OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2015-06-08 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This module contains C code that generates VDBE code used to process |
| 13 ** the WHERE clause of SQL statements. |
| 14 ** |
| 15 ** This file was originally part of where.c but was split out to improve |
| 16 ** readability and editabiliity. This file contains utility routines for |
| 17 ** analyzing Expr objects in the WHERE clause. |
| 18 */ |
| 19 #include "sqliteInt.h" |
| 20 #include "whereInt.h" |
| 21 |
| 22 /* Forward declarations */ |
| 23 static void exprAnalyze(SrcList*, WhereClause*, int); |
| 24 |
| 25 /* |
| 26 ** Deallocate all memory associated with a WhereOrInfo object. |
| 27 */ |
| 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ |
| 29 sqlite3WhereClauseClear(&p->wc); |
| 30 sqlite3DbFree(db, p); |
| 31 } |
| 32 |
| 33 /* |
| 34 ** Deallocate all memory associated with a WhereAndInfo object. |
| 35 */ |
| 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ |
| 37 sqlite3WhereClauseClear(&p->wc); |
| 38 sqlite3DbFree(db, p); |
| 39 } |
| 40 |
| 41 /* |
| 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. |
| 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. |
| 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. |
| 45 ** 0 is returned if the new WhereTerm could not be added due to a memory |
| 46 ** allocation error. The memory allocation failure will be recorded in |
| 47 ** the db->mallocFailed flag so that higher-level functions can detect it. |
| 48 ** |
| 49 ** This routine will increase the size of the pWC->a[] array as necessary. |
| 50 ** |
| 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility |
| 52 ** for freeing the expression p is assumed by the WhereClause object pWC. |
| 53 ** This is true even if this routine fails to allocate a new WhereTerm. |
| 54 ** |
| 55 ** WARNING: This routine might reallocate the space used to store |
| 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after |
| 57 ** calling this routine. Such pointers may be reinitialized by referencing |
| 58 ** the pWC->a[] array. |
| 59 */ |
| 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ |
| 61 WhereTerm *pTerm; |
| 62 int idx; |
| 63 testcase( wtFlags & TERM_VIRTUAL ); |
| 64 if( pWC->nTerm>=pWC->nSlot ){ |
| 65 WhereTerm *pOld = pWC->a; |
| 66 sqlite3 *db = pWC->pWInfo->pParse->db; |
| 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
| 68 if( pWC->a==0 ){ |
| 69 if( wtFlags & TERM_DYNAMIC ){ |
| 70 sqlite3ExprDelete(db, p); |
| 71 } |
| 72 pWC->a = pOld; |
| 73 return 0; |
| 74 } |
| 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
| 76 if( pOld!=pWC->aStatic ){ |
| 77 sqlite3DbFree(db, pOld); |
| 78 } |
| 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); |
| 80 } |
| 81 pTerm = &pWC->a[idx = pWC->nTerm++]; |
| 82 if( p && ExprHasProperty(p, EP_Unlikely) ){ |
| 83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; |
| 84 }else{ |
| 85 pTerm->truthProb = 1; |
| 86 } |
| 87 pTerm->pExpr = sqlite3ExprSkipCollate(p); |
| 88 pTerm->wtFlags = wtFlags; |
| 89 pTerm->pWC = pWC; |
| 90 pTerm->iParent = -1; |
| 91 memset(&pTerm->eOperator, 0, |
| 92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); |
| 93 return idx; |
| 94 } |
| 95 |
| 96 /* |
| 97 ** Return TRUE if the given operator is one of the operators that is |
| 98 ** allowed for an indexable WHERE clause term. The allowed operators are |
| 99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" |
| 100 */ |
| 101 static int allowedOp(int op){ |
| 102 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
| 103 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
| 104 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
| 105 assert( TK_GE==TK_EQ+4 ); |
| 106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; |
| 107 } |
| 108 |
| 109 /* |
| 110 ** Commute a comparison operator. Expressions of the form "X op Y" |
| 111 ** are converted into "Y op X". |
| 112 ** |
| 113 ** If left/right precedence rules come into play when determining the |
| 114 ** collating sequence, then COLLATE operators are adjusted to ensure |
| 115 ** that the collating sequence does not change. For example: |
| 116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on |
| 117 ** the left hand side of a comparison overrides any collation sequence |
| 118 ** attached to the right. For the same reason the EP_Collate flag |
| 119 ** is not commuted. |
| 120 */ |
| 121 static void exprCommute(Parse *pParse, Expr *pExpr){ |
| 122 u16 expRight = (pExpr->pRight->flags & EP_Collate); |
| 123 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); |
| 124 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
| 125 if( expRight==expLeft ){ |
| 126 /* Either X and Y both have COLLATE operator or neither do */ |
| 127 if( expRight ){ |
| 128 /* Both X and Y have COLLATE operators. Make sure X is always |
| 129 ** used by clearing the EP_Collate flag from Y. */ |
| 130 pExpr->pRight->flags &= ~EP_Collate; |
| 131 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ |
| 132 /* Neither X nor Y have COLLATE operators, but X has a non-default |
| 133 ** collating sequence. So add the EP_Collate marker on X to cause |
| 134 ** it to be searched first. */ |
| 135 pExpr->pLeft->flags |= EP_Collate; |
| 136 } |
| 137 } |
| 138 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
| 139 if( pExpr->op>=TK_GT ){ |
| 140 assert( TK_LT==TK_GT+2 ); |
| 141 assert( TK_GE==TK_LE+2 ); |
| 142 assert( TK_GT>TK_EQ ); |
| 143 assert( TK_GT<TK_LE ); |
| 144 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
| 145 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
| 146 } |
| 147 } |
| 148 |
| 149 /* |
| 150 ** Translate from TK_xx operator to WO_xx bitmask. |
| 151 */ |
| 152 static u16 operatorMask(int op){ |
| 153 u16 c; |
| 154 assert( allowedOp(op) ); |
| 155 if( op==TK_IN ){ |
| 156 c = WO_IN; |
| 157 }else if( op==TK_ISNULL ){ |
| 158 c = WO_ISNULL; |
| 159 }else if( op==TK_IS ){ |
| 160 c = WO_IS; |
| 161 }else{ |
| 162 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); |
| 163 c = (u16)(WO_EQ<<(op-TK_EQ)); |
| 164 } |
| 165 assert( op!=TK_ISNULL || c==WO_ISNULL ); |
| 166 assert( op!=TK_IN || c==WO_IN ); |
| 167 assert( op!=TK_EQ || c==WO_EQ ); |
| 168 assert( op!=TK_LT || c==WO_LT ); |
| 169 assert( op!=TK_LE || c==WO_LE ); |
| 170 assert( op!=TK_GT || c==WO_GT ); |
| 171 assert( op!=TK_GE || c==WO_GE ); |
| 172 assert( op!=TK_IS || c==WO_IS ); |
| 173 return c; |
| 174 } |
| 175 |
| 176 |
| 177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
| 178 /* |
| 179 ** Check to see if the given expression is a LIKE or GLOB operator that |
| 180 ** can be optimized using inequality constraints. Return TRUE if it is |
| 181 ** so and false if not. |
| 182 ** |
| 183 ** In order for the operator to be optimizible, the RHS must be a string |
| 184 ** literal that does not begin with a wildcard. The LHS must be a column |
| 185 ** that may only be NULL, a string, or a BLOB, never a number. (This means |
| 186 ** that virtual tables cannot participate in the LIKE optimization.) The |
| 187 ** collating sequence for the column on the LHS must be appropriate for |
| 188 ** the operator. |
| 189 */ |
| 190 static int isLikeOrGlob( |
| 191 Parse *pParse, /* Parsing and code generating context */ |
