Index: third_party/sqlite/sqlite-src-3170000/src/whereexpr.c |
diff --git a/third_party/sqlite/sqlite-src-3170000/src/whereexpr.c b/third_party/sqlite/sqlite-src-3170000/src/whereexpr.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..826d329b7f1d8f91c942e053ef531e38815093b3 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3170000/src/whereexpr.c |
@@ -0,0 +1,1445 @@ |
+/* |
+** 2015-06-08 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This module contains C code that generates VDBE code used to process |
+** the WHERE clause of SQL statements. |
+** |
+** This file was originally part of where.c but was split out to improve |
+** readability and editabiliity. This file contains utility routines for |
+** analyzing Expr objects in the WHERE clause. |
+*/ |
+#include "sqliteInt.h" |
+#include "whereInt.h" |
+ |
+/* Forward declarations */ |
+static void exprAnalyze(SrcList*, WhereClause*, int); |
+ |
+/* |
+** Deallocate all memory associated with a WhereOrInfo object. |
+*/ |
+static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ |
+ sqlite3WhereClauseClear(&p->wc); |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** Deallocate all memory associated with a WhereAndInfo object. |
+*/ |
+static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ |
+ sqlite3WhereClauseClear(&p->wc); |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** Add a single new WhereTerm entry to the WhereClause object pWC. |
+** The new WhereTerm object is constructed from Expr p and with wtFlags. |
+** The index in pWC->a[] of the new WhereTerm is returned on success. |
+** 0 is returned if the new WhereTerm could not be added due to a memory |
+** allocation error. The memory allocation failure will be recorded in |
+** the db->mallocFailed flag so that higher-level functions can detect it. |
+** |
+** This routine will increase the size of the pWC->a[] array as necessary. |
+** |
+** If the wtFlags argument includes TERM_DYNAMIC, then responsibility |
+** for freeing the expression p is assumed by the WhereClause object pWC. |
+** This is true even if this routine fails to allocate a new WhereTerm. |
+** |
+** WARNING: This routine might reallocate the space used to store |
+** WhereTerms. All pointers to WhereTerms should be invalidated after |
+** calling this routine. Such pointers may be reinitialized by referencing |
+** the pWC->a[] array. |
+*/ |
+static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ |
+ WhereTerm *pTerm; |
+ int idx; |
+ testcase( wtFlags & TERM_VIRTUAL ); |
+ if( pWC->nTerm>=pWC->nSlot ){ |
+ WhereTerm *pOld = pWC->a; |
+ sqlite3 *db = pWC->pWInfo->pParse->db; |
+ pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
+ if( pWC->a==0 ){ |
+ if( wtFlags & TERM_DYNAMIC ){ |
+ sqlite3ExprDelete(db, p); |
+ } |
+ pWC->a = pOld; |
+ return 0; |
+ } |
+ memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
+ if( pOld!=pWC->aStatic ){ |
+ sqlite3DbFree(db, pOld); |
+ } |
+ pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); |
+ } |
+ pTerm = &pWC->a[idx = pWC->nTerm++]; |
+ if( p && ExprHasProperty(p, EP_Unlikely) ){ |
+ pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; |
+ }else{ |
+ pTerm->truthProb = 1; |
+ } |
+ pTerm->pExpr = sqlite3ExprSkipCollate(p); |
+ pTerm->wtFlags = wtFlags; |
+ pTerm->pWC = pWC; |
+ pTerm->iParent = -1; |
+ memset(&pTerm->eOperator, 0, |
+ sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); |
+ return idx; |
+} |
+ |
+/* |
+** Return TRUE if the given operator is one of the operators that is |
+** allowed for an indexable WHERE clause term. The allowed operators are |
+** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" |
+*/ |
+static int allowedOp(int op){ |
+ assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
+ assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
+ assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
+ assert( TK_GE==TK_EQ+4 ); |
+ return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; |
+} |
+ |
+/* |
+** Commute a comparison operator. Expressions of the form "X op Y" |
+** are converted into "Y op X". |
+** |
+** If left/right precedence rules come into play when determining the |
+** collating sequence, then COLLATE operators are adjusted to ensure |
+** that the collating sequence does not change. For example: |
+** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on |
+** the left hand side of a comparison overrides any collation sequence |
+** attached to the right. For the same reason the EP_Collate flag |
+** is not commuted. |
+*/ |
+static void exprCommute(Parse *pParse, Expr *pExpr){ |
+ u16 expRight = (pExpr->pRight->flags & EP_Collate); |
+ u16 expLeft = (pExpr->pLeft->flags & EP_Collate); |
+ assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
+ if( expRight==expLeft ){ |
+ /* Either X and Y both have COLLATE operator or neither do */ |
+ if( expRight ){ |
+ /* Both X and Y have COLLATE operators. Make sure X is always |
+ ** used by clearing the EP_Collate flag from Y. */ |
+ pExpr->pRight->flags &= ~EP_Collate; |
+ }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ |
+ /* Neither X nor Y have COLLATE operators, but X has a non-default |
+ ** collating sequence. So add the EP_Collate marker on X to cause |
+ ** it to be searched first. */ |
+ pExpr->pLeft->flags |= EP_Collate; |
+ } |
+ } |
+ SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
+ if( pExpr->op>=TK_GT ){ |
+ assert( TK_LT==TK_GT+2 ); |
+ assert( TK_GE==TK_LE+2 ); |
+ assert( TK_GT>TK_EQ ); |
+ assert( TK_GT<TK_LE ); |
+ assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
+ pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
+ } |
+} |
+ |
+/* |
+** Translate from TK_xx operator to WO_xx bitmask. |
+*/ |
+static u16 operatorMask(int op){ |
+ u16 c; |
+ assert( allowedOp(op) ); |
+ if( op==TK_IN ){ |
+ c = WO_IN; |
+ }else if( op==TK_ISNULL ){ |
+ c = WO_ISNULL; |
+ }else if( op==TK_IS ){ |
+ c = WO_IS; |
+ }else{ |
+ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); |
+ c = (u16)(WO_EQ<<(op-TK_EQ)); |
+ } |
+ assert( op!=TK_ISNULL || c==WO_ISNULL ); |
+ assert( op!=TK_IN || c==WO_IN ); |
+ assert( op!=TK_EQ || c==WO_EQ ); |
+ assert( op!=TK_LT || c==WO_LT ); |
+ assert( op!=TK_LE || c==WO_LE ); |
+ assert( op!=TK_GT || c==WO_GT ); |
+ assert( op!=TK_GE || c==WO_GE ); |
+ assert( op!=TK_IS || c==WO_IS ); |
+ return c; |
+} |
+ |
+ |
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
+/* |
+** Check to see if the given expression is a LIKE or GLOB operator that |
