| Index: celt/celt_encoder.c | 
| diff --git a/celt/celt_encoder.c b/celt/celt_encoder.c | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..59dcc5c61eabca745030b6fa89f3369b842912a5 | 
| --- /dev/null | 
| +++ b/celt/celt_encoder.c | 
| @@ -0,0 +1,2331 @@ | 
| +/* Copyright (c) 2007-2008 CSIRO | 
| +   Copyright (c) 2007-2010 Xiph.Org Foundation | 
| +   Copyright (c) 2008 Gregory Maxwell | 
| +   Written by Jean-Marc Valin and Gregory Maxwell */ | 
| +/* | 
| +   Redistribution and use in source and binary forms, with or without | 
| +   modification, are permitted provided that the following conditions | 
| +   are met: | 
| + | 
| +   - Redistributions of source code must retain the above copyright | 
| +   notice, this list of conditions and the following disclaimer. | 
| + | 
| +   - Redistributions in binary form must reproduce the above copyright | 
| +   notice, this list of conditions and the following disclaimer in the | 
| +   documentation and/or other materials provided with the distribution. | 
| + | 
| +   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
| +   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
| +   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
| +   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | 
| +   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| +   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| +   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| +   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
| +   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
| +   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
| +   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| +*/ | 
| + | 
| +#ifdef HAVE_CONFIG_H | 
| +#include "config.h" | 
| +#endif | 
| + | 
| +#define CELT_ENCODER_C | 
| + | 
| +#include "cpu_support.h" | 
| +#include "os_support.h" | 
| +#include "mdct.h" | 
| +#include <math.h> | 
| +#include "celt.h" | 
| +#include "pitch.h" | 
| +#include "bands.h" | 
| +#include "modes.h" | 
| +#include "entcode.h" | 
| +#include "quant_bands.h" | 
| +#include "rate.h" | 
| +#include "stack_alloc.h" | 
| +#include "mathops.h" | 
| +#include "float_cast.h" | 
| +#include <stdarg.h> | 
| +#include "celt_lpc.h" | 
| +#include "vq.h" | 
| + | 
| + | 
| +/** Encoder state | 
| + @brief Encoder state | 
| + */ | 
| +struct OpusCustomEncoder { | 
| +   const OpusCustomMode *mode;     /**< Mode used by the encoder */ | 
| +   int overlap; | 
| +   int channels; | 
| +   int stream_channels; | 
| + | 
| +   int force_intra; | 
| +   int clip; | 
| +   int disable_pf; | 
| +   int complexity; | 
| +   int upsample; | 
| +   int start, end; | 
| + | 
| +   opus_int32 bitrate; | 
| +   int vbr; | 
| +   int signalling; | 
| +   int constrained_vbr;      /* If zero, VBR can do whatever it likes with the rate */ | 
| +   int loss_rate; | 
| +   int lsb_depth; | 
| +   int variable_duration; | 
| +   int lfe; | 
| +   int arch; | 
| + | 
| +   /* Everything beyond this point gets cleared on a reset */ | 
| +#define ENCODER_RESET_START rng | 
| + | 
| +   opus_uint32 rng; | 
| +   int spread_decision; | 
| +   opus_val32 delayedIntra; | 
| +   int tonal_average; | 
| +   int lastCodedBands; | 
| +   int hf_average; | 
| +   int tapset_decision; | 
| + | 
| +   int prefilter_period; | 
| +   opus_val16 prefilter_gain; | 
| +   int prefilter_tapset; | 
| +#ifdef RESYNTH | 
| +   int prefilter_period_old; | 
| +   opus_val16 prefilter_gain_old; | 
| +   int prefilter_tapset_old; | 
| +#endif | 
| +   int consec_transient; | 
| +   AnalysisInfo analysis; | 
| + | 
| +   opus_val32 preemph_memE[2]; | 
| +   opus_val32 preemph_memD[2]; | 
| + | 
| +   /* VBR-related parameters */ | 
| +   opus_int32 vbr_reservoir; | 
| +   opus_int32 vbr_drift; | 
| +   opus_int32 vbr_offset; | 
| +   opus_int32 vbr_count; | 
| +   opus_val32 overlap_max; | 
| +   opus_val16 stereo_saving; | 
| +   int intensity; | 
| +   opus_val16 *energy_mask; | 
| +   opus_val16 spec_avg; | 
| + | 
| +#ifdef RESYNTH | 
| +   /* +MAX_PERIOD/2 to make space for overlap */ | 
| +   celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2]; | 
| +#endif | 
| + | 
| +   celt_sig in_mem[1]; /* Size = channels*mode->overlap */ | 
| +   /* celt_sig prefilter_mem[],  Size = channels*COMBFILTER_MAXPERIOD */ | 
| +   /* opus_val16 oldBandE[],     Size = channels*mode->nbEBands */ | 
| +   /* opus_val16 oldLogE[],      Size = channels*mode->nbEBands */ | 
| +   /* opus_val16 oldLogE2[],     Size = channels*mode->nbEBands */ | 
| +}; | 
| + | 
| +int celt_encoder_get_size(int channels) | 
| +{ | 
| +   CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); | 
| +   return opus_custom_encoder_get_size(mode, channels); | 
| +} | 
| + | 
| +OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels) | 
| +{ | 
| +   int size = sizeof(struct CELTEncoder) | 
| +         + (channels*mode->overlap-1)*sizeof(celt_sig)    /* celt_sig in_mem[channels*mode->overlap]; */ | 
| +         + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */ | 
| +         + 3*channels*mode->nbEBands*sizeof(opus_val16);  /* opus_val16 oldBandE[channels*mode->nbEBands]; */ | 
| +                                                          /* opus_val16 oldLogE[channels*mode->nbEBands]; */ | 
| +                                                          /* opus_val16 oldLogE2[channels*mode->nbEBands]; */ | 
| +   return size; | 
| +} | 
| + | 
| +#ifdef CUSTOM_MODES | 
| +CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error) | 
| +{ | 
| +   int ret; | 
| +   CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels)); | 
| +   /* init will handle the NULL case */ | 
| +   ret = opus_custom_encoder_init(st, mode, channels); | 
| +   if (ret != OPUS_OK) | 
| +   { | 
| +      opus_custom_encoder_destroy(st); | 
| +      st = NULL; | 
| +   } | 
| +   if (error) | 
| +      *error = ret; | 
| +   return st; | 
| +} | 
| +#endif /* CUSTOM_MODES */ | 
| + | 
| +int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels) | 
| +{ | 
| +   int ret; | 
| +   ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels); | 
| +   if (ret != OPUS_OK) | 
| +      return ret; | 
| +   st->upsample = resampling_factor(sampling_rate); | 
| +   return OPUS_OK; | 
| +} | 
| + | 
| +OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels) | 
| +{ | 
| +   if (channels < 0 || channels > 2) | 
| +      return OPUS_BAD_ARG; | 
| + | 
| +   if (st==NULL || mode==NULL) | 
| +      return OPUS_ALLOC_FAIL; | 
| + | 
| +   OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels)); | 
| + | 
| +   st->mode = mode; | 
| +   st->overlap = mode->overlap; | 
| +   st->stream_channels = st->channels = channels; | 
| + | 
| +   st->upsample = 1; | 
| +   st->start = 0; | 
| +   st->end = st->mode->effEBands; | 
| +   st->signalling = 1; | 
| + | 
| +   st->arch = opus_select_arch(); | 
| + | 
| +   st->constrained_vbr = 1; | 
| +   st->clip = 1; | 
| + | 
| +   st->bitrate = OPUS_BITRATE_MAX; | 
| +   st->vbr = 0; | 
| +   st->force_intra  = 0; | 
| +   st->complexity = 5; | 
| +   st->lsb_depth=24; | 
| + | 
| +   opus_custom_encoder_ctl(st, OPUS_RESET_STATE); | 
| + | 
| +   return OPUS_OK; | 
| +} | 
| + | 
| +#ifdef CUSTOM_MODES | 
| +void opus_custom_encoder_destroy(CELTEncoder *st) | 
| +{ | 
| +   opus_free(st); | 
| +} | 
| +#endif /* CUSTOM_MODES */ | 
| + | 
| + | 
| +static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C, | 
| +                              opus_val16 *tf_estimate, int *tf_chan) | 
| +{ | 
| +   int i; | 
| +   VARDECL(opus_val16, tmp); | 
| +   opus_val32 mem0,mem1; | 
| +   int is_transient = 0; | 
| +   opus_int32 mask_metric = 0; | 
| +   int c; | 
| +   opus_val16 tf_max; | 
| +   int len2; | 
| +   /* Table of 6*64/x, trained on real data to minimize the average error */ | 
| +   static const unsigned char inv_table[128] = { | 
| +         255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25, | 
| +          23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12, | 
| +          12, 12, 11, 11, 11, 10, 10, 10,  9,  9,  9,  9,  9,  9,  8,  8, | 
| +           8,  8,  8,  7,  7,  7,  7,  7,  7,  6,  6,  6,  6,  6,  6,  6, | 
| +           6,  6,  6,  6,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  5,  5, | 
| +           5,  5,  5,  5,  5,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4, | 
| +           4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  3,  3, | 
| +           3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  2, | 
| +   }; | 
| +   SAVE_STACK; | 
| +   ALLOC(tmp, len, opus_val16); | 
| + | 
| +   len2=len/2; | 
| +   tf_max = 0; | 
| +   for (c=0;c<C;c++) | 
| +   { | 
| +      opus_val32 mean; | 
| +      opus_int32 unmask=0; | 
| +      opus_val32 norm; | 
| +      opus_val16 maxE; | 
| +      mem0=0; | 
| +      mem1=0; | 
| +      /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */ | 
| +      for (i=0;i<len;i++) | 
| +      { | 
| +         opus_val32 x,y; | 
| +         x = SHR32(in[i+c*len],SIG_SHIFT); | 
| +         y = ADD32(mem0, x); | 
| +#ifdef FIXED_POINT | 
| +         mem0 = mem1 + y - SHL32(x,1); | 
| +         mem1 = x - SHR32(y,1); | 
| +#else | 
| +         mem0 = mem1 + y - 2*x; | 
| +         mem1 = x - .5f*y; | 
| +#endif | 
| +         tmp[i] = EXTRACT16(SHR32(y,2)); | 
| +         /*printf("%f ", tmp[i]);*/ | 
| +      } | 
| +      /*printf("\n");*/ | 
| +      /* First few samples are bad because we don't propagate the memory */ | 
| +      for (i=0;i<12;i++) | 
| +         tmp[i] = 0; | 
| + | 
| +#ifdef FIXED_POINT | 
| +      /* Normalize tmp to max range */ | 
| +      { | 
| +         int shift=0; | 
| +         shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len)); | 
| +         if (shift!=0) | 
| +         { | 
| +            for (i=0;i<len;i++) | 
| +               tmp[i] = SHL16(tmp[i], shift); | 
| +         } | 
| +      } | 
| +#endif | 
| + | 
| +      mean=0; | 
| +      mem0=0; | 
| +      /* Grouping by two to reduce complexity */ | 
| +      /* Forward pass to compute the post-echo threshold*/ | 
| +      for (i=0;i<len2;i++) | 
| +      { | 
| +         opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16); | 
| +         mean += x2; | 
| +#ifdef FIXED_POINT | 
| +         /* FIXME: Use PSHR16() instead */ | 
| +         tmp[i] = mem0 + PSHR32(x2-mem0,4); | 
| +#else | 
| +         tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0); | 
| +#endif | 
| +         mem0 = tmp[i]; | 
| +      } | 
| + | 
| +      mem0=0; | 
| +      maxE=0; | 
| +      /* Backward pass to compute the pre-echo threshold */ | 
| +      for (i=len2-1;i>=0;i--) | 
