Index: third_party/sqlite/src/ext/misc/sha1.c |
diff --git a/third_party/sqlite/src/ext/misc/sha1.c b/third_party/sqlite/src/ext/misc/sha1.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e2843bdefa488c10ebb6c2a148599be7c28e57c5 |
--- /dev/null |
+++ b/third_party/sqlite/src/ext/misc/sha1.c |
@@ -0,0 +1,407 @@ |
+/* |
+** 2017-01-27 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+****************************************************************************** |
+** |
+** This SQLite extension implements a functions that compute SHA1 hashes. |
+** Two SQL functions are implemented: |
+** |
+** sha1(X) |
+** sha1_query(Y) |
+** |
+** The sha1(X) function computes the SHA1 hash of the input X, or NULL if |
+** X is NULL. |
+** |
+** The sha1_query(Y) function evalutes all queries in the SQL statements of Y |
+** and returns a hash of their results. |
+*/ |
+#include "sqlite3ext.h" |
+SQLITE_EXTENSION_INIT1 |
+#include <assert.h> |
+#include <string.h> |
+#include <stdarg.h> |
+ |
+/****************************************************************************** |
+** The Hash Engine |
+*/ |
+/* Context for the SHA1 hash */ |
+typedef struct SHA1Context SHA1Context; |
+struct SHA1Context { |
+ unsigned int state[5]; |
+ unsigned int count[2]; |
+ unsigned char buffer[64]; |
+}; |
+ |
+ |
+#if __GNUC__ && (defined(__i386__) || defined(__x86_64__)) |
+/* |
+ * GCC by itself only generates left rotates. Use right rotates if |
+ * possible to be kinder to dinky implementations with iterative rotate |
+ * instructions. |
+ */ |
+#define SHA_ROT(op, x, k) \ |
+ ({ unsigned int y; asm(op " %1,%0" : "=r" (y) : "I" (k), "0" (x)); y; }) |
+#define rol(x,k) SHA_ROT("roll", x, k) |
+#define ror(x,k) SHA_ROT("rorl", x, k) |
+ |
+#else |
+/* Generic C equivalent */ |
+#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r)) |
+#define rol(x,k) SHA_ROT(x,k,32-(k)) |
+#define ror(x,k) SHA_ROT(x,32-(k),k) |
+#endif |
+ |
+ |
+#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \ |
+ |(rol(block[i],8)&0x00FF00FF)) |
+#define blk0be(i) block[i] |
+#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \ |
+ ^block[(i+2)&15]^block[i&15],1)) |
+ |
+/* |
+ * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 |
+ * |
+ * Rl0() for little-endian and Rb0() for big-endian. Endianness is |
+ * determined at run-time. |
+ */ |
+#define Rl0(v,w,x,y,z,i) \ |
+ z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2); |
+#define Rb0(v,w,x,y,z,i) \ |
+ z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2); |
+#define R1(v,w,x,y,z,i) \ |
+ z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2); |
+#define R2(v,w,x,y,z,i) \ |
+ z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2); |
+#define R3(v,w,x,y,z,i) \ |
+ z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2); |
+#define R4(v,w,x,y,z,i) \ |
+ z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2); |
+ |
+/* |
+ * Hash a single 512-bit block. This is the core of the algorithm. |
+ */ |
+void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){ |
+ unsigned int qq[5]; /* a, b, c, d, e; */ |
+ static int one = 1; |
+ unsigned int block[16]; |
+ memcpy(block, buffer, 64); |
+ memcpy(qq,state,5*sizeof(unsigned int)); |
+ |
+#define a qq[0] |
+#define b qq[1] |
+#define c qq[2] |
+#define d qq[3] |
+#define e qq[4] |
+ |
+ /* Copy p->state[] to working vars */ |
+ /* |
+ a = state[0]; |
+ b = state[1]; |
+ c = state[2]; |
+ d = state[3]; |
+ e = state[4]; |
+ */ |
+ |
+ /* 4 rounds of 20 operations each. Loop unrolled. */ |
+ if( 1 == *(unsigned char*)&one ){ |
+ Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3); |
+ Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7); |
+ Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11); |
+ Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15); |
+ }else{ |
+ Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3); |
+ Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7); |
+ Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11); |
+ Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15); |
+ } |
+ R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