+** can be optimized using inequality constraints. Return TRUE if it is |
+** so and false if not. |
+** |
+** In order for the operator to be optimizible, the RHS must be a string |
+** literal that does not begin with a wildcard. The LHS must be a column |
+** that may only be NULL, a string, or a BLOB, never a number. (This means |
+** that virtual tables cannot participate in the LIKE optimization.) The |
+** collating sequence for the column on the LHS must be appropriate for |
+** the operator. |
+*/ |
+static int isLikeOrGlob( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Expr *pExpr, /* Test this expression */ |
+ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ |
+ int *pisComplete, /* True if the only wildcard is % in the last character */ |
+ int *pnoCase /* True if uppercase is equivalent to lowercase */ |
+){ |
+ const char *z = 0; /* String on RHS of LIKE operator */ |
+ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ |
+ ExprList *pList; /* List of operands to the LIKE operator */ |
+ int c; /* One character in z[] */ |
+ int cnt; /* Number of non-wildcard prefix characters */ |
+ char wc[3]; /* Wildcard characters */ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ sqlite3_value *pVal = 0; |
+ int op; /* Opcode of pRight */ |
+ int rc; /* Result code to return */ |
+ |
+ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
+ return 0; |
+ } |
+#ifdef SQLITE_EBCDIC |
+ if( *pnoCase ) return 0; |
+#endif |
+ pList = pExpr->x.pList; |
+ pLeft = pList->a[1].pExpr; |
+ if( pLeft->op!=TK_COLUMN |
+ || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT |
+ || IsVirtual(pLeft->pTab) /* Value might be numeric */ |
+ ){ |
+ /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must |
+ ** be the name of an indexed column with TEXT affinity. */ |
+ return 0; |
+ } |
+ assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ |
+ |
+ pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); |
+ op = pRight->op; |
+ if( op==TK_VARIABLE ){ |
+ Vdbe *pReprepare = pParse->pReprepare; |
+ int iCol = pRight->iColumn; |
+ pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); |
+ if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ |
+ z = (char *)sqlite3_value_text(pVal); |
+ } |
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); |
+ assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); |
+ }else if( op==TK_STRING ){ |
+ z = pRight->u.zToken; |
+ } |
+ if( z ){ |
+ cnt = 0; |
+ while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ |
+ cnt++; |
+ } |
+ if( cnt!=0 && 255!=(u8)z[cnt-1] ){ |
+ Expr *pPrefix; |
+ *pisComplete = c==wc[0] && z[cnt+1]==0; |
+ pPrefix = sqlite3Expr(db, TK_STRING, z); |
+ if( pPrefix ) pPrefix->u.zToken[cnt] = 0; |
+ *ppPrefix = pPrefix; |
+ if( op==TK_VARIABLE ){ |
+ Vdbe *v = pParse->pVdbe; |
+ sqlite3VdbeSetVarmask(v, pRight->iColumn); |
+ if( *pisComplete && pRight->u.zToken[1] ){ |
+ /* If the rhs of the LIKE expression is a variable, and the current |
+ ** value of the variable means there is no need to invoke the LIKE |
+ ** function, then no OP_Variable will be added to the program. |
+ ** This causes problems for the sqlite3_bind_parameter_name() |
+ ** API. To work around them, add a dummy OP_Variable here. |
+ */ |
+ int r1 = sqlite3GetTempReg(pParse); |
+ sqlite3ExprCodeTarget(pParse, pRight, r1); |
+ sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ } |
+ } |
+ }else{ |
+ z = 0; |
+ } |
+ } |
+ |
+ rc = (z!=0); |
+ sqlite3ValueFree(pVal); |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
+ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* |
+** Check to see if the given expression is of the form |
+** |
+** column OP expr |
+** |
+** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a |
+** column of a virtual table. |
+** |
+** If it is then return TRUE. If not, return FALSE. |
+*/ |
+static int isMatchOfColumn( |
+ Expr *pExpr, /* Test this expression */ |
+ unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */ |
+){ |
+ static const struct Op2 { |
+ const char *zOp; |
+ unsigned char eOp2; |
+ } aOp[] = { |
+ { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, |
+ { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, |
+ { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, |
+ { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } |
+ }; |
+ ExprList *pList; |
+ Expr *pCol; /* Column reference */ |
+ int i; |
+ |
+ if( pExpr->op!=TK_FUNCTION ){ |
+ return 0; |
+ } |
+ pList = pExpr->x.pList; |
+ if( pList==0 || pList->nExpr!=2 ){ |
+ return 0; |
+ } |
+ pCol = pList->a[1].pExpr; |
+ if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ |
+ return 0; |
+ } |
+ for(i=0; i<ArraySize(aOp); i++){ |
+ if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ |
+ *peOp2 = aOp[i].eOp2; |
+ return 1; |
+ } |
+ } |
+ return 0; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+/* |
+** If the pBase expression originated in the ON or USING clause of |
+** a join, then transfer the appropriate markings over to derived. |
+*/ |
+static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
+ if( pDerived ){ |
+ pDerived->flags |= pBase->flags & EP_FromJoin; |
+ pDerived->iRightJoinTable = pBase->iRightJoinTable; |
+ } |
+} |
+ |
+/* |
+** Mark term iChild as being a child of term iParent |
+*/ |
+static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ |
+ pWC->a[iChild].iParent = iParent; |
+ pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; |
+ pWC->a[iParent].nChild++; |
+} |
+ |
+/* |
+** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not |
+** a conjunction, then return just pTerm when N==0. If N is exceeds |
+** the number of available subterms, return NULL. |
+*/ |
+static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ |
+ if( pTerm->eOperator!=WO_AND ){ |
+ return N==0 ? pTerm : 0; |
+ } |
+ if( N<pTerm->u.pAndInfo->wc.nTerm ){ |
+ return &pTerm->u.pAndInfo->wc.a[N]; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Subterms pOne and pTwo are contained within WHERE clause pWC. The |
+** two subterms are in disjunction - they are OR-ed together. |
+** |
+** If these two terms are both of the form: "A op B" with the same |
+** A and B values but different operators and if the operators are |
+** compatible (if one is = and the other is <, for example) then |
+** add a new virtual AND term to pWC that is the combination of the |
+** two. |
+** |
+** Some examples: |
+** |
+** x<y OR x=y --> x<=y |
+** x=y OR x=y --> x=y |
+** x<=y OR x<y --> x<=y |
+** |
+** The following is NOT generated: |