| +      { | 
| +#ifdef FIXED_POINT | 
| +         /* FIXME: Use PSHR16() instead */ | 
| +         tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3); | 
| +#else | 
| +         tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0); | 
| +#endif | 
| +         mem0 = tmp[i]; | 
| +         maxE = MAX16(maxE, mem0); | 
| +      } | 
| +      /*for (i=0;i<len2;i++)printf("%f ", tmp[i]/mean);printf("\n");*/ | 
| + | 
| +      /* Compute the ratio of the "frame energy" over the harmonic mean of the energy. | 
| +         This essentially corresponds to a bitrate-normalized temporal noise-to-mask | 
| +         ratio */ | 
| + | 
| +      /* As a compromise with the old transient detector, frame energy is the | 
| +         geometric mean of the energy and half the max */ | 
| +#ifdef FIXED_POINT | 
| +      /* Costs two sqrt() to avoid overflows */ | 
| +      mean = MULT16_16(celt_sqrt(mean), celt_sqrt(MULT16_16(maxE,len2>>1))); | 
| +#else | 
| +      mean = celt_sqrt(mean * maxE*.5*len2); | 
| +#endif | 
| +      /* Inverse of the mean energy in Q15+6 */ | 
| +      norm = SHL32(EXTEND32(len2),6+14)/ADD32(EPSILON,SHR32(mean,1)); | 
| +      /* Compute harmonic mean discarding the unreliable boundaries | 
| +         The data is smooth, so we only take 1/4th of the samples */ | 
| +      unmask=0; | 
| +      for (i=12;i<len2-5;i+=4) | 
| +      { | 
| +         int id; | 
| +#ifdef FIXED_POINT | 
| +         id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */ | 
| +#else | 
| +         id = IMAX(0,IMIN(127,(int)floor(64*norm*tmp[i]))); /* Do not round to nearest */ | 
| +#endif | 
| +         unmask += inv_table[id]; | 
| +      } | 
| +      /*printf("%d\n", unmask);*/ | 
| +      /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */ | 
| +      unmask = 64*unmask*4/(6*(len2-17)); | 
| +      if (unmask>mask_metric) | 
| +      { | 
| +         *tf_chan = c; | 
| +         mask_metric = unmask; | 
| +      } | 
| +   } | 
| +   is_transient = mask_metric>200; | 
| + | 
| +   /* Arbitrary metric for VBR boost */ | 
| +   tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42); | 
| +   /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */ | 
| +   *tf_estimate = celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),MIN16(163,tf_max)),14)-QCONST32(0.139,28))); | 
| +   /*printf("%d %f\n", tf_max, mask_metric);*/ | 
| +   RESTORE_STACK; | 
| +#ifdef FUZZING | 
| +   is_transient = rand()&0x1; | 
| +#endif | 
| +   /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/ | 
| +   return is_transient; | 
| +} | 
| + | 
| +/* Looks for sudden increases of energy to decide whether we need to patch | 
| +   the transient decision */ | 
| +int patch_transient_decision(opus_val16 *newE, opus_val16 *oldE, int nbEBands, | 
| +      int end, int C) | 
| +{ | 
| +   int i, c; | 
| +   opus_val32 mean_diff=0; | 
| +   opus_val16 spread_old[26]; | 
| +   /* Apply an aggressive (-6 dB/Bark) spreading function to the old frame to | 
| +      avoid false detection caused by irrelevant bands */ | 
| +   if (C==1) | 
| +   { | 
| +      spread_old[0] = oldE[0]; | 
| +      for (i=1;i<end;i++) | 
| +         spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), oldE[i]); | 
| +   } else { | 
| +      spread_old[0] = MAX16(oldE[0],oldE[nbEBands]); | 
| +      for (i=1;i<end;i++) | 
| +         spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), | 
| +                               MAX16(oldE[i],oldE[i+nbEBands])); | 
| +   } | 
| +   for (i=end-2;i>=0;i--) | 
| +      spread_old[i] = MAX16(spread_old[i], spread_old[i+1]-QCONST16(1.0f, DB_SHIFT)); | 
| +   /* Compute mean increase */ | 
| +   c=0; do { | 
| +      for (i=2;i<end-1;i++) | 
| +      { | 
| +         opus_val16 x1, x2; | 
| +         x1 = MAX16(0, newE[i]); | 
| +         x2 = MAX16(0, spread_old[i]); | 
| +         mean_diff = ADD32(mean_diff, EXTEND32(MAX16(0, SUB16(x1, x2)))); | 
| +      } | 
| +   } while (++c<C); | 
| +   mean_diff = DIV32(mean_diff, C*(end-3)); | 
| +   /*printf("%f %f %d\n", mean_diff, max_diff, count);*/ | 
| +   return mean_diff > QCONST16(1.f, DB_SHIFT); | 
| +} | 
| + | 
| +/** Apply window and compute the MDCT for all sub-frames and | 
| +    all channels in a frame */ | 
| +static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, | 
| +                          celt_sig * OPUS_RESTRICT out, int C, int CC, int LM, int upsample) | 
| +{ | 
| +   const int overlap = OVERLAP(mode); | 
| +   int N; | 
| +   int B; | 
| +   int shift; | 
| +   int i, b, c; | 
| +   if (shortBlocks) | 
| +   { | 
| +      B = shortBlocks; | 
| +      N = mode->shortMdctSize; | 
| +      shift = mode->maxLM; | 
| +   } else { | 
| +      B = 1; | 
| +      N = mode->shortMdctSize<<LM; | 
| +      shift = mode->maxLM-LM; | 
| +   } | 
| +   c=0; do { | 
| +      for (b=0;b<B;b++) | 
| +      { | 
| +         /* Interleaving the sub-frames while doing the MDCTs */ | 
| +         clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B); | 
| +      } | 
| +   } while (++c<CC); | 
| +   if (CC==2&&C==1) | 
| +   { | 
| +      for (i=0;i<B*N;i++) | 
| +         out[i] = ADD32(HALF32(out[i]), HALF32(out[B*N+i])); | 
| +   } | 
| +   if (upsample != 1) | 
| +   { | 
| +      c=0; do | 
| +      { | 
| +         int bound = B*N/upsample; | 
| +         for (i=0;i<bound;i++) | 
| +            out[c*B*N+i] *= upsample; | 
| +         for (;i<B*N;i++) | 
| +            out[c*B*N+i] = 0; | 
| +      } while (++c<C); | 
| +   } | 
| +} | 
| + | 
| + | 
| +void preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp, | 
| +                        int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip) | 
| +{ | 
| +   int i; | 
| +   opus_val16 coef0; | 
| +   celt_sig m; | 
| +   int Nu; | 
| + | 
| +   coef0 = coef[0]; | 
| + | 
| + | 
| +   Nu = N/upsample; | 
| +   if (upsample!=1) | 
| +   { | 
| +      for (i=0;i<N;i++) | 
| +         inp[i] = 0; | 
| +   } | 
| +   for (i=0;i<Nu;i++) | 
| +   { | 
| +      celt_sig x; | 
| + | 
| +      x = SCALEIN(pcmp[CC*i]); | 
| +#ifndef FIXED_POINT | 
| +      /* Replace NaNs with zeros */ | 
| +      if (!(x==x)) | 
| +         x = 0; | 
| +#endif | 
| +      inp[i*upsample] = x; | 
| +   } | 
| + | 
| +#ifndef FIXED_POINT | 
| +   if (clip) | 
| +   { | 
| +      /* Clip input to avoid encoding non-portable files */ | 
| +      for (i=0;i<Nu;i++) | 
| +         inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample])); | 
| +   } | 
| +#endif | 
| +   m = *mem; | 
| +#ifdef CUSTOM_MODES | 
| +   if (coef[1] != 0) | 
| +   { | 
| +      opus_val16 coef1 = coef[1]; | 
| +      opus_val16 coef2 = coef[2]; | 
| +      for (i=0;i<N;i++) | 
| +      { | 
| +         opus_val16 x, tmp; | 
| +         x = inp[i]; | 
| +         /* Apply pre-emphasis */ | 
| +         tmp = MULT16_16(coef2, x); | 
| +         inp[i] = tmp + m; | 
| +         m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp); | 
| +      } | 
| +   } else | 
| +#endif | 
| +   { | 
| +      for (i=0;i<N;i++) | 
| +      { | 
| +         celt_sig x; | 
| +         x = SHL32(inp[i], SIG_SHIFT); | 
| +         /* Apply pre-emphasis */ | 
| +         inp[i] = x + m; | 
| +         m = - MULT16_32_Q15(coef0, x); | 
| +      } | 
| +   } | 
| +   *mem = m; | 
| +} | 
| + | 
| + | 
| + | 
| +static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias) | 
| +{ | 
| +   int i; | 
| +   opus_val32 L1; | 
| +   L1 = 0; | 
| +   for (i=0;i<N;i++) | 
| +      L1 += EXTEND32(ABS16(tmp[i])); | 
| +   /* When in doubt, prefer good freq resolution */ | 
| +   L1 = MAC16_32_Q15(L1, LM*bias, L1); | 
| +   return L1; | 
| + | 
| +} | 
| + | 
| +static int tf_analysis(const CELTMode *m, int len, int isTransient, | 
| +      int *tf_res, int lambda, celt_norm *X, int N0, int LM, | 
| +      int *tf_sum, opus_val16 tf_estimate, int tf_chan) | 
| +{ | 
| +   int i; | 
| +   VARDECL(int, metric); | 
| +   int cost0; | 
| +   int cost1; | 
| +   VARDECL(int, path0); | 
| +   VARDECL(int, path1); | 
| +   VARDECL(celt_norm, tmp); | 
| +   VARDECL(celt_norm, tmp_1); | 
| +   int sel; | 
| +   int selcost[2]; | 
| +   int tf_select=0; | 
| +   opus_val16 bias; | 
| + | 
| +   SAVE_STACK; | 
| +   bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(.5f,14)-tf_estimate)); | 
| +   /*printf("%f ", bias);*/ | 
| + | 
| +   ALLOC(metric, len, int); | 
| +   ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); | 
| +   ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); | 
| +   ALLOC(path0, len, int); | 
| +   ALLOC(path1, len, int); | 
| + | 
| +   *tf_sum = 0; | 
| +   for (i=0;i<len;i++) | 
| +   { | 
| +      int j, k, N; | 
| +      int narrow; | 
| +      opus_val32 L1, best_L1; | 
| +      int best_level=0; | 
| +      N = (m->eBands[i+1]-m->eBands[i])<<LM; | 
| +      /* band is too narrow to be split down to LM=-1 */ | 
| +      narrow = (m->eBands[i+1]-m->eBands[i])==1; | 
| +      for (j=0;j<N;j++) | 
| +         tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)]; | 
| +      /* Just add the right channel if we're in stereo */ | 
| +      /*if (C==2) | 
| +         for (j=0;j<N;j++) | 
| +            tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/ | 
| +      L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias); | 
| +      best_L1 = L1; | 
| +      /* Check the -1 case for transients */ | 
| +      if (isTransient && !narrow) | 
| +      { | 
| +         for (j=0;j<N;j++) | 
| +            tmp_1[j] = tmp[j]; | 
| +         haar1(tmp_1, N>>LM, 1<<LM); | 
| +         L1 = l1_metric(tmp_1, N, LM+1, bias); | 
| +         if (L1<best_L1) | 
| +         { | 
| +            best_L1 = L1; | 
| +            best_level = -1; | 
| +         } | 
| +      } | 
| +      /*printf ("%f ", L1);*/ | 
| +      for (k=0;k<LM+!(isTransient||narrow);k++) | 
| +      { | 
| +         int B; | 
| + | 
| +         if (isTransient) | 
| +            B = (LM-k-1); | 
| +         else | 
| +            B = k+1; | 
| + | 
| +         haar1(tmp, N>>k, 1<<k); | 
| + | 
| +         L1 = l1_metric(tmp, N, B, bias); | 
| + | 
| +         if (L1 < best_L1) | 
| +         { | 
| +            best_L1 = L1; | 
| +            best_level = k+1; | 
| +         } | 
| +      } | 
| +      /*printf ("%d ", isTransient ? LM-best_level : best_level);*/ | 
| +      /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */ | 
| +      if (isTransient) | 
| +         metric[i] = 2*best_level; | 
| +      else | 
| +         metric[i] = -2*best_level; | 
| +      *tf_sum += (isTransient ? LM : 0) - metric[i]/2; | 
| +      /* For bands that can't be split to -1, set the metric to the half-way point to avoid | 
