Index: celt/celt_encoder.c |
diff --git a/celt/celt_encoder.c b/celt/celt_encoder.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..59dcc5c61eabca745030b6fa89f3369b842912a5 |
--- /dev/null |
+++ b/celt/celt_encoder.c |
@@ -0,0 +1,2331 @@ |
+/* Copyright (c) 2007-2008 CSIRO |
+ Copyright (c) 2007-2010 Xiph.Org Foundation |
+ Copyright (c) 2008 Gregory Maxwell |
+ Written by Jean-Marc Valin and Gregory Maxwell */ |
+/* |
+ Redistribution and use in source and binary forms, with or without |
+ modification, are permitted provided that the following conditions |
+ are met: |
+ |
+ - Redistributions of source code must retain the above copyright |
+ notice, this list of conditions and the following disclaimer. |
+ |
+ - Redistributions in binary form must reproduce the above copyright |
+ notice, this list of conditions and the following disclaimer in the |
+ documentation and/or other materials provided with the distribution. |
+ |
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
+ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+*/ |
+ |
+#ifdef HAVE_CONFIG_H |
+#include "config.h" |
+#endif |
+ |
+#define CELT_ENCODER_C |
+ |
+#include "cpu_support.h" |
+#include "os_support.h" |
+#include "mdct.h" |
+#include <math.h> |
+#include "celt.h" |
+#include "pitch.h" |
+#include "bands.h" |
+#include "modes.h" |
+#include "entcode.h" |
+#include "quant_bands.h" |
+#include "rate.h" |
+#include "stack_alloc.h" |
+#include "mathops.h" |
+#include "float_cast.h" |
+#include <stdarg.h> |
+#include "celt_lpc.h" |
+#include "vq.h" |
+ |
+ |
+/** Encoder state |
+ @brief Encoder state |
+ */ |
+struct OpusCustomEncoder { |
+ const OpusCustomMode *mode; /**< Mode used by the encoder */ |
+ int overlap; |
+ int channels; |
+ int stream_channels; |
+ |
+ int force_intra; |
+ int clip; |
+ int disable_pf; |
+ int complexity; |
+ int upsample; |
+ int start, end; |
+ |
+ opus_int32 bitrate; |
+ int vbr; |
+ int signalling; |
+ int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */ |
+ int loss_rate; |
+ int lsb_depth; |
+ int variable_duration; |
+ int lfe; |
+ int arch; |
+ |
+ /* Everything beyond this point gets cleared on a reset */ |
+#define ENCODER_RESET_START rng |
+ |
+ opus_uint32 rng; |
+ int spread_decision; |
+ opus_val32 delayedIntra; |
+ int tonal_average; |
+ int lastCodedBands; |
+ int hf_average; |
+ int tapset_decision; |
+ |
+ int prefilter_period; |
+ opus_val16 prefilter_gain; |
+ int prefilter_tapset; |
+#ifdef RESYNTH |
+ int prefilter_period_old; |
+ opus_val16 prefilter_gain_old; |
+ int prefilter_tapset_old; |
+#endif |
+ int consec_transient; |
+ AnalysisInfo analysis; |
+ |
+ opus_val32 preemph_memE[2]; |
+ opus_val32 preemph_memD[2]; |
+ |
+ /* VBR-related parameters */ |
+ opus_int32 vbr_reservoir; |
+ opus_int32 vbr_drift; |
+ opus_int32 vbr_offset; |
+ opus_int32 vbr_count; |
+ opus_val32 overlap_max; |
+ opus_val16 stereo_saving; |
+ int intensity; |
+ opus_val16 *energy_mask; |
+ opus_val16 spec_avg; |
+ |
+#ifdef RESYNTH |
+ /* +MAX_PERIOD/2 to make space for overlap */ |
+ celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2]; |
+#endif |
+ |
+ celt_sig in_mem[1]; /* Size = channels*mode->overlap */ |
+ /* celt_sig prefilter_mem[], Size = channels*COMBFILTER_MAXPERIOD */ |
+ /* opus_val16 oldBandE[], Size = channels*mode->nbEBands */ |
+ /* opus_val16 oldLogE[], Size = channels*mode->nbEBands */ |
+ /* opus_val16 oldLogE2[], Size = channels*mode->nbEBands */ |
+}; |
+ |
+int celt_encoder_get_size(int channels) |
+{ |
+ CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); |
+ return opus_custom_encoder_get_size(mode, channels); |
+} |
+ |
+OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels) |
+{ |
+ int size = sizeof(struct CELTEncoder) |
+ + (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */ |
+ + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */ |
+ + 3*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */ |
+ /* opus_val16 oldLogE[channels*mode->nbEBands]; */ |
+ /* opus_val16 oldLogE2[channels*mode->nbEBands]; */ |
+ return size; |
+} |
+ |
+#ifdef CUSTOM_MODES |
+CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error) |
+{ |
+ int ret; |
+ CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels)); |
+ /* init will handle the NULL case */ |
+ ret = opus_custom_encoder_init(st, mode, channels); |
+ if (ret != OPUS_OK) |
+ { |
+ opus_custom_encoder_destroy(st); |
+ st = NULL; |
+ } |
+ if (error) |
+ *error = ret; |
+ return st; |
+} |
+#endif /* CUSTOM_MODES */ |
+ |
+int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels) |
+{ |
+ int ret; |
+ ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels); |
+ if (ret != OPUS_OK) |
+ return ret; |
+ st->upsample = resampling_factor(sampling_rate); |
+ return OPUS_OK; |
+} |
+ |
+OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels) |
+{ |
+ if (channels < 0 || channels > 2) |
+ return OPUS_BAD_ARG; |
+ |
+ if (st==NULL || mode==NULL) |
+ return OPUS_ALLOC_FAIL; |
+ |
+ OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels)); |
+ |
+ st->mode = mode; |
+ st->overlap = mode->overlap; |
+ st->stream_channels = st->channels = channels; |
+ |
+ st->upsample = 1; |
+ st->start = 0; |
+ st->end = st->mode->effEBands; |
+ st->signalling = 1; |
+ |
+ st->arch = opus_select_arch(); |
+ |
+ st->constrained_vbr = 1; |
+ st->clip = 1; |
+ |
+ st->bitrate = OPUS_BITRATE_MAX; |
+ st->vbr = 0; |
+ st->force_intra = 0; |
+ st->complexity = 5; |
+ st->lsb_depth=24; |
+ |
+ opus_custom_encoder_ctl(st, OPUS_RESET_STATE); |
+ |
+ return OPUS_OK; |
+} |
+ |
+#ifdef CUSTOM_MODES |
+void opus_custom_encoder_destroy(CELTEncoder *st) |
+{ |
+ opus_free(st); |
+} |
+#endif /* CUSTOM_MODES */ |
+ |
+ |
+static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C, |
+ opus_val16 *tf_estimate, int *tf_chan) |
+{ |
+ int i; |
+ VARDECL(opus_val16, tmp); |
+ opus_val32 mem0,mem1; |
+ int is_transient = 0; |
+ opus_int32 mask_metric = 0; |
+ int c; |
+ opus_val16 tf_max; |
+ int len2; |
+ /* Table of 6*64/x, trained on real data to minimize the average error */ |
+ static const unsigned char inv_table[128] = { |
+ 255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25, |
+ 23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12, |
+ 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, |
+ 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, |
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, |
+ 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, |
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, |
+ }; |
+ SAVE_STACK; |
+ ALLOC(tmp, len, opus_val16); |
+ |
+ len2=len/2; |
+ tf_max = 0; |
+ for (c=0;c<C;c++) |
+ { |
+ opus_val32 mean; |
+ opus_int32 unmask=0; |
+ opus_val32 norm; |
+ opus_val16 maxE; |
+ mem0=0; |
+ mem1=0; |
+ /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */ |
+ for (i=0;i<len;i++) |
+ { |
+ opus_val32 x,y; |
+ x = SHR32(in[i+c*len],SIG_SHIFT); |
+ y = ADD32(mem0, x); |
+#ifdef FIXED_POINT |
+ mem0 = mem1 + y - SHL32(x,1); |
+ mem1 = x - SHR32(y,1); |
+#else |
+ mem0 = mem1 + y - 2*x; |
+ mem1 = x - .5f*y; |
+#endif |
+ tmp[i] = EXTRACT16(SHR32(y,2)); |
+ /*printf("%f ", tmp[i]);*/ |
+ } |
+ /*printf("\n");*/ |
+ /* First few samples are bad because we don't propagate the memory */ |
+ for (i=0;i<12;i++) |
+ tmp[i] = 0; |
+ |
+#ifdef FIXED_POINT |
+ /* Normalize tmp to max range */ |
+ { |
+ int shift=0; |
+ shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len)); |
+ if (shift!=0) |
+ { |
+ for (i=0;i<len;i++) |
+ tmp[i] = SHL16(tmp[i], shift); |
+ } |
+ } |
+#endif |
+ |
+ mean=0; |
+ mem0=0; |
+ /* Grouping by two to reduce complexity */ |
+ /* Forward pass to compute the post-echo threshold*/ |
+ for (i=0;i<len2;i++) |
+ { |
+ opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16); |
+ mean += x2; |
+#ifdef FIXED_POINT |
+ /* FIXME: Use PSHR16() instead */ |
+ tmp[i] = mem0 + PSHR32(x2-mem0,4); |
+#else |
+ tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0); |
+#endif |
+ mem0 = tmp[i]; |
+ } |
+ |
+ mem0=0; |
+ maxE=0; |
+ /* Backward pass to compute the pre-echo threshold */ |
+ for (i=len2-1;i>=0;i--) |
+ { |
+#ifdef FIXED_POINT |
+ /* FIXME: Use PSHR16() instead */ |
+ tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3); |
+#else |
+ tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0); |
+#endif |
+ mem0 = tmp[i]; |
+ maxE = MAX16(maxE, mem0); |
+ } |
+ /*for (i=0;i<len2;i++)printf("%f ", tmp[i]/mean);printf("\n");*/ |
+ |