+** |
+** x<y OR x>y --> x!=y |
+*/ |
+static void whereCombineDisjuncts( |
+ SrcList *pSrc, /* the FROM clause */ |
+ WhereClause *pWC, /* The complete WHERE clause */ |
+ WhereTerm *pOne, /* First disjunct */ |
+ WhereTerm *pTwo /* Second disjunct */ |
+){ |
+ u16 eOp = pOne->eOperator | pTwo->eOperator; |
+ sqlite3 *db; /* Database connection (for malloc) */ |
+ Expr *pNew; /* New virtual expression */ |
+ int op; /* Operator for the combined expression */ |
+ int idxNew; /* Index in pWC of the next virtual term */ |
+ |
+ if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; |
+ if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; |
+ if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp |
+ && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; |
+ assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); |
+ assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); |
+ if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; |
+ if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; |
+ /* If we reach this point, it means the two subterms can be combined */ |
+ if( (eOp & (eOp-1))!=0 ){ |
+ if( eOp & (WO_LT|WO_LE) ){ |
+ eOp = WO_LE; |
+ }else{ |
+ assert( eOp & (WO_GT|WO_GE) ); |
+ eOp = WO_GE; |
+ } |
+ } |
+ db = pWC->pWInfo->pParse->db; |
+ pNew = sqlite3ExprDup(db, pOne->pExpr, 0); |
+ if( pNew==0 ) return; |
+ for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } |
+ pNew->op = op; |
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
+ exprAnalyze(pSrc, pWC, idxNew); |
+} |
+ |
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
+/* |
+** Analyze a term that consists of two or more OR-connected |
+** subterms. So in: |
+** |
+** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
+** ^^^^^^^^^^^^^^^^^^^^ |
+** |
+** This routine analyzes terms such as the middle term in the above example. |
+** A WhereOrTerm object is computed and attached to the term under |
+** analysis, regardless of the outcome of the analysis. Hence: |
+** |
+** WhereTerm.wtFlags |= TERM_ORINFO |
+** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object |
+** |
+** The term being analyzed must have two or more of OR-connected subterms. |
+** A single subterm might be a set of AND-connected sub-subterms. |
+** Examples of terms under analysis: |
+** |
+** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 |
+** (B) x=expr1 OR expr2=x OR x=expr3 |
+** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) |
+** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') |
+** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) |
+** (F) x>A OR (x=A AND y>=B) |
+** |
+** CASE 1: |
+** |
+** If all subterms are of the form T.C=expr for some single column of C and |
+** a single table T (as shown in example B above) then create a new virtual |
+** term that is an equivalent IN expression. In other words, if the term |
+** being analyzed is: |
+** |
+** x = expr1 OR expr2 = x OR x = expr3 |
+** |
+** then create a new virtual term like this: |
+** |
+** x IN (expr1,expr2,expr3) |
+** |
+** CASE 2: |
+** |
+** If there are exactly two disjuncts and one side has x>A and the other side |
+** has x=A (for the same x and A) then add a new virtual conjunct term to the |
+** WHERE clause of the form "x>=A". Example: |
+** |
+** x>A OR (x=A AND y>B) adds: x>=A |
+** |
+** The added conjunct can sometimes be helpful in query planning. |
+** |
+** CASE 3: |
+** |
+** If all subterms are indexable by a single table T, then set |
+** |
+** WhereTerm.eOperator = WO_OR |
+** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T |
+** |
+** A subterm is "indexable" if it is of the form |
+** "T.C <op> <expr>" where C is any column of table T and |
+** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". |
+** A subterm is also indexable if it is an AND of two or more |
+** subsubterms at least one of which is indexable. Indexable AND |
+** subterms have their eOperator set to WO_AND and they have |
+** u.pAndInfo set to a dynamically allocated WhereAndTerm object. |
+** |
+** From another point of view, "indexable" means that the subterm could |
+** potentially be used with an index if an appropriate index exists. |
+** This analysis does not consider whether or not the index exists; that |
+** is decided elsewhere. This analysis only looks at whether subterms |
+** appropriate for indexing exist. |
+** |
+** All examples A through E above satisfy case 3. But if a term |
+** also satisfies case 1 (such as B) we know that the optimizer will |
+** always prefer case 1, so in that case we pretend that case 3 is not |
+** satisfied. |
+** |
+** It might be the case that multiple tables are indexable. For example, |
+** (E) above is indexable on tables P, Q, and R. |
+** |
+** Terms that satisfy case 3 are candidates for lookup by using |
+** separate indices to find rowids for each subterm and composing |
+** the union of all rowids using a RowSet object. This is similar |
+** to "bitmap indices" in other database engines. |
+** |
+** OTHERWISE: |
+** |
+** If none of cases 1, 2, or 3 apply, then leave the eOperator set to |
+** zero. This term is not useful for search. |
+*/ |
+static void exprAnalyzeOrTerm( |
+ SrcList *pSrc, /* the FROM clause */ |
+ WhereClause *pWC, /* the complete WHERE clause */ |
+ int idxTerm /* Index of the OR-term to be analyzed */ |
+){ |
+ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
+ Parse *pParse = pWInfo->pParse; /* Parser context */ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ |
+ Expr *pExpr = pTerm->pExpr; /* The expression of the term */ |
+ int i; /* Loop counters */ |
+ WhereClause *pOrWc; /* Breakup of pTerm into subterms */ |
+ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ |
+ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ |
+ Bitmask chngToIN; /* Tables that might satisfy case 1 */ |
+ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ |
+ |
+ /* |
+ ** Break the OR clause into its separate subterms. The subterms are |
+ ** stored in a WhereClause structure containing within the WhereOrInfo |
+ ** object that is attached to the original OR clause term. |
+ */ |
+ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); |
+ assert( pExpr->op==TK_OR ); |
+ pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); |
+ if( pOrInfo==0 ) return; |
+ pTerm->wtFlags |= TERM_ORINFO; |
+ pOrWc = &pOrInfo->wc; |
+ memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); |
+ sqlite3WhereClauseInit(pOrWc, pWInfo); |
+ sqlite3WhereSplit(pOrWc, pExpr, TK_OR); |
