| Index: celt/celt_decoder.c | 
| diff --git a/celt/celt_decoder.c b/celt/celt_decoder.c | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..4424b97098788dcba437b431a4f941b1ed02d4d6 | 
| --- /dev/null | 
| +++ b/celt/celt_decoder.c | 
| @@ -0,0 +1,1195 @@ | 
| +/* Copyright (c) 2007-2008 CSIRO | 
| +   Copyright (c) 2007-2010 Xiph.Org Foundation | 
| +   Copyright (c) 2008 Gregory Maxwell | 
| +   Written by Jean-Marc Valin and Gregory Maxwell */ | 
| +/* | 
| +   Redistribution and use in source and binary forms, with or without | 
| +   modification, are permitted provided that the following conditions | 
| +   are met: | 
| + | 
| +   - Redistributions of source code must retain the above copyright | 
| +   notice, this list of conditions and the following disclaimer. | 
| + | 
| +   - Redistributions in binary form must reproduce the above copyright | 
| +   notice, this list of conditions and the following disclaimer in the | 
| +   documentation and/or other materials provided with the distribution. | 
| + | 
| +   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
| +   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
| +   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
| +   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | 
| +   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| +   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| +   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| +   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
| +   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
| +   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
| +   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| +*/ | 
| + | 
| +#ifdef HAVE_CONFIG_H | 
| +#include "config.h" | 
| +#endif | 
| + | 
| +#define CELT_DECODER_C | 
| + | 
| +#include "cpu_support.h" | 
| +#include "os_support.h" | 
| +#include "mdct.h" | 
| +#include <math.h> | 
| +#include "celt.h" | 
| +#include "pitch.h" | 
| +#include "bands.h" | 
| +#include "modes.h" | 
| +#include "entcode.h" | 
| +#include "quant_bands.h" | 
| +#include "rate.h" | 
| +#include "stack_alloc.h" | 
| +#include "mathops.h" | 
| +#include "float_cast.h" | 
| +#include <stdarg.h> | 
| +#include "celt_lpc.h" | 
| +#include "vq.h" | 
| + | 
| +/**********************************************************************/ | 
| +/*                                                                    */ | 
| +/*                             DECODER                                */ | 
| +/*                                                                    */ | 
| +/**********************************************************************/ | 
| +#define DECODE_BUFFER_SIZE 2048 | 
| + | 
| +/** Decoder state | 
| + @brief Decoder state | 
| + */ | 
| +struct OpusCustomDecoder { | 
| +   const OpusCustomMode *mode; | 
| +   int overlap; | 
| +   int channels; | 
| +   int stream_channels; | 
| + | 
| +   int downsample; | 
| +   int start, end; | 
| +   int signalling; | 
| +   int arch; | 
| + | 
| +   /* Everything beyond this point gets cleared on a reset */ | 
| +#define DECODER_RESET_START rng | 
| + | 
| +   opus_uint32 rng; | 
| +   int error; | 
| +   int last_pitch_index; | 
| +   int loss_count; | 
| +   int postfilter_period; | 
| +   int postfilter_period_old; | 
| +   opus_val16 postfilter_gain; | 
| +   opus_val16 postfilter_gain_old; | 
| +   int postfilter_tapset; | 
| +   int postfilter_tapset_old; | 
| + | 
| +   celt_sig preemph_memD[2]; | 
| + | 
| +   celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */ | 
| +   /* opus_val16 lpc[],  Size = channels*LPC_ORDER */ | 
| +   /* opus_val16 oldEBands[], Size = 2*mode->nbEBands */ | 
| +   /* opus_val16 oldLogE[], Size = 2*mode->nbEBands */ | 
| +   /* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */ | 
| +   /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */ | 
| +}; | 
| + | 
| +int celt_decoder_get_size(int channels) | 
| +{ | 
| +   const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); | 
| +   return opus_custom_decoder_get_size(mode, channels); | 
| +} | 
| + | 
| +OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels) | 
| +{ | 
| +   int size = sizeof(struct CELTDecoder) | 
| +            + (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig) | 
| +            + channels*LPC_ORDER*sizeof(opus_val16) | 
| +            + 4*2*mode->nbEBands*sizeof(opus_val16); | 
| +   return size; | 
| +} | 
| + | 
| +#ifdef CUSTOM_MODES | 
| +CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error) | 
| +{ | 
| +   int ret; | 
| +   CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels)); | 
| +   ret = opus_custom_decoder_init(st, mode, channels); | 
| +   if (ret != OPUS_OK) | 
| +   { | 
| +      opus_custom_decoder_destroy(st); | 
| +      st = NULL; | 
| +   } | 
| +   if (error) | 
| +      *error = ret; | 
| +   return st; | 
| +} | 
| +#endif /* CUSTOM_MODES */ | 
| + | 
| +int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels) | 
| +{ | 
| +   int ret; | 
| +   ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels); | 
| +   if (ret != OPUS_OK) | 
| +      return ret; | 
| +   st->downsample = resampling_factor(sampling_rate); | 
| +   if (st->downsample==0) | 
| +      return OPUS_BAD_ARG; | 