+ /* Compute the ratio of the "frame energy" over the harmonic mean of the energy. |
+ This essentially corresponds to a bitrate-normalized temporal noise-to-mask |
+ ratio */ |
+ |
+ /* As a compromise with the old transient detector, frame energy is the |
+ geometric mean of the energy and half the max */ |
+#ifdef FIXED_POINT |
+ /* Costs two sqrt() to avoid overflows */ |
+ mean = MULT16_16(celt_sqrt(mean), celt_sqrt(MULT16_16(maxE,len2>>1))); |
+#else |
+ mean = celt_sqrt(mean * maxE*.5*len2); |
+#endif |
+ /* Inverse of the mean energy in Q15+6 */ |
+ norm = SHL32(EXTEND32(len2),6+14)/ADD32(EPSILON,SHR32(mean,1)); |
+ /* Compute harmonic mean discarding the unreliable boundaries |
+ The data is smooth, so we only take 1/4th of the samples */ |
+ unmask=0; |
+ for (i=12;i<len2-5;i+=4) |
+ { |
+ int id; |
+#ifdef FIXED_POINT |
+ id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */ |
+#else |
+ id = IMAX(0,IMIN(127,(int)floor(64*norm*tmp[i]))); /* Do not round to nearest */ |
+#endif |
+ unmask += inv_table[id]; |
+ } |
+ /*printf("%d\n", unmask);*/ |
+ /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */ |
+ unmask = 64*unmask*4/(6*(len2-17)); |
+ if (unmask>mask_metric) |
+ { |
+ *tf_chan = c; |
+ mask_metric = unmask; |
+ } |
+ } |
+ is_transient = mask_metric>200; |
+ |
+ /* Arbitrary metric for VBR boost */ |
+ tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42); |
+ /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */ |
+ *tf_estimate = celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),MIN16(163,tf_max)),14)-QCONST32(0.139,28))); |
+ /*printf("%d %f\n", tf_max, mask_metric);*/ |
+ RESTORE_STACK; |
+#ifdef FUZZING |
+ is_transient = rand()&0x1; |
+#endif |
+ /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/ |
+ return is_transient; |
+} |
+ |
+/* Looks for sudden increases of energy to decide whether we need to patch |
+ the transient decision */ |
+int patch_transient_decision(opus_val16 *newE, opus_val16 *oldE, int nbEBands, |
+ int end, int C) |
+{ |
+ int i, c; |
+ opus_val32 mean_diff=0; |
+ opus_val16 spread_old[26]; |
+ /* Apply an aggressive (-6 dB/Bark) spreading function to the old frame to |
+ avoid false detection caused by irrelevant bands */ |
+ if (C==1) |
+ { |
+ spread_old[0] = oldE[0]; |
+ for (i=1;i<end;i++) |
+ spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), oldE[i]); |
+ } else { |
+ spread_old[0] = MAX16(oldE[0],oldE[nbEBands]); |
+ for (i=1;i<end;i++) |
+ spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), |
+ MAX16(oldE[i],oldE[i+nbEBands])); |
+ } |
+ for (i=end-2;i>=0;i--) |
+ spread_old[i] = MAX16(spread_old[i], spread_old[i+1]-QCONST16(1.0f, DB_SHIFT)); |
+ /* Compute mean increase */ |
+ c=0; do { |
+ for (i=2;i<end-1;i++) |
+ { |
+ opus_val16 x1, x2; |
+ x1 = MAX16(0, newE[i]); |
+ x2 = MAX16(0, spread_old[i]); |
+ mean_diff = ADD32(mean_diff, EXTEND32(MAX16(0, SUB16(x1, x2)))); |
+ } |
+ } while (++c<C); |
+ mean_diff = DIV32(mean_diff, C*(end-3)); |
+ /*printf("%f %f %d\n", mean_diff, max_diff, count);*/ |
+ return mean_diff > QCONST16(1.f, DB_SHIFT); |
+} |
+ |
+/** Apply window and compute the MDCT for all sub-frames and |
+ all channels in a frame */ |
+static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, |
+ celt_sig * OPUS_RESTRICT out, int C, int CC, int LM, int upsample) |
+{ |
+ const int overlap = OVERLAP(mode); |
+ int N; |
+ int B; |
+ int shift; |
+ int i, b, c; |
+ if (shortBlocks) |
+ { |
+ B = shortBlocks; |
+ N = mode->shortMdctSize; |
+ shift = mode->maxLM; |
+ } else { |
+ B = 1; |
+ N = mode->shortMdctSize<<LM; |
+ shift = mode->maxLM-LM; |
+ } |
+ c=0; do { |
+ for (b=0;b<B;b++) |
+ { |
+ /* Interleaving the sub-frames while doing the MDCTs */ |
+ clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B); |
+ } |
+ } while (++c<CC); |
+ if (CC==2&&C==1) |
+ { |
+ for (i=0;i<B*N;i++) |
+ out[i] = ADD32(HALF32(out[i]), HALF32(out[B*N+i])); |
+ } |
+ if (upsample != 1) |
+ { |
+ c=0; do |
+ { |
+ int bound = B*N/upsample; |
+ for (i=0;i<bound;i++) |
+ out[c*B*N+i] *= upsample; |
+ for (;i<B*N;i++) |
+ out[c*B*N+i] = 0; |
+ } while (++c<C); |
+ } |
+} |
+ |
+ |
+void preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp, |
+ int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip) |
+{ |
+ int i; |
+ opus_val16 coef0; |
+ celt_sig m; |
+ int Nu; |
+ |
+ coef0 = coef[0]; |
+ |
+ |
+ Nu = N/upsample; |
+ if (upsample!=1) |
+ { |
+ for (i=0;i<N;i++) |
+ inp[i] = 0; |
+ } |
+ for (i=0;i<Nu;i++) |
+ { |
+ celt_sig x; |
+ |
+ x = SCALEIN(pcmp[CC*i]); |
+#ifndef FIXED_POINT |
+ /* Replace NaNs with zeros */ |
+ if (!(x==x)) |
+ x = 0; |
+#endif |
+ inp[i*upsample] = x; |
+ } |
+ |
+#ifndef FIXED_POINT |
+ if (clip) |
+ { |
+ /* Clip input to avoid encoding non-portable files */ |
+ for (i=0;i<Nu;i++) |
+ inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample])); |
+ } |
+#endif |
+ m = *mem; |
+#ifdef CUSTOM_MODES |
+ if (coef[1] != 0) |
+ { |
+ opus_val16 coef1 = coef[1]; |
+ opus_val16 coef2 = coef[2]; |
+ for (i=0;i<N;i++) |
+ { |
+ opus_val16 x, tmp; |
+ x = inp[i]; |
+ /* Apply pre-emphasis */ |
+ tmp = MULT16_16(coef2, x); |
+ inp[i] = tmp + m; |
+ m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp); |
+ } |
+ } else |
+#endif |
+ { |
+ for (i=0;i<N;i++) |
+ { |
+ celt_sig x; |
+ x = SHL32(inp[i], SIG_SHIFT); |
+ /* Apply pre-emphasis */ |
+ inp[i] = x + m; |
+ m = - MULT16_32_Q15(coef0, x); |
+ } |
+ } |
+ *mem = m; |
+} |
+ |
+ |
+ |
+static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias) |
+{ |
+ int i; |
+ opus_val32 L1; |
+ L1 = 0; |
+ for (i=0;i<N;i++) |
+ L1 += EXTEND32(ABS16(tmp[i])); |
+ /* When in doubt, prefer good freq resolution */ |
+ L1 = MAC16_32_Q15(L1, LM*bias, L1); |
+ return L1; |
+ |
+} |
+ |
+static int tf_analysis(const CELTMode *m, int len, int isTransient, |
+ int *tf_res, int lambda, celt_norm *X, int N0, int LM, |
+ int *tf_sum, opus_val16 tf_estimate, int tf_chan) |
+{ |
+ int i; |
+ VARDECL(int, metric); |
+ int cost0; |
+ int cost1; |
+ VARDECL(int, path0); |
+ VARDECL(int, path1); |
+ VARDECL(celt_norm, tmp); |
+ VARDECL(celt_norm, tmp_1); |
+ int sel; |
+ int selcost[2]; |
+ int tf_select=0; |
+ opus_val16 bias; |
+ |
+ SAVE_STACK; |
+ bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(.5f,14)-tf_estimate)); |
+ /*printf("%f ", bias);*/ |
+ |
+ ALLOC(metric, len, int); |
+ ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); |
+ ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); |
+ ALLOC(path0, len, int); |
+ ALLOC(path1, len, int); |
+ |
+ *tf_sum = 0; |
+ for (i=0;i<len;i++) |
+ { |
+ int j, k, N; |
+ int narrow; |
+ opus_val32 L1, best_L1; |
+ int best_level=0; |
+ N = (m->eBands[i+1]-m->eBands[i])<<LM; |
+ /* band is too narrow to be split down to LM=-1 */ |
+ narrow = (m->eBands[i+1]-m->eBands[i])==1; |
+ for (j=0;j<N;j++) |
+ tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)]; |
+ /* Just add the right channel if we're in stereo */ |
+ /*if (C==2) |
+ for (j=0;j<N;j++) |
+ tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/ |
+ L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias); |
+ best_L1 = L1; |
+ /* Check the -1 case for transients */ |
+ if (isTransient && !narrow) |
+ { |
+ for (j=0;j<N;j++) |
+ tmp_1[j] = tmp[j]; |
+ haar1(tmp_1, N>>LM, 1<<LM); |
+ L1 = l1_metric(tmp_1, N, LM+1, bias); |
+ if (L1<best_L1) |
+ { |
+ best_L1 = L1; |
+ best_level = -1; |
+ } |
+ } |
+ /*printf ("%f ", L1);*/ |
+ for (k=0;k<LM+!(isTransient||narrow);k++) |
+ { |
+ int B; |
+ |
+ if (isTransient) |
+ B = (LM-k-1); |
+ else |
+ B = k+1; |
+ |
+ haar1(tmp, N>>k, 1<<k); |
+ |
+ L1 = l1_metric(tmp, N, B, bias); |
+ |
+ if (L1 < best_L1) |
+ { |
+ best_L1 = L1; |
+ best_level = k+1; |
+ } |
+ } |
+ /*printf ("%d ", isTransient ? LM-best_level : best_level);*/ |
+ /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */ |
+ if (isTransient) |
+ metric[i] = 2*best_level; |
+ else |
+ metric[i] = -2*best_level; |
+ *tf_sum += (isTransient ? LM : 0) - metric[i]/2; |
+ /* For bands that can't be split to -1, set the metric to the half-way point to avoid |
+ biasing the decision */ |
+ if (narrow && (metric[i]==0 || metric[i]==-2*LM)) |
+ metric[i]-=1; |
+ /*printf("%d ", metric[i]);*/ |
+ } |
+ /*printf("\n");*/ |
+ /* Search for the optimal tf resolution, including tf_select */ |
+ tf_select = 0; |
+ for (sel=0;sel<2;sel++) |
+ { |
+ cost0 = 0; |
+ cost1 = isTransient ? 0 : lambda; |
+ for (i=1;i<len;i++) |
+ { |
+ int curr0, curr1; |