+ sqlite3WhereExprAnalyze(pSrc, pOrWc); |
+ if( db->mallocFailed ) return; |
+ assert( pOrWc->nTerm>=2 ); |
+ |
+ /* |
+ ** Compute the set of tables that might satisfy cases 1 or 3. |
+ */ |
+ indexable = ~(Bitmask)0; |
+ chngToIN = ~(Bitmask)0; |
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ |
+ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ |
+ WhereAndInfo *pAndInfo; |
+ assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); |
+ chngToIN = 0; |
+ pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); |
+ if( pAndInfo ){ |
+ WhereClause *pAndWC; |
+ WhereTerm *pAndTerm; |
+ int j; |
+ Bitmask b = 0; |
+ pOrTerm->u.pAndInfo = pAndInfo; |
+ pOrTerm->wtFlags |= TERM_ANDINFO; |
+ pOrTerm->eOperator = WO_AND; |
+ pAndWC = &pAndInfo->wc; |
+ memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); |
+ sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); |
+ sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); |
+ sqlite3WhereExprAnalyze(pSrc, pAndWC); |
+ pAndWC->pOuter = pWC; |
+ if( !db->mallocFailed ){ |
+ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ |
+ assert( pAndTerm->pExpr ); |
+ if( allowedOp(pAndTerm->pExpr->op) |
+ || pAndTerm->eOperator==WO_MATCH |
+ ){ |
+ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); |
+ } |
+ } |
+ } |
+ indexable &= b; |
+ } |
+ }else if( pOrTerm->wtFlags & TERM_COPIED ){ |
+ /* Skip this term for now. We revisit it when we process the |
+ ** corresponding TERM_VIRTUAL term */ |
+ }else{ |
+ Bitmask b; |
+ b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); |
+ if( pOrTerm->wtFlags & TERM_VIRTUAL ){ |
+ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; |
+ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); |
+ } |
+ indexable &= b; |
+ if( (pOrTerm->eOperator & WO_EQ)==0 ){ |
+ chngToIN = 0; |
+ }else{ |
+ chngToIN &= b; |
+ } |
+ } |
+ } |
+ |
+ /* |
+ ** Record the set of tables that satisfy case 3. The set might be |
+ ** empty. |
+ */ |
+ pOrInfo->indexable = indexable; |
+ pTerm->eOperator = indexable==0 ? 0 : WO_OR; |
+ |
+ /* For a two-way OR, attempt to implementation case 2. |
+ */ |
+ if( indexable && pOrWc->nTerm==2 ){ |
+ int iOne = 0; |
+ WhereTerm *pOne; |
+ while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ |
+ int iTwo = 0; |
+ WhereTerm *pTwo; |
+ while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ |
+ whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); |
+ } |
+ } |
+ } |
+ |
+ /* |
+ ** chngToIN holds a set of tables that *might* satisfy case 1. But |
+ ** we have to do some additional checking to see if case 1 really |
+ ** is satisfied. |
+ ** |
+ ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means |
+ ** that there is no possibility of transforming the OR clause into an |
+ ** IN operator because one or more terms in the OR clause contain |
+ ** something other than == on a column in the single table. The 1-bit |
+ ** case means that every term of the OR clause is of the form |
+ ** "table.column=expr" for some single table. The one bit that is set |
+ ** will correspond to the common table. We still need to check to make |
+ ** sure the same column is used on all terms. The 2-bit case is when |
+ ** the all terms are of the form "table1.column=table2.column". It |
+ ** might be possible to form an IN operator with either table1.column |
+ ** or table2.column as the LHS if either is common to every term of |
+ ** the OR clause. |
+ ** |
+ ** Note that terms of the form "table.column1=table.column2" (the |
+ ** same table on both sizes of the ==) cannot be optimized. |
+ */ |
+ if( chngToIN ){ |
+ int okToChngToIN = 0; /* True if the conversion to IN is valid */ |
+ int iColumn = -1; /* Column index on lhs of IN operator */ |
+ int iCursor = -1; /* Table cursor common to all terms */ |
+ int j = 0; /* Loop counter */ |
+ |
+ /* Search for a table and column that appears on one side or the |
+ ** other of the == operator in every subterm. That table and column |
+ ** will be recorded in iCursor and iColumn. There might not be any |
+ ** such table and column. Set okToChngToIN if an appropriate table |
+ ** and column is found but leave okToChngToIN false if not found. |
+ */ |
+ for(j=0; j<2 && !okToChngToIN; j++){ |
+ pOrTerm = pOrWc->a; |
+ for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ |
+ assert( pOrTerm->eOperator & WO_EQ ); |
+ pOrTerm->wtFlags &= ~TERM_OR_OK; |
+ if( pOrTerm->leftCursor==iCursor ){ |
+ /* This is the 2-bit case and we are on the second iteration and |
+ ** current term is from the first iteration. So skip this term. */ |
+ assert( j==1 ); |
+ continue; |
+ } |
+ if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, |
+ pOrTerm->leftCursor))==0 ){ |
+ /* This term must be of the form t1.a==t2.b where t2 is in the |
+ ** chngToIN set but t1 is not. This term will be either preceded |
+ ** or follwed by an inverted copy (t2.b==t1.a). Skip this term |
+ ** and use its inversion. */ |
+ testcase( pOrTerm->wtFlags & TERM_COPIED ); |
+ testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); |
+ assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); |
+ continue; |
+ } |
+ iColumn = pOrTerm->u.leftColumn; |
+ iCursor = pOrTerm->leftCursor; |
+ break; |
+ } |
+ if( i<0 ){ |
+ /* No candidate table+column was found. This can only occur |
+ ** on the second iteration */ |
+ assert( j==1 ); |
+ assert( IsPowerOfTwo(chngToIN) ); |
+ assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); |
+ break; |
+ } |
+ testcase( j==1 ); |
+ |
+ /* We have found a candidate table and column. Check to see if that |
+ ** table and column is common to every term in the OR clause */ |
+ okToChngToIN = 1; |
+ for(; i>=0 && okToChngToIN; i--, pOrTerm++){ |
+ assert( pOrTerm->eOperator & WO_EQ ); |
+ if( pOrTerm->leftCursor!=iCursor ){ |
+ pOrTerm->wtFlags &= ~TERM_OR_OK; |
+ }else if( pOrTerm->u.leftColumn!=iColumn ){ |
+ okToChngToIN = 0; |
+ }else{ |
+ int affLeft, affRight; |
+ /* If the right-hand side is also a column, then the affinities |
+ ** of both right and left sides must be such that no type |
+ ** conversions are required on the right. (Ticket #2249) |
+ */ |
+ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
+ affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
+ if( affRight!=0 && affRight!=affLeft ){ |
+ okToChngToIN = 0; |
+ }else{ |
+ pOrTerm->wtFlags |= TERM_OR_OK; |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* At this point, okToChngToIN is true if original pTerm satisfies |