| +   else | 
| +      return OPUS_OK; | 
| +} | 
| + | 
| +OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels) | 
| +{ | 
| +   if (channels < 0 || channels > 2) | 
| +      return OPUS_BAD_ARG; | 
| + | 
| +   if (st==NULL) | 
| +      return OPUS_ALLOC_FAIL; | 
| + | 
| +   OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels)); | 
| + | 
| +   st->mode = mode; | 
| +   st->overlap = mode->overlap; | 
| +   st->stream_channels = st->channels = channels; | 
| + | 
| +   st->downsample = 1; | 
| +   st->start = 0; | 
| +   st->end = st->mode->effEBands; | 
| +   st->signalling = 1; | 
| +   st->arch = opus_select_arch(); | 
| + | 
| +   st->loss_count = 0; | 
| + | 
| +   opus_custom_decoder_ctl(st, OPUS_RESET_STATE); | 
| + | 
| +   return OPUS_OK; | 
| +} | 
| + | 
| +#ifdef CUSTOM_MODES | 
| +void opus_custom_decoder_destroy(CELTDecoder *st) | 
| +{ | 
| +   opus_free(st); | 
| +} | 
| +#endif /* CUSTOM_MODES */ | 
| + | 
| +static inline opus_val16 SIG2WORD16(celt_sig x) | 
| +{ | 
| +#ifdef FIXED_POINT | 
| +   x = PSHR32(x, SIG_SHIFT); | 
| +   x = MAX32(x, -32768); | 
| +   x = MIN32(x, 32767); | 
| +   return EXTRACT16(x); | 
| +#else | 
| +   return (opus_val16)x; | 
| +#endif | 
| +} | 
| + | 
| +#ifndef RESYNTH | 
| +static | 
| +#endif | 
| +void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem, celt_sig * OPUS_RESTRICT scratch) | 
| +{ | 
| +   int c; | 
| +   int Nd; | 
| +   int apply_downsampling=0; | 
| +   opus_val16 coef0; | 
| + | 
| +   coef0 = coef[0]; | 
| +   Nd = N/downsample; | 
| +   c=0; do { | 
| +      int j; | 
| +      celt_sig * OPUS_RESTRICT x; | 
| +      opus_val16  * OPUS_RESTRICT y; | 
| +      celt_sig m = mem[c]; | 
| +      x =in[c]; | 
| +      y = pcm+c; | 
| +#ifdef CUSTOM_MODES | 
| +      if (coef[1] != 0) | 
| +      { | 
| +         opus_val16 coef1 = coef[1]; | 
| +         opus_val16 coef3 = coef[3]; | 
| +         for (j=0;j<N;j++) | 
| +         { | 
| +            celt_sig tmp = x[j] + m; | 
| +            m = MULT16_32_Q15(coef0, tmp) | 
| +                          - MULT16_32_Q15(coef1, x[j]); | 
| +            tmp = SHL32(MULT16_32_Q15(coef3, tmp), 2); | 
| +            scratch[j] = tmp; | 
| +         } | 
| +         apply_downsampling=1; | 
| +      } else | 
| +#endif | 
| +      if (downsample>1) | 
| +      { | 
| +         /* Shortcut for the standard (non-custom modes) case */ | 
| +         for (j=0;j<N;j++) | 
| +         { | 
| +            celt_sig tmp = x[j] + m; | 
| +            m = MULT16_32_Q15(coef0, tmp); | 
| +            scratch[j] = tmp; | 
| +         } | 
| +         apply_downsampling=1; | 
| +      } else { | 
| +         /* Shortcut for the standard (non-custom modes) case */ | 
| +         for (j=0;j<N;j++) | 
| +         { | 
| +            celt_sig tmp = x[j] + m + VERY_SMALL; | 
| +            m = MULT16_32_Q15(coef0, tmp); | 
| +            y[j*C] = SCALEOUT(SIG2WORD16(tmp)); | 
| +         } | 
| +      } | 
| +      mem[c] = m; | 
| + | 
| +      if (apply_downsampling) | 
| +      { | 
| +         /* Perform down-sampling */ | 
| +         for (j=0;j<Nd;j++) | 
| +            y[j*C] = SCALEOUT(SIG2WORD16(scratch[j*downsample])); | 
| +      } | 
| +   } while (++c<C); | 
| +} | 
| + | 
| +/** Compute the IMDCT and apply window for all sub-frames and | 
| +    all channels in a frame */ | 
| +#ifndef RESYNTH | 
| +static | 
| +#endif | 
| +void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X, | 
| +      celt_sig * OPUS_RESTRICT out_mem[], int C, int LM) | 
| +{ | 
| +   int b, c; | 
| +   int B; | 
| +   int N; | 
| +   int shift; | 
| +   const int overlap = OVERLAP(mode); | 
| + | 
| +   if (shortBlocks) | 
| +   { | 
| +      B = shortBlocks; | 
| +      N = mode->shortMdctSize; | 
| +      shift = mode->maxLM; | 
| +   } else { | 
| +      B = 1; | 
| +      N = mode->shortMdctSize<<LM; | 
| +      shift = mode->maxLM-LM; | 
| +   } | 
| +   c=0; do { | 
| +      /* IMDCT on the interleaved the sub-frames, overlap-add is performed by the IMDCT */ | 
| +      for (b=0;b<B;b++) | 
| +         clt_mdct_backward(&mode->mdct, &X[b+c*N*B], out_mem[c]+N*b, mode->window, overlap, shift, B); | 
| +   } while (++c<C); | 
| +} | 
| + | 
| +static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec) | 
| +{ | 
| +   int i, curr, tf_select; | 
| +   int tf_select_rsv; | 
| +   int tf_changed; | 
| +   int logp; | 
| +   opus_uint32 budget; | 
| +   opus_uint32 tell; | 
| + | 
| +   budget = dec->storage*8; | 
| +   tell = ec_tell(dec); | 
| +   logp = isTransient ? 2 : 4; | 
| +   tf_select_rsv = LM>0 && tell+logp+1<=budget; | 
| +   budget -= tf_select_rsv; | 
| +   tf_changed = curr = 0; | 
| +   for (i=start;i<end;i++) | 
| +   { | 
| +      if (tell+logp<=budget) | 
| +      { | 
| +         curr ^= ec_dec_bit_logp(dec, logp); | 
| +         tell = ec_tell(dec); | 
| +         tf_changed |= curr; | 
| +      } | 
| +      tf_res[i] = curr; | 
| +      logp = isTransient ? 4 : 5; | 
| +   } | 
| +   tf_select = 0; | 
| +   if (tf_select_rsv && | 
| +     tf_select_table[LM][4*isTransient+0+tf_changed] != | 
| +     tf_select_table[LM][4*isTransient+2+tf_changed]) | 
| +   { | 
| +      tf_select = ec_dec_bit_logp(dec, 1); | 
| +   } | 
| +   for (i=start;i<end;i++) | 