+ curr0 = IMIN(cost0, cost1 + lambda); |
+ curr1 = IMIN(cost0 + lambda, cost1); |
+ cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]); |
+ cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]); |
+ } |
+ cost0 = IMIN(cost0, cost1); |
+ selcost[sel]=cost0; |
+ } |
+ /* For now, we're conservative and only allow tf_select=1 for transients. |
+ * If tests confirm it's useful for non-transients, we could allow it. */ |
+ if (selcost[1]<selcost[0] && isTransient) |
+ tf_select=1; |
+ cost0 = 0; |
+ cost1 = isTransient ? 0 : lambda; |
+ /* Viterbi forward pass */ |
+ for (i=1;i<len;i++) |
+ { |
+ int curr0, curr1; |
+ int from0, from1; |
+ |
+ from0 = cost0; |
+ from1 = cost1 + lambda; |
+ if (from0 < from1) |
+ { |
+ curr0 = from0; |
+ path0[i]= 0; |
+ } else { |
+ curr0 = from1; |
+ path0[i]= 1; |
+ } |
+ |
+ from0 = cost0 + lambda; |
+ from1 = cost1; |
+ if (from0 < from1) |
+ { |
+ curr1 = from0; |
+ path1[i]= 0; |
+ } else { |
+ curr1 = from1; |
+ path1[i]= 1; |
+ } |
+ cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); |
+ cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]); |
+ } |
+ tf_res[len-1] = cost0 < cost1 ? 0 : 1; |
+ /* Viterbi backward pass to check the decisions */ |
+ for (i=len-2;i>=0;i--) |
+ { |
+ if (tf_res[i+1] == 1) |
+ tf_res[i] = path1[i+1]; |
+ else |
+ tf_res[i] = path0[i+1]; |
+ } |
+ /*printf("%d %f\n", *tf_sum, tf_estimate);*/ |
+ RESTORE_STACK; |
+#ifdef FUZZING |
+ tf_select = rand()&0x1; |
+ tf_res[0] = rand()&0x1; |
+ for (i=1;i<len;i++) |
+ tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0); |
+#endif |
+ return tf_select; |
+} |
+ |
+static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc) |
+{ |
+ int curr, i; |
+ int tf_select_rsv; |
+ int tf_changed; |
+ int logp; |
+ opus_uint32 budget; |
+ opus_uint32 tell; |
+ budget = enc->storage*8; |
+ tell = ec_tell(enc); |
+ logp = isTransient ? 2 : 4; |
+ /* Reserve space to code the tf_select decision. */ |
+ tf_select_rsv = LM>0 && tell+logp+1 <= budget; |
+ budget -= tf_select_rsv; |
+ curr = tf_changed = 0; |
+ for (i=start;i<end;i++) |
+ { |
+ if (tell+logp<=budget) |
+ { |
+ ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp); |
+ tell = ec_tell(enc); |
+ curr = tf_res[i]; |
+ tf_changed |= curr; |
+ } |
+ else |
+ tf_res[i] = curr; |
+ logp = isTransient ? 4 : 5; |
+ } |
+ /* Only code tf_select if it would actually make a difference. */ |
+ if (tf_select_rsv && |
+ tf_select_table[LM][4*isTransient+0+tf_changed]!= |
+ tf_select_table[LM][4*isTransient+2+tf_changed]) |
+ ec_enc_bit_logp(enc, tf_select, 1); |
+ else |
+ tf_select = 0; |
+ for (i=start;i<end;i++) |
+ tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; |
+ /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/ |
+} |
+ |
+ |
+static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, |
+ const opus_val16 *bandLogE, int end, int LM, int C, int N0, |
+ AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate, |
+ int intensity, opus_val16 surround_trim) |
+{ |
+ int i; |
+ opus_val32 diff=0; |
+ int c; |
+ int trim_index = 5; |
+ opus_val16 trim = QCONST16(5.f, 8); |
+ opus_val16 logXC, logXC2; |
+ if (C==2) |
+ { |
+ opus_val16 sum = 0; /* Q10 */ |
+ opus_val16 minXC; /* Q10 */ |
+ /* Compute inter-channel correlation for low frequencies */ |
+ for (i=0;i<8;i++) |
+ { |
+ int j; |
+ opus_val32 partial = 0; |
+ for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) |
+ partial = MAC16_16(partial, X[j], X[N0+j]); |
+ sum = ADD16(sum, EXTRACT16(SHR32(partial, 18))); |
+ } |
+ sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum); |
+ sum = MIN16(QCONST16(1.f, 10), ABS16(sum)); |
+ minXC = sum; |
+ for (i=8;i<intensity;i++) |
+ { |
+ int j; |
+ opus_val32 partial = 0; |
+ for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) |
+ partial = MAC16_16(partial, X[j], X[N0+j]); |
+ minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18)))); |
+ } |
+ minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC)); |
+ /*printf ("%f\n", sum);*/ |
+ if (sum > QCONST16(.995f,10)) |
+ trim_index-=4; |
+ else if (sum > QCONST16(.92f,10)) |
+ trim_index-=3; |
+ else if (sum > QCONST16(.85f,10)) |
+ trim_index-=2; |
+ else if (sum > QCONST16(.8f,10)) |
+ trim_index-=1; |
+ /* mid-side savings estimations based on the LF average*/ |
+ logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum)); |
+ /* mid-side savings estimations based on min correlation */ |
+ logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC))); |
+#ifdef FIXED_POINT |
+ /* Compensate for Q20 vs Q14 input and convert output to Q8 */ |
+ logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); |
+ logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); |
+#endif |
+ |
+ trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC)); |
+ *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2)); |
+ } |
+ |
+ /* Estimate spectral tilt */ |
+ c=0; do { |
+ for (i=0;i<end-1;i++) |
+ { |
+ diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end); |
+ } |
+ } while (++c<C); |
+ diff /= C*(end-1); |
+ /*printf("%f\n", diff);*/ |
+ if (diff > QCONST16(2.f, DB_SHIFT)) |
+ trim_index--; |
+ if (diff > QCONST16(8.f, DB_SHIFT)) |
+ trim_index--; |
+ if (diff < -QCONST16(4.f, DB_SHIFT)) |
+ trim_index++; |
+ if (diff < -QCONST16(10.f, DB_SHIFT)) |
+ trim_index++; |
+ trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 )); |
+ trim -= SHR16(surround_trim, DB_SHIFT-8); |
+ trim -= 2*SHR16(tf_estimate, 14-8); |
+#ifndef DISABLE_FLOAT_API |
+ if (analysis->valid) |
+ { |
+ trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), QCONST16(2.f, 8)*(analysis->tonality_slope+.05f))); |
+ } |
+#endif |
+ |
+#ifdef FIXED_POINT |
+ trim_index = PSHR32(trim, 8); |
+#else |
+ trim_index = (int)floor(.5f+trim); |
+#endif |
+ if (trim_index<0) |
+ trim_index = 0; |
+ if (trim_index>10) |
+ trim_index = 10; |
+ /*printf("%d\n", trim_index);*/ |
+#ifdef FUZZING |
+ trim_index = rand()%11; |
+#endif |
+ return trim_index; |
+} |
+ |
+static int stereo_analysis(const CELTMode *m, const celt_norm *X, |
+ int LM, int N0) |
+{ |
+ int i; |
+ int thetas; |
+ opus_val32 sumLR = EPSILON, sumMS = EPSILON; |
+ |
+ /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */ |
+ for (i=0;i<13;i++) |
+ { |
+ int j; |
+ for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) |
+ { |
+ opus_val32 L, R, M, S; |
+ /* We cast to 32-bit first because of the -32768 case */ |
+ L = EXTEND32(X[j]); |
+ R = EXTEND32(X[N0+j]); |
+ M = ADD32(L, R); |
+ S = SUB32(L, R); |
+ sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R))); |
+ sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S))); |
+ } |
+ } |
+ sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS); |
+ thetas = 13; |
+ /* We don't need thetas for lower bands with LM<=1 */ |
+ if (LM<=1) |
+ thetas -= 8; |
+ return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS) |
+ > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR); |
+} |
+ |
+static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 *bandLogE2, |
+ int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN, |
+ int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM, |
+ int effectiveBytes, opus_int32 *tot_boost_, int lfe, opus_val16 *surround_dynalloc) |
+{ |
+ int i, c; |
+ opus_int32 tot_boost=0; |
+ opus_val16 maxDepth; |
+ VARDECL(opus_val16, follower); |
+ VARDECL(opus_val16, noise_floor); |
+ SAVE_STACK; |
+ ALLOC(follower, C*nbEBands, opus_val16); |
+ ALLOC(noise_floor, C*nbEBands, opus_val16); |
+ for (i=0;i<nbEBands;i++) |
+ offsets[i] = 0; |
+ /* Dynamic allocation code */ |
+ maxDepth=-QCONST16(31.9f, DB_SHIFT); |
+ for (i=0;i<end;i++) |
+ { |
+ /* Noise floor must take into account eMeans, the depth, the width of the bands |
+ and the preemphasis filter (approx. square of bark band ID) */ |
+ noise_floor[i] = MULT16_16(QCONST16(0.0625f, DB_SHIFT),logN[i]) |
+ +QCONST16(.5f,DB_SHIFT)+SHL16(9-lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6) |
+ +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5)); |
+ } |
+ c=0;do |
+ { |
+ for (i=0;i<end;i++) |
+ maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i]); |
+ } while (++c<C); |
+ /* Make sure that dynamic allocation can't make us bust the budget */ |
+ if (effectiveBytes > 50 && LM>=1 && !lfe) |
+ { |
+ int last=0; |
+ c=0;do |
+ { |
+ follower[c*nbEBands] = bandLogE2[c*nbEBands]; |
+ for (i=1;i<end;i++) |
+ { |
+ /* The last band to be at least 3 dB higher than the previous one |