+ ** case 1. In that case, construct a new virtual term that is |
+ ** pTerm converted into an IN operator. |
+ */ |
+ if( okToChngToIN ){ |
+ Expr *pDup; /* A transient duplicate expression */ |
+ ExprList *pList = 0; /* The RHS of the IN operator */ |
+ Expr *pLeft = 0; /* The LHS of the IN operator */ |
+ Expr *pNew; /* The complete IN operator */ |
+ |
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ |
+ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; |
+ assert( pOrTerm->eOperator & WO_EQ ); |
+ assert( pOrTerm->leftCursor==iCursor ); |
+ assert( pOrTerm->u.leftColumn==iColumn ); |
+ pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); |
+ pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); |
+ pLeft = pOrTerm->pExpr->pLeft; |
+ } |
+ assert( pLeft!=0 ); |
+ pDup = sqlite3ExprDup(db, pLeft, 0); |
+ pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); |
+ if( pNew ){ |
+ int idxNew; |
+ transferJoinMarkings(pNew, pExpr); |
+ assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
+ pNew->x.pList = pList; |
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew); |
+ pTerm = &pWC->a[idxTerm]; |
+ markTermAsChild(pWC, idxNew, idxTerm); |
+ }else{ |
+ sqlite3ExprListDelete(db, pList); |
+ } |
+ pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ |
+ } |
+ } |
+} |
+#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
+ |
+/* |
+** We already know that pExpr is a binary operator where both operands are |
+** column references. This routine checks to see if pExpr is an equivalence |
+** relation: |
+** 1. The SQLITE_Transitive optimization must be enabled |
+** 2. Must be either an == or an IS operator |
+** 3. Not originating in the ON clause of an OUTER JOIN |
+** 4. The affinities of A and B must be compatible |
+** 5a. Both operands use the same collating sequence OR |
+** 5b. The overall collating sequence is BINARY |
+** If this routine returns TRUE, that means that the RHS can be substituted |
+** for the LHS anyplace else in the WHERE clause where the LHS column occurs. |
+** This is an optimization. No harm comes from returning 0. But if 1 is |
+** returned when it should not be, then incorrect answers might result. |
+*/ |
+static int termIsEquivalence(Parse *pParse, Expr *pExpr){ |
+ char aff1, aff2; |
+ CollSeq *pColl; |
+ const char *zColl1, *zColl2; |
+ if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; |
+ if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; |
+ if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; |
+ aff1 = sqlite3ExprAffinity(pExpr->pLeft); |
+ aff2 = sqlite3ExprAffinity(pExpr->pRight); |
+ if( aff1!=aff2 |
+ && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) |
+ ){ |
+ return 0; |
+ } |
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); |
+ if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; |
+ pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
+ zColl1 = pColl ? pColl->zName : 0; |
+ pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); |
+ zColl2 = pColl ? pColl->zName : 0; |
+ return sqlite3_stricmp(zColl1, zColl2)==0; |
+} |
+ |
+/* |
+** Recursively walk the expressions of a SELECT statement and generate |
+** a bitmask indicating which tables are used in that expression |
+** tree. |
+*/ |
+static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ |
+ Bitmask mask = 0; |
+ while( pS ){ |
+ SrcList *pSrc = pS->pSrc; |
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); |
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); |
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); |
+ mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); |
+ mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); |
+ if( ALWAYS(pSrc!=0) ){ |
+ int i; |
+ for(i=0; i<pSrc->nSrc; i++){ |
+ mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); |
+ mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); |
+ } |
+ } |
+ pS = pS->pPrior; |
+ } |
+ return mask; |
+} |
+ |
+/* |
+** Expression pExpr is one operand of a comparison operator that might |
+** be useful for indexing. This routine checks to see if pExpr appears |
+** in any index. Return TRUE (1) if pExpr is an indexed term and return |
+** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor |
+** number of the table that is indexed and *piColumn to the column number |
+** of the column that is indexed, or XN_EXPR (-2) if an expression is being |
+** indexed. |
+** |
+** If pExpr is a TK_COLUMN column reference, then this routine always returns |
+** true even if that particular column is not indexed, because the column |
+** might be added to an automatic index later. |
+*/ |
+static int exprMightBeIndexed( |
+ SrcList *pFrom, /* The FROM clause */ |
+ int op, /* The specific comparison operator */ |
+ Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ |
+ Expr *pExpr, /* An operand of a comparison operator */ |
+ int *piCur, /* Write the referenced table cursor number here */ |
+ int *piColumn /* Write the referenced table column number here */ |
+){ |
+ Index *pIdx; |
+ int i; |
+ int iCur; |
+ |
+ /* If this expression is a vector to the left or right of a |
+ ** inequality constraint (>, <, >= or <=), perform the processing |
+ ** on the first element of the vector. */ |
+ assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); |
+ assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); |
+ assert( op<=TK_GE ); |
+ if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ |
+ pExpr = pExpr->x.pList->a[0].pExpr; |
+ } |
+ |
+ if( pExpr->op==TK_COLUMN ){ |
+ *piCur = pExpr->iTable; |
+ *piColumn = pExpr->iColumn; |
+ return 1; |
+ } |
+ if( mPrereq==0 ) return 0; /* No table references */ |
+ if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ |
+ for(i=0; mPrereq>1; i++, mPrereq>>=1){} |
+ iCur = pFrom->a[i].iCursor; |
+ for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ if( pIdx->aColExpr==0 ) continue; |
+ for(i=0; i<pIdx->nKeyCol; i++){ |
+ if( pIdx->aiColumn[i]!=XN_EXPR ) continue; |
+ if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ |
+ *piCur = iCur; |
+ *piColumn = XN_EXPR; |
+ return 1; |
+ } |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** The input to this routine is an WhereTerm structure with only the |
+** "pExpr" field filled in. The job of this routine is to analyze the |
+** subexpression and populate all the other fields of the WhereTerm |
+** structure. |
+** |
+** If the expression is of the form "<expr> <op> X" it gets commuted |
+** to the standard form of "X <op> <expr>". |
+** |