| +   { | 
| +      tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; | 
| +   } | 
| +} | 
| + | 
| +/* The maximum pitch lag to allow in the pitch-based PLC. It's possible to save | 
| +   CPU time in the PLC pitch search by making this smaller than MAX_PERIOD. The | 
| +   current value corresponds to a pitch of 66.67 Hz. */ | 
| +#define PLC_PITCH_LAG_MAX (720) | 
| +/* The minimum pitch lag to allow in the pitch-based PLC. This corresponds to a | 
| +   pitch of 480 Hz. */ | 
| +#define PLC_PITCH_LAG_MIN (100) | 
| + | 
| +static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, opus_val16 * OPUS_RESTRICT pcm, int N, int LM) | 
| +{ | 
| +   int c; | 
| +   int i; | 
| +   const int C = st->channels; | 
| +   celt_sig *decode_mem[2]; | 
| +   celt_sig *out_syn[2]; | 
| +   opus_val16 *lpc; | 
| +   opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE; | 
| +   const OpusCustomMode *mode; | 
| +   int nbEBands; | 
| +   int overlap; | 
| +   int start; | 
| +   int downsample; | 
| +   int loss_count; | 
| +   int noise_based; | 
| +   const opus_int16 *eBands; | 
| +   VARDECL(celt_sig, scratch); | 
| +   SAVE_STACK; | 
| + | 
| +   mode = st->mode; | 
| +   nbEBands = mode->nbEBands; | 
| +   overlap = mode->overlap; | 
| +   eBands = mode->eBands; | 
| + | 
| +   c=0; do { | 
| +      decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap); | 
| +      out_syn[c] = decode_mem[c]+DECODE_BUFFER_SIZE-N; | 
| +   } while (++c<C); | 
| +   lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*C); | 
| +   oldBandE = lpc+C*LPC_ORDER; | 
| +   oldLogE = oldBandE + 2*nbEBands; | 
| +   oldLogE2 = oldLogE + 2*nbEBands; | 
| +   backgroundLogE = oldLogE2  + 2*nbEBands; | 
| + | 
| +   loss_count = st->loss_count; | 
| +   start = st->start; | 
| +   downsample = st->downsample; | 
| +   noise_based = loss_count >= 5 || start != 0; | 
| +   ALLOC(scratch, noise_based?N*C:N, celt_sig); | 
| +   if (noise_based) | 
| +   { | 
| +      /* Noise-based PLC/CNG */ | 
| +      celt_sig *freq; | 
| +      VARDECL(celt_norm, X); | 
| +      opus_uint32 seed; | 
| +      opus_val16 *plcLogE; | 
| +      int end; | 
| +      int effEnd; | 
| + | 
| +      end = st->end; | 
| +      effEnd = IMAX(start, IMIN(end, mode->effEBands)); | 
| + | 
| +      /* Share the interleaved signal MDCT coefficient buffer with the | 
| +         deemphasis scratch buffer. */ | 
| +      freq = scratch; | 
| +      ALLOC(X, C*N, celt_norm);   /**< Interleaved normalised MDCTs */ | 
| + | 
| +      if (loss_count >= 5) | 
| +         plcLogE = backgroundLogE; | 
| +      else { | 
| +         /* Energy decay */ | 
| +         opus_val16 decay = loss_count==0 ? | 
| +               QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT); | 
| +         c=0; do | 
| +         { | 
| +            for (i=start;i<end;i++) | 
| +               oldBandE[c*nbEBands+i] -= decay; | 
| +         } while (++c<C); | 
| +         plcLogE = oldBandE; | 
| +      } | 
| +      seed = st->rng; | 
| +      for (c=0;c<C;c++) | 
| +      { | 
| +         for (i=start;i<effEnd;i++) | 
| +         { | 
| +            int j; | 
| +            int boffs; | 
| +            int blen; | 
| +            boffs = N*c+(eBands[i]<<LM); | 
| +            blen = (eBands[i+1]-eBands[i])<<LM; | 
| +            for (j=0;j<blen;j++) | 
| +            { | 
| +               seed = celt_lcg_rand(seed); | 
| +               X[boffs+j] = (celt_norm)((opus_int32)seed>>20); | 
| +            } | 
| +            renormalise_vector(X+boffs, blen, Q15ONE); | 
| +         } | 
| +      } | 
| +      st->rng = seed; | 
| + | 
| +      denormalise_bands(mode, X, freq, plcLogE, start, effEnd, C, 1<<LM); | 
| + | 
| +      c=0; do { | 
| +         int bound = eBands[effEnd]<<LM; | 
| +         if (downsample!=1) | 
| +            bound = IMIN(bound, N/downsample); | 
| +         for (i=bound;i<N;i++) | 
| +            freq[c*N+i] = 0; | 
| +      } while (++c<C); | 
| +      c=0; do { | 
| +         OPUS_MOVE(decode_mem[c], decode_mem[c]+N, | 
| +               DECODE_BUFFER_SIZE-N+(overlap>>1)); | 
| +      } while (++c<C); | 
| +      compute_inv_mdcts(mode, 0, freq, out_syn, C, LM); | 
| +   } else { | 
| +      /* Pitch-based PLC */ | 
| +      const opus_val16 *window; | 
| +      opus_val16 fade = Q15ONE; | 
| +      int pitch_index; | 
| +      VARDECL(opus_val32, etmp); | 
| +      VARDECL(opus_val16, exc); | 
| + | 
| +      if (loss_count == 0) | 
| +      { | 
| +         VARDECL( opus_val16, lp_pitch_buf ); | 
| +         ALLOC( lp_pitch_buf, DECODE_BUFFER_SIZE>>1, opus_val16 ); | 
| +         pitch_downsample(decode_mem, lp_pitch_buf, DECODE_BUFFER_SIZE, C); | 
| +         pitch_search(lp_pitch_buf+(PLC_PITCH_LAG_MAX>>1), lp_pitch_buf, | 
| +               DECODE_BUFFER_SIZE-PLC_PITCH_LAG_MAX, | 
| +               PLC_PITCH_LAG_MAX-PLC_PITCH_LAG_MIN, &pitch_index); | 
| +         pitch_index = PLC_PITCH_LAG_MAX-pitch_index; | 
| +         st->last_pitch_index = pitch_index; | 
| +      } else { | 
| +         pitch_index = st->last_pitch_index; | 
| +         fade = QCONST16(.8f,15); | 
| +      } | 
| + | 
| +      ALLOC(etmp, overlap, opus_val32); | 
| +      ALLOC(exc, MAX_PERIOD, opus_val16); | 
| +      window = mode->window; | 