| 192 Expr *pExpr, /* Test this expression */ |
| 193 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ |
| 194 int *pisComplete, /* True if the only wildcard is % in the last character */ |
| 195 int *pnoCase /* True if uppercase is equivalent to lowercase */ |
| 196 ){ |
| 197 const char *z = 0; /* String on RHS of LIKE operator */ |
| 198 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ |
| 199 ExprList *pList; /* List of operands to the LIKE operator */ |
| 200 int c; /* One character in z[] */ |
| 201 int cnt; /* Number of non-wildcard prefix characters */ |
| 202 char wc[3]; /* Wildcard characters */ |
| 203 sqlite3 *db = pParse->db; /* Database connection */ |
| 204 sqlite3_value *pVal = 0; |
| 205 int op; /* Opcode of pRight */ |
| 206 int rc; /* Result code to return */ |
| 207 |
| 208 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
| 209 return 0; |
| 210 } |
| 211 #ifdef SQLITE_EBCDIC |
| 212 if( *pnoCase ) return 0; |
| 213 #endif |
| 214 pList = pExpr->x.pList; |
| 215 pLeft = pList->a[1].pExpr; |
| 216 if( pLeft->op!=TK_COLUMN |
| 217 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT |
| 218 || IsVirtual(pLeft->pTab) /* Value might be numeric */ |
| 219 ){ |
| 220 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must |
| 221 ** be the name of an indexed column with TEXT affinity. */ |
| 222 return 0; |
| 223 } |
| 224 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ |
| 225 |
| 226 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); |
| 227 op = pRight->op; |
| 228 if( op==TK_VARIABLE ){ |
| 229 Vdbe *pReprepare = pParse->pReprepare; |
| 230 int iCol = pRight->iColumn; |
| 231 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); |
| 232 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ |
| 233 z = (char *)sqlite3_value_text(pVal); |
| 234 } |
| 235 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); |
| 236 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); |
| 237 }else if( op==TK_STRING ){ |
| 238 z = pRight->u.zToken; |
| 239 } |
| 240 if( z ){ |
| 241 cnt = 0; |
| 242 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ |
| 243 cnt++; |
| 244 } |
| 245 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ |
| 246 Expr *pPrefix; |
| 247 *pisComplete = c==wc[0] && z[cnt+1]==0; |
| 248 pPrefix = sqlite3Expr(db, TK_STRING, z); |
| 249 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; |
| 250 *ppPrefix = pPrefix; |
| 251 if( op==TK_VARIABLE ){ |
| 252 Vdbe *v = pParse->pVdbe; |
| 253 sqlite3VdbeSetVarmask(v, pRight->iColumn); |
| 254 if( *pisComplete && pRight->u.zToken[1] ){ |
| 255 /* If the rhs of the LIKE expression is a variable, and the current |
| 256 ** value of the variable means there is no need to invoke the LIKE |
| 257 ** function, then no OP_Variable will be added to the program. |
| 258 ** This causes problems for the sqlite3_bind_parameter_name() |
| 259 ** API. To work around them, add a dummy OP_Variable here. |
| 260 */ |
| 261 int r1 = sqlite3GetTempReg(pParse); |
| 262 sqlite3ExprCodeTarget(pParse, pRight, r1); |
| 263 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); |
| 264 sqlite3ReleaseTempReg(pParse, r1); |
| 265 } |
| 266 } |
| 267 }else{ |
| 268 z = 0; |
| 269 } |
| 270 } |
| 271 |
| 272 rc = (z!=0); |
| 273 sqlite3ValueFree(pVal); |
| 274 return rc; |
| 275 } |
| 276 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
| 277 |
| 278 |
| 279 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 280 /* |
| 281 ** Check to see if the given expression is of the form |
| 282 ** |
| 283 ** column OP expr |
| 284 ** |
| 285 ** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a |
| 286 ** column of a virtual table. |
| 287 ** |
| 288 ** If it is then return TRUE. If not, return FALSE. |
| 289 */ |
| 290 static int isMatchOfColumn( |
| 291 Expr *pExpr, /* Test this expression */ |
| 292 unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */ |
| 293 ){ |
| 294 static const struct Op2 { |
| 295 const char *zOp; |
| 296 unsigned char eOp2; |
| 297 } aOp[] = { |
| 298 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, |
| 299 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, |
| 300 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, |
| 301 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } |
| 302 }; |
| 303 ExprList *pList; |
| 304 Expr *pCol; /* Column reference */ |
| 305 int i; |
| 306 |
| 307 if( pExpr->op!=TK_FUNCTION ){ |
| 308 return 0; |
| 309 } |
| 310 pList = pExpr->x.pList; |
| 311 if( pList==0 || pList->nExpr!=2 ){ |
| 312 return 0; |
| 313 } |
| 314 pCol = pList->a[1].pExpr; |
| 315 if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ |
| 316 return 0; |
| 317 } |
| 318 for(i=0; i<ArraySize(aOp); i++){ |
| 319 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ |
| 320 *peOp2 = aOp[i].eOp2; |
| 321 return 1; |
| 322 } |
| 323 } |
| 324 return 0; |
| 325 } |
| 326 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 327 |
| 328 /* |
| 329 ** If the pBase expression originated in the ON or USING clause of |
| 330 ** a join, then transfer the appropriate markings over to derived. |
| 331 */ |
| 332 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
| 333 if( pDerived ){ |
| 334 pDerived->flags |= pBase->flags & EP_FromJoin; |
| 335 pDerived->iRightJoinTable = pBase->iRightJoinTable; |
| 336 } |
| 337 } |
| 338 |
| 339 /* |
| 340 ** Mark term iChild as being a child of term iParent |
| 341 */ |
| 342 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ |
| 343 pWC->a[iChild].iParent = iParent; |
| 344 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; |
| 345 pWC->a[iParent].nChild++; |
| 346 } |
| 347 |
| 348 /* |
| 349 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not |
| 350 ** a conjunction, then return just pTerm when N==0. If N is exceeds |
| 351 ** the number of available subterms, return NULL. |
| 352 */ |
| 353 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ |
| 354 if( pTerm->eOperator!=WO_AND ){ |
| 355 return N==0 ? pTerm : 0; |
| 356 } |
| 357 if( N<pTerm->u.pAndInfo->wc.nTerm ){ |
| 358 return &pTerm->u.pAndInfo->wc.a[N]; |
| 359 } |
| 360 return 0; |
| 361 } |
| 362 |
| 363 /* |
| 364 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The |
| 365 ** two subterms are in disjunction - they are OR-ed together. |
| 366 ** |
| 367 ** If these two terms are both of the form: "A op B" with the same |
| 368 ** A and B values but different operators and if the operators are |
| 369 ** compatible (if one is = and the other is <, for example) then |
| 370 ** add a new virtual AND term to pWC that is the combination of the |
| 371 ** two. |
| 372 ** |
| 373 ** Some examples: |
| 374 ** |
| 375 ** x<y OR x=y --> x<=y |
| 376 ** x=y OR x=y --> x=y |
| 377 ** x<=y OR x<y --> x<=y |
| 378 ** |
| 379 ** The following is NOT generated: |
| 380 ** |
| 381 ** x<y OR x>y --> x!=y |
| 382 */ |
| 383 static void whereCombineDisjuncts( |
| 384 SrcList *pSrc, /* the FROM clause */ |
| 385 WhereClause *pWC, /* The complete WHERE clause */ |
| 386 WhereTerm *pOne, /* First disjunct */ |
| 387 WhereTerm *pTwo /* Second disjunct */ |
| 388 ){ |
| 389 u16 eOp = pOne->eOperator | pTwo->eOperator; |
| 390 sqlite3 *db; /* Database connection (for malloc) */ |
| 391 Expr *pNew; /* New virtual expression */ |