| +         biasing the decision */ | 
| +      if (narrow && (metric[i]==0 || metric[i]==-2*LM)) | 
| +         metric[i]-=1; | 
| +      /*printf("%d ", metric[i]);*/ | 
| +   } | 
| +   /*printf("\n");*/ | 
| +   /* Search for the optimal tf resolution, including tf_select */ | 
| +   tf_select = 0; | 
| +   for (sel=0;sel<2;sel++) | 
| +   { | 
| +      cost0 = 0; | 
| +      cost1 = isTransient ? 0 : lambda; | 
| +      for (i=1;i<len;i++) | 
| +      { | 
| +         int curr0, curr1; | 
| +         curr0 = IMIN(cost0, cost1 + lambda); | 
| +         curr1 = IMIN(cost0 + lambda, cost1); | 
| +         cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]); | 
| +         cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]); | 
| +      } | 
| +      cost0 = IMIN(cost0, cost1); | 
| +      selcost[sel]=cost0; | 
| +   } | 
| +   /* For now, we're conservative and only allow tf_select=1 for transients. | 
| +    * If tests confirm it's useful for non-transients, we could allow it. */ | 
| +   if (selcost[1]<selcost[0] && isTransient) | 
| +      tf_select=1; | 
| +   cost0 = 0; | 
| +   cost1 = isTransient ? 0 : lambda; | 
| +   /* Viterbi forward pass */ | 
| +   for (i=1;i<len;i++) | 
| +   { | 
| +      int curr0, curr1; | 
| +      int from0, from1; | 
| + | 
| +      from0 = cost0; | 
| +      from1 = cost1 + lambda; | 
| +      if (from0 < from1) | 
| +      { | 
| +         curr0 = from0; | 
| +         path0[i]= 0; | 
| +      } else { | 
| +         curr0 = from1; | 
| +         path0[i]= 1; | 
| +      } | 
| + | 
| +      from0 = cost0 + lambda; | 
| +      from1 = cost1; | 
| +      if (from0 < from1) | 
| +      { | 
| +         curr1 = from0; | 
| +         path1[i]= 0; | 
| +      } else { | 
| +         curr1 = from1; | 
| +         path1[i]= 1; | 
| +      } | 
| +      cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); | 
| +      cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]); | 
| +   } | 
| +   tf_res[len-1] = cost0 < cost1 ? 0 : 1; | 
| +   /* Viterbi backward pass to check the decisions */ | 
| +   for (i=len-2;i>=0;i--) | 
| +   { | 
| +      if (tf_res[i+1] == 1) | 
| +         tf_res[i] = path1[i+1]; | 
| +      else | 
| +         tf_res[i] = path0[i+1]; | 
| +   } | 
| +   /*printf("%d %f\n", *tf_sum, tf_estimate);*/ | 
| +   RESTORE_STACK; | 
| +#ifdef FUZZING | 
| +   tf_select = rand()&0x1; | 
| +   tf_res[0] = rand()&0x1; | 
| +   for (i=1;i<len;i++) | 
| +      tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0); | 
| +#endif | 
| +   return tf_select; | 
| +} | 
| + | 
| +static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc) | 
| +{ | 
| +   int curr, i; | 
| +   int tf_select_rsv; | 
| +   int tf_changed; | 
| +   int logp; | 
| +   opus_uint32 budget; | 
| +   opus_uint32 tell; | 
| +   budget = enc->storage*8; | 
| +   tell = ec_tell(enc); | 
| +   logp = isTransient ? 2 : 4; | 
| +   /* Reserve space to code the tf_select decision. */ | 
| +   tf_select_rsv = LM>0 && tell+logp+1 <= budget; | 
| +   budget -= tf_select_rsv; | 
| +   curr = tf_changed = 0; | 
| +   for (i=start;i<end;i++) | 
| +   { | 
| +      if (tell+logp<=budget) | 
| +      { | 
| +         ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp); | 
| +         tell = ec_tell(enc); | 
| +         curr = tf_res[i]; | 
| +         tf_changed |= curr; | 
| +      } | 
| +      else | 
| +         tf_res[i] = curr; | 
| +      logp = isTransient ? 4 : 5; | 
| +   } | 
| +   /* Only code tf_select if it would actually make a difference. */ | 
| +   if (tf_select_rsv && | 
| +         tf_select_table[LM][4*isTransient+0+tf_changed]!= | 
| +         tf_select_table[LM][4*isTransient+2+tf_changed]) | 
| +      ec_enc_bit_logp(enc, tf_select, 1); | 
| +   else | 
| +      tf_select = 0; | 
| +   for (i=start;i<end;i++) | 
| +      tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; | 
| +   /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/ | 
| +} | 
| + | 
| + | 
| +static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, | 
| +      const opus_val16 *bandLogE, int end, int LM, int C, int N0, | 
| +      AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate, | 
| +      int intensity, opus_val16 surround_trim) | 
| +{ | 
| +   int i; | 
| +   opus_val32 diff=0; | 
| +   int c; | 
| +   int trim_index = 5; | 
| +   opus_val16 trim = QCONST16(5.f, 8); | 
| +   opus_val16 logXC, logXC2; | 
| +   if (C==2) | 
| +   { | 
| +      opus_val16 sum = 0; /* Q10 */ | 
| +      opus_val16 minXC; /* Q10 */ | 
| +      /* Compute inter-channel correlation for low frequencies */ | 
| +      for (i=0;i<8;i++) | 
| +      { | 
| +         int j; | 
| +         opus_val32 partial = 0; | 
| +         for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) | 
| +            partial = MAC16_16(partial, X[j], X[N0+j]); | 
| +         sum = ADD16(sum, EXTRACT16(SHR32(partial, 18))); | 
| +      } | 
| +      sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum); | 
| +      sum = MIN16(QCONST16(1.f, 10), ABS16(sum)); | 
| +      minXC = sum; | 
| +      for (i=8;i<intensity;i++) | 
| +      { | 
| +         int j; | 
| +         opus_val32 partial = 0; | 
| +         for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) | 
| +            partial = MAC16_16(partial, X[j], X[N0+j]); | 
| +         minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18)))); | 
| +      } | 
| +      minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC)); | 
| +      /*printf ("%f\n", sum);*/ | 
| +      if (sum > QCONST16(.995f,10)) | 
| +         trim_index-=4; | 
| +      else if (sum > QCONST16(.92f,10)) | 
| +         trim_index-=3; | 
| +      else if (sum > QCONST16(.85f,10)) | 
| +         trim_index-=2; | 
| +      else if (sum > QCONST16(.8f,10)) | 
| +         trim_index-=1; | 
| +      /* mid-side savings estimations based on the LF average*/ | 
| +      logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum)); | 
| +      /* mid-side savings estimations based on min correlation */ | 
| +      logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC))); | 
| +#ifdef FIXED_POINT | 
| +      /* Compensate for Q20 vs Q14 input and convert output to Q8 */ | 
| +      logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); | 
| +      logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); | 
| +#endif | 
| + | 
| +      trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC)); | 
| +      *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2)); | 
| +   } | 
| + | 
| +   /* Estimate spectral tilt */ | 
| +   c=0; do { | 
| +      for (i=0;i<end-1;i++) | 
| +      { | 
| +         diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end); | 
| +      } | 
| +   } while (++c<C); | 
| +   diff /= C*(end-1); | 
| +   /*printf("%f\n", diff);*/ | 
| +   if (diff > QCONST16(2.f, DB_SHIFT)) | 
| +      trim_index--; | 
| +   if (diff > QCONST16(8.f, DB_SHIFT)) | 
| +      trim_index--; | 
| +   if (diff < -QCONST16(4.f, DB_SHIFT)) | 
| +      trim_index++; | 
| +   if (diff < -QCONST16(10.f, DB_SHIFT)) | 
| +      trim_index++; | 
| +   trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 )); | 
| +   trim -= SHR16(surround_trim, DB_SHIFT-8); | 
| +   trim -= 2*SHR16(tf_estimate, 14-8); | 
| +#ifndef DISABLE_FLOAT_API | 
| +   if (analysis->valid) | 
| +   { | 
| +      trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), QCONST16(2.f, 8)*(analysis->tonality_slope+.05f))); | 
| +   } | 
| +#endif | 
| + | 
| +#ifdef FIXED_POINT | 
| +   trim_index = PSHR32(trim, 8); | 
| +#else | 
| +   trim_index = (int)floor(.5f+trim); | 
| +#endif | 
| +   if (trim_index<0) | 
| +      trim_index = 0; | 
| +   if (trim_index>10) | 
| +      trim_index = 10; | 
| +   /*printf("%d\n", trim_index);*/ | 
| +#ifdef FUZZING | 
| +   trim_index = rand()%11; | 
| +#endif | 
| +   return trim_index; | 
| +} | 
| + | 
| +static int stereo_analysis(const CELTMode *m, const celt_norm *X, | 
| +      int LM, int N0) | 
| +{ | 
| +   int i; | 
| +   int thetas; | 
| +   opus_val32 sumLR = EPSILON, sumMS = EPSILON; | 
| + | 
| +   /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */ | 
| +   for (i=0;i<13;i++) | 
| +   { | 
| +      int j; | 
| +      for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) | 
| +      { | 
| +         opus_val32 L, R, M, S; | 
| +         /* We cast to 32-bit first because of the -32768 case */ | 
| +         L = EXTEND32(X[j]); | 
| +         R = EXTEND32(X[N0+j]); | 
| +         M = ADD32(L, R); | 
| +         S = SUB32(L, R); | 
| +         sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R))); | 
| +         sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S))); | 
| +      } | 
| +   } | 
| +   sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS); | 
| +   thetas = 13; | 
| +   /* We don't need thetas for lower bands with LM<=1 */ | 
| +   if (LM<=1) | 
| +      thetas -= 8; | 
| +   return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS) | 
| +         > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR); | 
| +} | 
| + | 
| +static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 *bandLogE2, | 
| +      int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN, | 
| +      int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM, | 
| +      int effectiveBytes, opus_int32 *tot_boost_, int lfe, opus_val16 *surround_dynalloc) | 
| +{ | 
| +   int i, c; | 
| +   opus_int32 tot_boost=0; | 
| +   opus_val16 maxDepth; | 
| +   VARDECL(opus_val16, follower); | 
| +   VARDECL(opus_val16, noise_floor); | 
| +   SAVE_STACK; | 
| +   ALLOC(follower, C*nbEBands, opus_val16); | 
| +   ALLOC(noise_floor, C*nbEBands, opus_val16); | 
| +   for (i=0;i<nbEBands;i++) | 
| +      offsets[i] = 0; | 
| +   /* Dynamic allocation code */ | 
| +   maxDepth=-QCONST16(31.9f, DB_SHIFT); | 
| +   for (i=0;i<end;i++) | 
| +   { | 
| +      /* Noise floor must take into account eMeans, the depth, the width of the bands | 
| +         and the preemphasis filter (approx. square of bark band ID) */ | 
| +      noise_floor[i] = MULT16_16(QCONST16(0.0625f, DB_SHIFT),logN[i]) | 
| +            +QCONST16(.5f,DB_SHIFT)+SHL16(9-lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6) | 
| +            +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5)); | 
| +   } | 
| +   c=0;do | 
| +   { | 
| +      for (i=0;i<end;i++) | 
| +         maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i]); | 
| +   } while (++c<C); | 
| +   /* Make sure that dynamic allocation can't make us bust the budget */ | 
| +   if (effectiveBytes > 50 && LM>=1 && !lfe) | 
| +   { | 