| +      c=0; do { | 
| +         opus_val16 decay; | 
| +         opus_val16 attenuation; | 
| +         opus_val32 S1=0; | 
| +         celt_sig *buf; | 
| +         int extrapolation_offset; | 
| +         int extrapolation_len; | 
| +         int exc_length; | 
| +         int j; | 
| + | 
| +         buf = decode_mem[c]; | 
| +         for (i=0;i<MAX_PERIOD;i++) { | 
| +            exc[i] = ROUND16(buf[DECODE_BUFFER_SIZE-MAX_PERIOD+i], SIG_SHIFT); | 
| +         } | 
| + | 
| +         if (loss_count == 0) | 
| +         { | 
| +            opus_val32 ac[LPC_ORDER+1]; | 
| +            /* Compute LPC coefficients for the last MAX_PERIOD samples before | 
| +               the first loss so we can work in the excitation-filter domain. */ | 
| +            _celt_autocorr(exc, ac, window, overlap, LPC_ORDER, MAX_PERIOD); | 
| +            /* Add a noise floor of -40 dB. */ | 
| +#ifdef FIXED_POINT | 
| +            ac[0] += SHR32(ac[0],13); | 
| +#else | 
| +            ac[0] *= 1.0001f; | 
| +#endif | 
| +            /* Use lag windowing to stabilize the Levinson-Durbin recursion. */ | 
| +            for (i=1;i<=LPC_ORDER;i++) | 
| +            { | 
| +               /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/ | 
| +#ifdef FIXED_POINT | 
| +               ac[i] -= MULT16_32_Q15(2*i*i, ac[i]); | 
| +#else | 
| +               ac[i] -= ac[i]*(0.008f*0.008f)*i*i; | 
| +#endif | 
| +            } | 
| +            _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER); | 
| +         } | 
| +         /* We want the excitation for 2 pitch periods in order to look for a | 
| +            decaying signal, but we can't get more than MAX_PERIOD. */ | 
| +         exc_length = IMIN(2*pitch_index, MAX_PERIOD); | 
| +         /* Initialize the LPC history with the samples just before the start | 
| +            of the region for which we're computing the excitation. */ | 
| +         { | 
| +            opus_val16 lpc_mem[LPC_ORDER]; | 
| +            for (i=0;i<LPC_ORDER;i++) | 
| +            { | 
| +               lpc_mem[i] = | 
| +                     ROUND16(buf[DECODE_BUFFER_SIZE-exc_length-1-i], SIG_SHIFT); | 
| +            } | 
| +            /* Compute the excitation for exc_length samples before the loss. */ | 
| +            celt_fir(exc+MAX_PERIOD-exc_length, lpc+c*LPC_ORDER, | 
| +                  exc+MAX_PERIOD-exc_length, exc_length, LPC_ORDER, lpc_mem); | 
| +         } | 
| + | 
| +         /* Check if the waveform is decaying, and if so how fast. | 
| +            We do this to avoid adding energy when concealing in a segment | 
| +            with decaying energy. */ | 
| +         { | 
| +            opus_val32 E1=1, E2=1; | 
| +            int decay_length; | 
| +#ifdef FIXED_POINT | 
| +            int shift = IMAX(0,2*celt_zlog2(celt_maxabs16(&exc[MAX_PERIOD-exc_length], exc_length))-20); | 
| +#endif | 
| +            decay_length = exc_length>>1; | 
| +            for (i=0;i<decay_length;i++) | 
| +            { | 
| +               opus_val16 e; | 
| +               e = exc[MAX_PERIOD-decay_length+i]; | 
| +               E1 += SHR32(MULT16_16(e, e), shift); | 
| +               e = exc[MAX_PERIOD-2*decay_length+i]; | 
| +               E2 += SHR32(MULT16_16(e, e), shift); | 
| +            } | 
| +            E1 = MIN32(E1, E2); | 
| +            decay = celt_sqrt(frac_div32(SHR32(E1, 1), E2)); | 
| +         } | 
| + | 
| +         /* Move the decoder memory one frame to the left to give us room to | 
| +            add the data for the new frame. We ignore the overlap that extends | 
| +            past the end of the buffer, because we aren't going to use it. */ | 
| +         OPUS_MOVE(buf, buf+N, DECODE_BUFFER_SIZE-N); | 
| + | 
| +         /* Extrapolate from the end of the excitation with a period of | 
| +            "pitch_index", scaling down each period by an additional factor of | 
| +            "decay". */ | 
| +         extrapolation_offset = MAX_PERIOD-pitch_index; | 
| +         /* We need to extrapolate enough samples to cover a complete MDCT | 
| +            window (including overlap/2 samples on both sides). */ | 
| +         extrapolation_len = N+overlap; | 
| +         /* We also apply fading if this is not the first loss. */ | 
| +         attenuation = MULT16_16_Q15(fade, decay); | 
| +         for (i=j=0;i<extrapolation_len;i++,j++) | 
| +         { | 
| +            opus_val16 tmp; | 
| +            if (j >= pitch_index) { | 
| +               j -= pitch_index; | 
| +               attenuation = MULT16_16_Q15(attenuation, decay); | 
| +            } | 
| +            buf[DECODE_BUFFER_SIZE-N+i] = | 
| +                  SHL32(EXTEND32(MULT16_16_Q15(attenuation, | 
| +                        exc[extrapolation_offset+j])), SIG_SHIFT); | 
| +            /* Compute the energy of the previously decoded signal whose | 
| +               excitation we're copying. */ | 
| +            tmp = ROUND16( | 
| +                  buf[DECODE_BUFFER_SIZE-MAX_PERIOD-N+extrapolation_offset+j], | 
| +                  SIG_SHIFT); | 
| +            S1 += SHR32(MULT16_16(tmp, tmp), 8); | 
| +         } | 
| + | 
| +         { | 
| +            opus_val16 lpc_mem[LPC_ORDER]; | 
| +            /* Copy the last decoded samples (prior to the overlap region) to | 