+ R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
+ R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
+ R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
+ R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
+ R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
+ R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
+ R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
+ R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
+ R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
+ R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
+ R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
+ R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
+ R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
+ R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
+ R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
+ |
+ /* Add the working vars back into context.state[] */ |
+ state[0] += a; |
+ state[1] += b; |
+ state[2] += c; |
+ state[3] += d; |
+ state[4] += e; |
+ |
+#undef a |
+#undef b |
+#undef c |
+#undef d |
+#undef e |
+} |
+ |
+ |
+/* Initialize a SHA1 context */ |
+static void hash_init(SHA1Context *p){ |
+ /* SHA1 initialization constants */ |
+ p->state[0] = 0x67452301; |
+ p->state[1] = 0xEFCDAB89; |
+ p->state[2] = 0x98BADCFE; |
+ p->state[3] = 0x10325476; |
+ p->state[4] = 0xC3D2E1F0; |
+ p->count[0] = p->count[1] = 0; |
+} |
+ |
+/* Add new content to the SHA1 hash */ |
+static void hash_step( |
+ SHA1Context *p, /* Add content to this context */ |
+ const unsigned char *data, /* Data to be added */ |
+ unsigned int len /* Number of bytes in data */ |
+){ |
+ unsigned int i, j; |
+ |
+ j = p->count[0]; |
+ if( (p->count[0] += len << 3) < j ){ |
+ p->count[1] += (len>>29)+1; |
+ } |
+ j = (j >> 3) & 63; |
+ if( (j + len) > 63 ){ |
+ (void)memcpy(&p->buffer[j], data, (i = 64-j)); |
+ SHA1Transform(p->state, p->buffer); |
+ for(; i + 63 < len; i += 64){ |
+ SHA1Transform(p->state, &data[i]); |
+ } |
+ j = 0; |
+ }else{ |
+ i = 0; |
+ } |
+ (void)memcpy(&p->buffer[j], &data[i], len - i); |
+} |
+ |
+/* Compute a string using sqlite3_vsnprintf() and hash it */ |
+static void hash_step_vformat( |
+ SHA1Context *p, /* Add content to this context */ |
+ const char *zFormat, |
+ ... |
+){ |
+ va_list ap; |
+ int n; |
+ char zBuf[50]; |
+ va_start(ap, zFormat); |
+ sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap); |
+ va_end(ap); |
+ n = (int)strlen(zBuf); |
+ hash_step(p, (unsigned char*)zBuf, n); |
+} |
+ |
+ |
+/* Add padding and compute the message digest. Render the |
+** message digest as lower-case hexadecimal and put it into |
+** zOut[]. zOut[] must be at least 41 bytes long. */ |
+static void hash_finish( |
+ SHA1Context *p, /* The SHA1 context to finish and render */ |
+ char *zOut /* Store hexadecimal hash here */ |
+){ |
+ unsigned int i; |
+ unsigned char finalcount[8]; |
+ unsigned char digest[20]; |
+ static const char zEncode[] = "0123456789abcdef"; |
+ |
+ for (i = 0; i < 8; i++){ |
+ finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)] |
+ >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ |
+ } |
+ hash_step(p, (const unsigned char *)"\200", 1); |
+ while ((p->count[0] & 504) != 448){ |
+ hash_step(p, (const unsigned char *)"\0", 1); |
+ } |
+ hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */ |
+ for (i = 0; i < 20; i++){ |
+ digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); |
+ } |
+ for(i=0; i<20; i++){ |
+ zOut[i*2] = zEncode[(digest[i]>>4)&0xf]; |
+ zOut[i*2+1] = zEncode[digest[i] & 0xf]; |
+ } |
+ zOut[i*2]= 0; |
+} |
+/* End of the hashing logic |
+*****************************************************************************/ |
+ |
+/* |
+** Implementation of the sha1(X) function. |
+** |
+** Return a lower-case hexadecimal rendering of the SHA1 hash of the |
+** argument X. If X is a BLOB, it is hashed as is. For all other |
+** types of input, X is converted into a UTF-8 string and the string |
+** is hash without the trailing 0x00 terminator. The hash of a NULL |
+** value is NULL. |
+*/ |