| +      int last=0; | 
| +      c=0;do | 
| +      { | 
| +         follower[c*nbEBands] = bandLogE2[c*nbEBands]; | 
| +         for (i=1;i<end;i++) | 
| +         { | 
| +            /* The last band to be at least 3 dB higher than the previous one | 
| +               is the last we'll consider. Otherwise, we run into problems on | 
| +               bandlimited signals. */ | 
| +            if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT)) | 
| +               last=i; | 
| +            follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]); | 
| +         } | 
| +         for (i=last-1;i>=0;i--) | 
| +            follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i])); | 
| +         for (i=0;i<end;i++) | 
| +            follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor[i]); | 
| +      } while (++c<C); | 
| +      if (C==2) | 
| +      { | 
| +         for (i=start;i<end;i++) | 
| +         { | 
| +            /* Consider 24 dB "cross-talk" */ | 
| +            follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[         i]-QCONST16(4.f,DB_SHIFT)); | 
| +            follower[         i] = MAX16(follower[         i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT)); | 
| +            follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i])); | 
| +         } | 
| +      } else { | 
| +         for (i=start;i<end;i++) | 
| +         { | 
| +            follower[i] = MAX16(0, bandLogE[i]-follower[i]); | 
| +         } | 
| +      } | 
| +      for (i=start;i<end;i++) | 
| +         follower[i] = MAX16(follower[i], surround_dynalloc[i]); | 
| +      /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */ | 
| +      if ((!vbr || constrained_vbr)&&!isTransient) | 
| +      { | 
| +         for (i=start;i<end;i++) | 
| +            follower[i] = HALF16(follower[i]); | 
| +      } | 
| +      for (i=start;i<end;i++) | 
| +      { | 
| +         int width; | 
| +         int boost; | 
| +         int boost_bits; | 
| + | 
| +         if (i<8) | 
| +            follower[i] *= 2; | 
| +         if (i>=12) | 
| +            follower[i] = HALF16(follower[i]); | 
| +         follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT)); | 
| + | 
| +         width = C*(eBands[i+1]-eBands[i])<<LM; | 
| +         if (width<6) | 
| +         { | 
| +            boost = (int)SHR32(EXTEND32(follower[i]),DB_SHIFT); | 
| +            boost_bits = boost*width<<BITRES; | 
| +         } else if (width > 48) { | 
| +            boost = (int)SHR32(EXTEND32(follower[i])*8,DB_SHIFT); | 
| +            boost_bits = (boost*width<<BITRES)/8; | 
| +         } else { | 
| +            boost = (int)SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT); | 
| +            boost_bits = boost*6<<BITRES; | 
| +         } | 
| +         /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */ | 
| +         if ((!vbr || (constrained_vbr&&!isTransient)) | 
| +               && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4) | 
| +         { | 
| +            opus_int32 cap = ((effectiveBytes/4)<<BITRES<<3); | 
| +            offsets[i] = cap-tot_boost; | 
| +            tot_boost = cap; | 
| +            break; | 
| +         } else { | 
| +            offsets[i] = boost; | 
| +            tot_boost += boost_bits; | 
| +         } | 
| +      } | 
| +   } | 
| +   *tot_boost_ = tot_boost; | 
| +   RESTORE_STACK; | 
| +   return maxDepth; | 
| +} | 
| + | 
| + | 
| +static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N, | 
| +      int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes) | 
| +{ | 
| +   int c; | 
| +   VARDECL(celt_sig, _pre); | 
| +   celt_sig *pre[2]; | 
| +   const CELTMode *mode; | 
| +   int pitch_index; | 
| +   opus_val16 gain1; | 
| +   opus_val16 pf_threshold; | 
| +   int pf_on; | 
| +   int qg; | 
| +   SAVE_STACK; | 
| + | 
| +   mode = st->mode; | 
| +   ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig); | 
| + | 
| +   pre[0] = _pre; | 
| +   pre[1] = _pre + (N+COMBFILTER_MAXPERIOD); | 
| + | 
| + | 
| +   c=0; do { | 
| +      OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD); | 
| +      OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N); | 
| +   } while (++c<CC); | 
| + | 
| +   if (enabled) | 
| +   { | 
| +      VARDECL(opus_val16, pitch_buf); | 
| +      ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16); | 
| + | 
| +      pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC); | 
| +      /* Don't search for the fir last 1.5 octave of the range because | 
| +         there's too many false-positives due to short-term correlation */ | 
| +      pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N, | 
| +            COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index); | 
| +      pitch_index = COMBFILTER_MAXPERIOD-pitch_index; | 
| + | 
| +      gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD, | 
| +            N, &pitch_index, st->prefilter_period, st->prefilter_gain); | 
| +      if (pitch_index > COMBFILTER_MAXPERIOD-2) | 
| +         pitch_index = COMBFILTER_MAXPERIOD-2; | 
| +      gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1); | 
| +      /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/ | 
| +      if (st->loss_rate>2) | 
| +         gain1 = HALF32(gain1); | 
| +      if (st->loss_rate>4) | 
| +         gain1 = HALF32(gain1); | 
| +      if (st->loss_rate>8) | 
| +         gain1 = 0; | 
| +   } else { | 
| +      gain1 = 0; | 
| +      pitch_index = COMBFILTER_MINPERIOD; | 
| +   } | 
| + | 
| +   /* Gain threshold for enabling the prefilter/postfilter */ | 
| +   pf_threshold = QCONST16(.2f,15); | 
| + | 
| +   /* Adjusting the threshold based on rate and continuity */ | 
| +   if (abs(pitch_index-st->prefilter_period)*10>pitch_index) | 
| +      pf_threshold += QCONST16(.2f,15); | 
| +   if (nbAvailableBytes<25) | 
| +      pf_threshold += QCONST16(.1f,15); | 
| +   if (nbAvailableBytes<35) | 
| +      pf_threshold += QCONST16(.1f,15); | 
| +   if (st->prefilter_gain > QCONST16(.4f,15)) | 
| +      pf_threshold -= QCONST16(.1f,15); | 
| +   if (st->prefilter_gain > QCONST16(.55f,15)) | 
| +      pf_threshold -= QCONST16(.1f,15); | 
| + | 
| +   /* Hard threshold at 0.2 */ | 
| +   pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15)); | 
| +   if (gain1<pf_threshold) | 
| +   { | 
| +      gain1 = 0; | 
| +      pf_on = 0; | 
| +      qg = 0; | 
| +   } else { | 
| +      /*This block is not gated by a total bits check only because | 
| +        of the nbAvailableBytes check above.*/ | 
| +      if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15)) | 
| +         gain1=st->prefilter_gain; | 
| + | 
| +#ifdef FIXED_POINT | 
| +      qg = ((gain1+1536)>>10)/3-1; | 
| +#else | 
| +      qg = (int)floor(.5f+gain1*32/3)-1; | 
| +#endif | 
| +      qg = IMAX(0, IMIN(7, qg)); | 
| +      gain1 = QCONST16(0.09375f,15)*(qg+1); | 
| +      pf_on = 1; | 
| +   } | 
| +   /*printf("%d %f\n", pitch_index, gain1);*/ | 
| + | 
| +   c=0; do { | 
| +      int offset = mode->shortMdctSize-st->overlap; | 
| +      st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); | 
| +      OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap); | 
| +      if (offset) | 
| +         comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD, | 
| +               st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain, | 
| +               st->prefilter_tapset, st->prefilter_tapset, NULL, 0); | 
| + | 
| +      comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset, | 
| +            st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1, | 
| +            st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap); | 
| +      OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap); | 
| + | 
| +      if (N>COMBFILTER_MAXPERIOD) | 
| +      { | 
| +         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD); | 
| +      } else { | 
| +         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N); | 
| +         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N); | 
| +      } | 
| +   } while (++c<CC); | 
| + | 
| +   RESTORE_STACK; | 
| +   *gain = gain1; | 
| +   *pitch = pitch_index; | 
| +   *qgain = qg; | 
| +   return pf_on; | 
| +} | 
| + | 
| +static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32 base_target, | 
| +      int LM, opus_int32 bitrate, int lastCodedBands, int C, int intensity, | 
| +      int constrained_vbr, opus_val16 stereo_saving, int tot_boost, | 
| +      opus_val16 tf_estimate, int pitch_change, opus_val16 maxDepth, | 
| +      int variable_duration, int lfe, int has_surround_mask, opus_val16 surround_masking, | 
| +      opus_val16 temporal_vbr) | 
| +{ | 
| +   /* The target rate in 8th bits per frame */ | 
| +   opus_int32 target; | 
| +   int coded_bins; | 
| +   int coded_bands; | 
| +   opus_val16 tf_calibration; | 
| +   int nbEBands; | 
| +   const opus_int16 *eBands; | 
| + | 
| +   nbEBands = mode->nbEBands; | 
| +   eBands = mode->eBands; | 
| + | 
| +   coded_bands = lastCodedBands ? lastCodedBands : nbEBands; | 
| +   coded_bins = eBands[coded_bands]<<LM; | 
| +   if (C==2) | 
| +      coded_bins += eBands[IMIN(intensity, coded_bands)]<<LM; | 
| + | 
| +   target = base_target; | 
| + | 
| +   /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/ | 
| +#ifndef DISABLE_FLOAT_API | 
| +   if (analysis->valid && analysis->activity<.4) | 
| +      target -= (opus_int32)((coded_bins<<BITRES)*(.4f-analysis->activity)); | 
| +#endif | 
| +   /* Stereo savings */ | 
| +   if (C==2) | 
| +   { | 
| +      int coded_stereo_bands; | 
| +      int coded_stereo_dof; | 
| +      opus_val16 max_frac; | 
| +      coded_stereo_bands = IMIN(intensity, coded_bands); | 
| +      coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands; | 
| +      /* Maximum fraction of the bits we can save if the signal is mono. */ | 
| +      max_frac = DIV32_16(MULT16_16(QCONST16(0.8f, 15), coded_stereo_dof), coded_bins); | 
| +      /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/ | 
| +      target -= (opus_int32)MIN32(MULT16_32_Q15(max_frac,target), | 
| +                      SHR32(MULT16_16(stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8)); | 
| +   } | 
| +   /* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */ | 
| +   target += tot_boost-(16<<LM); | 
| +   /* Apply transient boost, compensating for average boost. */ | 
| +   tf_calibration = variable_duration==OPUS_FRAMESIZE_VARIABLE ? | 
| +                    QCONST16(0.02f,14) : QCONST16(0.04f,14); | 
| +   target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-tf_calibration, target),1); | 
| + | 