| +               synthesis filter memory so we can have a continuous signal. */ | 
| +            for (i=0;i<LPC_ORDER;i++) | 
| +               lpc_mem[i] = ROUND16(buf[DECODE_BUFFER_SIZE-N-1-i], SIG_SHIFT); | 
| +            /* Apply the synthesis filter to convert the excitation back into | 
| +               the signal domain. */ | 
| +            celt_iir(buf+DECODE_BUFFER_SIZE-N, lpc+c*LPC_ORDER, | 
| +                  buf+DECODE_BUFFER_SIZE-N, extrapolation_len, LPC_ORDER, | 
| +                  lpc_mem); | 
| +         } | 
| + | 
| +         /* Check if the synthesis energy is higher than expected, which can | 
| +            happen with the signal changes during our window. If so, | 
| +            attenuate. */ | 
| +         { | 
| +            opus_val32 S2=0; | 
| +            for (i=0;i<extrapolation_len;i++) | 
| +            { | 
| +               opus_val16 tmp = ROUND16(buf[DECODE_BUFFER_SIZE-N+i], SIG_SHIFT); | 
| +               S2 += SHR32(MULT16_16(tmp, tmp), 8); | 
| +            } | 
| +            /* This checks for an "explosion" in the synthesis. */ | 
| +#ifdef FIXED_POINT | 
| +            if (!(S1 > SHR32(S2,2))) | 
| +#else | 
| +            /* The float test is written this way to catch NaNs in the output | 
| +               of the IIR filter at the same time. */ | 
| +            if (!(S1 > 0.2f*S2)) | 
| +#endif | 
| +            { | 
| +               for (i=0;i<extrapolation_len;i++) | 
| +                  buf[DECODE_BUFFER_SIZE-N+i] = 0; | 
| +            } else if (S1 < S2) | 
| +            { | 
| +               opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1)); | 
| +               for (i=0;i<overlap;i++) | 
| +               { | 
| +                  opus_val16 tmp_g = Q15ONE | 
| +                        - MULT16_16_Q15(window[i], Q15ONE-ratio); | 
| +                  buf[DECODE_BUFFER_SIZE-N+i] = | 
| +                        MULT16_32_Q15(tmp_g, buf[DECODE_BUFFER_SIZE-N+i]); | 
| +               } | 
| +               for (i=overlap;i<extrapolation_len;i++) | 
| +               { | 
| +                  buf[DECODE_BUFFER_SIZE-N+i] = | 
| +                        MULT16_32_Q15(ratio, buf[DECODE_BUFFER_SIZE-N+i]); | 
| +               } | 
| +            } | 
| +         } | 
| + | 
| +         /* Apply the pre-filter to the MDCT overlap for the next frame because | 
| +            the post-filter will be re-applied in the decoder after the MDCT | 
| +            overlap. */ | 
| +         comb_filter(etmp, buf+DECODE_BUFFER_SIZE, | 
| +              st->postfilter_period, st->postfilter_period, overlap, | 
| +              -st->postfilter_gain, -st->postfilter_gain, | 
| +              st->postfilter_tapset, st->postfilter_tapset, NULL, 0); | 
| + | 
| +         /* Simulate TDAC on the concealed audio so that it blends with the | 
| +            MDCT of the next frame. */ | 
| +         for (i=0;i<overlap/2;i++) | 
| +         { | 
| +            buf[DECODE_BUFFER_SIZE+i] = | 
| +               MULT16_32_Q15(window[i], etmp[overlap-1-i]) | 
| +               + MULT16_32_Q15(window[overlap-i-1], etmp[i]); | 
| +         } | 
| +      } while (++c<C); | 
| +   } | 
| + | 
| +   deemphasis(out_syn, pcm, N, C, downsample, | 
| +         mode->preemph, st->preemph_memD, scratch); | 
| + | 
| +   st->loss_count = loss_count+1; | 
| + | 
| +   RESTORE_STACK; | 
| +} | 
| + | 
| +int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec) | 
| +{ | 
| +   int c, i, N; | 
| +   int spread_decision; | 
| +   opus_int32 bits; | 
| +   ec_dec _dec; | 
| +   VARDECL(celt_sig, freq); | 
| +   VARDECL(celt_norm, X); | 
| +   VARDECL(int, fine_quant); | 
| +   VARDECL(int, pulses); | 
| +   VARDECL(int, cap); | 
| +   VARDECL(int, offsets); | 
| +   VARDECL(int, fine_priority); | 
| +   VARDECL(int, tf_res); | 
| +   VARDECL(unsigned char, collapse_masks); | 
| +   celt_sig *out_mem[2]; | 
| +   celt_sig *decode_mem[2]; | 
| +   celt_sig *out_syn[2]; | 
| +   opus_val16 *lpc; | 
| +   opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE; | 
| + | 
| +   int shortBlocks; | 
| +   int isTransient; | 
| +   int intra_ener; | 
| +   const int CC = st->channels; | 
| +   int LM, M; | 
| +   int effEnd; | 
| +   int codedBands; | 
| +   int alloc_trim; | 
| +   int postfilter_pitch; | 
| +   opus_val16 postfilter_gain; | 
| +   int intensity=0; | 
| +   int dual_stereo=0; | 
| +   opus_int32 total_bits; | 
| +   opus_int32 balance; | 
| +   opus_int32 tell; | 
| +   int dynalloc_logp; | 
| +   int postfilter_tapset; | 
| +   int anti_collapse_rsv; | 
| +   int anti_collapse_on=0; | 
| +   int silence; | 
| +   int C = st->stream_channels; | 
| +   const OpusCustomMode *mode; | 
| +   int nbEBands; | 
| +   int overlap; | 
| +   const opus_int16 *eBands; | 
| +   ALLOC_STACK; | 
| + | 
| +   mode = st->mode; | 
| +   nbEBands = mode->nbEBands; | 
| +   overlap = mode->overlap; | 
| +   eBands = mode->eBands; | 
| +   frame_size *= st->downsample; | 
| + | 
| +   c=0; do { | 
| +      decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap); | 
| +      out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD; | 
| +   } while (++c<CC); | 
| +   lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*CC); | 