| 392 int op; /* Operator for the combined expression */ |
| 393 int idxNew; /* Index in pWC of the next virtual term */ |
| 394 |
| 395 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; |
| 396 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; |
| 397 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp |
| 398 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; |
| 399 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); |
| 400 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); |
| 401 if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; |
| 402 if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; |
| 403 /* If we reach this point, it means the two subterms can be combined */ |
| 404 if( (eOp & (eOp-1))!=0 ){ |
| 405 if( eOp & (WO_LT|WO_LE) ){ |
| 406 eOp = WO_LE; |
| 407 }else{ |
| 408 assert( eOp & (WO_GT|WO_GE) ); |
| 409 eOp = WO_GE; |
| 410 } |
| 411 } |
| 412 db = pWC->pWInfo->pParse->db; |
| 413 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); |
| 414 if( pNew==0 ) return; |
| 415 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } |
| 416 pNew->op = op; |
| 417 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
| 418 exprAnalyze(pSrc, pWC, idxNew); |
| 419 } |
| 420 |
| 421 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
| 422 /* |
| 423 ** Analyze a term that consists of two or more OR-connected |
| 424 ** subterms. So in: |
| 425 ** |
| 426 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
| 427 ** ^^^^^^^^^^^^^^^^^^^^ |
| 428 ** |
| 429 ** This routine analyzes terms such as the middle term in the above example. |
| 430 ** A WhereOrTerm object is computed and attached to the term under |
| 431 ** analysis, regardless of the outcome of the analysis. Hence: |
| 432 ** |
| 433 ** WhereTerm.wtFlags |= TERM_ORINFO |
| 434 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object |
| 435 ** |
| 436 ** The term being analyzed must have two or more of OR-connected subterms. |
| 437 ** A single subterm might be a set of AND-connected sub-subterms. |
| 438 ** Examples of terms under analysis: |
| 439 ** |
| 440 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 |
| 441 ** (B) x=expr1 OR expr2=x OR x=expr3 |
| 442 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) |
| 443 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') |
| 444 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) |
| 445 ** (F) x>A OR (x=A AND y>=B) |
| 446 ** |
| 447 ** CASE 1: |
| 448 ** |
| 449 ** If all subterms are of the form T.C=expr for some single column of C and |
| 450 ** a single table T (as shown in example B above) then create a new virtual |
| 451 ** term that is an equivalent IN expression. In other words, if the term |
| 452 ** being analyzed is: |
| 453 ** |
| 454 ** x = expr1 OR expr2 = x OR x = expr3 |
| 455 ** |
| 456 ** then create a new virtual term like this: |
| 457 ** |
| 458 ** x IN (expr1,expr2,expr3) |
| 459 ** |
| 460 ** CASE 2: |
| 461 ** |
| 462 ** If there are exactly two disjuncts and one side has x>A and the other side |
| 463 ** has x=A (for the same x and A) then add a new virtual conjunct term to the |
| 464 ** WHERE clause of the form "x>=A". Example: |
| 465 ** |
| 466 ** x>A OR (x=A AND y>B) adds: x>=A |
| 467 ** |
| 468 ** The added conjunct can sometimes be helpful in query planning. |
| 469 ** |
| 470 ** CASE 3: |
| 471 ** |
| 472 ** If all subterms are indexable by a single table T, then set |
| 473 ** |
| 474 ** WhereTerm.eOperator = WO_OR |
| 475 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T |
| 476 ** |
| 477 ** A subterm is "indexable" if it is of the form |
| 478 ** "T.C <op> <expr>" where C is any column of table T and |
| 479 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". |
| 480 ** A subterm is also indexable if it is an AND of two or more |
| 481 ** subsubterms at least one of which is indexable. Indexable AND |
| 482 ** subterms have their eOperator set to WO_AND and they have |
| 483 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. |
| 484 ** |
| 485 ** From another point of view, "indexable" means that the subterm could |
| 486 ** potentially be used with an index if an appropriate index exists. |
| 487 ** This analysis does not consider whether or not the index exists; that |
| 488 ** is decided elsewhere. This analysis only looks at whether subterms |
| 489 ** appropriate for indexing exist. |
| 490 ** |
| 491 ** All examples A through E above satisfy case 3. But if a term |
| 492 ** also satisfies case 1 (such as B) we know that the optimizer will |
| 493 ** always prefer case 1, so in that case we pretend that case 3 is not |
| 494 ** satisfied. |
| 495 ** |
| 496 ** It might be the case that multiple tables are indexable. For example, |
| 497 ** (E) above is indexable on tables P, Q, and R. |
| 498 ** |
| 499 ** Terms that satisfy case 3 are candidates for lookup by using |
| 500 ** separate indices to find rowids for each subterm and composing |
| 501 ** the union of all rowids using a RowSet object. This is similar |
| 502 ** to "bitmap indices" in other database engines. |
| 503 ** |
| 504 ** OTHERWISE: |
| 505 ** |
| 506 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to |
| 507 ** zero. This term is not useful for search. |
| 508 */ |
| 509 static void exprAnalyzeOrTerm( |
| 510 SrcList *pSrc, /* the FROM clause */ |
| 511 WhereClause *pWC, /* the complete WHERE clause */ |
| 512 int idxTerm /* Index of the OR-term to be analyzed */ |
| 513 ){ |
| 514 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
| 515 Parse *pParse = pWInfo->pParse; /* Parser context */ |
| 516 sqlite3 *db = pParse->db; /* Database connection */ |
| 517 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ |
| 518 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ |
| 519 int i; /* Loop counters */ |
| 520 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ |
| 521 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ |
| 522 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ |
| 523 Bitmask chngToIN; /* Tables that might satisfy case 1 */ |
| 524 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ |
| 525 |
| 526 /* |
| 527 ** Break the OR clause into its separate subterms. The subterms are |
| 528 ** stored in a WhereClause structure containing within the WhereOrInfo |
| 529 ** object that is attached to the original OR clause term. |
| 530 */ |
| 531 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); |
| 532 assert( pExpr->op==TK_OR ); |
| 533 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); |
| 534 if( pOrInfo==0 ) return; |
| 535 pTerm->wtFlags |= TERM_ORINFO; |
| 536 pOrWc = &pOrInfo->wc; |
| 537 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); |
| 538 sqlite3WhereClauseInit(pOrWc, pWInfo); |
| 539 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); |
| 540 sqlite3WhereExprAnalyze(pSrc, pOrWc); |
| 541 if( db->mallocFailed ) return; |
| 542 assert( pOrWc->nTerm>=2 ); |
| 543 |
| 544 /* |
| 545 ** Compute the set of tables that might satisfy cases 1 or 3. |
| 546 */ |
| 547 indexable = ~(Bitmask)0; |
| 548 chngToIN = ~(Bitmask)0; |
| 549 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ |
| 550 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ |
| 551 WhereAndInfo *pAndInfo; |
| 552 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); |