+** If the expression is of the form "X <op> Y" where both X and Y are |
+** columns, then the original expression is unchanged and a new virtual |
+** term of the form "Y <op> X" is added to the WHERE clause and |
+** analyzed separately. The original term is marked with TERM_COPIED |
+** and the new term is marked with TERM_DYNAMIC (because it's pExpr |
+** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it |
+** is a commuted copy of a prior term.) The original term has nChild=1 |
+** and the copy has idxParent set to the index of the original term. |
+*/ |
+static void exprAnalyze( |
+ SrcList *pSrc, /* the FROM clause */ |
+ WhereClause *pWC, /* the WHERE clause */ |
+ int idxTerm /* Index of the term to be analyzed */ |
+){ |
+ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
+ WhereTerm *pTerm; /* The term to be analyzed */ |
+ WhereMaskSet *pMaskSet; /* Set of table index masks */ |
+ Expr *pExpr; /* The expression to be analyzed */ |
+ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ |
+ Bitmask prereqAll; /* Prerequesites of pExpr */ |
+ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ |
+ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ |
+ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ |
+ int noCase = 0; /* uppercase equivalent to lowercase */ |
+ int op; /* Top-level operator. pExpr->op */ |
+ Parse *pParse = pWInfo->pParse; /* Parsing context */ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */ |
+ int nLeft; /* Number of elements on left side vector */ |
+ |
+ if( db->mallocFailed ){ |
+ return; |
+ } |
+ pTerm = &pWC->a[idxTerm]; |
+ pMaskSet = &pWInfo->sMaskSet; |
+ pExpr = pTerm->pExpr; |
+ assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); |
+ prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); |
+ op = pExpr->op; |
+ if( op==TK_IN ){ |
+ assert( pExpr->pRight==0 ); |
+ if( sqlite3ExprCheckIN(pParse, pExpr) ) return; |
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); |
+ }else{ |
+ pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); |
+ } |
+ }else if( op==TK_ISNULL ){ |
+ pTerm->prereqRight = 0; |
+ }else{ |
+ pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); |
+ } |
+ prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); |
+ if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
+ Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); |
+ prereqAll |= x; |
+ extraRight = x-1; /* ON clause terms may not be used with an index |
+ ** on left table of a LEFT JOIN. Ticket #3015 */ |
+ if( (prereqAll>>1)>=x ){ |
+ sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); |
+ return; |
+ } |
+ } |
+ pTerm->prereqAll = prereqAll; |
+ pTerm->leftCursor = -1; |
+ pTerm->iParent = -1; |
+ pTerm->eOperator = 0; |
+ if( allowedOp(op) ){ |
+ int iCur, iColumn; |
+ Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); |
+ Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); |
+ u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; |
+ |
+ if( pTerm->iField>0 ){ |
+ assert( op==TK_IN ); |
+ assert( pLeft->op==TK_VECTOR ); |
+ pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; |
+ } |
+ |
+ if( exprMightBeIndexed(pSrc, op, prereqLeft, pLeft, &iCur, &iColumn) ){ |
+ pTerm->leftCursor = iCur; |
+ pTerm->u.leftColumn = iColumn; |
+ pTerm->eOperator = operatorMask(op) & opMask; |
+ } |
+ if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; |
+ if( pRight |
+ && exprMightBeIndexed(pSrc, op, pTerm->prereqRight, pRight, &iCur,&iColumn) |
+ ){ |
+ WhereTerm *pNew; |
+ Expr *pDup; |
+ u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ |
+ assert( pTerm->iField==0 ); |
+ if( pTerm->leftCursor>=0 ){ |
+ int idxNew; |
+ pDup = sqlite3ExprDup(db, pExpr, 0); |
+ if( db->mallocFailed ){ |
+ sqlite3ExprDelete(db, pDup); |
+ return; |
+ } |
+ idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
+ if( idxNew==0 ) return; |
+ pNew = &pWC->a[idxNew]; |
+ markTermAsChild(pWC, idxNew, idxTerm); |
+ if( op==TK_IS ) pNew->wtFlags |= TERM_IS; |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->wtFlags |= TERM_COPIED; |
+ |
+ if( termIsEquivalence(pParse, pDup) ){ |
+ pTerm->eOperator |= WO_EQUIV; |
+ eExtraOp = WO_EQUIV; |
+ } |
+ }else{ |
+ pDup = pExpr; |
+ pNew = pTerm; |
+ } |
+ exprCommute(pParse, pDup); |
+ pNew->leftCursor = iCur; |
+ pNew->u.leftColumn = iColumn; |
+ testcase( (prereqLeft | extraRight) != prereqLeft ); |
+ pNew->prereqRight = prereqLeft | extraRight; |
+ pNew->prereqAll = prereqAll; |
+ pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; |
+ } |
+ } |
+ |
+#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
+ /* If a term is the BETWEEN operator, create two new virtual terms |
+ ** that define the range that the BETWEEN implements. For example: |
+ ** |
+ ** a BETWEEN b AND c |
+ ** |
+ ** is converted into: |
+ ** |
+ ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) |
+ ** |
+ ** The two new terms are added onto the end of the WhereClause object. |
+ ** The new terms are "dynamic" and are children of the original BETWEEN |
+ ** term. That means that if the BETWEEN term is coded, the children are |
+ ** skipped. Or, if the children are satisfied by an index, the original |
+ ** BETWEEN term is skipped. |
+ */ |
+ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ |
+ ExprList *pList = pExpr->x.pList; |
+ int i; |
+ static const u8 ops[] = {TK_GE, TK_LE}; |
+ assert( pList!=0 ); |
+ assert( pList->nExpr==2 ); |
+ for(i=0; i<2; i++){ |
+ Expr *pNewExpr; |
+ int idxNew; |
+ pNewExpr = sqlite3PExpr(pParse, ops[i], |
+ sqlite3ExprDup(db, pExpr->pLeft, 0), |
+ sqlite3ExprDup(db, pList->a[i].pExpr, 0)); |
+ transferJoinMarkings(pNewExpr, pExpr); |
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew); |
+ pTerm = &pWC->a[idxTerm]; |
+ markTermAsChild(pWC, idxNew, idxTerm); |
+ } |
+ } |
+#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
+ |
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
+ /* Analyze a term that is composed of two or more subterms connected by |
+ ** an OR operator. |
+ */ |
+ else if( pExpr->op==TK_OR ){ |
+ assert( pWC->op==TK_AND ); |
+ exprAnalyzeOrTerm(pSrc, pWC, idxTerm); |
+ pTerm = &pWC->a[idxTerm]; |
+ } |
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
+ |
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
+ /* Add constraints to reduce the search space on a LIKE or GLOB |
+ ** operator. |
+ ** |
+ ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints |
+ ** |
+ ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' |
+ ** |