| +   oldBandE = lpc+CC*LPC_ORDER; | 
| +   oldLogE = oldBandE + 2*nbEBands; | 
| +   oldLogE2 = oldLogE + 2*nbEBands; | 
| +   backgroundLogE = oldLogE2  + 2*nbEBands; | 
| + | 
| +#ifdef CUSTOM_MODES | 
| +   if (st->signalling && data!=NULL) | 
| +   { | 
| +      int data0=data[0]; | 
| +      /* Convert "standard mode" to Opus header */ | 
| +      if (mode->Fs==48000 && mode->shortMdctSize==120) | 
| +      { | 
| +         data0 = fromOpus(data0); | 
| +         if (data0<0) | 
| +            return OPUS_INVALID_PACKET; | 
| +      } | 
| +      st->end = IMAX(1, mode->effEBands-2*(data0>>5)); | 
| +      LM = (data0>>3)&0x3; | 
| +      C = 1 + ((data0>>2)&0x1); | 
| +      data++; | 
| +      len--; | 
| +      if (LM>mode->maxLM) | 
| +         return OPUS_INVALID_PACKET; | 
| +      if (frame_size < mode->shortMdctSize<<LM) | 
| +         return OPUS_BUFFER_TOO_SMALL; | 
| +      else | 
| +         frame_size = mode->shortMdctSize<<LM; | 
| +   } else { | 
| +#else | 
| +   { | 
| +#endif | 
| +      for (LM=0;LM<=mode->maxLM;LM++) | 
| +         if (mode->shortMdctSize<<LM==frame_size) | 
| +            break; | 
| +      if (LM>mode->maxLM) | 
| +         return OPUS_BAD_ARG; | 
| +   } | 
| +   M=1<<LM; | 
| + | 
| +   if (len<0 || len>1275 || pcm==NULL) | 
| +      return OPUS_BAD_ARG; | 
| + | 
| +   N = M*mode->shortMdctSize; | 
| + | 
| +   effEnd = st->end; | 
| +   if (effEnd > mode->effEBands) | 
| +      effEnd = mode->effEBands; | 
| + | 
| +   if (data == NULL || len<=1) | 
| +   { | 
| +      celt_decode_lost(st, pcm, N, LM); | 
| +      RESTORE_STACK; | 
| +      return frame_size/st->downsample; | 
| +   } | 
| + | 
| +   if (dec == NULL) | 
| +   { | 
| +      ec_dec_init(&_dec,(unsigned char*)data,len); | 
| +      dec = &_dec; | 
| +   } | 
| + | 
| +   if (C==1) | 
| +   { | 
| +      for (i=0;i<nbEBands;i++) | 
| +         oldBandE[i]=MAX16(oldBandE[i],oldBandE[nbEBands+i]); | 
| +   } | 
| + | 
| +   total_bits = len*8; | 
| +   tell = ec_tell(dec); | 
| + | 
| +   if (tell >= total_bits) | 
| +      silence = 1; | 
| +   else if (tell==1) | 
| +      silence = ec_dec_bit_logp(dec, 15); | 
| +   else | 
| +      silence = 0; | 
| +   if (silence) | 
| +   { | 
| +      /* Pretend we've read all the remaining bits */ | 
| +      tell = len*8; | 
| +      dec->nbits_total+=tell-ec_tell(dec); | 
| +   } | 
| + | 
| +   postfilter_gain = 0; | 
| +   postfilter_pitch = 0; | 
| +   postfilter_tapset = 0; | 
| +   if (st->start==0 && tell+16 <= total_bits) | 
| +   { | 
| +      if(ec_dec_bit_logp(dec, 1)) | 
| +      { | 
| +         int qg, octave; | 
| +         octave = ec_dec_uint(dec, 6); | 
| +         postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1; | 
| +         qg = ec_dec_bits(dec, 3); | 
| +         if (ec_tell(dec)+2<=total_bits) | 
| +            postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2); | 
| +         postfilter_gain = QCONST16(.09375f,15)*(qg+1); | 
| +      } | 
| +      tell = ec_tell(dec); | 
| +   } | 
| + | 
| +   if (LM > 0 && tell+3 <= total_bits) | 
| +   { | 
| +      isTransient = ec_dec_bit_logp(dec, 3); | 
| +      tell = ec_tell(dec); | 
| +   } | 
| +   else | 
| +      isTransient = 0; | 
| + | 
| +   if (isTransient) | 
| +      shortBlocks = M; | 
| +   else | 
| +      shortBlocks = 0; | 
| + | 
| +   /* Decode the global flags (first symbols in the stream) */ | 
| +   intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0; | 
| +   /* Get band energies */ | 
| +   unquant_coarse_energy(mode, st->start, st->end, oldBandE, | 
| +         intra_ener, dec, C, LM); | 
| + | 
| +   ALLOC(tf_res, nbEBands, int); | 
| +   tf_decode(st->start, st->end, isTransient, tf_res, LM, dec); | 
| + | 
| +   tell = ec_tell(dec); | 
| +   spread_decision = SPREAD_NORMAL; | 
| +   if (tell+4 <= total_bits) | 
| +      spread_decision = ec_dec_icdf(dec, spread_icdf, 5); | 
| + | 
| +   ALLOC(cap, nbEBands, int); | 
| + | 
| +   init_caps(mode,cap,LM,C); | 
| + | 
| +   ALLOC(offsets, nbEBands, int); | 
| + | 
| +   dynalloc_logp = 6; | 
| +   total_bits<<=BITRES; | 
| +   tell = ec_tell_frac(dec); | 
| +   for (i=st->start;i<st->end;i++) | 
| +   { | 
| +      int width, quanta; | 
| +      int dynalloc_loop_logp; | 
| +      int boost; | 
| +      width = C*(eBands[i+1]-eBands[i])<<LM; | 
| +      /* quanta is 6 bits, but no more than 1 bit/sample | 
| +         and no less than 1/8 bit/sample */ | 
| +      quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); | 
| +      dynalloc_loop_logp = dynalloc_logp; | 
| +      boost = 0; | 
| +      while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i]) | 
| +      { | 
| +         int flag; | 
| +         flag = ec_dec_bit_logp(dec, dynalloc_loop_logp); | 
| +         tell = ec_tell_frac(dec); | 
| +         if (!flag) | 
| +            break; | 
| +         boost += quanta; | 
| +         total_bits -= quanta; | 
| +         dynalloc_loop_logp = 1; | 
| +      } | 
| +      offsets[i] = boost; | 
| +      /* Making dynalloc more likely */ | 
| +      if (boost>0) | 
| +         dynalloc_logp = IMAX(2, dynalloc_logp-1); | 
| +   } | 
| + | 
| +   ALLOC(fine_quant, nbEBands, int); | 
| +   alloc_trim = tell+(6<<BITRES) <= total_bits ? | 
