| Index: third_party/sqlite/src/ext/misc/sha1.c
|
| diff --git a/third_party/sqlite/src/ext/misc/sha1.c b/third_party/sqlite/src/ext/misc/sha1.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..e2843bdefa488c10ebb6c2a148599be7c28e57c5
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/ext/misc/sha1.c
|
| @@ -0,0 +1,407 @@
|
| +/*
|
| +** 2017-01-27
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +******************************************************************************
|
| +**
|
| +** This SQLite extension implements a functions that compute SHA1 hashes.
|
| +** Two SQL functions are implemented:
|
| +**
|
| +** sha1(X)
|
| +** sha1_query(Y)
|
| +**
|
| +** The sha1(X) function computes the SHA1 hash of the input X, or NULL if
|
| +** X is NULL.
|
| +**
|
| +** The sha1_query(Y) function evalutes all queries in the SQL statements of Y
|
| +** and returns a hash of their results.
|
| +*/
|
| +#include "sqlite3ext.h"
|
| +SQLITE_EXTENSION_INIT1
|
| +#include <assert.h>
|
| +#include <string.h>
|
| +#include <stdarg.h>
|
| +
|
| +/******************************************************************************
|
| +** The Hash Engine
|
| +*/
|
| +/* Context for the SHA1 hash */
|
| +typedef struct SHA1Context SHA1Context;
|
| +struct SHA1Context {
|
| + unsigned int state[5];
|
| + unsigned int count[2];
|
| + unsigned char buffer[64];
|
| +};
|
| +
|
| +
|
| +#if __GNUC__ && (defined(__i386__) || defined(__x86_64__))
|
| +/*
|
| + * GCC by itself only generates left rotates. Use right rotates if
|
| + * possible to be kinder to dinky implementations with iterative rotate
|
| + * instructions.
|
| + */
|
| +#define SHA_ROT(op, x, k) \
|
| + ({ unsigned int y; asm(op " %1,%0" : "=r" (y) : "I" (k), "0" (x)); y; })
|
| +#define rol(x,k) SHA_ROT("roll", x, k)
|
| +#define ror(x,k) SHA_ROT("rorl", x, k)
|
| +
|
| +#else
|
| +/* Generic C equivalent */
|
| +#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
|
| +#define rol(x,k) SHA_ROT(x,k,32-(k))
|
| +#define ror(x,k) SHA_ROT(x,32-(k),k)
|
| +#endif
|
| +
|
| +
|
| +#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
|
| + |(rol(block[i],8)&0x00FF00FF))
|
| +#define blk0be(i) block[i]
|
| +#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
|
| + ^block[(i+2)&15]^block[i&15],1))
|
| +
|
| +/*
|
| + * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
|
| + *
|
| + * Rl0() for little-endian and Rb0() for big-endian. Endianness is
|
| + * determined at run-time.
|
| + */
|
| +#define Rl0(v,w,x,y,z,i) \
|
| + z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
|
| +#define Rb0(v,w,x,y,z,i) \
|
| + z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
|
| +#define R1(v,w,x,y,z,i) \
|
| + z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
|
| +#define R2(v,w,x,y,z,i) \
|
| + z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
|
| +#define R3(v,w,x,y,z,i) \
|
| + z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
|
| +#define R4(v,w,x,y,z,i) \
|
| + z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);
|
| +
|
| +/*
|
| + * Hash a single 512-bit block. This is the core of the algorithm.
|
| + */
|
| +void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){
|
| + unsigned int qq[5]; /* a, b, c, d, e; */
|
| + static int one = 1;
|
| + unsigned int block[16];
|
| + memcpy(block, buffer, 64);
|
| + memcpy(qq,state,5*sizeof(unsigned int));
|
| +
|
| +#define a qq[0]
|
| +#define b qq[1]
|
| +#define c qq[2]
|
| +#define d qq[3]
|
| +#define e qq[4]
|
| +
|
| + /* Copy p->state[] to working vars */
|
| + /*
|
| + a = state[0];
|
| + b = state[1];
|
| + c = state[2];
|
| + d = state[3];
|
| + e = state[4];
|
| + */
|
| +
|
| + /* 4 rounds of 20 operations each. Loop unrolled. */
|
| + if( 1 == *(unsigned char*)&one ){
|
| + Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3);
|
| + Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7);
|
| + Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11);
|
| + Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15);
|
| + }else{
|
| + Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3);
|
| + Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7);
|
| + Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11);
|
| + Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15);
|
| + }
|
| + R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
|
| + R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
|
| + R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
|
| + R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
|
| + R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
|
| + R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
|
| + R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
|
| + R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