| 553 chngToIN = 0; |
| 554 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); |
| 555 if( pAndInfo ){ |
| 556 WhereClause *pAndWC; |
| 557 WhereTerm *pAndTerm; |
| 558 int j; |
| 559 Bitmask b = 0; |
| 560 pOrTerm->u.pAndInfo = pAndInfo; |
| 561 pOrTerm->wtFlags |= TERM_ANDINFO; |
| 562 pOrTerm->eOperator = WO_AND; |
| 563 pAndWC = &pAndInfo->wc; |
| 564 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); |
| 565 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); |
| 566 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); |
| 567 sqlite3WhereExprAnalyze(pSrc, pAndWC); |
| 568 pAndWC->pOuter = pWC; |
| 569 if( !db->mallocFailed ){ |
| 570 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ |
| 571 assert( pAndTerm->pExpr ); |
| 572 if( allowedOp(pAndTerm->pExpr->op) |
| 573 || pAndTerm->eOperator==WO_MATCH |
| 574 ){ |
| 575 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); |
| 576 } |
| 577 } |
| 578 } |
| 579 indexable &= b; |
| 580 } |
| 581 }else if( pOrTerm->wtFlags & TERM_COPIED ){ |
| 582 /* Skip this term for now. We revisit it when we process the |
| 583 ** corresponding TERM_VIRTUAL term */ |
| 584 }else{ |
| 585 Bitmask b; |
| 586 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); |
| 587 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ |
| 588 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; |
| 589 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); |
| 590 } |
| 591 indexable &= b; |
| 592 if( (pOrTerm->eOperator & WO_EQ)==0 ){ |
| 593 chngToIN = 0; |
| 594 }else{ |
| 595 chngToIN &= b; |
| 596 } |
| 597 } |
| 598 } |
| 599 |
| 600 /* |
| 601 ** Record the set of tables that satisfy case 3. The set might be |
| 602 ** empty. |
| 603 */ |
| 604 pOrInfo->indexable = indexable; |
| 605 pTerm->eOperator = indexable==0 ? 0 : WO_OR; |
| 606 |
| 607 /* For a two-way OR, attempt to implementation case 2. |
| 608 */ |
| 609 if( indexable && pOrWc->nTerm==2 ){ |
| 610 int iOne = 0; |
| 611 WhereTerm *pOne; |
| 612 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ |
| 613 int iTwo = 0; |
| 614 WhereTerm *pTwo; |
| 615 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ |
| 616 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); |
| 617 } |
| 618 } |
| 619 } |
| 620 |
| 621 /* |
| 622 ** chngToIN holds a set of tables that *might* satisfy case 1. But |
| 623 ** we have to do some additional checking to see if case 1 really |
| 624 ** is satisfied. |
| 625 ** |
| 626 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means |
| 627 ** that there is no possibility of transforming the OR clause into an |
| 628 ** IN operator because one or more terms in the OR clause contain |
| 629 ** something other than == on a column in the single table. The 1-bit |
| 630 ** case means that every term of the OR clause is of the form |
| 631 ** "table.column=expr" for some single table. The one bit that is set |
| 632 ** will correspond to the common table. We still need to check to make |
| 633 ** sure the same column is used on all terms. The 2-bit case is when |
| 634 ** the all terms are of the form "table1.column=table2.column". It |
| 635 ** might be possible to form an IN operator with either table1.column |
| 636 ** or table2.column as the LHS if either is common to every term of |
| 637 ** the OR clause. |
| 638 ** |
| 639 ** Note that terms of the form "table.column1=table.column2" (the |
| 640 ** same table on both sizes of the ==) cannot be optimized. |
| 641 */ |
| 642 if( chngToIN ){ |
| 643 int okToChngToIN = 0; /* True if the conversion to IN is valid */ |
| 644 int iColumn = -1; /* Column index on lhs of IN operator */ |
| 645 int iCursor = -1; /* Table cursor common to all terms */ |
| 646 int j = 0; /* Loop counter */ |
| 647 |
| 648 /* Search for a table and column that appears on one side or the |
| 649 ** other of the == operator in every subterm. That table and column |
| 650 ** will be recorded in iCursor and iColumn. There might not be any |
| 651 ** such table and column. Set okToChngToIN if an appropriate table |
| 652 ** and column is found but leave okToChngToIN false if not found. |
| 653 */ |
| 654 for(j=0; j<2 && !okToChngToIN; j++){ |
| 655 pOrTerm = pOrWc->a; |
| 656 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ |
| 657 assert( pOrTerm->eOperator & WO_EQ ); |
| 658 pOrTerm->wtFlags &= ~TERM_OR_OK; |
| 659 if( pOrTerm->leftCursor==iCursor ){ |
| 660 /* This is the 2-bit case and we are on the second iteration and |
| 661 ** current term is from the first iteration. So skip this term. */ |
| 662 assert( j==1 ); |
| 663 continue; |
| 664 } |
| 665 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, |
| 666 pOrTerm->leftCursor))==0 ){ |
| 667 /* This term must be of the form t1.a==t2.b where t2 is in the |
| 668 ** chngToIN set but t1 is not. This term will be either preceded |
| 669 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term |
| 670 ** and use its inversion. */ |
| 671 testcase( pOrTerm->wtFlags & TERM_COPIED ); |
| 672 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); |
| 673 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); |
| 674 continue; |
| 675 } |
| 676 iColumn = pOrTerm->u.leftColumn; |
| 677 iCursor = pOrTerm->leftCursor; |
| 678 break; |
| 679 } |
| 680 if( i<0 ){ |
| 681 /* No candidate table+column was found. This can only occur |
| 682 ** on the second iteration */ |
| 683 assert( j==1 ); |
| 684 assert( IsPowerOfTwo(chngToIN) ); |
| 685 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); |
| 686 break; |
| 687 } |
| 688 testcase( j==1 ); |
| 689 |
| 690 /* We have found a candidate table and column. Check to see if that |
| 691 ** table and column is common to every term in the OR clause */ |
| 692 okToChngToIN = 1; |
| 693 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ |
| 694 assert( pOrTerm->eOperator & WO_EQ ); |
| 695 if( pOrTerm->leftCursor!=iCursor ){ |
| 696 pOrTerm->wtFlags &= ~TERM_OR_OK; |
| 697 }else if( pOrTerm->u.leftColumn!=iColumn ){ |
| 698 okToChngToIN = 0; |
| 699 }else{ |
| 700 int affLeft, affRight; |
| 701 /* If the right-hand side is also a column, then the affinities |
| 702 ** of both right and left sides must be such that no type |
| 703 ** conversions are required on the right. (Ticket #2249) |
| 704 */ |
| 705 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
| 706 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
| 707 if( affRight!=0 && affRight!=affLeft ){ |
| 708 okToChngToIN = 0; |
| 709 }else{ |
| 710 pOrTerm->wtFlags |= TERM_OR_OK; |
| 711 } |
| 712 } |
| 713 } |
| 714 } |
| 715 |
| 716 /* At this point, okToChngToIN is true if original pTerm satisfies |
| 717 ** case 1. In that case, construct a new virtual term that is |
| 718 ** pTerm converted into an IN operator. |
| 719 */ |
| 720 if( okToChngToIN ){ |
| 721 Expr *pDup; /* A transient duplicate expression */ |
| 722 ExprList *pList = 0; /* The RHS of the IN operator */ |
| 723 Expr *pLeft = 0; /* The LHS of the IN operator */ |
| 724 Expr *pNew; /* The complete IN operator */ |
| 725 |
| 726 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ |
| 727 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; |
| 728 assert( pOrTerm->eOperator & WO_EQ ); |
| 729 assert( pOrTerm->leftCursor==iCursor ); |