+ ** The last character of the prefix "abc" is incremented to form the |
+ ** termination condition "abd". If case is not significant (the default |
+ ** for LIKE) then the lower-bound is made all uppercase and the upper- |
+ ** bound is made all lowercase so that the bounds also work when comparing |
+ ** BLOBs. |
+ */ |
+ if( pWC->op==TK_AND |
+ && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) |
+ ){ |
+ Expr *pLeft; /* LHS of LIKE/GLOB operator */ |
+ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ |
+ Expr *pNewExpr1; |
+ Expr *pNewExpr2; |
+ int idxNew1; |
+ int idxNew2; |
+ const char *zCollSeqName; /* Name of collating sequence */ |
+ const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; |
+ |
+ pLeft = pExpr->x.pList->a[1].pExpr; |
+ pStr2 = sqlite3ExprDup(db, pStr1, 0); |
+ |
+ /* Convert the lower bound to upper-case and the upper bound to |
+ ** lower-case (upper-case is less than lower-case in ASCII) so that |
+ ** the range constraints also work for BLOBs |
+ */ |
+ if( noCase && !pParse->db->mallocFailed ){ |
+ int i; |
+ char c; |
+ pTerm->wtFlags |= TERM_LIKE; |
+ for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ |
+ pStr1->u.zToken[i] = sqlite3Toupper(c); |
+ pStr2->u.zToken[i] = sqlite3Tolower(c); |
+ } |
+ } |
+ |
+ if( !db->mallocFailed ){ |
+ u8 c, *pC; /* Last character before the first wildcard */ |
+ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; |
+ c = *pC; |
+ if( noCase ){ |
+ /* The point is to increment the last character before the first |
+ ** wildcard. But if we increment '@', that will push it into the |
+ ** alphabetic range where case conversions will mess up the |
+ ** inequality. To avoid this, make sure to also run the full |
+ ** LIKE on all candidate expressions by clearing the isComplete flag |
+ */ |
+ if( c=='A'-1 ) isComplete = 0; |
+ c = sqlite3UpperToLower[c]; |
+ } |
+ *pC = c + 1; |
+ } |
+ zCollSeqName = noCase ? "NOCASE" : "BINARY"; |
+ pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); |
+ pNewExpr1 = sqlite3PExpr(pParse, TK_GE, |
+ sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), |
+ pStr1); |
+ transferJoinMarkings(pNewExpr1, pExpr); |
+ idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); |
+ testcase( idxNew1==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew1); |
+ pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); |
+ pNewExpr2 = sqlite3PExpr(pParse, TK_LT, |
+ sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), |
+ pStr2); |
+ transferJoinMarkings(pNewExpr2, pExpr); |
+ idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); |
+ testcase( idxNew2==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew2); |
+ pTerm = &pWC->a[idxTerm]; |
+ if( isComplete ){ |
+ markTermAsChild(pWC, idxNew1, idxTerm); |
+ markTermAsChild(pWC, idxNew2, idxTerm); |
+ } |
+ } |
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ /* Add a WO_MATCH auxiliary term to the constraint set if the |
+ ** current expression is of the form: column MATCH expr. |
+ ** This information is used by the xBestIndex methods of |
+ ** virtual tables. The native query optimizer does not attempt |
+ ** to do anything with MATCH functions. |
+ */ |
+ if( pWC->op==TK_AND && isMatchOfColumn(pExpr, &eOp2) ){ |
+ int idxNew; |
+ Expr *pRight, *pLeft; |
+ WhereTerm *pNewTerm; |
+ Bitmask prereqColumn, prereqExpr; |
+ |
+ pRight = pExpr->x.pList->a[0].pExpr; |
+ pLeft = pExpr->x.pList->a[1].pExpr; |
+ prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); |
+ prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); |
+ if( (prereqExpr & prereqColumn)==0 ){ |
+ Expr *pNewExpr; |
+ pNewExpr = sqlite3PExpr(pParse, TK_MATCH, |
+ 0, sqlite3ExprDup(db, pRight, 0)); |
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew==0 ); |
+ pNewTerm = &pWC->a[idxNew]; |
+ pNewTerm->prereqRight = prereqExpr; |
+ pNewTerm->leftCursor = pLeft->iTable; |
+ pNewTerm->u.leftColumn = pLeft->iColumn; |
+ pNewTerm->eOperator = WO_MATCH; |
+ pNewTerm->eMatchOp = eOp2; |
+ markTermAsChild(pWC, idxNew, idxTerm); |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->wtFlags |= TERM_COPIED; |
+ pNewTerm->prereqAll = pTerm->prereqAll; |
+ } |
+ } |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+ /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create |
+ ** new terms for each component comparison - "a = ?" and "b = ?". The |
+ ** new terms completely replace the original vector comparison, which is |
+ ** no longer used. |
+ ** |
+ ** This is only required if at least one side of the comparison operation |
+ ** is not a sub-select. */ |
+ if( pWC->op==TK_AND |
+ && (pExpr->op==TK_EQ || pExpr->op==TK_IS) |
+ && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 |
+ && sqlite3ExprVectorSize(pExpr->pRight)==nLeft |
+ && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 |
+ || (pExpr->pRight->flags & EP_xIsSelect)==0) |
+ ){ |
+ int i; |
+ for(i=0; i<nLeft; i++){ |
+ int idxNew; |
+ Expr *pNew; |
+ Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); |
+ Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); |
+ |
+ pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); |
+ transferJoinMarkings(pNew, pExpr); |
+ idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); |
+ exprAnalyze(pSrc, pWC, idxNew); |
+ } |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL; /* Disable the original */ |
+ pTerm->eOperator = 0; |
+ } |
+ |
+ /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create |
+ ** a virtual term for each vector component. The expression object |
+ ** used by each such virtual term is pExpr (the full vector IN(...) |
+ ** expression). The WhereTerm.iField variable identifies the index within |
+ ** the vector on the LHS that the virtual term represents. |
+ ** |
+ ** This only works if the RHS is a simple SELECT, not a compound |
+ */ |
+ if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 |
+ && pExpr->pLeft->op==TK_VECTOR |
+ && pExpr->x.pSelect->pPrior==0 |
+ ){ |
+ int i; |
+ for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ |
+ int idxNew; |
+ idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); |
+ pWC->a[idxNew].iField = i+1; |
+ exprAnalyze(pSrc, pWC, idxNew); |
+ markTermAsChild(pWC, idxNew, idxTerm); |
+ } |
+ } |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ /* When sqlite_stat3 histogram data is available an operator of the |
+ ** form "x IS NOT NULL" can sometimes be evaluated more efficiently |
+ ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a |
+ ** virtual term of that form. |
+ ** |