|
| + R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
|
| + R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
|
| + R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
|
| + R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
|
| + R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
|
| + R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
|
| + R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
|
| + R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
|
| +
|
| + /* Add the working vars back into context.state[] */
|
| + state[0] += a;
|
| + state[1] += b;
|
| + state[2] += c;
|
| + state[3] += d;
|
| + state[4] += e;
|
| +
|
| +#undef a
|
| +#undef b
|
| +#undef c
|
| +#undef d
|
| +#undef e
|
| +}
|
| +
|
| +
|
| +/* Initialize a SHA1 context */
|
| +static void hash_init(SHA1Context *p){
|
| + /* SHA1 initialization constants */
|
| + p->state[0] = 0x67452301;
|
| + p->state[1] = 0xEFCDAB89;
|
| + p->state[2] = 0x98BADCFE;
|
| + p->state[3] = 0x10325476;
|
| + p->state[4] = 0xC3D2E1F0;
|
| + p->count[0] = p->count[1] = 0;
|
| +}
|
| +
|
| +/* Add new content to the SHA1 hash */
|
| +static void hash_step(
|
| + SHA1Context *p, /* Add content to this context */
|
| + const unsigned char *data, /* Data to be added */
|
| + unsigned int len /* Number of bytes in data */
|
| +){
|
| + unsigned int i, j;
|
| +
|
| + j = p->count[0];
|
| + if( (p->count[0] += len << 3) < j ){
|
| + p->count[1] += (len>>29)+1;
|
| + }
|
| + j = (j >> 3) & 63;
|
| + if( (j + len) > 63 ){
|
| + (void)memcpy(&p->buffer[j], data, (i = 64-j));
|
| + SHA1Transform(p->state, p->buffer);
|
| + for(; i + 63 < len; i += 64){
|
| + SHA1Transform(p->state, &data[i]);
|
| + }
|
| + j = 0;
|
| + }else{
|
| + i = 0;
|
| + }
|
| + (void)memcpy(&p->buffer[j], &data[i], len - i);
|
| +}
|
| +
|
| +/* Compute a string using sqlite3_vsnprintf() and hash it */
|
| +static void hash_step_vformat(
|
| + SHA1Context *p, /* Add content to this context */
|
| + const char *zFormat,
|
| + ...
|
| +){
|
| + va_list ap;
|
| + int n;
|
| + char zBuf[50];
|
| + va_start(ap, zFormat);
|
| + sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap);
|
| + va_end(ap);
|
| + n = (int)strlen(zBuf);
|
| + hash_step(p, (unsigned char*)zBuf, n);
|
| +}
|
| +
|
| +
|
| +/* Add padding and compute the message digest. Render the
|
| +** message digest as lower-case hexadecimal and put it into
|
| +** zOut[]. zOut[] must be at least 41 bytes long. */
|
| +static void hash_finish(
|
| + SHA1Context *p, /* The SHA1 context to finish and render */
|
| + char *zOut /* Store hexadecimal hash here */
|
| +){
|
| + unsigned int i;
|
| + unsigned char finalcount[8];
|
| + unsigned char digest[20];
|
| + static const char zEncode[] = "0123456789abcdef";
|
| +
|
| + for (i = 0; i < 8; i++){
|
| + finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)]
|
| + >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
|
| + }
|
| + hash_step(p, (const unsigned char *)"\200", 1);
|
| + while ((p->count[0] & 504) != 448){
|
| + hash_step(p, (const unsigned char *)"\0", 1);
|
| + }
|
| + hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */
|
| + for (i = 0; i < 20; i++){
|
| + digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
|
| + }
|
| + for(i=0; i<20; i++){
|
| + zOut[i*2] = zEncode[(digest[i]>>4)&0xf];
|
| + zOut[i*2+1] = zEncode[digest[i] & 0xf];
|
| + }
|
| + zOut[i*2]= 0;
|
| +}
|
| +/* End of the hashing logic
|
| +*****************************************************************************/
|
| +
|
| +/*
|
| +** Implementation of the sha1(X) function.
|
| +**
|
| +** Return a lower-case hexadecimal rendering of the SHA1 hash of the
|
| +** argument X. If X is a BLOB, it is hashed as is. For all other
|
| +** types of input, X is converted into a UTF-8 string and the string
|
| +** is hash without the trailing 0x00 terminator. The hash of a NULL
|
| +** value is NULL.
|
| +*/
|
| +static void sha1Func(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv
|
| +){
|
| + SHA1Context cx;
|
| + int eType = sqlite3_value_type(argv[0]);
|
| + int nByte = sqlite3_value_bytes(argv[0]);
|
| + char zOut[44];
|
| +
|
| + assert( argc==1 );
|
| + if( eType==SQLITE_NULL ) return;
|
| + hash_init(&cx);
|
| + if( eType==SQLITE_BLOB ){
|
| + hash_step(&cx, sqlite3_value_blob(argv[0]), nByte);
|
| + }else{
|
| + hash_step(&cx, sqlite3_value_text(argv[0]), nByte);
|
| + }
|
| + hash_finish(&cx, zOut);
|
| + sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
|
| +}
|
| +
|
| +/*
|
| +** Implementation of the sha1_query(SQL) function.
|
| +**
|
| +** This function compiles and runs the SQL statement(s) given in the
|
| +** argument. The results are hashed using SHA1 and that hash is returned.