| 730 assert( pOrTerm->u.leftColumn==iColumn ); |
| 731 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); |
| 732 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); |
| 733 pLeft = pOrTerm->pExpr->pLeft; |
| 734 } |
| 735 assert( pLeft!=0 ); |
| 736 pDup = sqlite3ExprDup(db, pLeft, 0); |
| 737 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); |
| 738 if( pNew ){ |
| 739 int idxNew; |
| 740 transferJoinMarkings(pNew, pExpr); |
| 741 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
| 742 pNew->x.pList = pList; |
| 743 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
| 744 testcase( idxNew==0 ); |
| 745 exprAnalyze(pSrc, pWC, idxNew); |
| 746 pTerm = &pWC->a[idxTerm]; |
| 747 markTermAsChild(pWC, idxNew, idxTerm); |
| 748 }else{ |
| 749 sqlite3ExprListDelete(db, pList); |
| 750 } |
| 751 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ |
| 752 } |
| 753 } |
| 754 } |
| 755 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
| 756 |
| 757 /* |
| 758 ** We already know that pExpr is a binary operator where both operands are |
| 759 ** column references. This routine checks to see if pExpr is an equivalence |
| 760 ** relation: |
| 761 ** 1. The SQLITE_Transitive optimization must be enabled |
| 762 ** 2. Must be either an == or an IS operator |
| 763 ** 3. Not originating in the ON clause of an OUTER JOIN |
| 764 ** 4. The affinities of A and B must be compatible |
| 765 ** 5a. Both operands use the same collating sequence OR |
| 766 ** 5b. The overall collating sequence is BINARY |
| 767 ** If this routine returns TRUE, that means that the RHS can be substituted |
| 768 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. |
| 769 ** This is an optimization. No harm comes from returning 0. But if 1 is |
| 770 ** returned when it should not be, then incorrect answers might result. |
| 771 */ |
| 772 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ |
| 773 char aff1, aff2; |
| 774 CollSeq *pColl; |
| 775 const char *zColl1, *zColl2; |
| 776 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; |
| 777 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; |
| 778 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; |
| 779 aff1 = sqlite3ExprAffinity(pExpr->pLeft); |
| 780 aff2 = sqlite3ExprAffinity(pExpr->pRight); |
| 781 if( aff1!=aff2 |
| 782 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) |
| 783 ){ |
| 784 return 0; |
| 785 } |
| 786 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); |
| 787 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; |
| 788 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| 789 zColl1 = pColl ? pColl->zName : 0; |
| 790 pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); |
| 791 zColl2 = pColl ? pColl->zName : 0; |
| 792 return sqlite3_stricmp(zColl1, zColl2)==0; |
| 793 } |
| 794 |
| 795 /* |
| 796 ** Recursively walk the expressions of a SELECT statement and generate |
| 797 ** a bitmask indicating which tables are used in that expression |
| 798 ** tree. |
| 799 */ |
| 800 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ |
| 801 Bitmask mask = 0; |
| 802 while( pS ){ |
| 803 SrcList *pSrc = pS->pSrc; |
| 804 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); |
| 805 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); |
| 806 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); |
| 807 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); |
| 808 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); |
| 809 if( ALWAYS(pSrc!=0) ){ |
| 810 int i; |
| 811 for(i=0; i<pSrc->nSrc; i++){ |
| 812 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); |
| 813 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); |
| 814 } |
| 815 } |
| 816 pS = pS->pPrior; |
| 817 } |
| 818 return mask; |
| 819 } |
| 820 |
| 821 /* |
| 822 ** Expression pExpr is one operand of a comparison operator that might |
| 823 ** be useful for indexing. This routine checks to see if pExpr appears |
| 824 ** in any index. Return TRUE (1) if pExpr is an indexed term and return |
| 825 ** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor |
| 826 ** number of the table that is indexed and *piColumn to the column number |
| 827 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being |
| 828 ** indexed. |
| 829 ** |
| 830 ** If pExpr is a TK_COLUMN column reference, then this routine always returns |
| 831 ** true even if that particular column is not indexed, because the column |
| 832 ** might be added to an automatic index later. |
| 833 */ |
| 834 static int exprMightBeIndexed( |
| 835 SrcList *pFrom, /* The FROM clause */ |
| 836 int op, /* The specific comparison operator */ |
| 837 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ |
| 838 Expr *pExpr, /* An operand of a comparison operator */ |
| 839 int *piCur, /* Write the referenced table cursor number here */ |
| 840 int *piColumn /* Write the referenced table column number here */ |
| 841 ){ |
| 842 Index *pIdx; |
| 843 int i; |
| 844 int iCur; |
| 845 |
| 846 /* If this expression is a vector to the left or right of a |
| 847 ** inequality constraint (>, <, >= or <=), perform the processing |
| 848 ** on the first element of the vector. */ |
| 849 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); |
| 850 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); |
| 851 assert( op<=TK_GE ); |
| 852 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ |
| 853 pExpr = pExpr->x.pList->a[0].pExpr; |
| 854 } |
| 855 |
| 856 if( pExpr->op==TK_COLUMN ){ |
| 857 *piCur = pExpr->iTable; |
| 858 *piColumn = pExpr->iColumn; |
| 859 return 1; |
| 860 } |
| 861 if( mPrereq==0 ) return 0; /* No table references */ |
| 862 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ |
| 863 for(i=0; mPrereq>1; i++, mPrereq>>=1){} |
| 864 iCur = pFrom->a[i].iCursor; |
| 865 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 866 if( pIdx->aColExpr==0 ) continue; |
| 867 for(i=0; i<pIdx->nKeyCol; i++){ |
| 868 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; |
| 869 if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ |
| 870 *piCur = iCur; |
| 871 *piColumn = XN_EXPR; |
| 872 return 1; |
| 873 } |
| 874 } |
| 875 } |
| 876 return 0; |
| 877 } |
| 878 |
| 879 /* |
| 880 ** The input to this routine is an WhereTerm structure with only the |
| 881 ** "pExpr" field filled in. The job of this routine is to analyze the |
| 882 ** subexpression and populate all the other fields of the WhereTerm |
| 883 ** structure. |
| 884 ** |
| 885 ** If the expression is of the form "<expr> <op> X" it gets commuted |
| 886 ** to the standard form of "X <op> <expr>". |
| 887 ** |
| 888 ** If the expression is of the form "X <op> Y" where both X and Y are |
| 889 ** columns, then the original expression is unchanged and a new virtual |
| 890 ** term of the form "Y <op> X" is added to the WHERE clause and |
| 891 ** analyzed separately. The original term is marked with TERM_COPIED |
| 892 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr |
| 893 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it |
| 894 ** is a commuted copy of a prior term.) The original term has nChild=1 |
| 895 ** and the copy has idxParent set to the index of the original term. |
| 896 */ |
| 897 static void exprAnalyze( |
| 898 SrcList *pSrc, /* the FROM clause */ |