| +         ec_dec_icdf(dec, trim_icdf, 7) : 5; | 
| + | 
| +   bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1; | 
| +   anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0; | 
| +   bits -= anti_collapse_rsv; | 
| + | 
| +   ALLOC(pulses, nbEBands, int); | 
| +   ALLOC(fine_priority, nbEBands, int); | 
| + | 
| +   codedBands = compute_allocation(mode, st->start, st->end, offsets, cap, | 
| +         alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses, | 
| +         fine_quant, fine_priority, C, LM, dec, 0, 0, 0); | 
| + | 
| +   unquant_fine_energy(mode, st->start, st->end, oldBandE, fine_quant, dec, C); | 
| + | 
| +   /* Decode fixed codebook */ | 
| +   ALLOC(collapse_masks, C*nbEBands, unsigned char); | 
| +   ALLOC(X, C*N, celt_norm);   /**< Interleaved normalised MDCTs */ | 
| + | 
| +   quant_all_bands(0, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks, | 
| +         NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res, | 
| +         len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng); | 
| + | 
| +   if (anti_collapse_rsv > 0) | 
| +   { | 
| +      anti_collapse_on = ec_dec_bits(dec, 1); | 
| +   } | 
| + | 
| +   unquant_energy_finalise(mode, st->start, st->end, oldBandE, | 
| +         fine_quant, fine_priority, len*8-ec_tell(dec), dec, C); | 
| + | 
| +   if (anti_collapse_on) | 
| +      anti_collapse(mode, X, collapse_masks, LM, C, N, | 
| +            st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng); | 
| + | 
| +   ALLOC(freq, IMAX(CC,C)*N, celt_sig); /**< Interleaved signal MDCTs */ | 
| + | 
| +   if (silence) | 
| +   { | 
| +      for (i=0;i<C*nbEBands;i++) | 
| +         oldBandE[i] = -QCONST16(28.f,DB_SHIFT); | 
| +      for (i=0;i<C*N;i++) | 
| +         freq[i] = 0; | 
| +   } else { | 
| +      /* Synthesis */ | 
| +      denormalise_bands(mode, X, freq, oldBandE, st->start, effEnd, C, M); | 
| +   } | 
| +   c=0; do { | 
| +      OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap/2); | 
| +   } while (++c<CC); | 
| + | 
| +   c=0; do { | 
| +      int bound = M*eBands[effEnd]; | 
| +      if (st->downsample!=1) | 
| +         bound = IMIN(bound, N/st->downsample); | 
| +      for (i=bound;i<N;i++) | 
| +         freq[c*N+i] = 0; | 
| +   } while (++c<C); | 
| + | 
| +   c=0; do { | 
| +      out_syn[c] = out_mem[c]+MAX_PERIOD-N; | 
| +   } while (++c<CC); | 
| + | 
| +   if (CC==2&&C==1) | 
| +   { | 
| +      for (i=0;i<N;i++) | 
| +         freq[N+i] = freq[i]; | 
| +   } | 
| +   if (CC==1&&C==2) | 
| +   { | 
| +      for (i=0;i<N;i++) | 
| +         freq[i] = HALF32(ADD32(freq[i],freq[N+i])); | 
| +   } | 
| + | 
| +   /* Compute inverse MDCTs */ | 
| +   compute_inv_mdcts(mode, shortBlocks, freq, out_syn, CC, LM); | 
| + | 
| +   c=0; do { | 
| +      st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD); | 
| +      st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD); | 
| +      comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, mode->shortMdctSize, | 
| +            st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset, | 
| +            mode->window, overlap); | 
| +      if (LM!=0) | 
| +         comb_filter(out_syn[c]+mode->shortMdctSize, out_syn[c]+mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-mode->shortMdctSize, | 
| +               st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset, | 
| +               mode->window, overlap); | 
| + | 
| +   } while (++c<CC); | 
| +   st->postfilter_period_old = st->postfilter_period; | 
| +   st->postfilter_gain_old = st->postfilter_gain; | 
| +   st->postfilter_tapset_old = st->postfilter_tapset; | 
| +   st->postfilter_period = postfilter_pitch; | 
| +   st->postfilter_gain = postfilter_gain; | 
| +   st->postfilter_tapset = postfilter_tapset; | 
| +   if (LM!=0) | 
| +   { | 
| +      st->postfilter_period_old = st->postfilter_period; | 
| +      st->postfilter_gain_old = st->postfilter_gain; | 
| +      st->postfilter_tapset_old = st->postfilter_tapset; | 
| +   } | 
| + | 
| +   if (C==1) { | 
| +      for (i=0;i<nbEBands;i++) | 
| +         oldBandE[nbEBands+i]=oldBandE[i]; | 
| +   } | 
| + | 
| +   /* In case start or end were to change */ | 
| +   if (!isTransient) | 
| +   { | 
| +      for (i=0;i<2*nbEBands;i++) | 
| +         oldLogE2[i] = oldLogE[i]; | 
| +      for (i=0;i<2*nbEBands;i++) | 
| +         oldLogE[i] = oldBandE[i]; | 
| +      for (i=0;i<2*nbEBands;i++) | 
| +         backgroundLogE[i] = MIN16(backgroundLogE[i] + M*QCONST16(0.001f,DB_SHIFT), oldBandE[i]); | 
| +   } else { | 
| +      for (i=0;i<2*nbEBands;i++) | 
| +         oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); | 
| +   } | 
| +   c=0; do | 
| +   { | 
| +      for (i=0;i<st->start;i++) | 
| +      { | 
| +         oldBandE[c*nbEBands+i]=0; | 
| +         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); | 
| +      } | 
| +      for (i=st->end;i<nbEBands;i++) | 
| +      { | 
| +         oldBandE[c*nbEBands+i]=0; | 
| +         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); | 
| +      } | 
| +   } while (++c<2); | 
| +   st->rng = dec->rng; | 
| + | 
| +   /* We reuse freq[] as scratch space for the de-emphasis */ | 
| +   deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, freq); | 
| +   st->loss_count = 0; | 