+ is the last we'll consider. Otherwise, we run into problems on |
+ bandlimited signals. */ |
+ if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT)) |
+ last=i; |
+ follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]); |
+ } |
+ for (i=last-1;i>=0;i--) |
+ follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i])); |
+ for (i=0;i<end;i++) |
+ follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor[i]); |
+ } while (++c<C); |
+ if (C==2) |
+ { |
+ for (i=start;i<end;i++) |
+ { |
+ /* Consider 24 dB "cross-talk" */ |
+ follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[ i]-QCONST16(4.f,DB_SHIFT)); |
+ follower[ i] = MAX16(follower[ i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT)); |
+ follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i])); |
+ } |
+ } else { |
+ for (i=start;i<end;i++) |
+ { |
+ follower[i] = MAX16(0, bandLogE[i]-follower[i]); |
+ } |
+ } |
+ for (i=start;i<end;i++) |
+ follower[i] = MAX16(follower[i], surround_dynalloc[i]); |
+ /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */ |
+ if ((!vbr || constrained_vbr)&&!isTransient) |
+ { |
+ for (i=start;i<end;i++) |
+ follower[i] = HALF16(follower[i]); |
+ } |
+ for (i=start;i<end;i++) |
+ { |
+ int width; |
+ int boost; |
+ int boost_bits; |
+ |
+ if (i<8) |
+ follower[i] *= 2; |
+ if (i>=12) |
+ follower[i] = HALF16(follower[i]); |
+ follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT)); |
+ |
+ width = C*(eBands[i+1]-eBands[i])<<LM; |
+ if (width<6) |
+ { |
+ boost = (int)SHR32(EXTEND32(follower[i]),DB_SHIFT); |
+ boost_bits = boost*width<<BITRES; |
+ } else if (width > 48) { |
+ boost = (int)SHR32(EXTEND32(follower[i])*8,DB_SHIFT); |
+ boost_bits = (boost*width<<BITRES)/8; |
+ } else { |
+ boost = (int)SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT); |
+ boost_bits = boost*6<<BITRES; |
+ } |
+ /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */ |
+ if ((!vbr || (constrained_vbr&&!isTransient)) |
+ && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4) |
+ { |
+ opus_int32 cap = ((effectiveBytes/4)<<BITRES<<3); |
+ offsets[i] = cap-tot_boost; |
+ tot_boost = cap; |
+ break; |
+ } else { |
+ offsets[i] = boost; |
+ tot_boost += boost_bits; |
+ } |
+ } |
+ } |
+ *tot_boost_ = tot_boost; |
+ RESTORE_STACK; |
+ return maxDepth; |
+} |
+ |
+ |
+static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N, |
+ int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes) |
+{ |
+ int c; |
+ VARDECL(celt_sig, _pre); |
+ celt_sig *pre[2]; |
+ const CELTMode *mode; |
+ int pitch_index; |
+ opus_val16 gain1; |
+ opus_val16 pf_threshold; |
+ int pf_on; |
+ int qg; |
+ SAVE_STACK; |
+ |
+ mode = st->mode; |
+ ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig); |
+ |
+ pre[0] = _pre; |
+ pre[1] = _pre + (N+COMBFILTER_MAXPERIOD); |
+ |
+ |
+ c=0; do { |
+ OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD); |
+ OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N); |
+ } while (++c<CC); |
+ |
+ if (enabled) |
+ { |
+ VARDECL(opus_val16, pitch_buf); |
+ ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16); |
+ |
+ pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC); |
+ /* Don't search for the fir last 1.5 octave of the range because |
+ there's too many false-positives due to short-term correlation */ |
+ pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N, |
+ COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index); |
+ pitch_index = COMBFILTER_MAXPERIOD-pitch_index; |
+ |
+ gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD, |
+ N, &pitch_index, st->prefilter_period, st->prefilter_gain); |
+ if (pitch_index > COMBFILTER_MAXPERIOD-2) |
+ pitch_index = COMBFILTER_MAXPERIOD-2; |
+ gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1); |
+ /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/ |
+ if (st->loss_rate>2) |
+ gain1 = HALF32(gain1); |
+ if (st->loss_rate>4) |
+ gain1 = HALF32(gain1); |
+ if (st->loss_rate>8) |
+ gain1 = 0; |
+ } else { |
+ gain1 = 0; |
+ pitch_index = COMBFILTER_MINPERIOD; |
+ } |
+ |
+ /* Gain threshold for enabling the prefilter/postfilter */ |
+ pf_threshold = QCONST16(.2f,15); |
+ |
+ /* Adjusting the threshold based on rate and continuity */ |
+ if (abs(pitch_index-st->prefilter_period)*10>pitch_index) |
+ pf_threshold += QCONST16(.2f,15); |
+ if (nbAvailableBytes<25) |
+ pf_threshold += QCONST16(.1f,15); |
+ if (nbAvailableBytes<35) |
+ pf_threshold += QCONST16(.1f,15); |
+ if (st->prefilter_gain > QCONST16(.4f,15)) |
+ pf_threshold -= QCONST16(.1f,15); |
+ if (st->prefilter_gain > QCONST16(.55f,15)) |
+ pf_threshold -= QCONST16(.1f,15); |
+ |
+ /* Hard threshold at 0.2 */ |
+ pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15)); |
+ if (gain1<pf_threshold) |
+ { |
+ gain1 = 0; |
+ pf_on = 0; |
+ qg = 0; |
+ } else { |
+ /*This block is not gated by a total bits check only because |
+ of the nbAvailableBytes check above.*/ |
+ if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15)) |
+ gain1=st->prefilter_gain; |
+ |
+#ifdef FIXED_POINT |
+ qg = ((gain1+1536)>>10)/3-1; |
+#else |
+ qg = (int)floor(.5f+gain1*32/3)-1; |
+#endif |
+ qg = IMAX(0, IMIN(7, qg)); |
+ gain1 = QCONST16(0.09375f,15)*(qg+1); |
+ pf_on = 1; |
+ } |
+ /*printf("%d %f\n", pitch_index, gain1);*/ |
+ |
+ c=0; do { |
+ int offset = mode->shortMdctSize-st->overlap; |
+ st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); |
+ OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap); |
+ if (offset) |
+ comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD, |
+ st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain, |
+ st->prefilter_tapset, st->prefilter_tapset, NULL, 0); |
+ |
+ comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset, |
+ st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1, |
+ st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap); |
+ OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap); |
+ |
+ if (N>COMBFILTER_MAXPERIOD) |
+ { |
+ OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD); |
+ } else { |
+ OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N); |
+ OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N); |
+ } |
+ } while (++c<CC); |
+ |
+ RESTORE_STACK; |
+ *gain = gain1; |
+ *pitch = pitch_index; |
+ *qgain = qg; |
+ return pf_on; |
+} |
+ |
+static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32 base_target, |
+ int LM, opus_int32 bitrate, int lastCodedBands, int C, int intensity, |
+ int constrained_vbr, opus_val16 stereo_saving, int tot_boost, |
+ opus_val16 tf_estimate, int pitch_change, opus_val16 maxDepth, |
+ int variable_duration, int lfe, int has_surround_mask, opus_val16 surround_masking, |
+ opus_val16 temporal_vbr) |
+{ |
+ /* The target rate in 8th bits per frame */ |
+ opus_int32 target; |
+ int coded_bins; |
+ int coded_bands; |
+ opus_val16 tf_calibration; |
+ int nbEBands; |
+ const opus_int16 *eBands; |
+ |
+ nbEBands = mode->nbEBands; |
+ eBands = mode->eBands; |
+ |
+ coded_bands = lastCodedBands ? lastCodedBands : nbEBands; |
+ coded_bins = eBands[coded_bands]<<LM; |
+ if (C==2) |
+ coded_bins += eBands[IMIN(intensity, coded_bands)]<<LM; |
+ |
+ target = base_target; |
+ |
+ /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/ |
+#ifndef DISABLE_FLOAT_API |
+ if (analysis->valid && analysis->activity<.4) |
+ target -= (opus_int32)((coded_bins<<BITRES)*(.4f-analysis->activity)); |
+#endif |
+ /* Stereo savings */ |
+ if (C==2) |
+ { |
+ int coded_stereo_bands; |
+ int coded_stereo_dof; |
+ opus_val16 max_frac; |
+ coded_stereo_bands = IMIN(intensity, coded_bands); |
+ coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands; |
+ /* Maximum fraction of the bits we can save if the signal is mono. */ |
+ max_frac = DIV32_16(MULT16_16(QCONST16(0.8f, 15), coded_stereo_dof), coded_bins); |
+ /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/ |
+ target -= (opus_int32)MIN32(MULT16_32_Q15(max_frac,target), |
+ SHR32(MULT16_16(stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8)); |
+ } |
+ /* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */ |
+ target += tot_boost-(16<<LM); |
+ /* Apply transient boost, compensating for average boost. */ |
+ tf_calibration = variable_duration==OPUS_FRAMESIZE_VARIABLE ? |
+ QCONST16(0.02f,14) : QCONST16(0.04f,14); |
+ target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-tf_calibration, target),1); |
+ |
+#ifndef DISABLE_FLOAT_API |
+ /* Apply tonality boost */ |
+ if (analysis->valid && !lfe) |
+ { |