| 899 WhereClause *pWC, /* the WHERE clause */ |
| 900 int idxTerm /* Index of the term to be analyzed */ |
| 901 ){ |
| 902 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
| 903 WhereTerm *pTerm; /* The term to be analyzed */ |
| 904 WhereMaskSet *pMaskSet; /* Set of table index masks */ |
| 905 Expr *pExpr; /* The expression to be analyzed */ |
| 906 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ |
| 907 Bitmask prereqAll; /* Prerequesites of pExpr */ |
| 908 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ |
| 909 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ |
| 910 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ |
| 911 int noCase = 0; /* uppercase equivalent to lowercase */ |
| 912 int op; /* Top-level operator. pExpr->op */ |
| 913 Parse *pParse = pWInfo->pParse; /* Parsing context */ |
| 914 sqlite3 *db = pParse->db; /* Database connection */ |
| 915 unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */ |
| 916 int nLeft; /* Number of elements on left side vector */ |
| 917 |
| 918 if( db->mallocFailed ){ |
| 919 return; |
| 920 } |
| 921 pTerm = &pWC->a[idxTerm]; |
| 922 pMaskSet = &pWInfo->sMaskSet; |
| 923 pExpr = pTerm->pExpr; |
| 924 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); |
| 925 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); |
| 926 op = pExpr->op; |
| 927 if( op==TK_IN ){ |
| 928 assert( pExpr->pRight==0 ); |
| 929 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; |
| 930 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| 931 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); |
| 932 }else{ |
| 933 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); |
| 934 } |
| 935 }else if( op==TK_ISNULL ){ |
| 936 pTerm->prereqRight = 0; |
| 937 }else{ |
| 938 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); |
| 939 } |
| 940 prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); |
| 941 if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
| 942 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); |
| 943 prereqAll |= x; |
| 944 extraRight = x-1; /* ON clause terms may not be used with an index |
| 945 ** on left table of a LEFT JOIN. Ticket #3015 */ |
| 946 if( (prereqAll>>1)>=x ){ |
| 947 sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); |
| 948 return; |
| 949 } |
| 950 } |
| 951 pTerm->prereqAll = prereqAll; |
| 952 pTerm->leftCursor = -1; |
| 953 pTerm->iParent = -1; |
| 954 pTerm->eOperator = 0; |
| 955 if( allowedOp(op) ){ |
| 956 int iCur, iColumn; |
| 957 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); |
| 958 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); |
| 959 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; |
| 960 |
| 961 if( pTerm->iField>0 ){ |
| 962 assert( op==TK_IN ); |
| 963 assert( pLeft->op==TK_VECTOR ); |
| 964 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; |
| 965 } |
| 966 |
| 967 if( exprMightBeIndexed(pSrc, op, prereqLeft, pLeft, &iCur, &iColumn) ){ |
| 968 pTerm->leftCursor = iCur; |
| 969 pTerm->u.leftColumn = iColumn; |
| 970 pTerm->eOperator = operatorMask(op) & opMask; |
| 971 } |
| 972 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; |
| 973 if( pRight |
| 974 && exprMightBeIndexed(pSrc, op, pTerm->prereqRight, pRight, &iCur,&iColumn) |
| 975 ){ |
| 976 WhereTerm *pNew; |
| 977 Expr *pDup; |
| 978 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ |
| 979 assert( pTerm->iField==0 ); |
| 980 if( pTerm->leftCursor>=0 ){ |
| 981 int idxNew; |
| 982 pDup = sqlite3ExprDup(db, pExpr, 0); |
| 983 if( db->mallocFailed ){ |
| 984 sqlite3ExprDelete(db, pDup); |
| 985 return; |
| 986 } |
| 987 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
| 988 if( idxNew==0 ) return; |
| 989 pNew = &pWC->a[idxNew]; |
| 990 markTermAsChild(pWC, idxNew, idxTerm); |
| 991 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; |
| 992 pTerm = &pWC->a[idxTerm]; |
| 993 pTerm->wtFlags |= TERM_COPIED; |
| 994 |
| 995 if( termIsEquivalence(pParse, pDup) ){ |
| 996 pTerm->eOperator |= WO_EQUIV; |
| 997 eExtraOp = WO_EQUIV; |
| 998 } |
| 999 }else{ |
| 1000 pDup = pExpr; |
| 1001 pNew = pTerm; |
| 1002 } |
| 1003 exprCommute(pParse, pDup); |
| 1004 pNew->leftCursor = iCur; |
| 1005 pNew->u.leftColumn = iColumn; |
| 1006 testcase( (prereqLeft | extraRight) != prereqLeft ); |
| 1007 pNew->prereqRight = prereqLeft | extraRight; |
| 1008 pNew->prereqAll = prereqAll; |
| 1009 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; |
| 1010 } |
| 1011 } |
| 1012 |
| 1013 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
| 1014 /* If a term is the BETWEEN operator, create two new virtual terms |
| 1015 ** that define the range that the BETWEEN implements. For example: |
| 1016 ** |
| 1017 ** a BETWEEN b AND c |
| 1018 ** |
| 1019 ** is converted into: |
| 1020 ** |
| 1021 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) |
| 1022 ** |
| 1023 ** The two new terms are added onto the end of the WhereClause object. |
| 1024 ** The new terms are "dynamic" and are children of the original BETWEEN |
| 1025 ** term. That means that if the BETWEEN term is coded, the children are |
| 1026 ** skipped. Or, if the children are satisfied by an index, the original |
| 1027 ** BETWEEN term is skipped. |
| 1028 */ |
| 1029 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ |
| 1030 ExprList *pList = pExpr->x.pList; |
| 1031 int i; |
| 1032 static const u8 ops[] = {TK_GE, TK_LE}; |
| 1033 assert( pList!=0 ); |
| 1034 assert( pList->nExpr==2 ); |
| 1035 for(i=0; i<2; i++){ |
| 1036 Expr *pNewExpr; |
| 1037 int idxNew; |
| 1038 pNewExpr = sqlite3PExpr(pParse, ops[i], |
| 1039 sqlite3ExprDup(db, pExpr->pLeft, 0), |
| 1040 sqlite3ExprDup(db, pList->a[i].pExpr, 0)); |
| 1041 transferJoinMarkings(pNewExpr, pExpr); |
| 1042 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
| 1043 testcase( idxNew==0 ); |
| 1044 exprAnalyze(pSrc, pWC, idxNew); |
| 1045 pTerm = &pWC->a[idxTerm]; |
| 1046 markTermAsChild(pWC, idxNew, idxTerm); |
| 1047 } |
| 1048 } |
| 1049 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
| 1050 |
| 1051 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
| 1052 /* Analyze a term that is composed of two or more subterms connected by |
| 1053 ** an OR operator. |
| 1054 */ |
| 1055 else if( pExpr->op==TK_OR ){ |
| 1056 assert( pWC->op==TK_AND ); |
| 1057 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); |
| 1058 pTerm = &pWC->a[idxTerm]; |
| 1059 } |
| 1060 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
| 1061 |
| 1062 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
| 1063 /* Add constraints to reduce the search space on a LIKE or GLOB |
| 1064 ** operator. |
| 1065 ** |
| 1066 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints |
| 1067 ** |
| 1068 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' |
| 1069 ** |
| 1070 ** The last character of the prefix "abc" is incremented to form the |
| 1071 ** termination condition "abd". If case is not significant (the default |
| 1072 ** for LIKE) then the lower-bound is made all uppercase and the upper- |
| 1073 ** bound is made all lowercase so that the bounds also work when comparing |
| 1074 ** BLOBs. |
| 1075 */ |
| 1076 if( pWC->op==TK_AND |
| 1077 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) |
| 1078 ){ |
| 1079 Expr *pLeft; /* LHS of LIKE/GLOB operator */ |