+static void sha1Func( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ SHA1Context cx; |
+ int eType = sqlite3_value_type(argv[0]); |
+ int nByte = sqlite3_value_bytes(argv[0]); |
+ char zOut[44]; |
+ |
+ assert( argc==1 ); |
+ if( eType==SQLITE_NULL ) return; |
+ hash_init(&cx); |
+ if( eType==SQLITE_BLOB ){ |
+ hash_step(&cx, sqlite3_value_blob(argv[0]), nByte); |
+ }else{ |
+ hash_step(&cx, sqlite3_value_text(argv[0]), nByte); |
+ } |
+ hash_finish(&cx, zOut); |
+ sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT); |
+} |
+ |
+/* |
+** Implementation of the sha1_query(SQL) function. |
+** |
+** This function compiles and runs the SQL statement(s) given in the |
+** argument. The results are hashed using SHA1 and that hash is returned. |
+** |
+** The original SQL text is included as part of the hash. |
+** |
+** The hash is not just a concatenation of the outputs. Each query |
+** is delimited and each row and value within the query is delimited, |
+** with all values being marked with their datatypes. |
+*/ |
+static void sha1QueryFunc( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ sqlite3 *db = sqlite3_context_db_handle(context); |
+ const char *zSql = (const char*)sqlite3_value_text(argv[0]); |
+ sqlite3_stmt *pStmt = 0; |
+ int nCol; /* Number of columns in the result set */ |
+ int i; /* Loop counter */ |
+ int rc; |
+ int n; |
+ const char *z; |
+ SHA1Context cx; |
+ char zOut[44]; |
+ |
+ assert( argc==1 ); |
+ if( zSql==0 ) return; |
+ hash_init(&cx); |
+ while( zSql[0] ){ |
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql); |
+ if( rc ){ |
+ char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s", |
+ zSql, sqlite3_errmsg(db)); |
+ sqlite3_finalize(pStmt); |
+ sqlite3_result_error(context, zMsg, -1); |
+ sqlite3_free(zMsg); |
+ return; |
+ } |
+ if( !sqlite3_stmt_readonly(pStmt) ){ |
+ char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt)); |
+ sqlite3_finalize(pStmt); |
+ sqlite3_result_error(context, zMsg, -1); |
+ sqlite3_free(zMsg); |
+ return; |
+ } |
+ nCol = sqlite3_column_count(pStmt); |
+ z = sqlite3_sql(pStmt); |
+ n = (int)strlen(z); |
+ hash_step_vformat(&cx,"S%d:",n); |
+ hash_step(&cx,(unsigned char*)z,n); |
+ |
+ /* Compute a hash over the result of the query */ |
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ hash_step(&cx,(const unsigned char*)"R",1); |
+ for(i=0; i<nCol; i++){ |
+ switch( sqlite3_column_type(pStmt,i) ){ |
+ case SQLITE_NULL: { |
+ hash_step(&cx, (const unsigned char*)"N",1); |
+ break; |
+ } |
+ case SQLITE_INTEGER: { |
+ sqlite3_uint64 u; |
+ int j; |
+ unsigned char x[9]; |
+ sqlite3_int64 v = sqlite3_column_int64(pStmt,i); |
+ memcpy(&u, &v, 8); |
+ for(j=8; j>=1; j--){ |
+ x[j] = u & 0xff; |
+ u >>= 8; |
+ } |
+ x[0] = 'I'; |
+ hash_step(&cx, x, 9); |
+ break; |
+ } |
+ case SQLITE_FLOAT: { |
+ sqlite3_uint64 u; |
+ int j; |
+ unsigned char x[9]; |
+ double r = sqlite3_column_double(pStmt,i); |
+ memcpy(&u, &r, 8); |
+ for(j=8; j>=1; j--){ |
+ x[j] = u & 0xff; |
+ u >>= 8; |
+ } |
+ x[0] = 'F'; |
+ hash_step(&cx,x,9); |
+ break; |
+ } |
+ case SQLITE_TEXT: { |
+ int n2 = sqlite3_column_bytes(pStmt, i); |
+ const unsigned char *z2 = sqlite3_column_text(pStmt, i); |
+ hash_step_vformat(&cx,"T%d:",n2); |
+ hash_step(&cx, z2, n2); |
+ break; |
+ } |
+ case SQLITE_BLOB: { |
+ int n2 = sqlite3_column_bytes(pStmt, i); |
+ const unsigned char *z2 = sqlite3_column_blob(pStmt, i); |
+ hash_step_vformat(&cx,"B%d:",n2); |
+ hash_step(&cx, z2, n2); |
+ break; |
+ } |
+ } |
+ } |
+ } |
+ sqlite3_finalize(pStmt); |
+ } |
+ hash_finish(&cx, zOut); |
+ sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT); |
+} |
+ |
+ |
+#ifdef _WIN32 |
+__declspec(dllexport) |
+#endif |
+int sqlite3_sha_init( |
+ sqlite3 *db, |
+ char **pzErrMsg, |
+ const sqlite3_api_routines *pApi |
+){ |
+ int rc = SQLITE_OK; |
+ SQLITE_EXTENSION_INIT2(pApi); |
+ (void)pzErrMsg; /* Unused parameter */ |
+ rc = sqlite3_create_function(db, "sha1", 1, SQLITE_UTF8, 0, |
+ sha1Func, 0, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_create_function(db, "sha1_query", 1, SQLITE_UTF8, 0, |
+ sha1QueryFunc, 0, 0); |
+ } |
+ return rc; |
+} |