| +#ifndef DISABLE_FLOAT_API | 
| +   /* Apply tonality boost */ | 
| +   if (analysis->valid && !lfe) | 
| +   { | 
| +      opus_int32 tonal_target; | 
| +      float tonal; | 
| + | 
| +      /* Tonality boost (compensating for the average). */ | 
| +      tonal = MAX16(0.f,analysis->tonality-.15f)-0.09f; | 
| +      tonal_target = target + (opus_int32)((coded_bins<<BITRES)*1.2f*tonal); | 
| +      if (pitch_change) | 
| +         tonal_target +=  (opus_int32)((coded_bins<<BITRES)*.8f); | 
| +      /*printf("%f %f ", analysis->tonality, tonal);*/ | 
| +      target = tonal_target; | 
| +   } | 
| +#endif | 
| + | 
| +   if (has_surround_mask&&!lfe) | 
| +   { | 
| +      opus_int32 surround_target = target + (opus_int32)SHR32(MULT16_16(surround_masking,coded_bins<<BITRES), DB_SHIFT); | 
| +      /*printf("%f %d %d %d %d %d %d ", surround_masking, coded_bins, st->end, st->intensity, surround_target, target, st->bitrate);*/ | 
| +      target = IMAX(target/4, surround_target); | 
| +   } | 
| + | 
| +   { | 
| +      opus_int32 floor_depth; | 
| +      int bins; | 
| +      bins = eBands[nbEBands-2]<<LM; | 
| +      /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/ | 
| +      floor_depth = (opus_int32)SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT); | 
| +      floor_depth = IMAX(floor_depth, target>>2); | 
| +      target = IMIN(target, floor_depth); | 
| +      /*printf("%f %d\n", maxDepth, floor_depth);*/ | 
| +   } | 
| + | 
| +   if ((!has_surround_mask||lfe) && (constrained_vbr || bitrate<64000)) | 
| +   { | 
| +      opus_val16 rate_factor; | 
| +#ifdef FIXED_POINT | 
| +      rate_factor = MAX16(0,(bitrate-32000)); | 
| +#else | 
| +      rate_factor = MAX16(0,(1.f/32768)*(bitrate-32000)); | 
| +#endif | 
| +      if (constrained_vbr) | 
| +         rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15)); | 
| +      target = base_target + (opus_int32)MULT16_32_Q15(rate_factor, target-base_target); | 
| + | 
| +   } | 
| + | 
| +   if (!has_surround_mask && tf_estimate < QCONST16(.2f, 14)) | 
| +   { | 
| +      opus_val16 amount; | 
| +      opus_val16 tvbr_factor; | 
| +      amount = MULT16_16_Q15(QCONST16(.0000031f, 30), IMAX(0, IMIN(32000, 96000-bitrate))); | 
| +      tvbr_factor = SHR32(MULT16_16(temporal_vbr, amount), DB_SHIFT); | 
| +      target += (opus_int32)MULT16_32_Q15(tvbr_factor, target); | 
| +   } | 
| + | 
| +   /* Don't allow more than doubling the rate */ | 
| +   target = IMIN(2*base_target, target); | 
| + | 
| +   return target; | 
| +} | 
| + | 
| +int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc) | 
| +{ | 
| +   int i, c, N; | 
| +   opus_int32 bits; | 
| +   ec_enc _enc; | 
| +   VARDECL(celt_sig, in); | 
| +   VARDECL(celt_sig, freq); | 
| +   VARDECL(celt_norm, X); | 
| +   VARDECL(celt_ener, bandE); | 
| +   VARDECL(opus_val16, bandLogE); | 
| +   VARDECL(opus_val16, bandLogE2); | 
| +   VARDECL(int, fine_quant); | 
| +   VARDECL(opus_val16, error); | 
| +   VARDECL(int, pulses); | 
| +   VARDECL(int, cap); | 
| +   VARDECL(int, offsets); | 
| +   VARDECL(int, fine_priority); | 
| +   VARDECL(int, tf_res); | 
| +   VARDECL(unsigned char, collapse_masks); | 
| +   celt_sig *prefilter_mem; | 
| +   opus_val16 *oldBandE, *oldLogE, *oldLogE2; | 
| +   int shortBlocks=0; | 
| +   int isTransient=0; | 
| +   const int CC = st->channels; | 
| +   const int C = st->stream_channels; | 
| +   int LM, M; | 
| +   int tf_select; | 
| +   int nbFilledBytes, nbAvailableBytes; | 
| +   int effEnd; | 
| +   int codedBands; | 
| +   int tf_sum; | 
| +   int alloc_trim; | 
| +   int pitch_index=COMBFILTER_MINPERIOD; | 
| +   opus_val16 gain1 = 0; | 
| +   int dual_stereo=0; | 
| +   int effectiveBytes; | 
| +   int dynalloc_logp; | 
| +   opus_int32 vbr_rate; | 
| +   opus_int32 total_bits; | 
| +   opus_int32 total_boost; | 
| +   opus_int32 balance; | 
| +   opus_int32 tell; | 
| +   int prefilter_tapset=0; | 
| +   int pf_on; | 
| +   int anti_collapse_rsv; | 
| +   int anti_collapse_on=0; | 
| +   int silence=0; | 
| +   int tf_chan = 0; | 
| +   opus_val16 tf_estimate; | 
| +   int pitch_change=0; | 
| +   opus_int32 tot_boost; | 
| +   opus_val32 sample_max; | 
| +   opus_val16 maxDepth; | 
| +   const OpusCustomMode *mode; | 
| +   int nbEBands; | 
| +   int overlap; | 
| +   const opus_int16 *eBands; | 
| +   int secondMdct; | 
| +   int signalBandwidth; | 
| +   int transient_got_disabled=0; | 
| +   opus_val16 surround_masking=0; | 
| +   opus_val16 temporal_vbr=0; | 
| +   opus_val16 surround_trim = 0; | 
| +   VARDECL(opus_val16, surround_dynalloc); | 
| +   ALLOC_STACK; | 
| + | 
| +   mode = st->mode; | 
| +   nbEBands = mode->nbEBands; | 
| +   overlap = mode->overlap; | 
| +   eBands = mode->eBands; | 
| +   tf_estimate = 0; | 
| +   if (nbCompressedBytes<2 || pcm==NULL) | 
| +     return OPUS_BAD_ARG; | 
| + | 
| +   frame_size *= st->upsample; | 
| +   for (LM=0;LM<=mode->maxLM;LM++) | 
| +      if (mode->shortMdctSize<<LM==frame_size) | 
| +         break; | 
| +   if (LM>mode->maxLM) | 
| +      return OPUS_BAD_ARG; | 
| +   M=1<<LM; | 
| +   N = M*mode->shortMdctSize; | 
| + | 
| +   prefilter_mem = st->in_mem+CC*(st->overlap); | 
| +   oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD)); | 
| +   oldLogE = oldBandE + CC*nbEBands; | 
| +   oldLogE2 = oldLogE + CC*nbEBands; | 
| + | 
| +   if (enc==NULL) | 
| +   { | 
| +      tell=1; | 
| +      nbFilledBytes=0; | 
| +   } else { | 
| +      tell=ec_tell(enc); | 
| +      nbFilledBytes=(tell+4)>>3; | 
| +   } | 
| + | 
| +#ifdef CUSTOM_MODES | 
| +   if (st->signalling && enc==NULL) | 
| +   { | 
| +      int tmp = (mode->effEBands-st->end)>>1; | 
| +      st->end = IMAX(1, mode->effEBands-tmp); | 
| +      compressed[0] = tmp<<5; | 
| +      compressed[0] |= LM<<3; | 
| +      compressed[0] |= (C==2)<<2; | 
| +      /* Convert "standard mode" to Opus header */ | 
| +      if (mode->Fs==48000 && mode->shortMdctSize==120) | 
| +      { | 
| +         int c0 = toOpus(compressed[0]); | 
| +         if (c0<0) | 
| +            return OPUS_BAD_ARG; | 
| +         compressed[0] = c0; | 
| +      } | 
| +      compressed++; | 
| +      nbCompressedBytes--; | 
| +   } | 
| +#else | 
| +   celt_assert(st->signalling==0); | 
| +#endif | 
| + | 
| +   /* Can't produce more than 1275 output bytes */ | 
| +   nbCompressedBytes = IMIN(nbCompressedBytes,1275); | 
| +   nbAvailableBytes = nbCompressedBytes - nbFilledBytes; | 
| + | 
| +   if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX) | 
| +   { | 
| +      opus_int32 den=mode->Fs>>BITRES; | 
| +      vbr_rate=(st->bitrate*frame_size+(den>>1))/den; | 
| +#ifdef CUSTOM_MODES | 
| +      if (st->signalling) | 
| +         vbr_rate -= 8<<BITRES; | 
| +#endif | 
| +      effectiveBytes = vbr_rate>>(3+BITRES); | 
| +   } else { | 
| +      opus_int32 tmp; | 
| +      vbr_rate = 0; | 
| +      tmp = st->bitrate*frame_size; | 
| +      if (tell>1) | 
| +         tmp += tell; | 
| +      if (st->bitrate!=OPUS_BITRATE_MAX) | 
| +         nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes, | 
| +               (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling)); | 
| +      effectiveBytes = nbCompressedBytes; | 
| +   } | 
| + | 
| +   if (enc==NULL) | 
| +   { | 
| +      ec_enc_init(&_enc, compressed, nbCompressedBytes); | 
| +      enc = &_enc; | 
| +   } | 
| + | 
| +   if (vbr_rate>0) | 
| +   { | 
| +      /* Computes the max bit-rate allowed in VBR mode to avoid violating the | 
| +          target rate and buffering. | 
| +         We must do this up front so that bust-prevention logic triggers | 
| +          correctly if we don't have enough bits. */ | 
| +      if (st->constrained_vbr) | 
| +      { | 
| +         opus_int32 vbr_bound; | 
| +         opus_int32 max_allowed; | 
| +         /* We could use any multiple of vbr_rate as bound (depending on the | 
| +             delay). | 
| +            This is clamped to ensure we use at least two bytes if the encoder | 
| +             was entirely empty, but to allow 0 in hybrid mode. */ | 
| +         vbr_bound = vbr_rate; | 
| +         max_allowed = IMIN(IMAX(tell==1?2:0, | 
| +               (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)), | 
| +               nbAvailableBytes); | 
| +         if(max_allowed < nbAvailableBytes) | 
| +         { | 
| +            nbCompressedBytes = nbFilledBytes+max_allowed; | 
| +            nbAvailableBytes = max_allowed; | 
| +            ec_enc_shrink(enc, nbCompressedBytes); | 
| +         } | 
| +      } | 
| +   } | 
| +   total_bits = nbCompressedBytes*8; | 
| + | 
| +   effEnd = st->end; | 
| +   if (effEnd > mode->effEBands) | 
| +      effEnd = mode->effEBands; | 
| + | 
| +   ALLOC(in, CC*(N+st->overlap), celt_sig); | 
| + | 
| +   sample_max=MAX32(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample)); | 
| +   st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample); | 
| +   sample_max=MAX32(sample_max, st->overlap_max); | 
| +#ifdef FIXED_POINT | 
| +   silence = (sample_max==0); | 
| +#else | 
| +   silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth)); | 
| +#endif | 
| +#ifdef FUZZING | 
| +   if ((rand()&0x3F)==0) | 
| +      silence = 1; | 
| +#endif | 
| +   if (tell==1) | 
| +      ec_enc_bit_logp(enc, silence, 15); | 
| +   else | 
| +      silence=0; | 
| +   if (silence) | 
| +   { | 
| +      /*In VBR mode there is no need to send more than the minimum. */ | 
| +      if (vbr_rate>0) | 
| +      { | 
| +         effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2); | 
| +         total_bits=nbCompressedBytes*8; | 
| +         nbAvailableBytes=2; | 
| +         ec_enc_shrink(enc, nbCompressedBytes); | 
| +      } | 
| +      /* Pretend we've filled all the remaining bits with zeros | 
| +            (that's what the initialiser did anyway) */ | 
| +      tell = nbCompressedBytes*8; | 
| +      enc->nbits_total+=tell-ec_tell(enc); | 
| +   } | 
| +   c=0; do { | 
| +      preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample, | 
| +                  mode->preemph, st->preemph_memE+c, st->clip); | 
| +   } while (++c<CC); | 
| + | 
| + | 
| + | 
| +   /* Find pitch period and gain */ | 
| +   { | 
| +      int enabled; | 
| +      int qg; | 
| +      enabled = (st->lfe || nbAvailableBytes>12*C) && st->start==0 && !silence && !st->disable_pf | 
| +            && st->complexity >= 5 && !(st->consec_transient && LM!=3 && st->variable_duration==OPUS_FRAMESIZE_VARIABLE); | 
| + | 
| +      prefilter_tapset = st->tapset_decision; | 
| +      pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes); | 