+ opus_int32 tonal_target; |
+ float tonal; |
+ |
+ /* Tonality boost (compensating for the average). */ |
+ tonal = MAX16(0.f,analysis->tonality-.15f)-0.09f; |
+ tonal_target = target + (opus_int32)((coded_bins<<BITRES)*1.2f*tonal); |
+ if (pitch_change) |
+ tonal_target += (opus_int32)((coded_bins<<BITRES)*.8f); |
+ /*printf("%f %f ", analysis->tonality, tonal);*/ |
+ target = tonal_target; |
+ } |
+#endif |
+ |
+ if (has_surround_mask&&!lfe) |
+ { |
+ opus_int32 surround_target = target + (opus_int32)SHR32(MULT16_16(surround_masking,coded_bins<<BITRES), DB_SHIFT); |
+ /*printf("%f %d %d %d %d %d %d ", surround_masking, coded_bins, st->end, st->intensity, surround_target, target, st->bitrate);*/ |
+ target = IMAX(target/4, surround_target); |
+ } |
+ |
+ { |
+ opus_int32 floor_depth; |
+ int bins; |
+ bins = eBands[nbEBands-2]<<LM; |
+ /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/ |
+ floor_depth = (opus_int32)SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT); |
+ floor_depth = IMAX(floor_depth, target>>2); |
+ target = IMIN(target, floor_depth); |
+ /*printf("%f %d\n", maxDepth, floor_depth);*/ |
+ } |
+ |
+ if ((!has_surround_mask||lfe) && (constrained_vbr || bitrate<64000)) |
+ { |
+ opus_val16 rate_factor; |
+#ifdef FIXED_POINT |
+ rate_factor = MAX16(0,(bitrate-32000)); |
+#else |
+ rate_factor = MAX16(0,(1.f/32768)*(bitrate-32000)); |
+#endif |
+ if (constrained_vbr) |
+ rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15)); |
+ target = base_target + (opus_int32)MULT16_32_Q15(rate_factor, target-base_target); |
+ |
+ } |
+ |
+ if (!has_surround_mask && tf_estimate < QCONST16(.2f, 14)) |
+ { |
+ opus_val16 amount; |
+ opus_val16 tvbr_factor; |
+ amount = MULT16_16_Q15(QCONST16(.0000031f, 30), IMAX(0, IMIN(32000, 96000-bitrate))); |
+ tvbr_factor = SHR32(MULT16_16(temporal_vbr, amount), DB_SHIFT); |
+ target += (opus_int32)MULT16_32_Q15(tvbr_factor, target); |
+ } |
+ |
+ /* Don't allow more than doubling the rate */ |
+ target = IMIN(2*base_target, target); |
+ |
+ return target; |
+} |
+ |
+int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc) |
+{ |
+ int i, c, N; |
+ opus_int32 bits; |
+ ec_enc _enc; |
+ VARDECL(celt_sig, in); |
+ VARDECL(celt_sig, freq); |
+ VARDECL(celt_norm, X); |
+ VARDECL(celt_ener, bandE); |
+ VARDECL(opus_val16, bandLogE); |
+ VARDECL(opus_val16, bandLogE2); |
+ VARDECL(int, fine_quant); |
+ VARDECL(opus_val16, error); |
+ VARDECL(int, pulses); |
+ VARDECL(int, cap); |
+ VARDECL(int, offsets); |
+ VARDECL(int, fine_priority); |
+ VARDECL(int, tf_res); |
+ VARDECL(unsigned char, collapse_masks); |
+ celt_sig *prefilter_mem; |
+ opus_val16 *oldBandE, *oldLogE, *oldLogE2; |
+ int shortBlocks=0; |
+ int isTransient=0; |
+ const int CC = st->channels; |
+ const int C = st->stream_channels; |
+ int LM, M; |
+ int tf_select; |
+ int nbFilledBytes, nbAvailableBytes; |
+ int effEnd; |
+ int codedBands; |
+ int tf_sum; |
+ int alloc_trim; |
+ int pitch_index=COMBFILTER_MINPERIOD; |
+ opus_val16 gain1 = 0; |
+ int dual_stereo=0; |
+ int effectiveBytes; |
+ int dynalloc_logp; |
+ opus_int32 vbr_rate; |
+ opus_int32 total_bits; |
+ opus_int32 total_boost; |
+ opus_int32 balance; |
+ opus_int32 tell; |
+ int prefilter_tapset=0; |
+ int pf_on; |
+ int anti_collapse_rsv; |
+ int anti_collapse_on=0; |
+ int silence=0; |
+ int tf_chan = 0; |
+ opus_val16 tf_estimate; |
+ int pitch_change=0; |
+ opus_int32 tot_boost; |
+ opus_val32 sample_max; |
+ opus_val16 maxDepth; |
+ const OpusCustomMode *mode; |
+ int nbEBands; |
+ int overlap; |
+ const opus_int16 *eBands; |
+ int secondMdct; |
+ int signalBandwidth; |
+ int transient_got_disabled=0; |
+ opus_val16 surround_masking=0; |
+ opus_val16 temporal_vbr=0; |
+ opus_val16 surround_trim = 0; |
+ VARDECL(opus_val16, surround_dynalloc); |
+ ALLOC_STACK; |
+ |
+ mode = st->mode; |
+ nbEBands = mode->nbEBands; |
+ overlap = mode->overlap; |
+ eBands = mode->eBands; |
+ tf_estimate = 0; |
+ if (nbCompressedBytes<2 || pcm==NULL) |
+ return OPUS_BAD_ARG; |
+ |
+ frame_size *= st->upsample; |
+ for (LM=0;LM<=mode->maxLM;LM++) |
+ if (mode->shortMdctSize<<LM==frame_size) |
+ break; |
+ if (LM>mode->maxLM) |
+ return OPUS_BAD_ARG; |
+ M=1<<LM; |
+ N = M*mode->shortMdctSize; |
+ |
+ prefilter_mem = st->in_mem+CC*(st->overlap); |
+ oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD)); |
+ oldLogE = oldBandE + CC*nbEBands; |
+ oldLogE2 = oldLogE + CC*nbEBands; |
+ |
+ if (enc==NULL) |
+ { |
+ tell=1; |
+ nbFilledBytes=0; |
+ } else { |
+ tell=ec_tell(enc); |
+ nbFilledBytes=(tell+4)>>3; |
+ } |
+ |
+#ifdef CUSTOM_MODES |
+ if (st->signalling && enc==NULL) |
+ { |
+ int tmp = (mode->effEBands-st->end)>>1; |
+ st->end = IMAX(1, mode->effEBands-tmp); |
+ compressed[0] = tmp<<5; |
+ compressed[0] |= LM<<3; |
+ compressed[0] |= (C==2)<<2; |
+ /* Convert "standard mode" to Opus header */ |
+ if (mode->Fs==48000 && mode->shortMdctSize==120) |
+ { |
+ int c0 = toOpus(compressed[0]); |
+ if (c0<0) |
+ return OPUS_BAD_ARG; |
+ compressed[0] = c0; |
+ } |
+ compressed++; |
+ nbCompressedBytes--; |
+ } |
+#else |
+ celt_assert(st->signalling==0); |
+#endif |
+ |
+ /* Can't produce more than 1275 output bytes */ |
+ nbCompressedBytes = IMIN(nbCompressedBytes,1275); |
+ nbAvailableBytes = nbCompressedBytes - nbFilledBytes; |
+ |
+ if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX) |
+ { |
+ opus_int32 den=mode->Fs>>BITRES; |
+ vbr_rate=(st->bitrate*frame_size+(den>>1))/den; |
+#ifdef CUSTOM_MODES |
+ if (st->signalling) |
+ vbr_rate -= 8<<BITRES; |
+#endif |
+ effectiveBytes = vbr_rate>>(3+BITRES); |
+ } else { |
+ opus_int32 tmp; |
+ vbr_rate = 0; |
+ tmp = st->bitrate*frame_size; |
+ if (tell>1) |
+ tmp += tell; |
+ if (st->bitrate!=OPUS_BITRATE_MAX) |
+ nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes, |
+ (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling)); |
+ effectiveBytes = nbCompressedBytes; |
+ } |
+ |
+ if (enc==NULL) |
+ { |
+ ec_enc_init(&_enc, compressed, nbCompressedBytes); |
+ enc = &_enc; |
+ } |
+ |
+ if (vbr_rate>0) |
+ { |
+ /* Computes the max bit-rate allowed in VBR mode to avoid violating the |
+ target rate and buffering. |
+ We must do this up front so that bust-prevention logic triggers |
+ correctly if we don't have enough bits. */ |
+ if (st->constrained_vbr) |
+ { |
+ opus_int32 vbr_bound; |
+ opus_int32 max_allowed; |
+ /* We could use any multiple of vbr_rate as bound (depending on the |
+ delay). |
+ This is clamped to ensure we use at least two bytes if the encoder |
+ was entirely empty, but to allow 0 in hybrid mode. */ |
+ vbr_bound = vbr_rate; |
+ max_allowed = IMIN(IMAX(tell==1?2:0, |
+ (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)), |
+ nbAvailableBytes); |
+ if(max_allowed < nbAvailableBytes) |
+ { |
+ nbCompressedBytes = nbFilledBytes+max_allowed; |
+ nbAvailableBytes = max_allowed; |
+ ec_enc_shrink(enc, nbCompressedBytes); |
+ } |
+ } |
+ } |
+ total_bits = nbCompressedBytes*8; |
+ |
+ effEnd = st->end; |
+ if (effEnd > mode->effEBands) |
+ effEnd = mode->effEBands; |
+ |
+ ALLOC(in, CC*(N+st->overlap), celt_sig); |
+ |
+ sample_max=MAX32(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample)); |
+ st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample); |
+ sample_max=MAX32(sample_max, st->overlap_max); |
+#ifdef FIXED_POINT |
+ silence = (sample_max==0); |
+#else |
+ silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth)); |
+#endif |
+#ifdef FUZZING |
+ if ((rand()&0x3F)==0) |
+ silence = 1; |
+#endif |
+ if (tell==1) |
+ ec_enc_bit_logp(enc, silence, 15); |
+ else |
+ silence=0; |
+ if (silence) |
+ { |
+ /*In VBR mode there is no need to send more than the minimum. */ |
+ if (vbr_rate>0) |
+ { |
+ effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2); |
+ total_bits=nbCompressedBytes*8; |
+ nbAvailableBytes=2; |
+ ec_enc_shrink(enc, nbCompressedBytes); |
+ } |
+ /* Pretend we've filled all the remaining bits with zeros |
+ (that's what the initialiser did anyway) */ |
+ tell = nbCompressedBytes*8; |
+ enc->nbits_total+=tell-ec_tell(enc); |
+ } |
+ c=0; do { |
+ preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample, |
+ mode->preemph, st->preemph_memE+c, st->clip); |
+ } while (++c<CC); |
+ |
+ |
+ |
+ /* Find pitch period and gain */ |
+ { |
+ int enabled; |
+ int qg; |
+ enabled = (st->lfe || nbAvailableBytes>12*C) && st->start==0 && !silence && !st->disable_pf |
+ && st->complexity >= 5 && !(st->consec_transient && LM!=3 && st->variable_duration==OPUS_FRAMESIZE_VARIABLE); |