+ ** Note that the virtual term must be tagged with TERM_VNULL. |
+ */ |
+ if( pExpr->op==TK_NOTNULL |
+ && pExpr->pLeft->op==TK_COLUMN |
+ && pExpr->pLeft->iColumn>=0 |
+ && OptimizationEnabled(db, SQLITE_Stat34) |
+ ){ |
+ Expr *pNewExpr; |
+ Expr *pLeft = pExpr->pLeft; |
+ int idxNew; |
+ WhereTerm *pNewTerm; |
+ |
+ pNewExpr = sqlite3PExpr(pParse, TK_GT, |
+ sqlite3ExprDup(db, pLeft, 0), |
+ sqlite3ExprAlloc(db, TK_NULL, 0, 0)); |
+ |
+ idxNew = whereClauseInsert(pWC, pNewExpr, |
+ TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); |
+ if( idxNew ){ |
+ pNewTerm = &pWC->a[idxNew]; |
+ pNewTerm->prereqRight = 0; |
+ pNewTerm->leftCursor = pLeft->iTable; |
+ pNewTerm->u.leftColumn = pLeft->iColumn; |
+ pNewTerm->eOperator = WO_GT; |
+ markTermAsChild(pWC, idxNew, idxTerm); |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->wtFlags |= TERM_COPIED; |
+ pNewTerm->prereqAll = pTerm->prereqAll; |
+ } |
+ } |
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
+ |
+ /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
+ ** an index for tables to the left of the join. |
+ */ |
+ testcase( pTerm!=&pWC->a[idxTerm] ); |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->prereqRight |= extraRight; |
+} |
+ |
+/*************************************************************************** |
+** Routines with file scope above. Interface to the rest of the where.c |
+** subsystem follows. |
+***************************************************************************/ |
+ |
+/* |
+** This routine identifies subexpressions in the WHERE clause where |
+** each subexpression is separated by the AND operator or some other |
+** operator specified in the op parameter. The WhereClause structure |
+** is filled with pointers to subexpressions. For example: |
+** |
+** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
+** \________/ \_______________/ \________________/ |
+** slot[0] slot[1] slot[2] |
+** |
+** The original WHERE clause in pExpr is unaltered. All this routine |
+** does is make slot[] entries point to substructure within pExpr. |
+** |
+** In the previous sentence and in the diagram, "slot[]" refers to |
+** the WhereClause.a[] array. The slot[] array grows as needed to contain |
+** all terms of the WHERE clause. |
+*/ |
+void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ |
+ Expr *pE2 = sqlite3ExprSkipCollate(pExpr); |
+ pWC->op = op; |
+ if( pE2==0 ) return; |
+ if( pE2->op!=op ){ |
+ whereClauseInsert(pWC, pExpr, 0); |
+ }else{ |
+ sqlite3WhereSplit(pWC, pE2->pLeft, op); |
+ sqlite3WhereSplit(pWC, pE2->pRight, op); |
+ } |
+} |
+ |
+/* |
+** Initialize a preallocated WhereClause structure. |
+*/ |
+void sqlite3WhereClauseInit( |
+ WhereClause *pWC, /* The WhereClause to be initialized */ |
+ WhereInfo *pWInfo /* The WHERE processing context */ |
+){ |
+ pWC->pWInfo = pWInfo; |
+ pWC->pOuter = 0; |
+ pWC->nTerm = 0; |
+ pWC->nSlot = ArraySize(pWC->aStatic); |
+ pWC->a = pWC->aStatic; |
+} |
+ |
+/* |
+** Deallocate a WhereClause structure. The WhereClause structure |
+** itself is not freed. This routine is the inverse of |
+** sqlite3WhereClauseInit(). |
+*/ |
+void sqlite3WhereClauseClear(WhereClause *pWC){ |
+ int i; |
+ WhereTerm *a; |
+ sqlite3 *db = pWC->pWInfo->pParse->db; |
+ for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
+ if( a->wtFlags & TERM_DYNAMIC ){ |
+ sqlite3ExprDelete(db, a->pExpr); |
+ } |
+ if( a->wtFlags & TERM_ORINFO ){ |
+ whereOrInfoDelete(db, a->u.pOrInfo); |
+ }else if( a->wtFlags & TERM_ANDINFO ){ |
+ whereAndInfoDelete(db, a->u.pAndInfo); |
+ } |
+ } |
+ if( pWC->a!=pWC->aStatic ){ |
+ sqlite3DbFree(db, pWC->a); |
+ } |
+} |
+ |
+ |
+/* |
+** These routines walk (recursively) an expression tree and generate |
+** a bitmask indicating which tables are used in that expression |
+** tree. |
+*/ |
+Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ |
+ Bitmask mask; |
+ if( p==0 ) return 0; |
+ if( p->op==TK_COLUMN ){ |
+ mask = sqlite3WhereGetMask(pMaskSet, p->iTable); |
+ return mask; |
+ } |
+ assert( !ExprHasProperty(p, EP_TokenOnly) ); |
+ mask = p->pRight ? sqlite3WhereExprUsage(pMaskSet, p->pRight) : 0; |
+ if( p->pLeft ) mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); |
+ if( ExprHasProperty(p, EP_xIsSelect) ){ |
+ mask |= exprSelectUsage(pMaskSet, p->x.pSelect); |
+ }else if( p->x.pList ){ |
+ mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); |
+ } |
+ return mask; |
+} |
+Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ |
+ int i; |
+ Bitmask mask = 0; |
+ if( pList ){ |
+ for(i=0; i<pList->nExpr; i++){ |
+ mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); |
+ } |
+ } |
+ return mask; |
+} |
+ |
+ |
+/* |
+** Call exprAnalyze on all terms in a WHERE clause. |
+** |
+** Note that exprAnalyze() might add new virtual terms onto the |
+** end of the WHERE clause. We do not want to analyze these new |
+** virtual terms, so start analyzing at the end and work forward |
+** so that the added virtual terms are never processed. |
+*/ |
+void sqlite3WhereExprAnalyze( |
+ SrcList *pTabList, /* the FROM clause */ |
+ WhereClause *pWC /* the WHERE clause to be analyzed */ |
+){ |
+ int i; |
+ for(i=pWC->nTerm-1; i>=0; i--){ |
+ exprAnalyze(pTabList, pWC, i); |
+ } |
+} |
+ |
+/* |
+** For table-valued-functions, transform the function arguments into |
+** new WHERE clause terms. |
+** |
+** Each function argument translates into an equality constraint against |
+** a HIDDEN column in the table. |
+*/ |
+void sqlite3WhereTabFuncArgs( |
+ Parse *pParse, /* Parsing context */ |
+ struct SrcList_item *pItem, /* The FROM clause term to process */ |
+ WhereClause *pWC /* Xfer function arguments to here */ |
+){ |
+ Table *pTab; |
+ int j, k; |
+ ExprList *pArgs; |
+ Expr *pColRef; |
+ Expr *pTerm; |
+ if( pItem->fg.isTabFunc==0 ) return; |
+ pTab = pItem->pTab; |
+ assert( pTab!=0 ); |
+ pArgs = pItem->u1.pFuncArg; |
+ if( pArgs==0 ) return; |
+ for(j=k=0; j<pArgs->nExpr; j++){ |
+ while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} |
+ if( k>=pTab->nCol ){ |
+ sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", |
+ pTab->zName, j); |
+ return; |
+ } |
+ pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); |
+ if( pColRef==0 ) return; |
+ pColRef->iTable = pItem->iCursor; |
+ pColRef->iColumn = k++; |
+ pColRef->pTab = pTab; |
+ pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, |
+ sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0)); |
+ whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); |
+ } |
+} |