| +      if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && (!st->analysis.valid || st->analysis.tonality > .3) | 
| +            && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period)) | 
| +         pitch_change = 1; | 
| +      if (pf_on==0) | 
| +      { | 
| +         if(st->start==0 && tell+16<=total_bits) | 
| +            ec_enc_bit_logp(enc, 0, 1); | 
| +      } else { | 
| +         /*This block is not gated by a total bits check only because | 
| +           of the nbAvailableBytes check above.*/ | 
| +         int octave; | 
| +         ec_enc_bit_logp(enc, 1, 1); | 
| +         pitch_index += 1; | 
| +         octave = EC_ILOG(pitch_index)-5; | 
| +         ec_enc_uint(enc, octave, 6); | 
| +         ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave); | 
| +         pitch_index -= 1; | 
| +         ec_enc_bits(enc, qg, 3); | 
| +         ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2); | 
| +      } | 
| +   } | 
| + | 
| +   isTransient = 0; | 
| +   shortBlocks = 0; | 
| +   if (st->complexity >= 1 && !st->lfe) | 
| +   { | 
| +      isTransient = transient_analysis(in, N+st->overlap, CC, | 
| +            &tf_estimate, &tf_chan); | 
| +   } | 
| +   if (LM>0 && ec_tell(enc)+3<=total_bits) | 
| +   { | 
| +      if (isTransient) | 
| +         shortBlocks = M; | 
| +   } else { | 
| +      isTransient = 0; | 
| +      transient_got_disabled=1; | 
| +   } | 
| + | 
| +   ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */ | 
| +   ALLOC(bandE,nbEBands*CC, celt_ener); | 
| +   ALLOC(bandLogE,nbEBands*CC, opus_val16); | 
| + | 
| +   secondMdct = shortBlocks && st->complexity>=8; | 
| +   ALLOC(bandLogE2, C*nbEBands, opus_val16); | 
| +   if (secondMdct) | 
| +   { | 
| +      compute_mdcts(mode, 0, in, freq, C, CC, LM, st->upsample); | 
| +      compute_band_energies(mode, freq, bandE, effEnd, C, M); | 
| +      amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C); | 
| +      for (i=0;i<C*nbEBands;i++) | 
| +         bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); | 
| +   } | 
| + | 
| +   compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); | 
| +   if (CC==2&&C==1) | 
| +      tf_chan = 0; | 
| +   compute_band_energies(mode, freq, bandE, effEnd, C, M); | 
| + | 
| +   if (st->lfe) | 
| +   { | 
| +      for (i=2;i<st->end;i++) | 
| +      { | 
| +         bandE[i] = IMIN(bandE[i], MULT16_32_Q15(QCONST16(1e-4f,15),bandE[0])); | 
| +         bandE[i] = MAX32(bandE[i], EPSILON); | 
| +      } | 
| +   } | 
| +   amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); | 
| + | 
| +   ALLOC(surround_dynalloc, C*nbEBands, opus_val16); | 
| +   for(i=0;i<st->end;i++) | 
| +      surround_dynalloc[i] = 0; | 
| +   /* This computes how much masking takes place between surround channels */ | 
| +   if (st->start==0&&st->energy_mask&&!st->lfe) | 
| +   { | 
| +      int mask_end; | 
| +      int midband; | 
| +      int count_dynalloc; | 
| +      opus_val32 mask_avg=0; | 
| +      opus_val32 diff=0; | 
| +      int count=0; | 
| +      mask_end = IMAX(2,st->lastCodedBands); | 
| +      for (c=0;c<C;c++) | 
| +      { | 
| +         for(i=0;i<mask_end;i++) | 
| +         { | 
| +            opus_val16 mask; | 
| +            mask = MAX16(MIN16(st->energy_mask[nbEBands*c+i], | 
| +                   QCONST16(.25f, DB_SHIFT)), -QCONST16(2.0f, DB_SHIFT)); | 
| +            if (mask > 0) | 
| +               mask = HALF16(mask); | 
| +            mask_avg += MULT16_16(mask, eBands[i+1]-eBands[i]); | 
| +            count += eBands[i+1]-eBands[i]; | 
| +            diff += MULT16_16(mask, 1+2*i-mask_end); | 
| +         } | 
| +      } | 
| +      mask_avg = DIV32_16(mask_avg,count); | 
| +      mask_avg += QCONST16(.2f, DB_SHIFT); | 
| +      diff = diff*6/(C*(mask_end-1)*(mask_end+1)*mask_end); | 
| +      /* Again, being conservative */ | 
| +      diff = HALF32(diff); | 
| +      diff = MAX32(MIN32(diff, QCONST32(.031f, DB_SHIFT)), -QCONST32(.031f, DB_SHIFT)); | 
| +      /* Find the band that's in the middle of the coded spectrum */ | 
| +      for (midband=0;eBands[midband+1] < eBands[mask_end]/2;midband++); | 
| +      count_dynalloc=0; | 
| +      for(i=0;i<mask_end;i++) | 
| +      { | 
| +         opus_val32 lin; | 
| +         opus_val16 unmask; | 
| +         lin = mask_avg + diff*(i-midband); | 
| +         if (C==2) | 
| +            unmask = MAX16(st->energy_mask[i], st->energy_mask[nbEBands+i]); | 
| +         else | 
| +            unmask = st->energy_mask[i]; | 
| +         unmask = MIN16(unmask, QCONST16(.0f, DB_SHIFT)); | 
| +         unmask -= lin; | 
| +         if (unmask > QCONST16(.25f, DB_SHIFT)) | 
| +         { | 
| +            surround_dynalloc[i] = unmask - QCONST16(.25f, DB_SHIFT); | 
| +            count_dynalloc++; | 
| +         } | 
| +      } | 
| +      if (count_dynalloc>=3) | 
| +      { | 
| +         /* If we need dynalloc in many bands, it's probably because our | 
| +            initial masking rate was too low. */ | 
| +         mask_avg += QCONST16(.25f, DB_SHIFT); | 
| +         if (mask_avg>0) | 
| +         { | 
| +            /* Something went really wrong in the original calculations, | 
| +               disabling masking. */ | 
| +            mask_avg = 0; | 
| +            diff = 0; | 
| +            for(i=0;i<mask_end;i++) | 
| +               surround_dynalloc[i] = 0; | 
| +         } else { | 
| +            for(i=0;i<mask_end;i++) | 
| +               surround_dynalloc[i] = MAX16(0, surround_dynalloc[i]-QCONST16(.25f, DB_SHIFT)); | 
| +         } | 
| +      } | 
| +      mask_avg += QCONST16(.2f, DB_SHIFT); | 
| +      /* Convert to 1/64th units used for the trim */ | 
| +      surround_trim = 64*diff; | 
| +      /*printf("%d %d ", mask_avg, surround_trim);*/ | 
| +      surround_masking = mask_avg; | 
| +   } | 
| +   /* Temporal VBR (but not for LFE) */ | 
| +   if (!st->lfe) | 
| +   { | 
| +      opus_val16 follow=-QCONST16(10.0f,DB_SHIFT); | 
| +      float frame_avg=0; | 
| +      opus_val16 offset = shortBlocks?HALF16(SHL16(LM, DB_SHIFT)):0; | 
| +      for(i=st->start;i<st->end;i++) | 
| +      { | 
| +         follow = MAX16(follow-QCONST16(1.f, DB_SHIFT), bandLogE[i]-offset); | 
| +         if (C==2) | 
| +            follow = MAX16(follow, bandLogE[i+nbEBands]-offset); | 
| +         frame_avg += follow; | 
| +      } | 
| +      frame_avg /= (st->end-st->start); | 
| +      temporal_vbr = SUB16(frame_avg,st->spec_avg); | 
| +      temporal_vbr = MIN16(QCONST16(3.f, DB_SHIFT), MAX16(-QCONST16(1.5f, DB_SHIFT), temporal_vbr)); | 
| +      st->spec_avg += MULT16_16_Q15(QCONST16(.02f, 15), temporal_vbr); | 
| +   } | 
| +   /*for (i=0;i<21;i++) | 
| +      printf("%f ", bandLogE[i]); | 
| +   printf("\n");*/ | 
| + | 
| +   if (!secondMdct) | 
| +   { | 
| +      for (i=0;i<C*nbEBands;i++) | 
| +         bandLogE2[i] = bandLogE[i]; | 
| +   } | 
| + | 
| +   /* Last chance to catch any transient we might have missed in the | 
| +      time-domain analysis */ | 
| +   if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe) | 
| +   { | 
| +      if (patch_transient_decision(bandLogE, oldBandE, nbEBands, st->end, C)) | 
| +      { | 
| +         isTransient = 1; | 
| +         shortBlocks = M; | 
| +         compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); | 
| +         compute_band_energies(mode, freq, bandE, effEnd, C, M); | 
| +         amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); | 
| +         /* Compensate for the scaling of short vs long mdcts */ | 
| +         for (i=0;i<C*nbEBands;i++) | 
| +            bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); | 
| +         tf_estimate = QCONST16(.2f,14); | 
| +      } | 
| +   } | 
| + | 
| +   if (LM>0 && ec_tell(enc)+3<=total_bits) | 
| +      ec_enc_bit_logp(enc, isTransient, 3); | 
| + | 
| +   ALLOC(X, C*N, celt_norm);         /**< Interleaved normalised MDCTs */ | 
| + | 
| +   /* Band normalisation */ | 
| +   normalise_bands(mode, freq, X, bandE, effEnd, C, M); | 
| + | 
| +   ALLOC(tf_res, nbEBands, int); | 
| +   /* Disable variable tf resolution for hybrid and at very low bitrate */ | 
| +   if (effectiveBytes>=15*C && st->start==0 && st->complexity>=2 && !st->lfe) | 
| +   { | 
| +      int lambda; | 
| +      if (effectiveBytes<40) | 
| +         lambda = 12; | 
| +      else if (effectiveBytes<60) | 
| +         lambda = 6; | 
| +      else if (effectiveBytes<100) | 
| +         lambda = 4; | 
| +      else | 
| +         lambda = 3; | 
| +      lambda*=2; | 
| +      tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, &tf_sum, tf_estimate, tf_chan); | 
| +      for (i=effEnd;i<st->end;i++) | 
| +         tf_res[i] = tf_res[effEnd-1]; | 
| +   } else { | 
| +      tf_sum = 0; | 
| +      for (i=0;i<st->end;i++) | 
| +         tf_res[i] = isTransient; | 
| +      tf_select=0; | 
| +   } | 
| + | 
| +   ALLOC(error, C*nbEBands, opus_val16); | 
| +   quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE, | 
| +         oldBandE, total_bits, error, enc, | 
| +         C, LM, nbAvailableBytes, st->force_intra, | 
| +         &st->delayedIntra, st->complexity >= 4, st->loss_rate, st->lfe); | 
| + | 
| +   tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc); | 
| + | 
| +   if (ec_tell(enc)+4<=total_bits) | 
| +   { | 
| +      if (st->lfe) | 
| +      { | 
| +         st->tapset_decision = 0; | 
| +         st->spread_decision = SPREAD_NORMAL; | 
| +      } else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C || st->start != 0) | 
| +      { | 
| +         if (st->complexity == 0) | 
| +            st->spread_decision = SPREAD_NONE; | 
| +         else | 
| +            st->spread_decision = SPREAD_NORMAL; | 
| +      } else { | 
| +         /* Disable new spreading+tapset estimator until we can show it works | 
| +            better than the old one. So far it seems like spreading_decision() | 
| +            works best. */ | 
| +         if (0&&st->analysis.valid) | 
| +         { | 
| +            static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)}; | 
| +            static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)}; | 
| +            static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)}; | 
| +            static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)}; | 
| +            st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision); | 
| +            st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision); | 
| +         } else { | 
| +            st->spread_decision = spreading_decision(mode, X, | 
| +                  &st->tonal_average, st->spread_decision, &st->hf_average, | 