| +   RESTORE_STACK; | 
| +   if (ec_tell(dec) > 8*len) | 
| +      return OPUS_INTERNAL_ERROR; | 
| +   if(ec_get_error(dec)) | 
| +      st->error = 1; | 
| +   return frame_size/st->downsample; | 
| +} | 
| + | 
| + | 
| +#ifdef CUSTOM_MODES | 
| + | 
| +#ifdef FIXED_POINT | 
| +int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size) | 
| +{ | 
| +   return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL); | 
| +} | 
| + | 
| +#ifndef DISABLE_FLOAT_API | 
| +int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size) | 
| +{ | 
| +   int j, ret, C, N; | 
| +   VARDECL(opus_int16, out); | 
| +   ALLOC_STACK; | 
| + | 
| +   if (pcm==NULL) | 
| +      return OPUS_BAD_ARG; | 
| + | 
| +   C = st->channels; | 
| +   N = frame_size; | 
| + | 
| +   ALLOC(out, C*N, opus_int16); | 
| +   ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL); | 
| +   if (ret>0) | 
| +      for (j=0;j<C*ret;j++) | 
| +         pcm[j]=out[j]*(1.f/32768.f); | 
| + | 
| +   RESTORE_STACK; | 
| +   return ret; | 
| +} | 
| +#endif /* DISABLE_FLOAT_API */ | 
| + | 
| +#else | 
| + | 
| +int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size) | 
| +{ | 
| +   return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL); | 
| +} | 
| + | 
| +int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size) | 
| +{ | 
| +   int j, ret, C, N; | 
| +   VARDECL(celt_sig, out); | 
| +   ALLOC_STACK; | 
| + | 
| +   if (pcm==NULL) | 
| +      return OPUS_BAD_ARG; | 
| + | 
| +   C = st->channels; | 
| +   N = frame_size; | 
| +   ALLOC(out, C*N, celt_sig); | 
| + | 
| +   ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL); | 
| + | 
| +   if (ret>0) | 
| +      for (j=0;j<C*ret;j++) | 
| +         pcm[j] = FLOAT2INT16 (out[j]); | 
| + | 
| +   RESTORE_STACK; | 
| +   return ret; | 
| +} | 
| + | 
| +#endif | 
| +#endif /* CUSTOM_MODES */ | 
| + | 
| +int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...) | 
| +{ | 
| +   va_list ap; | 
| + | 
| +   va_start(ap, request); | 
| +   switch (request) | 
| +   { | 
| +      case CELT_SET_START_BAND_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         if (value<0 || value>=st->mode->nbEBands) | 
| +            goto bad_arg; | 
| +         st->start = value; | 
| +      } | 
| +      break; | 
| +      case CELT_SET_END_BAND_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         if (value<1 || value>st->mode->nbEBands) | 
| +            goto bad_arg; | 
| +         st->end = value; | 
| +      } | 
| +      break; | 
| +      case CELT_SET_CHANNELS_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         if (value<1 || value>2) | 
| +            goto bad_arg; | 
| +         st->stream_channels = value; | 
| +      } | 
| +      break; | 
| +      case CELT_GET_AND_CLEAR_ERROR_REQUEST: | 
| +      { | 
| +         opus_int32 *value = va_arg(ap, opus_int32*); | 
| +         if (value==NULL) | 
| +            goto bad_arg; | 
| +         *value=st->error; | 
| +         st->error = 0; | 
| +      } | 
| +      break; | 
| +      case OPUS_GET_LOOKAHEAD_REQUEST: | 
| +      { | 
| +         opus_int32 *value = va_arg(ap, opus_int32*); | 
| +         if (value==NULL) | 
| +            goto bad_arg; | 
| +         *value = st->overlap/st->downsample; | 
| +      } | 
| +      break; | 
| +      case OPUS_RESET_STATE: | 
| +      { | 
| +         int i; | 
| +         opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2; | 
| +         lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels); | 
| +         oldBandE = lpc+st->channels*LPC_ORDER; | 
| +         oldLogE = oldBandE + 2*st->mode->nbEBands; | 
| +         oldLogE2 = oldLogE + 2*st->mode->nbEBands; | 
| +         OPUS_CLEAR((char*)&st->DECODER_RESET_START, | 
| +               opus_custom_decoder_get_size(st->mode, st->channels)- | 
| +               ((char*)&st->DECODER_RESET_START - (char*)st)); | 
| +         for (i=0;i<2*st->mode->nbEBands;i++) | 
| +            oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); | 
| +      } | 
| +      break; | 
| +      case OPUS_GET_PITCH_REQUEST: | 
| +      { | 
| +         opus_int32 *value = va_arg(ap, opus_int32*); | 
| +         if (value==NULL) | 
| +            goto bad_arg; | 
| +         *value = st->postfilter_period; | 
| +      } | 
| +      break; | 
| +      case CELT_GET_MODE_REQUEST: | 
| +      { | 
| +         const CELTMode ** value = va_arg(ap, const CELTMode**); | 
| +         if (value==0) | 
| +            goto bad_arg; | 
| +         *value=st->mode; | 
| +      } | 
| +      break; | 
| +      case CELT_SET_SIGNALLING_REQUEST: | 
| +      { | 
| +         opus_int32 value = va_arg(ap, opus_int32); | 
| +         st->signalling = value; | 
| +      } | 
| +      break; | 
| +      case OPUS_GET_FINAL_RANGE_REQUEST: | 
| +      { | 
| +         opus_uint32 * value = va_arg(ap, opus_uint32 *); | 
| +         if (value==0) | 
| +            goto bad_arg; | 
| +         *value=st->rng; | 
| +      } | 
| +      break; | 
| +      default: | 
| +         goto bad_request; | 
| +   } | 
| +   va_end(ap); | 
| +   return OPUS_OK; | 
| +bad_arg: | 
| +   va_end(ap); | 
| +   return OPUS_BAD_ARG; | 
| +bad_request: | 
| +      va_end(ap); | 
| +  return OPUS_UNIMPLEMENTED; | 
| +} | 
|  |