| 1080 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ |
| 1081 Expr *pNewExpr1; |
| 1082 Expr *pNewExpr2; |
| 1083 int idxNew1; |
| 1084 int idxNew2; |
| 1085 const char *zCollSeqName; /* Name of collating sequence */ |
| 1086 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; |
| 1087 |
| 1088 pLeft = pExpr->x.pList->a[1].pExpr; |
| 1089 pStr2 = sqlite3ExprDup(db, pStr1, 0); |
| 1090 |
| 1091 /* Convert the lower bound to upper-case and the upper bound to |
| 1092 ** lower-case (upper-case is less than lower-case in ASCII) so that |
| 1093 ** the range constraints also work for BLOBs |
| 1094 */ |
| 1095 if( noCase && !pParse->db->mallocFailed ){ |
| 1096 int i; |
| 1097 char c; |
| 1098 pTerm->wtFlags |= TERM_LIKE; |
| 1099 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ |
| 1100 pStr1->u.zToken[i] = sqlite3Toupper(c); |
| 1101 pStr2->u.zToken[i] = sqlite3Tolower(c); |
| 1102 } |
| 1103 } |
| 1104 |
| 1105 if( !db->mallocFailed ){ |
| 1106 u8 c, *pC; /* Last character before the first wildcard */ |
| 1107 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; |
| 1108 c = *pC; |
| 1109 if( noCase ){ |
| 1110 /* The point is to increment the last character before the first |
| 1111 ** wildcard. But if we increment '@', that will push it into the |
| 1112 ** alphabetic range where case conversions will mess up the |
| 1113 ** inequality. To avoid this, make sure to also run the full |
| 1114 ** LIKE on all candidate expressions by clearing the isComplete flag |
| 1115 */ |
| 1116 if( c=='A'-1 ) isComplete = 0; |
| 1117 c = sqlite3UpperToLower[c]; |
| 1118 } |
| 1119 *pC = c + 1; |
| 1120 } |
| 1121 zCollSeqName = noCase ? "NOCASE" : "BINARY"; |
| 1122 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); |
| 1123 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, |
| 1124 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), |
| 1125 pStr1); |
| 1126 transferJoinMarkings(pNewExpr1, pExpr); |
| 1127 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); |
| 1128 testcase( idxNew1==0 ); |
| 1129 exprAnalyze(pSrc, pWC, idxNew1); |
| 1130 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); |
| 1131 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, |
| 1132 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), |
| 1133 pStr2); |
| 1134 transferJoinMarkings(pNewExpr2, pExpr); |
| 1135 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); |
| 1136 testcase( idxNew2==0 ); |
| 1137 exprAnalyze(pSrc, pWC, idxNew2); |
| 1138 pTerm = &pWC->a[idxTerm]; |
| 1139 if( isComplete ){ |
| 1140 markTermAsChild(pWC, idxNew1, idxTerm); |
| 1141 markTermAsChild(pWC, idxNew2, idxTerm); |
| 1142 } |
| 1143 } |
| 1144 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
| 1145 |
| 1146 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1147 /* Add a WO_MATCH auxiliary term to the constraint set if the |
| 1148 ** current expression is of the form: column MATCH expr. |
| 1149 ** This information is used by the xBestIndex methods of |
| 1150 ** virtual tables. The native query optimizer does not attempt |
| 1151 ** to do anything with MATCH functions. |
| 1152 */ |
| 1153 if( pWC->op==TK_AND && isMatchOfColumn(pExpr, &eOp2) ){ |
| 1154 int idxNew; |
| 1155 Expr *pRight, *pLeft; |
| 1156 WhereTerm *pNewTerm; |
| 1157 Bitmask prereqColumn, prereqExpr; |
| 1158 |
| 1159 pRight = pExpr->x.pList->a[0].pExpr; |
| 1160 pLeft = pExpr->x.pList->a[1].pExpr; |
| 1161 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); |
| 1162 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); |
| 1163 if( (prereqExpr & prereqColumn)==0 ){ |
| 1164 Expr *pNewExpr; |
| 1165 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, |
| 1166 0, sqlite3ExprDup(db, pRight, 0)); |
| 1167 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
| 1168 testcase( idxNew==0 ); |
| 1169 pNewTerm = &pWC->a[idxNew]; |
| 1170 pNewTerm->prereqRight = prereqExpr; |
| 1171 pNewTerm->leftCursor = pLeft->iTable; |
| 1172 pNewTerm->u.leftColumn = pLeft->iColumn; |
| 1173 pNewTerm->eOperator = WO_MATCH; |
| 1174 pNewTerm->eMatchOp = eOp2; |
| 1175 markTermAsChild(pWC, idxNew, idxTerm); |
| 1176 pTerm = &pWC->a[idxTerm]; |
| 1177 pTerm->wtFlags |= TERM_COPIED; |
| 1178 pNewTerm->prereqAll = pTerm->prereqAll; |
| 1179 } |
| 1180 } |
| 1181 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 1182 |
| 1183 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create |
| 1184 ** new terms for each component comparison - "a = ?" and "b = ?". The |
| 1185 ** new terms completely replace the original vector comparison, which is |
| 1186 ** no longer used. |
| 1187 ** |
| 1188 ** This is only required if at least one side of the comparison operation |
| 1189 ** is not a sub-select. */ |
| 1190 if( pWC->op==TK_AND |
| 1191 && (pExpr->op==TK_EQ || pExpr->op==TK_IS) |
| 1192 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 |
| 1193 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft |
| 1194 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 |
| 1195 || (pExpr->pRight->flags & EP_xIsSelect)==0) |
| 1196 ){ |
| 1197 int i; |
| 1198 for(i=0; i<nLeft; i++){ |
| 1199 int idxNew; |
| 1200 Expr *pNew; |
| 1201 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); |
| 1202 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); |
| 1203 |
| 1204 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); |
| 1205 transferJoinMarkings(pNew, pExpr); |
| 1206 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); |
| 1207 exprAnalyze(pSrc, pWC, idxNew); |
| 1208 } |
| 1209 pTerm = &pWC->a[idxTerm]; |
| 1210 pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL; /* Disable the original */ |
| 1211 pTerm->eOperator = 0; |
| 1212 } |
| 1213 |
| 1214 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create |
| 1215 ** a virtual term for each vector component. The expression object |
| 1216 ** used by each such virtual term is pExpr (the full vector IN(...) |
| 1217 ** expression). The WhereTerm.iField variable identifies the index within |
| 1218 ** the vector on the LHS that the virtual term represents. |
| 1219 ** |
| 1220 ** This only works if the RHS is a simple SELECT, not a compound |
| 1221 */ |
| 1222 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 |
| 1223 && pExpr->pLeft->op==TK_VECTOR |
| 1224 && pExpr->x.pSelect->pPrior==0 |
| 1225 ){ |
| 1226 int i; |
| 1227 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ |
| 1228 int idxNew; |
| 1229 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); |
| 1230 pWC->a[idxNew].iField = i+1; |
| 1231 exprAnalyze(pSrc, pWC, idxNew); |
| 1232 markTermAsChild(pWC, idxNew, idxTerm); |
| 1233 } |
| 1234 } |
| 1235 |
| 1236 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1237 /* When sqlite_stat3 histogram data is available an operator of the |
| 1238 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently |
| 1239 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a |
| 1240 ** virtual term of that form. |
| 1241 ** |
| 1242 ** Note that the virtual term must be tagged with TERM_VNULL. |
| 1243 */ |
| 1244 if( pExpr->op==TK_NOTNULL |
| 1245 && pExpr->pLeft->op==TK_COLUMN |
| 1246 && pExpr->pLeft->iColumn>=0 |
| 1247 && OptimizationEnabled(db, SQLITE_Stat34) |
| 1248 ){ |
| 1249 Expr *pNewExpr; |
| 1250 Expr *pLeft = pExpr->pLeft; |