+ |
+ prefilter_tapset = st->tapset_decision; |
+ pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes); |
+ if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && (!st->analysis.valid || st->analysis.tonality > .3) |
+ && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period)) |
+ pitch_change = 1; |
+ if (pf_on==0) |
+ { |
+ if(st->start==0 && tell+16<=total_bits) |
+ ec_enc_bit_logp(enc, 0, 1); |
+ } else { |
+ /*This block is not gated by a total bits check only because |
+ of the nbAvailableBytes check above.*/ |
+ int octave; |
+ ec_enc_bit_logp(enc, 1, 1); |
+ pitch_index += 1; |
+ octave = EC_ILOG(pitch_index)-5; |
+ ec_enc_uint(enc, octave, 6); |
+ ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave); |
+ pitch_index -= 1; |
+ ec_enc_bits(enc, qg, 3); |
+ ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2); |
+ } |
+ } |
+ |
+ isTransient = 0; |
+ shortBlocks = 0; |
+ if (st->complexity >= 1 && !st->lfe) |
+ { |
+ isTransient = transient_analysis(in, N+st->overlap, CC, |
+ &tf_estimate, &tf_chan); |
+ } |
+ if (LM>0 && ec_tell(enc)+3<=total_bits) |
+ { |
+ if (isTransient) |
+ shortBlocks = M; |
+ } else { |
+ isTransient = 0; |
+ transient_got_disabled=1; |
+ } |
+ |
+ ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */ |
+ ALLOC(bandE,nbEBands*CC, celt_ener); |
+ ALLOC(bandLogE,nbEBands*CC, opus_val16); |
+ |
+ secondMdct = shortBlocks && st->complexity>=8; |
+ ALLOC(bandLogE2, C*nbEBands, opus_val16); |
+ if (secondMdct) |
+ { |
+ compute_mdcts(mode, 0, in, freq, C, CC, LM, st->upsample); |
+ compute_band_energies(mode, freq, bandE, effEnd, C, M); |
+ amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C); |
+ for (i=0;i<C*nbEBands;i++) |
+ bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); |
+ } |
+ |
+ compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); |
+ if (CC==2&&C==1) |
+ tf_chan = 0; |
+ compute_band_energies(mode, freq, bandE, effEnd, C, M); |
+ |
+ if (st->lfe) |
+ { |
+ for (i=2;i<st->end;i++) |
+ { |
+ bandE[i] = IMIN(bandE[i], MULT16_32_Q15(QCONST16(1e-4f,15),bandE[0])); |
+ bandE[i] = MAX32(bandE[i], EPSILON); |
+ } |
+ } |
+ amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); |
+ |
+ ALLOC(surround_dynalloc, C*nbEBands, opus_val16); |
+ for(i=0;i<st->end;i++) |
+ surround_dynalloc[i] = 0; |
+ /* This computes how much masking takes place between surround channels */ |
+ if (st->start==0&&st->energy_mask&&!st->lfe) |
+ { |
+ int mask_end; |
+ int midband; |
+ int count_dynalloc; |
+ opus_val32 mask_avg=0; |
+ opus_val32 diff=0; |
+ int count=0; |
+ mask_end = IMAX(2,st->lastCodedBands); |
+ for (c=0;c<C;c++) |
+ { |
+ for(i=0;i<mask_end;i++) |
+ { |
+ opus_val16 mask; |
+ mask = MAX16(MIN16(st->energy_mask[nbEBands*c+i], |
+ QCONST16(.25f, DB_SHIFT)), -QCONST16(2.0f, DB_SHIFT)); |
+ if (mask > 0) |
+ mask = HALF16(mask); |
+ mask_avg += MULT16_16(mask, eBands[i+1]-eBands[i]); |
+ count += eBands[i+1]-eBands[i]; |
+ diff += MULT16_16(mask, 1+2*i-mask_end); |
+ } |
+ } |
+ mask_avg = DIV32_16(mask_avg,count); |
+ mask_avg += QCONST16(.2f, DB_SHIFT); |
+ diff = diff*6/(C*(mask_end-1)*(mask_end+1)*mask_end); |
+ /* Again, being conservative */ |
+ diff = HALF32(diff); |
+ diff = MAX32(MIN32(diff, QCONST32(.031f, DB_SHIFT)), -QCONST32(.031f, DB_SHIFT)); |
+ /* Find the band that's in the middle of the coded spectrum */ |
+ for (midband=0;eBands[midband+1] < eBands[mask_end]/2;midband++); |
+ count_dynalloc=0; |
+ for(i=0;i<mask_end;i++) |
+ { |
+ opus_val32 lin; |
+ opus_val16 unmask; |
+ lin = mask_avg + diff*(i-midband); |
+ if (C==2) |
+ unmask = MAX16(st->energy_mask[i], st->energy_mask[nbEBands+i]); |
+ else |
+ unmask = st->energy_mask[i]; |
+ unmask = MIN16(unmask, QCONST16(.0f, DB_SHIFT)); |
+ unmask -= lin; |
+ if (unmask > QCONST16(.25f, DB_SHIFT)) |
+ { |
+ surround_dynalloc[i] = unmask - QCONST16(.25f, DB_SHIFT); |
+ count_dynalloc++; |
+ } |
+ } |
+ if (count_dynalloc>=3) |
+ { |
+ /* If we need dynalloc in many bands, it's probably because our |
+ initial masking rate was too low. */ |
+ mask_avg += QCONST16(.25f, DB_SHIFT); |
+ if (mask_avg>0) |
+ { |
+ /* Something went really wrong in the original calculations, |
+ disabling masking. */ |
+ mask_avg = 0; |
+ diff = 0; |
+ for(i=0;i<mask_end;i++) |
+ surround_dynalloc[i] = 0; |
+ } else { |
+ for(i=0;i<mask_end;i++) |
+ surround_dynalloc[i] = MAX16(0, surround_dynalloc[i]-QCONST16(.25f, DB_SHIFT)); |
+ } |
+ } |
+ mask_avg += QCONST16(.2f, DB_SHIFT); |
+ /* Convert to 1/64th units used for the trim */ |
+ surround_trim = 64*diff; |
+ /*printf("%d %d ", mask_avg, surround_trim);*/ |
+ surround_masking = mask_avg; |
+ } |
+ /* Temporal VBR (but not for LFE) */ |
+ if (!st->lfe) |
+ { |
+ opus_val16 follow=-QCONST16(10.0f,DB_SHIFT); |
+ float frame_avg=0; |
+ opus_val16 offset = shortBlocks?HALF16(SHL16(LM, DB_SHIFT)):0; |
+ for(i=st->start;i<st->end;i++) |
+ { |
+ follow = MAX16(follow-QCONST16(1.f, DB_SHIFT), bandLogE[i]-offset); |
+ if (C==2) |
+ follow = MAX16(follow, bandLogE[i+nbEBands]-offset); |
+ frame_avg += follow; |
+ } |
+ frame_avg /= (st->end-st->start); |
+ temporal_vbr = SUB16(frame_avg,st->spec_avg); |
+ temporal_vbr = MIN16(QCONST16(3.f, DB_SHIFT), MAX16(-QCONST16(1.5f, DB_SHIFT), temporal_vbr)); |
+ st->spec_avg += MULT16_16_Q15(QCONST16(.02f, 15), temporal_vbr); |
+ } |
+ /*for (i=0;i<21;i++) |
+ printf("%f ", bandLogE[i]); |
+ printf("\n");*/ |
+ |
+ if (!secondMdct) |
+ { |
+ for (i=0;i<C*nbEBands;i++) |
+ bandLogE2[i] = bandLogE[i]; |
+ } |
+ |
+ /* Last chance to catch any transient we might have missed in the |
+ time-domain analysis */ |
+ if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe) |
+ { |
+ if (patch_transient_decision(bandLogE, oldBandE, nbEBands, st->end, C)) |
+ { |
+ isTransient = 1; |
+ shortBlocks = M; |
+ compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); |
+ compute_band_energies(mode, freq, bandE, effEnd, C, M); |
+ amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); |
+ /* Compensate for the scaling of short vs long mdcts */ |
+ for (i=0;i<C*nbEBands;i++) |
+ bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); |
+ tf_estimate = QCONST16(.2f,14); |
+ } |
+ } |
+ |
+ if (LM>0 && ec_tell(enc)+3<=total_bits) |
+ ec_enc_bit_logp(enc, isTransient, 3); |
+ |
+ ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ |
+ |
+ /* Band normalisation */ |
+ normalise_bands(mode, freq, X, bandE, effEnd, C, M); |
+ |
+ ALLOC(tf_res, nbEBands, int); |
+ /* Disable variable tf resolution for hybrid and at very low bitrate */ |
+ if (effectiveBytes>=15*C && st->start==0 && st->complexity>=2 && !st->lfe) |
+ { |
+ int lambda; |
+ if (effectiveBytes<40) |
+ lambda = 12; |
+ else if (effectiveBytes<60) |
+ lambda = 6; |
+ else if (effectiveBytes<100) |
+ lambda = 4; |
+ else |
+ lambda = 3; |
+ lambda*=2; |
+ tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, &tf_sum, tf_estimate, tf_chan); |
+ for (i=effEnd;i<st->end;i++) |
+ tf_res[i] = tf_res[effEnd-1]; |
+ } else { |
+ tf_sum = 0; |
+ for (i=0;i<st->end;i++) |
+ tf_res[i] = isTransient; |
+ tf_select=0; |
+ } |
+ |
+ ALLOC(error, C*nbEBands, opus_val16); |
+ quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE, |
+ oldBandE, total_bits, error, enc, |
+ C, LM, nbAvailableBytes, st->force_intra, |
+ &st->delayedIntra, st->complexity >= 4, st->loss_rate, st->lfe); |
+ |
+ tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc); |
+ |
+ if (ec_tell(enc)+4<=total_bits) |
+ { |
+ if (st->lfe) |
+ { |
+ st->tapset_decision = 0; |
+ st->spread_decision = SPREAD_NORMAL; |
+ } else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C || st->start != 0) |
+ { |
+ if (st->complexity == 0) |
+ st->spread_decision = SPREAD_NONE; |
+ else |
+ st->spread_decision = SPREAD_NORMAL; |
+ } else { |
+ /* Disable new spreading+tapset estimator until we can show it works |
+ better than the old one. So far it seems like spreading_decision() |
+ works best. */ |
+ if (0&&st->analysis.valid) |
+ { |
+ static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)}; |
+ static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)}; |
+ static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)}; |
+ static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)}; |
+ st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision); |
+ st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision); |
+ } else { |
+ st->spread_decision = spreading_decision(mode, X, |