| +                  &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M); | 
| +         } | 
| +         /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/ | 
| +         /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/ | 
| +      } | 
| +      ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5); | 
| +   } | 
| + | 
| +   ALLOC(offsets, nbEBands, int); | 
| + | 
| +   maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, st->start, st->end, C, offsets, | 
| +         st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr, | 
| +         eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc); | 
| +   /* For LFE, everything interesting is in the first band */ | 
| +   if (st->lfe) | 
| +      offsets[0] = IMIN(8, effectiveBytes/3); | 
| +   ALLOC(cap, nbEBands, int); | 
| +   init_caps(mode,cap,LM,C); | 
| + | 
| +   dynalloc_logp = 6; | 
| +   total_bits<<=BITRES; | 
| +   total_boost = 0; | 
| +   tell = ec_tell_frac(enc); | 
| +   for (i=st->start;i<st->end;i++) | 
| +   { | 
| +      int width, quanta; | 
| +      int dynalloc_loop_logp; | 
| +      int boost; | 
| +      int j; | 
| +      width = C*(eBands[i+1]-eBands[i])<<LM; | 
| +      /* quanta is 6 bits, but no more than 1 bit/sample | 
| +         and no less than 1/8 bit/sample */ | 
| +      quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); | 
| +      dynalloc_loop_logp = dynalloc_logp; | 
| +      boost = 0; | 
| +      for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost | 
| +            && boost < cap[i]; j++) | 
| +      { | 
| +         int flag; | 
| +         flag = j<offsets[i]; | 
| +         ec_enc_bit_logp(enc, flag, dynalloc_loop_logp); | 
| +         tell = ec_tell_frac(enc); | 
| +         if (!flag) | 
| +            break; | 
| +         boost += quanta; | 
| +         total_boost += quanta; | 
| +         dynalloc_loop_logp = 1; | 
| +      } | 
| +      /* Making dynalloc more likely */ | 
| +      if (j) | 
| +         dynalloc_logp = IMAX(2, dynalloc_logp-1); | 
| +      offsets[i] = boost; | 
| +   } | 
| + | 
| +   if (C==2) | 
| +   { | 
| +      int effectiveRate; | 
| + | 
| +      static const opus_val16 intensity_thresholds[21]= | 
| +      /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19  20  off*/ | 
| +        { 16,21,23,25,27,29,31,33,35,38,42,46,50,54,58,63,68,75,84,102,130}; | 
| +      static const opus_val16 intensity_histeresis[21]= | 
| +        {  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6,  8, 12}; | 
| + | 
| +      /* Always use MS for 2.5 ms frames until we can do a better analysis */ | 
| +      if (LM!=0) | 
| +         dual_stereo = stereo_analysis(mode, X, LM, N); | 
| + | 
| +      /* Account for coarse energy */ | 
| +      effectiveRate = (8*effectiveBytes - 80)>>LM; | 
| + | 
| +      /* effectiveRate in kb/s */ | 
| +      effectiveRate = 2*effectiveRate/5; | 
| + | 
| +      st->intensity = hysteresis_decision((opus_val16)effectiveRate, intensity_thresholds, intensity_histeresis, 21, st->intensity); | 
| +      st->intensity = IMIN(st->end,IMAX(st->start, st->intensity)); | 
| +   } | 
| + | 
| +   alloc_trim = 5; | 
| +   if (tell+(6<<BITRES) <= total_bits - total_boost) | 
| +   { | 
| +      if (st->lfe) | 
| +         alloc_trim = 5; | 
| +      else | 
| +         alloc_trim = alloc_trim_analysis(mode, X, bandLogE, | 
| +            st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity, surround_trim); | 
| +      ec_enc_icdf(enc, alloc_trim, trim_icdf, 7); | 
| +      tell = ec_tell_frac(enc); | 
| +   } | 
| + | 
| +   /* Variable bitrate */ | 
| +   if (vbr_rate>0) | 
| +   { | 
| +     opus_val16 alpha; | 
| +     opus_int32 delta; | 
| +     /* The target rate in 8th bits per frame */ | 
| +     opus_int32 target, base_target; | 
| +     opus_int32 min_allowed; | 
| +     int lm_diff = mode->maxLM - LM; | 
| + | 
| +     /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms. | 
| +        The CELT allocator will just not be able to use more than that anyway. */ | 
| +     nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM)); | 
| +     base_target = vbr_rate - ((40*C+20)<<BITRES); | 
| + | 
| +     if (st->constrained_vbr) | 
| +        base_target += (st->vbr_offset>>lm_diff); | 
| + | 
| +     target = compute_vbr(mode, &st->analysis, base_target, LM, st->bitrate, | 
| +           st->lastCodedBands, C, st->intensity, st->constrained_vbr, | 
| +           st->stereo_saving, tot_boost, tf_estimate, pitch_change, maxDepth, | 
| +           st->variable_duration, st->lfe, st->energy_mask!=NULL, surround_masking, | 
| +           temporal_vbr); | 
| + | 
| +     /* The current offset is removed from the target and the space used | 
| +        so far is added*/ | 
| +     target=target+tell; | 
| +     /* In VBR mode the frame size must not be reduced so much that it would | 
| +         result in the encoder running out of bits. | 
| +        The margin of 2 bytes ensures that none of the bust-prevention logic | 
| +         in the decoder will have triggered so far. */ | 
| +     min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes; | 
| + | 
| +     nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3); | 
| +     nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes); | 
| +     nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes; | 
| + | 
| +     /* By how much did we "miss" the target on that frame */ | 
| +     delta = target - vbr_rate; | 
| + | 
| +     target=nbAvailableBytes<<(BITRES+3); | 
| + | 
| +     /*If the frame is silent we don't adjust our drift, otherwise | 
| +       the encoder will shoot to very high rates after hitting a | 
| +       span of silence, but we do allow the bitres to refill. | 
| +       This means that we'll undershoot our target in CVBR/VBR modes | 
| +       on files with lots of silence. */ | 
| +     if(silence) | 
| +     { | 
| +       nbAvailableBytes = 2; | 
| +       target = 2*8<<BITRES; | 
| +       delta = 0; | 
| +     } | 
| + | 
| +     if (st->vbr_count < 970) | 
| +     { | 
| +        st->vbr_count++; | 
| +        alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16)); | 
| +     } else | 
| +        alpha = QCONST16(.001f,15); | 
| +     /* How many bits have we used in excess of what we're allowed */ | 
| +     if (st->constrained_vbr) | 
| +        st->vbr_reservoir += target - vbr_rate; | 
| +     /*printf ("%d\n", st->vbr_reservoir);*/ | 
| + | 
| +     /* Compute the offset we need to apply in order to reach the target */ | 
| +     if (st->constrained_vbr) | 
| +     { | 
| +        st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift); | 
| +        st->vbr_offset = -st->vbr_drift; | 
| +     } | 
| +     /*printf ("%d\n", st->vbr_drift);*/ | 
| + | 
| +     if (st->constrained_vbr && st->vbr_reservoir < 0) | 
| +     { | 
| +        /* We're under the min value -- increase rate */ | 
| +        int adjust = (-st->vbr_reservoir)/(8<<BITRES); | 
| +        /* Unless we're just coding silence */ | 
| +        nbAvailableBytes += silence?0:adjust; | 
| +        st->vbr_reservoir = 0; | 
| +        /*printf ("+%d\n", adjust);*/ | 
| +     } | 
| +     nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes); | 
| +     /*printf("%d\n", nbCompressedBytes*50*8);*/ | 
| +     /* This moves the raw bits to take into account the new compressed size */ | 
| +     ec_enc_shrink(enc, nbCompressedBytes); | 
| +   } | 
| + | 
| +   /* Bit allocation */ | 
| +   ALLOC(fine_quant, nbEBands, int); | 
| +   ALLOC(pulses, nbEBands, int); | 
| +   ALLOC(fine_priority, nbEBands, int); | 
| + | 
| +   /* bits =           packet size                    - where we are - safety*/ | 
| +   bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1; | 
| +   anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0; | 
| +   bits -= anti_collapse_rsv; | 
| +   signalBandwidth = st->end-1; | 
| +#ifndef DISABLE_FLOAT_API | 
| +   if (st->analysis.valid) | 
| +   { | 
| +      int min_bandwidth; | 
| +      if (st->bitrate < (opus_int32)32000*C) | 
| +         min_bandwidth = 13; | 
| +      else if (st->bitrate < (opus_int32)48000*C) | 
| +         min_bandwidth = 16; | 
| +      else if (st->bitrate < (opus_int32)60000*C) | 
| +         min_bandwidth = 18; | 
| +      else  if (st->bitrate < (opus_int32)80000*C) | 
| +         min_bandwidth = 19; | 
| +      else | 
| +         min_bandwidth = 20; | 
| +      signalBandwidth = IMAX(st->analysis.bandwidth, min_bandwidth); | 
| +   } | 
| +#endif | 
| +   if (st->lfe) | 
| +      signalBandwidth = 1; | 
| +   codedBands = compute_allocation(mode, st->start, st->end, offsets, cap, | 
| +         alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses, | 
| +         fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth); | 
| +   if (st->lastCodedBands) | 
| +      st->lastCodedBands = IMIN(st->lastCodedBands+1,IMAX(st->lastCodedBands-1,codedBands)); | 
| +   else | 
| +      st->lastCodedBands = codedBands; | 
| + | 
| +   quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C); | 
| + | 
| +   /* Residual quantisation */ | 
| +   ALLOC(collapse_masks, C*nbEBands, unsigned char); | 
| +   quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks, | 
| +         bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res, | 
| +         nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng); | 
| + | 
| +   if (anti_collapse_rsv > 0) | 
| +   { | 
| +      anti_collapse_on = st->consec_transient<2; | 
| +#ifdef FUZZING | 
| +      anti_collapse_on = rand()&0x1; | 
| +#endif | 
| +      ec_enc_bits(enc, anti_collapse_on, 1); | 
| +   } | 
| +   quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C); | 
| + | 
| +   if (silence) | 
| +   { | 
| +      for (i=0;i<C*nbEBands;i++) | 
| +         oldBandE[i] = -QCONST16(28.f,DB_SHIFT); | 
| +   } | 
| + | 
| +#ifdef RESYNTH | 
| +   /* Re-synthesis of the coded audio if required */ | 
| +   { | 
| +      celt_sig *out_mem[2]; | 
| + | 
| +      if (anti_collapse_on) | 
| +      { | 
| +         anti_collapse(mode, X, collapse_masks, LM, C, N, | 
| +               st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng); | 
| +      } | 
| + | 
| +      if (silence) | 
| +      { | 
| +         for (i=0;i<C*N;i++) | 
| +            freq[i] = 0; | 
| +      } else { | 
| +         /* Synthesis */ | 
| +         denormalise_bands(mode, X, freq, oldBandE, st->start, effEnd, C, M); | 
| +      } | 
| + | 
| +      c=0; do { | 
| +         OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap/2); | 
| +      } while (++c<CC); | 
| + | 
| +      if (CC==2&&C==1) | 
| +      { | 
| +         for (i=0;i<N;i++) | 