| 1251 int idxNew; |
| 1252 WhereTerm *pNewTerm; |
| 1253 |
| 1254 pNewExpr = sqlite3PExpr(pParse, TK_GT, |
| 1255 sqlite3ExprDup(db, pLeft, 0), |
| 1256 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); |
| 1257 |
| 1258 idxNew = whereClauseInsert(pWC, pNewExpr, |
| 1259 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); |
| 1260 if( idxNew ){ |
| 1261 pNewTerm = &pWC->a[idxNew]; |
| 1262 pNewTerm->prereqRight = 0; |
| 1263 pNewTerm->leftCursor = pLeft->iTable; |
| 1264 pNewTerm->u.leftColumn = pLeft->iColumn; |
| 1265 pNewTerm->eOperator = WO_GT; |
| 1266 markTermAsChild(pWC, idxNew, idxTerm); |
| 1267 pTerm = &pWC->a[idxTerm]; |
| 1268 pTerm->wtFlags |= TERM_COPIED; |
| 1269 pNewTerm->prereqAll = pTerm->prereqAll; |
| 1270 } |
| 1271 } |
| 1272 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1273 |
| 1274 /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
| 1275 ** an index for tables to the left of the join. |
| 1276 */ |
| 1277 testcase( pTerm!=&pWC->a[idxTerm] ); |
| 1278 pTerm = &pWC->a[idxTerm]; |
| 1279 pTerm->prereqRight |= extraRight; |
| 1280 } |
| 1281 |
| 1282 /*************************************************************************** |
| 1283 ** Routines with file scope above. Interface to the rest of the where.c |
| 1284 ** subsystem follows. |
| 1285 ***************************************************************************/ |
| 1286 |
| 1287 /* |
| 1288 ** This routine identifies subexpressions in the WHERE clause where |
| 1289 ** each subexpression is separated by the AND operator or some other |
| 1290 ** operator specified in the op parameter. The WhereClause structure |
| 1291 ** is filled with pointers to subexpressions. For example: |
| 1292 ** |
| 1293 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
| 1294 ** \________/ \_______________/ \________________/ |
| 1295 ** slot[0] slot[1] slot[2] |
| 1296 ** |
| 1297 ** The original WHERE clause in pExpr is unaltered. All this routine |
| 1298 ** does is make slot[] entries point to substructure within pExpr. |
| 1299 ** |
| 1300 ** In the previous sentence and in the diagram, "slot[]" refers to |
| 1301 ** the WhereClause.a[] array. The slot[] array grows as needed to contain |
| 1302 ** all terms of the WHERE clause. |
| 1303 */ |
| 1304 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ |
| 1305 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); |
| 1306 pWC->op = op; |
| 1307 if( pE2==0 ) return; |
| 1308 if( pE2->op!=op ){ |
| 1309 whereClauseInsert(pWC, pExpr, 0); |
| 1310 }else{ |
| 1311 sqlite3WhereSplit(pWC, pE2->pLeft, op); |
| 1312 sqlite3WhereSplit(pWC, pE2->pRight, op); |
| 1313 } |
| 1314 } |
| 1315 |
| 1316 /* |
| 1317 ** Initialize a preallocated WhereClause structure. |
| 1318 */ |
| 1319 void sqlite3WhereClauseInit( |
| 1320 WhereClause *pWC, /* The WhereClause to be initialized */ |
| 1321 WhereInfo *pWInfo /* The WHERE processing context */ |
| 1322 ){ |
| 1323 pWC->pWInfo = pWInfo; |
| 1324 pWC->pOuter = 0; |
| 1325 pWC->nTerm = 0; |
| 1326 pWC->nSlot = ArraySize(pWC->aStatic); |
| 1327 pWC->a = pWC->aStatic; |
| 1328 } |
| 1329 |
| 1330 /* |
| 1331 ** Deallocate a WhereClause structure. The WhereClause structure |
| 1332 ** itself is not freed. This routine is the inverse of |
| 1333 ** sqlite3WhereClauseInit(). |
| 1334 */ |
| 1335 void sqlite3WhereClauseClear(WhereClause *pWC){ |
| 1336 int i; |
| 1337 WhereTerm *a; |
| 1338 sqlite3 *db = pWC->pWInfo->pParse->db; |
| 1339 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
| 1340 if( a->wtFlags & TERM_DYNAMIC ){ |
| 1341 sqlite3ExprDelete(db, a->pExpr); |
| 1342 } |
| 1343 if( a->wtFlags & TERM_ORINFO ){ |
| 1344 whereOrInfoDelete(db, a->u.pOrInfo); |
| 1345 }else if( a->wtFlags & TERM_ANDINFO ){ |
| 1346 whereAndInfoDelete(db, a->u.pAndInfo); |
| 1347 } |
| 1348 } |
| 1349 if( pWC->a!=pWC->aStatic ){ |
| 1350 sqlite3DbFree(db, pWC->a); |
| 1351 } |
| 1352 } |
| 1353 |
| 1354 |
| 1355 /* |
| 1356 ** These routines walk (recursively) an expression tree and generate |
| 1357 ** a bitmask indicating which tables are used in that expression |
| 1358 ** tree. |
| 1359 */ |
| 1360 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ |
| 1361 Bitmask mask; |
| 1362 if( p==0 ) return 0; |
| 1363 if( p->op==TK_COLUMN ){ |
| 1364 mask = sqlite3WhereGetMask(pMaskSet, p->iTable); |
| 1365 return mask; |
| 1366 } |
| 1367 assert( !ExprHasProperty(p, EP_TokenOnly) ); |
| 1368 mask = p->pRight ? sqlite3WhereExprUsage(pMaskSet, p->pRight) : 0; |
| 1369 if( p->pLeft ) mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); |
| 1370 if( ExprHasProperty(p, EP_xIsSelect) ){ |
| 1371 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); |
| 1372 }else if( p->x.pList ){ |
| 1373 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); |
| 1374 } |
| 1375 return mask; |
| 1376 } |
| 1377 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ |
| 1378 int i; |
| 1379 Bitmask mask = 0; |
| 1380 if( pList ){ |
| 1381 for(i=0; i<pList->nExpr; i++){ |
| 1382 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); |
| 1383 } |
| 1384 } |
| 1385 return mask; |
| 1386 } |
| 1387 |
| 1388 |
| 1389 /* |
| 1390 ** Call exprAnalyze on all terms in a WHERE clause. |
| 1391 ** |
| 1392 ** Note that exprAnalyze() might add new virtual terms onto the |
| 1393 ** end of the WHERE clause. We do not want to analyze these new |
| 1394 ** virtual terms, so start analyzing at the end and work forward |
| 1395 ** so that the added virtual terms are never processed. |
| 1396 */ |
| 1397 void sqlite3WhereExprAnalyze( |
| 1398 SrcList *pTabList, /* the FROM clause */ |
| 1399 WhereClause *pWC /* the WHERE clause to be analyzed */ |
| 1400 ){ |
| 1401 int i; |
| 1402 for(i=pWC->nTerm-1; i>=0; i--){ |
| 1403 exprAnalyze(pTabList, pWC, i); |
| 1404 } |
| 1405 } |
| 1406 |
| 1407 /* |
| 1408 ** For table-valued-functions, transform the function arguments into |
| 1409 ** new WHERE clause terms. |
| 1410 ** |
| 1411 ** Each function argument translates into an equality constraint against |
| 1412 ** a HIDDEN column in the table. |
| 1413 */ |
| 1414 void sqlite3WhereTabFuncArgs( |
| 1415 Parse *pParse, /* Parsing context */ |
| 1416 struct SrcList_item *pItem, /* The FROM clause term to process */ |
| 1417 WhereClause *pWC /* Xfer function arguments to here */ |
| 1418 ){ |
| 1419 Table *pTab; |
| 1420 int j, k; |
| 1421 ExprList *pArgs; |
| 1422 Expr *pColRef; |
| 1423 Expr *pTerm; |
| 1424 if( pItem->fg.isTabFunc==0 ) return; |
| 1425 pTab = pItem->pTab; |
| 1426 assert( pTab!=0 ); |
| 1427 pArgs = pItem->u1.pFuncArg; |
| 1428 if( pArgs==0 ) return; |
| 1429 for(j=k=0; j<pArgs->nExpr; j++){ |
| 1430 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} |
| 1431 if( k>=pTab->nCol ){ |
| 1432 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", |
| 1433 pTab->zName, j); |
| 1434 return; |
| 1435 } |
| 1436 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); |
| 1437 if( pColRef==0 ) return; |
| 1438 pColRef->iTable = pItem->iCursor; |
| 1439 pColRef->iColumn = k++; |
| 1440 pColRef->pTab = pTab; |
| 1441 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, |
| 1442 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0)); |
| 1443 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); |
| 1444 } |
| 1445 } |
OLD | NEW |