+ &st->tonal_average, st->spread_decision, &st->hf_average, |
+ &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M); |
+ } |
+ /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/ |
+ /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/ |
+ } |
+ ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5); |
+ } |
+ |
+ ALLOC(offsets, nbEBands, int); |
+ |
+ maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, st->start, st->end, C, offsets, |
+ st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr, |
+ eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc); |
+ /* For LFE, everything interesting is in the first band */ |
+ if (st->lfe) |
+ offsets[0] = IMIN(8, effectiveBytes/3); |
+ ALLOC(cap, nbEBands, int); |
+ init_caps(mode,cap,LM,C); |
+ |
+ dynalloc_logp = 6; |
+ total_bits<<=BITRES; |
+ total_boost = 0; |
+ tell = ec_tell_frac(enc); |
+ for (i=st->start;i<st->end;i++) |
+ { |
+ int width, quanta; |
+ int dynalloc_loop_logp; |
+ int boost; |
+ int j; |
+ width = C*(eBands[i+1]-eBands[i])<<LM; |
+ /* quanta is 6 bits, but no more than 1 bit/sample |
+ and no less than 1/8 bit/sample */ |
+ quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); |
+ dynalloc_loop_logp = dynalloc_logp; |
+ boost = 0; |
+ for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost |
+ && boost < cap[i]; j++) |
+ { |
+ int flag; |
+ flag = j<offsets[i]; |
+ ec_enc_bit_logp(enc, flag, dynalloc_loop_logp); |
+ tell = ec_tell_frac(enc); |
+ if (!flag) |
+ break; |
+ boost += quanta; |
+ total_boost += quanta; |
+ dynalloc_loop_logp = 1; |
+ } |
+ /* Making dynalloc more likely */ |
+ if (j) |
+ dynalloc_logp = IMAX(2, dynalloc_logp-1); |
+ offsets[i] = boost; |
+ } |
+ |
+ if (C==2) |
+ { |
+ int effectiveRate; |
+ |
+ static const opus_val16 intensity_thresholds[21]= |
+ /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 off*/ |
+ { 16,21,23,25,27,29,31,33,35,38,42,46,50,54,58,63,68,75,84,102,130}; |
+ static const opus_val16 intensity_histeresis[21]= |
+ { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 8, 12}; |
+ |
+ /* Always use MS for 2.5 ms frames until we can do a better analysis */ |
+ if (LM!=0) |
+ dual_stereo = stereo_analysis(mode, X, LM, N); |
+ |
+ /* Account for coarse energy */ |
+ effectiveRate = (8*effectiveBytes - 80)>>LM; |
+ |
+ /* effectiveRate in kb/s */ |
+ effectiveRate = 2*effectiveRate/5; |
+ |
+ st->intensity = hysteresis_decision((opus_val16)effectiveRate, intensity_thresholds, intensity_histeresis, 21, st->intensity); |
+ st->intensity = IMIN(st->end,IMAX(st->start, st->intensity)); |
+ } |
+ |
+ alloc_trim = 5; |
+ if (tell+(6<<BITRES) <= total_bits - total_boost) |
+ { |
+ if (st->lfe) |
+ alloc_trim = 5; |
+ else |
+ alloc_trim = alloc_trim_analysis(mode, X, bandLogE, |
+ st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity, surround_trim); |
+ ec_enc_icdf(enc, alloc_trim, trim_icdf, 7); |
+ tell = ec_tell_frac(enc); |
+ } |
+ |
+ /* Variable bitrate */ |
+ if (vbr_rate>0) |
+ { |
+ opus_val16 alpha; |
+ opus_int32 delta; |
+ /* The target rate in 8th bits per frame */ |
+ opus_int32 target, base_target; |
+ opus_int32 min_allowed; |
+ int lm_diff = mode->maxLM - LM; |
+ |
+ /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms. |
+ The CELT allocator will just not be able to use more than that anyway. */ |
+ nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM)); |
+ base_target = vbr_rate - ((40*C+20)<<BITRES); |
+ |
+ if (st->constrained_vbr) |
+ base_target += (st->vbr_offset>>lm_diff); |
+ |
+ target = compute_vbr(mode, &st->analysis, base_target, LM, st->bitrate, |
+ st->lastCodedBands, C, st->intensity, st->constrained_vbr, |
+ st->stereo_saving, tot_boost, tf_estimate, pitch_change, maxDepth, |
+ st->variable_duration, st->lfe, st->energy_mask!=NULL, surround_masking, |
+ temporal_vbr); |
+ |
+ /* The current offset is removed from the target and the space used |
+ so far is added*/ |
+ target=target+tell; |
+ /* In VBR mode the frame size must not be reduced so much that it would |
+ result in the encoder running out of bits. |
+ The margin of 2 bytes ensures that none of the bust-prevention logic |
+ in the decoder will have triggered so far. */ |
+ min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes; |
+ |
+ nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3); |
+ nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes); |
+ nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes; |
+ |
+ /* By how much did we "miss" the target on that frame */ |
+ delta = target - vbr_rate; |
+ |
+ target=nbAvailableBytes<<(BITRES+3); |
+ |
+ /*If the frame is silent we don't adjust our drift, otherwise |
+ the encoder will shoot to very high rates after hitting a |
+ span of silence, but we do allow the bitres to refill. |
+ This means that we'll undershoot our target in CVBR/VBR modes |
+ on files with lots of silence. */ |
+ if(silence) |
+ { |
+ nbAvailableBytes = 2; |
+ target = 2*8<<BITRES; |
+ delta = 0; |
+ } |
+ |
+ if (st->vbr_count < 970) |
+ { |
+ st->vbr_count++; |
+ alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16)); |
+ } else |
+ alpha = QCONST16(.001f,15); |
+ /* How many bits have we used in excess of what we're allowed */ |
+ if (st->constrained_vbr) |
+ st->vbr_reservoir += target - vbr_rate; |
+ /*printf ("%d\n", st->vbr_reservoir);*/ |
+ |
+ /* Compute the offset we need to apply in order to reach the target */ |
+ if (st->constrained_vbr) |
+ { |
+ st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift); |
+ st->vbr_offset = -st->vbr_drift; |
+ } |
+ /*printf ("%d\n", st->vbr_drift);*/ |
+ |
+ if (st->constrained_vbr && st->vbr_reservoir < 0) |
+ { |
+ /* We're under the min value -- increase rate */ |
+ int adjust = (-st->vbr_reservoir)/(8<<BITRES); |
+ /* Unless we're just coding silence */ |
+ nbAvailableBytes += silence?0:adjust; |
+ st->vbr_reservoir = 0; |
+ /*printf ("+%d\n", adjust);*/ |
+ } |
+ nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes); |
+ /*printf("%d\n", nbCompressedBytes*50*8);*/ |
+ /* This moves the raw bits to take into account the new compressed size */ |
+ ec_enc_shrink(enc, nbCompressedBytes); |
+ } |
+ |
+ /* Bit allocation */ |
+ ALLOC(fine_quant, nbEBands, int); |
+ ALLOC(pulses, nbEBands, int); |
+ ALLOC(fine_priority, nbEBands, int); |
+ |
+ /* bits = packet size - where we are - safety*/ |
+ bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1; |
+ anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0; |
+ bits -= anti_collapse_rsv; |
+ signalBandwidth = st->end-1; |
+#ifndef DISABLE_FLOAT_API |
+ if (st->analysis.valid) |
+ { |
+ int min_bandwidth; |
+ if (st->bitrate < (opus_int32)32000*C) |
+ min_bandwidth = 13; |
+ else if (st->bitrate < (opus_int32)48000*C) |
+ min_bandwidth = 16; |
+ else if (st->bitrate < (opus_int32)60000*C) |
+ min_bandwidth = 18; |
+ else if (st->bitrate < (opus_int32)80000*C) |
+ min_bandwidth = 19; |
+ else |
+ min_bandwidth = 20; |
+ signalBandwidth = IMAX(st->analysis.bandwidth, min_bandwidth); |
+ } |
+#endif |
+ if (st->lfe) |
+ signalBandwidth = 1; |
+ codedBands = compute_allocation(mode, st->start, st->end, offsets, cap, |
+ alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses, |
+ fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth); |
+ if (st->lastCodedBands) |
+ st->lastCodedBands = IMIN(st->lastCodedBands+1,IMAX(st->lastCodedBands-1,codedBands)); |
+ else |
+ st->lastCodedBands = codedBands; |
+ |
+ quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C); |
+ |
+ /* Residual quantisation */ |
+ ALLOC(collapse_masks, C*nbEBands, unsigned char); |
+ quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks, |
+ bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res, |
+ nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng); |
+ |
+ if (anti_collapse_rsv > 0) |
+ { |
+ anti_collapse_on = st->consec_transient<2; |
+#ifdef FUZZING |
+ anti_collapse_on = rand()&0x1; |
+#endif |
+ ec_enc_bits(enc, anti_collapse_on, 1); |
+ } |
+ quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C); |
+ |
+ if (silence) |
+ { |
+ for (i=0;i<C*nbEBands;i++) |
+ oldBandE[i] = -QCONST16(28.f,DB_SHIFT); |
+ } |
+ |
+#ifdef RESYNTH |
+ /* Re-synthesis of the coded audio if required */ |
+ { |
+ celt_sig *out_mem[2]; |
+ |
+ if (anti_collapse_on) |
+ { |
+ anti_collapse(mode, X, collapse_masks, LM, C, N, |
+ st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng); |
+ } |
+ |
+ if (silence) |
+ { |
+ for (i=0;i<C*N;i++) |
