap); |
+ return OPUS_BAD_ARG; |
+bad_request: |
+ va_end(ap); |
+ return OPUS_UNIMPLEMENTED; |
+} |