| +            freq[N+i] = freq[i]; | 
| +      } | 
| + | 
| +      c=0; do { | 
| +         out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N; | 
| +      } while (++c<CC); | 
| + | 
| +      compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM); | 
| + | 
| +      c=0; do { | 
| +         st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); | 
| +         st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD); | 
| +         comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize, | 
| +               st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset, | 
| +               mode->window, st->overlap); | 
| +         if (LM!=0) | 
| +            comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize, | 
| +                  st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset, | 
| +                  mode->window, overlap); | 
| +      } while (++c<CC); | 
| + | 
| +      /* We reuse freq[] as scratch space for the de-emphasis */ | 
| +      deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq); | 
| +      st->prefilter_period_old = st->prefilter_period; | 
| +      st->prefilter_gain_old = st->prefilter_gain; | 
| +      st->prefilter_tapset_old = st->prefilter_tapset; | 
| +   } | 
| +#endif | 
| + | 
| +   st->prefilter_period = pitch_index; | 
| +   st->prefilter_gain = gain1; | 
| +   st->prefilter_tapset = prefilter_tapset; | 
| +#ifdef RESYNTH | 
| +   if (LM!=0) | 
| +   { | 
| +      st->prefilter_period_old = st->prefilter_period; | 
| +      st->prefilter_gain_old = st->prefilter_gain; | 
| +      st->prefilter_tapset_old = st->prefilter_tapset; | 
| +   } | 
| +#endif | 
| + | 
| +   if (CC==2&&C==1) { | 
| +      for (i=0;i<nbEBands;i++) | 
| +         oldBandE[nbEBands+i]=oldBandE[i]; | 
| +   } | 
| + | 
| +   if (!isTransient) | 
| +   { | 
| +      for (i=0;i<CC*nbEBands;i++) | 
| +         oldLogE2[i] = oldLogE[i]; | 
| +      for (i=0;i<CC*nbEBands;i++) | 
| +         oldLogE[i] = oldBandE[i]; | 
| +   } else { | 
| +      for (i=0;i<CC*nbEBands;i++) | 
| +         oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); | 
| +   } | 
| +   /* In case start or end were to change */ | 
| +   c=0; do | 
| +   { | 
| +      for (i=0;i<st->start;i++) | 
| +      { | 
| +         oldBandE[c*nbEBands+i]=0; | 
| +         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); | 
| +      } | 
| +      for (i=st->end;i<nbEBands;i++) | 
| +      { | 
| +         oldBandE[c*nbEBands+i]=0; | 
| +         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); | 
| +      } | 
| +   } while (++c<CC); | 
| + | 
| +   if (isTransient || transient_got_disabled) | 
| +      st->consec_transient++; | 
| +   else | 
| +      st->consec_transient=0; | 
| +   st->rng = enc->rng; | 
| + | 
| +   /* If there's any room left (can only happen for very high rates), | 
| +      it's already filled with zeros */ | 
| +   ec_enc_done(enc); | 
| + | 
| +#ifdef CUSTOM_MODES | 
| +   if (st->signalling) | 
| +      nbCompressedBytes++; | 
| +#endif | 
| + | 
| +   RESTORE_STACK; | 
| +   if (ec_get_error(enc)) | 
| +      return OPUS_INTERNAL_ERROR; | 
| +   else | 
| +      return nbCompressedBytes; | 
| +} | 
| + | 
| + | 
| +#ifdef CUSTOM_MODES | 
| + | 
| +#ifdef FIXED_POINT | 
| +int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) | 
| +{ | 
| +   return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); | 
| +} | 
| + | 
| +#ifndef DISABLE_FLOAT_API | 
| +int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) | 
| +{ | 
| +   int j, ret, C, N; | 
| +   VARDECL(opus_int16, in); | 
| +   ALLOC_STACK; | 
| + | 
| +   if (pcm==NULL) | 
| +      return OPUS_BAD_ARG; | 
| + | 
| +   C = st->channels; | 
| +   N = frame_size; | 
| +   ALLOC(in, C*N, opus_int16); | 
| + | 
| +   for (j=0;j<C*N;j++) | 
| +     in[j] = FLOAT2INT16(pcm[j]); | 
| + | 
| +   ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); | 
| +#ifdef RESYNTH | 
| +   for (j=0;j<C*N;j++) | 
| +      ((float*)pcm)[j]=in[j]*(1.f/32768.f); | 
| +#endif | 
| +   RESTORE_STACK; | 
| +   return ret; | 
| +} | 
| +#endif /* DISABLE_FLOAT_API */ | 
| +#else | 
| + | 
| +int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) | 
| +{ | 
| +   int j, ret, C, N; | 
| +   VARDECL(celt_sig, in); | 
| +   ALLOC_STACK; | 
| + | 
| +   if (pcm==NULL) | 
| +      return OPUS_BAD_ARG; | 
| + | 
| +   C=st->channels; | 
| +   N=frame_size; | 
| +   ALLOC(in, C*N, celt_sig); | 
| +   for (j=0;j<C*N;j++) { | 
| +     in[j] = SCALEOUT(pcm[j]); | 
| +   } | 
| + | 
| +   ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); | 
| +#ifdef RESYNTH | 
| +   for (j=0;j<C*N;j++) | 
| +      ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]); | 
| +#endif | 
| +   RESTORE_STACK; | 
| +   return ret; | 
| +} | 
| + | 
| +int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) | 
| +{ | 
| +   return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); | 
| +} | 
| + | 
| +#endif | 
| + | 
| +#endif /* CUSTOM_MODES */ | 
| + | 
| +int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...) | 
| +{ | 
| +   va_list ap; | 
| + | 
| +   va_start(ap, request); | 
| +   switch (request) | 
| +   { | 
| +      case OPUS_SET_COMPLEXITY_REQUEST: | 
| +      { | 
| +         int value = va_arg(ap, opus_int32); | 
| +         if (value<0 || value>10) | 
| +            goto bad_arg; | 
| +         st->complexity = value; | 
| +      } | 
| +      break; | 
| +      case CELT_SET_START_BAND_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         if (value<0 || value>=st->mode->nbEBands) | 
| +            goto bad_arg; | 
| +         st->start = value; | 
| +      } | 
| +      break; | 
| +      case CELT_SET_END_BAND_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         if (value<1 || value>st->mode->nbEBands) | 
| +            goto bad_arg; | 
| +         st->end = value; | 
| +      } | 
| +      break; | 
| +      case CELT_SET_PREDICTION_REQUEST: | 
| +      { | 
| +         int value = va_arg(ap, opus_int32); | 
| +         if (value<0 || value>2) | 
| +            goto bad_arg; | 
| +         st->disable_pf = value<=1; | 
| +         st->force_intra = value==0; | 
| +      } | 
| +      break; | 
| +      case OPUS_SET_PACKET_LOSS_PERC_REQUEST: | 
| +      { | 
| +         int value = va_arg(ap, opus_int32); | 
| +         if (value<0 || value>100) | 
| +            goto bad_arg; | 
| +         st->loss_rate = value; | 
| +      } | 
| +      break; | 
| +      case OPUS_SET_VBR_CONSTRAINT_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         st->constrained_vbr = value; | 
| +      } | 
| +      break; | 
| +      case OPUS_SET_VBR_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         st->vbr = value; | 
| +      } | 
| +      break; | 
| +      case OPUS_SET_BITRATE_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         if (value<=500 && value!=OPUS_BITRATE_MAX) | 
| +            goto bad_arg; | 
| +         value = IMIN(value, 260000*st->channels); | 
| +         st->bitrate = value; | 
| +      } | 
| +      break; | 
| +      case CELT_SET_CHANNELS_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         if (value<1 || value>2) | 
| +            goto bad_arg; | 
| +         st->stream_channels = value; | 
| +      } | 
| +      break; | 
| +      case OPUS_SET_LSB_DEPTH_REQUEST: | 
| +      { | 
| +          opus_int32 value = va_arg(ap, opus_int32); | 
| +          if (value<8 || value>24) | 
| +             goto bad_arg; | 
| +          st->lsb_depth=value; | 
| +      } | 
| +      break; | 
| +      case OPUS_GET_LSB_DEPTH_REQUEST: | 
| +      { | 
| +          opus_int32 *value = va_arg(ap, opus_int32*); | 
| +          *value=st->lsb_depth; | 
| +      } | 
| +      break; | 
| +      case OPUS_SET_EXPERT_FRAME_DURATION_REQUEST: | 
| +      { | 
| +          opus_int32 value = va_arg(ap, opus_int32); | 
| +          st->variable_duration = value; | 
| +      } | 
| +      break; | 
| +      case OPUS_RESET_STATE: | 
| +      { | 
| +         int i; | 
| +         opus_val16 *oldBandE, *oldLogE, *oldLogE2; | 
| +         oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD)); | 
| +         oldLogE = oldBandE + st->channels*st->mode->nbEBands; | 
| +         oldLogE2 = oldLogE + st->channels*st->mode->nbEBands; | 
| +         OPUS_CLEAR((char*)&st->ENCODER_RESET_START, | 
| +               opus_custom_encoder_get_size(st->mode, st->channels)- | 
| +               ((char*)&st->ENCODER_RESET_START - (char*)st)); | 
| +         for (i=0;i<st->channels*st->mode->nbEBands;i++) | 
| +            oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); | 
| +         st->vbr_offset = 0; | 
| +         st->delayedIntra = 1; | 
| +         st->spread_decision = SPREAD_NORMAL; | 
| +         st->tonal_average = 256; | 
| +         st->hf_average = 0; | 
| +         st->tapset_decision = 0; | 
| +      } | 
| +      break; | 
| +#ifdef CUSTOM_MODES | 
| +      case CELT_SET_INPUT_CLIPPING_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         st->clip = value; | 
| +      } | 
| +      break; | 
| +#endif | 
| +      case CELT_SET_SIGNALLING_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         st->signalling = value; | 
| +      } | 
| +      break; | 
| +      case CELT_SET_ANALYSIS_REQUEST: | 
| +      { | 
| +         AnalysisInfo *info = va_arg(ap, AnalysisInfo *); | 
| +         if (info) | 
| +            OPUS_COPY(&st->analysis, info, 1); | 
| +      } | 
| +      break; | 
| +      case CELT_GET_MODE_REQUEST: | 
| +      { | 
| +         const CELTMode ** value = va_arg(ap, const CELTMode**); | 
| +         if (value==0) | 
| +            goto bad_arg; | 
| +         *value=st->mode; | 
| +      } | 
| +      break; | 
| +      case OPUS_GET_FINAL_RANGE_REQUEST: | 
| +      { | 
| +         opus_uint32 * value = va_arg(ap, opus_uint32 *); | 
| +         if (value==0) | 
| +            goto bad_arg; | 
| +         *value=st->rng; | 
| +      } | 
| +      break; | 
| +      case OPUS_SET_LFE_REQUEST: | 
| +      { | 
| +          opus_int32 value = va_arg(ap, opus_int32); | 
| +          st->lfe = value; | 
| +      } | 
| +      break; | 
| +      case OPUS_SET_ENERGY_MASK_REQUEST: | 
| +      { | 
| +          opus_val16 *value = va_arg(ap, opus_val16*); | 
| +          st->energy_mask = value; | 
| +      } | 
| +      break; | 
| +      default: | 
| +         goto bad_request; | 
| +   } | 
| +   va_end(ap); | 
| +   return OPUS_OK; | 
| +bad_arg: | 
| +   va_end(ap); | 
| +   return OPUS_BAD_ARG; | 
| +bad_request: | 
| +   va_end(ap); | 
| +   return OPUS_UNIMPLEMENTED; | 
| +} | 
|  |