|
| +**
|
| +** The original SQL text is included as part of the hash.
|
| +**
|
| +** The hash is not just a concatenation of the outputs. Each query
|
| +** is delimited and each row and value within the query is delimited,
|
| +** with all values being marked with their datatypes.
|
| +*/
|
| +static void sha1QueryFunc(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv
|
| +){
|
| + sqlite3 *db = sqlite3_context_db_handle(context);
|
| + const char *zSql = (const char*)sqlite3_value_text(argv[0]);
|
| + sqlite3_stmt *pStmt = 0;
|
| + int nCol; /* Number of columns in the result set */
|
| + int i; /* Loop counter */
|
| + int rc;
|
| + int n;
|
| + const char *z;
|
| + SHA1Context cx;
|
| + char zOut[44];
|
| +
|
| + assert( argc==1 );
|
| + if( zSql==0 ) return;
|
| + hash_init(&cx);
|
| + while( zSql[0] ){
|
| + rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
|
| + if( rc ){
|
| + char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s",
|
| + zSql, sqlite3_errmsg(db));
|
| + sqlite3_finalize(pStmt);
|
| + sqlite3_result_error(context, zMsg, -1);
|
| + sqlite3_free(zMsg);
|
| + return;
|
| + }
|
| + if( !sqlite3_stmt_readonly(pStmt) ){
|
| + char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt));
|
| + sqlite3_finalize(pStmt);
|
| + sqlite3_result_error(context, zMsg, -1);
|
| + sqlite3_free(zMsg);
|
| + return;
|
| + }
|
| + nCol = sqlite3_column_count(pStmt);
|
| + z = sqlite3_sql(pStmt);
|
| + n = (int)strlen(z);
|
| + hash_step_vformat(&cx,"S%d:",n);
|
| + hash_step(&cx,(unsigned char*)z,n);
|
| +
|
| + /* Compute a hash over the result of the query */
|
| + while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
| + hash_step(&cx,(const unsigned char*)"R",1);
|
| + for(i=0; i<nCol; i++){
|
| + switch( sqlite3_column_type(pStmt,i) ){
|
| + case SQLITE_NULL: {
|
| + hash_step(&cx, (const unsigned char*)"N",1);
|
| + break;
|
| + }
|
| + case SQLITE_INTEGER: {
|
| + sqlite3_uint64 u;
|
| + int j;
|
| + unsigned char x[9];
|
| + sqlite3_int64 v = sqlite3_column_int64(pStmt,i);
|
| + memcpy(&u, &v, 8);
|
| + for(j=8; j>=1; j--){
|
| + x[j] = u & 0xff;
|
| + u >>= 8;
|
| + }
|
| + x[0] = 'I';
|
| + hash_step(&cx, x, 9);
|
| + break;
|
| + }
|
| + case SQLITE_FLOAT: {
|
| + sqlite3_uint64 u;
|
| + int j;
|
| + unsigned char x[9];
|
| + double r = sqlite3_column_double(pStmt,i);
|
| + memcpy(&u, &r, 8);
|
| + for(j=8; j>=1; j--){
|
| + x[j] = u & 0xff;
|
| + u >>= 8;
|
| + }
|
| + x[0] = 'F';
|
| + hash_step(&cx,x,9);
|
| + break;
|
| + }
|
| + case SQLITE_TEXT: {
|
| + int n2 = sqlite3_column_bytes(pStmt, i);
|
| + const unsigned char *z2 = sqlite3_column_text(pStmt, i);
|
| + hash_step_vformat(&cx,"T%d:",n2);
|
| + hash_step(&cx, z2, n2);
|
| + break;
|
| + }
|
| + case SQLITE_BLOB: {
|
| + int n2 = sqlite3_column_bytes(pStmt, i);
|
| + const unsigned char *z2 = sqlite3_column_blob(pStmt, i);
|
| + hash_step_vformat(&cx,"B%d:",n2);
|
| + hash_step(&cx, z2, n2);
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + sqlite3_finalize(pStmt);
|
| + }
|
| + hash_finish(&cx, zOut);
|
| + sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
|
| +}
|
| +
|
| +
|
| +#ifdef _WIN32
|
| +__declspec(dllexport)
|
| +#endif
|
| +int sqlite3_sha_init(
|
| + sqlite3 *db,
|
| + char **pzErrMsg,
|
| + const sqlite3_api_routines *pApi
|
| +){
|
| + int rc = SQLITE_OK;
|
| + SQLITE_EXTENSION_INIT2(pApi);
|
| + (void)pzErrMsg; /* Unused parameter */
|
| + rc = sqlite3_create_function(db, "sha1", 1, SQLITE_UTF8, 0,
|
| + sha1Func, 0, 0);
|
| + if( rc==SQLITE_OK ){
|
| + rc = sqlite3_create_function(db, "sha1_query", 1, SQLITE_UTF8, 0,
|
| + sha1QueryFunc, 0, 0);
|
| + }
|
| + return rc;
|
| +}
|
|
|