+ freq[i] = 0; |
+ } else { |
+ /* Synthesis */ |
+ denormalise_bands(mode, X, freq, oldBandE, st->start, effEnd, C, M); |
+ } |
+ |
+ c=0; do { |
+ OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap/2); |
+ } while (++c<CC); |
+ |
+ if (CC==2&&C==1) |
+ { |
+ for (i=0;i<N;i++) |
+ freq[N+i] = freq[i]; |
+ } |
+ |
+ c=0; do { |
+ out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N; |
+ } while (++c<CC); |
+ |
+ compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM); |
+ |
+ c=0; do { |
+ st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); |
+ st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD); |
+ comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize, |
+ st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset, |
+ mode->window, st->overlap); |
+ if (LM!=0) |
+ comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize, |
+ st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset, |
+ mode->window, overlap); |
+ } while (++c<CC); |
+ |
+ /* We reuse freq[] as scratch space for the de-emphasis */ |
+ deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq); |
+ st->prefilter_period_old = st->prefilter_period; |
+ st->prefilter_gain_old = st->prefilter_gain; |
+ st->prefilter_tapset_old = st->prefilter_tapset; |
+ } |
+#endif |
+ |
+ st->prefilter_period = pitch_index; |
+ st->prefilter_gain = gain1; |
+ st->prefilter_tapset = prefilter_tapset; |
+#ifdef RESYNTH |
+ if (LM!=0) |
+ { |
+ st->prefilter_period_old = st->prefilter_period; |
+ st->prefilter_gain_old = st->prefilter_gain; |
+ st->prefilter_tapset_old = st->prefilter_tapset; |
+ } |
+#endif |
+ |
+ if (CC==2&&C==1) { |
+ for (i=0;i<nbEBands;i++) |
+ oldBandE[nbEBands+i]=oldBandE[i]; |
+ } |
+ |
+ if (!isTransient) |
+ { |
+ for (i=0;i<CC*nbEBands;i++) |
+ oldLogE2[i] = oldLogE[i]; |
+ for (i=0;i<CC*nbEBands;i++) |
+ oldLogE[i] = oldBandE[i]; |
+ } else { |
+ for (i=0;i<CC*nbEBands;i++) |
+ oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); |
+ } |
+ /* In case start or end were to change */ |
+ c=0; do |
+ { |
+ for (i=0;i<st->start;i++) |
+ { |
+ oldBandE[c*nbEBands+i]=0; |
+ oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); |
+ } |
+ for (i=st->end;i<nbEBands;i++) |
+ { |
+ oldBandE[c*nbEBands+i]=0; |
+ oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); |
+ } |
+ } while (++c<CC); |
+ |
+ if (isTransient || transient_got_disabled) |
+ st->consec_transient++; |
+ else |
+ st->consec_transient=0; |
+ st->rng = enc->rng; |
+ |
+ /* If there's any room left (can only happen for very high rates), |
+ it's already filled with zeros */ |
+ ec_enc_done(enc); |
+ |
+#ifdef CUSTOM_MODES |
+ if (st->signalling) |
+ nbCompressedBytes++; |
+#endif |
+ |
+ RESTORE_STACK; |
+ if (ec_get_error(enc)) |
+ return OPUS_INTERNAL_ERROR; |
+ else |
+ return nbCompressedBytes; |
+} |
+ |
+ |
+#ifdef CUSTOM_MODES |
+ |
+#ifdef FIXED_POINT |
+int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
+{ |
+ return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); |
+} |
+ |
+#ifndef DISABLE_FLOAT_API |
+int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
+{ |
+ int j, ret, C, N; |
+ VARDECL(opus_int16, in); |
+ ALLOC_STACK; |
+ |
+ if (pcm==NULL) |
+ return OPUS_BAD_ARG; |
+ |
+ C = st->channels; |
+ N = frame_size; |
+ ALLOC(in, C*N, opus_int16); |
+ |
+ for (j=0;j<C*N;j++) |
+ in[j] = FLOAT2INT16(pcm[j]); |
+ |
+ ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); |
+#ifdef RESYNTH |
+ for (j=0;j<C*N;j++) |
+ ((float*)pcm)[j]=in[j]*(1.f/32768.f); |
+#endif |
+ RESTORE_STACK; |
+ return ret; |
+} |
+#endif /* DISABLE_FLOAT_API */ |
+#else |
+ |
+int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
+{ |
+ int j, ret, C, N; |
+ VARDECL(celt_sig, in); |
+ ALLOC_STACK; |
+ |
+ if (pcm==NULL) |
+ return OPUS_BAD_ARG; |
+ |
+ C=st->channels; |
+ N=frame_size; |
+ ALLOC(in, C*N, celt_sig); |
+ for (j=0;j<C*N;j++) { |
+ in[j] = SCALEOUT(pcm[j]); |
+ } |
+ |
+ ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); |
+#ifdef RESYNTH |
+ for (j=0;j<C*N;j++) |
+ ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]); |
+#endif |
+ RESTORE_STACK; |
+ return ret; |
+} |
+ |
+int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) |
+{ |
+ return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); |
+} |
+ |
+#endif |
+ |
+#endif /* CUSTOM_MODES */ |
+ |
+int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...) |
+{ |
+ va_list ap; |
+ |
+ va_start(ap, request); |
+ switch (request) |
+ { |
+ case OPUS_SET_COMPLEXITY_REQUEST: |
+ { |
+ int value = va_arg(ap, opus_int32); |
+ if (value<0 || value>10) |
+ goto bad_arg; |
+ st->complexity = value; |
+ } |
+ break; |
+ case CELT_SET_START_BAND_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ if (value<0 || value>=st->mode->nbEBands) |
+ goto bad_arg; |
+ st->start = value; |
+ } |
+ break; |
+ case CELT_SET_END_BAND_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ if (value<1 || value>st->mode->nbEBands) |
+ goto bad_arg; |
+ st->end = value; |
+ } |
+ break; |
+ case CELT_SET_PREDICTION_REQUEST: |
+ { |
+ int value = va_arg(ap, opus_int32); |
+ if (value<0 || value>2) |
+ goto bad_arg; |
+ st->disable_pf = value<=1; |
+ st->force_intra = value==0; |
+ } |
+ break; |
+ case OPUS_SET_PACKET_LOSS_PERC_REQUEST: |
+ { |
+ int value = va_arg(ap, opus_int32); |
+ if (value<0 || value>100) |
+ goto bad_arg; |
+ st->loss_rate = value; |
+ } |
+ break; |
+ case OPUS_SET_VBR_CONSTRAINT_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ st->constrained_vbr = value; |
+ } |
+ break; |
+ case OPUS_SET_VBR_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ st->vbr = value; |
+ } |
+ break; |
+ case OPUS_SET_BITRATE_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ if (value<=500 && value!=OPUS_BITRATE_MAX) |
+ goto bad_arg; |
+ value = IMIN(value, 260000*st->channels); |
+ st->bitrate = value; |
+ } |
+ break; |
+ case CELT_SET_CHANNELS_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ if (value<1 || value>2) |
+ goto bad_arg; |
+ st->stream_channels = value; |
+ } |
+ break; |
+ case OPUS_SET_LSB_DEPTH_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ if (value<8 || value>24) |
+ goto bad_arg; |
+ st->lsb_depth=value; |
+ } |
+ break; |
+ case OPUS_GET_LSB_DEPTH_REQUEST: |
+ { |
+ opus_int32 *value = va_arg(ap, opus_int32*); |
+ *value=st->lsb_depth; |
+ } |
+ break; |
+ case OPUS_SET_EXPERT_FRAME_DURATION_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ st->variable_duration = value; |
+ } |
+ break; |
+ case OPUS_RESET_STATE: |
+ { |
+ int i; |
+ opus_val16 *oldBandE, *oldLogE, *oldLogE2; |
+ oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD)); |
+ oldLogE = oldBandE + st->channels*st->mode->nbEBands; |
+ oldLogE2 = oldLogE + st->channels*st->mode->nbEBands; |
+ OPUS_CLEAR((char*)&st->ENCODER_RESET_START, |
+ opus_custom_encoder_get_size(st->mode, st->channels)- |
+ ((char*)&st->ENCODER_RESET_START - (char*)st)); |
+ for (i=0;i<st->channels*st->mode->nbEBands;i++) |
+ oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); |
+ st->vbr_offset = 0; |
+ st->delayedIntra = 1; |
+ st->spread_decision = SPREAD_NORMAL; |
+ st->tonal_average = 256; |
+ st->hf_average = 0; |
+ st->tapset_decision = 0; |
+ } |
+ break; |
+#ifdef CUSTOM_MODES |
+ case CELT_SET_INPUT_CLIPPING_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ st->clip = value; |
+ } |
+ break; |
+#endif |
+ case CELT_SET_SIGNALLING_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ st->signalling = value; |
+ } |
+ break; |
+ case CELT_SET_ANALYSIS_REQUEST: |
+ { |
+ AnalysisInfo *info = va_arg(ap, AnalysisInfo *); |
+ if (info) |
+ OPUS_COPY(&st->analysis, info, 1); |
+ } |
+ break; |
+ case CELT_GET_MODE_REQUEST: |
+ { |
+ const CELTMode ** value = va_arg(ap, const CELTMode**); |
+ if (value==0) |
+ goto bad_arg; |
+ *value=st->mode; |
+ } |
+ break; |
+ case OPUS_GET_FINAL_RANGE_REQUEST: |
+ { |
+ opus_uint32 * value = va_arg(ap, opus_uint32 *); |
+ if (value==0) |
+ goto bad_arg; |
+ *value=st->rng; |
+ } |
+ break; |
+ case OPUS_SET_LFE_REQUEST: |
+ { |
+ opus_int32 value = va_arg(ap, opus_int32); |
+ st->lfe = value; |
+ } |
+ break; |
+ case OPUS_SET_ENERGY_MASK_REQUEST: |
+ { |
+ opus_val16 *value = va_arg(ap, opus_val16*); |
+ st->energy_mask = value; |
+ } |
+ break; |
+ default: |
+ goto bad_request; |
+ } |
+ va_end(ap); |
+ return OPUS_OK; |
+bad_arg: |
+ va_end(ap); |
+ return OPUS_BAD_ARG; |
+bad_request: |
+ va_end(ap); |
+ return OPUS_UNIMPLEMENTED; |
+} |