Index: third_party/sqlite/sqlite-src-3170000/src/expr.c |
diff --git a/third_party/sqlite/sqlite-src-3170000/src/expr.c b/third_party/sqlite/sqlite-src-3170000/src/expr.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..ff4f1b5ade5f00851bd329a7ac7f38e0971ea2e8 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3170000/src/expr.c |
@@ -0,0 +1,5128 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains routines used for analyzing expressions and |
+** for generating VDBE code that evaluates expressions in SQLite. |
+*/ |
+#include "sqliteInt.h" |
+ |
+/* Forward declarations */ |
+static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); |
+static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); |
+ |
+/* |
+** Return the affinity character for a single column of a table. |
+*/ |
+char sqlite3TableColumnAffinity(Table *pTab, int iCol){ |
+ assert( iCol<pTab->nCol ); |
+ return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; |
+} |
+ |
+/* |
+** Return the 'affinity' of the expression pExpr if any. |
+** |
+** If pExpr is a column, a reference to a column via an 'AS' alias, |
+** or a sub-select with a column as the return value, then the |
+** affinity of that column is returned. Otherwise, 0x00 is returned, |
+** indicating no affinity for the expression. |
+** |
+** i.e. the WHERE clause expressions in the following statements all |
+** have an affinity: |
+** |
+** CREATE TABLE t1(a); |
+** SELECT * FROM t1 WHERE a; |
+** SELECT a AS b FROM t1 WHERE b; |
+** SELECT * FROM t1 WHERE (select a from t1); |
+*/ |
+char sqlite3ExprAffinity(Expr *pExpr){ |
+ int op; |
+ pExpr = sqlite3ExprSkipCollate(pExpr); |
+ if( pExpr->flags & EP_Generic ) return 0; |
+ op = pExpr->op; |
+ if( op==TK_SELECT ){ |
+ assert( pExpr->flags&EP_xIsSelect ); |
+ return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); |
+ } |
+ if( op==TK_REGISTER ) op = pExpr->op2; |
+#ifndef SQLITE_OMIT_CAST |
+ if( op==TK_CAST ){ |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ return sqlite3AffinityType(pExpr->u.zToken, 0); |
+ } |
+#endif |
+ if( op==TK_AGG_COLUMN || op==TK_COLUMN ){ |
+ return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); |
+ } |
+ if( op==TK_SELECT_COLUMN ){ |
+ assert( pExpr->pLeft->flags&EP_xIsSelect ); |
+ return sqlite3ExprAffinity( |
+ pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr |
+ ); |
+ } |
+ return pExpr->affinity; |
+} |
+ |
+/* |
+** Set the collating sequence for expression pExpr to be the collating |
+** sequence named by pToken. Return a pointer to a new Expr node that |
+** implements the COLLATE operator. |
+** |
+** If a memory allocation error occurs, that fact is recorded in pParse->db |
+** and the pExpr parameter is returned unchanged. |
+*/ |
+Expr *sqlite3ExprAddCollateToken( |
+ Parse *pParse, /* Parsing context */ |
+ Expr *pExpr, /* Add the "COLLATE" clause to this expression */ |
+ const Token *pCollName, /* Name of collating sequence */ |
+ int dequote /* True to dequote pCollName */ |
+){ |
+ if( pCollName->n>0 ){ |
+ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); |
+ if( pNew ){ |
+ pNew->pLeft = pExpr; |
+ pNew->flags |= EP_Collate|EP_Skip; |
+ pExpr = pNew; |
+ } |
+ } |
+ return pExpr; |
+} |
+Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ |
+ Token s; |
+ assert( zC!=0 ); |
+ sqlite3TokenInit(&s, (char*)zC); |
+ return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); |
+} |
+ |
+/* |
+** Skip over any TK_COLLATE operators and any unlikely() |
+** or likelihood() function at the root of an expression. |
+*/ |
+Expr *sqlite3ExprSkipCollate(Expr *pExpr){ |
+ while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ |
+ if( ExprHasProperty(pExpr, EP_Unlikely) ){ |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ assert( pExpr->x.pList->nExpr>0 ); |
+ assert( pExpr->op==TK_FUNCTION ); |
+ pExpr = pExpr->x.pList->a[0].pExpr; |
+ }else{ |
+ assert( pExpr->op==TK_COLLATE ); |
+ pExpr = pExpr->pLeft; |
+ } |
+ } |
+ return pExpr; |
+} |
+ |
+/* |
+** Return the collation sequence for the expression pExpr. If |
+** there is no defined collating sequence, return NULL. |
+** |
+** The collating sequence might be determined by a COLLATE operator |
+** or by the presence of a column with a defined collating sequence. |
+** COLLATE operators take first precedence. Left operands take |
+** precedence over right operands. |
+*/ |
+CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
+ sqlite3 *db = pParse->db; |
+ CollSeq *pColl = 0; |
+ Expr *p = pExpr; |
+ while( p ){ |
+ int op = p->op; |
+ if( p->flags & EP_Generic ) break; |
+ if( op==TK_CAST || op==TK_UPLUS ){ |
+ p = p->pLeft; |
+ continue; |
+ } |
+ if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ |
+ pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); |
+ break; |
+ } |
+ if( (op==TK_AGG_COLUMN || op==TK_COLUMN |
+ || op==TK_REGISTER || op==TK_TRIGGER) |
+ && p->pTab!=0 |
+ ){ |
+ /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally |
+ ** a TK_COLUMN but was previously evaluated and cached in a register */ |
+ int j = p->iColumn; |
+ if( j>=0 ){ |
+ const char *zColl = p->pTab->aCol[j].zColl; |
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); |
+ } |
+ break; |
+ } |
+ if( p->flags & EP_Collate ){ |
+ if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ |
+ p = p->pLeft; |
+ }else{ |
+ Expr *pNext = p->pRight; |
+ /* The Expr.x union is never used at the same time as Expr.pRight */ |
+ assert( p->x.pList==0 || p->pRight==0 ); |
+ /* p->flags holds EP_Collate and p->pLeft->flags does not. And |
+ ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at |
+ ** least one EP_Collate. Thus the following two ALWAYS. */ |
+ if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ |
+ int i; |
+ for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ |
+ if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ |
+ pNext = p->x.pList->a[i].pExpr; |
+ break; |
+ } |
+ } |
+ } |
+ p = pNext; |
+ } |
+ }else{ |
+ break; |
+ } |
+ } |
+ if( sqlite3CheckCollSeq(pParse, pColl) ){ |
+ pColl = 0; |
+ } |
+ return pColl; |
+} |
+ |
+/* |
+** pExpr is an operand of a comparison operator. aff2 is the |
+** type affinity of the other operand. This routine returns the |
+** type affinity that should be used for the comparison operator. |
+*/ |
+char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
+ char aff1 = sqlite3ExprAffinity(pExpr); |
+ if( aff1 && aff2 ){ |
+ /* Both sides of the comparison are columns. If one has numeric |
+ ** affinity, use that. Otherwise use no affinity. |
+ */ |
+ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ |
+ return SQLITE_AFF_NUMERIC; |
+ }else{ |
+ return SQLITE_AFF_BLOB; |
+ } |
+ }else if( !aff1 && !aff2 ){ |
+ /* Neither side of the comparison is a column. Compare the |
+ ** results directly. |
+ */ |
+ return SQLITE_AFF_BLOB; |
+ }else{ |
+ /* One side is a column, the other is not. Use the columns affinity. */ |
+ assert( aff1==0 || aff2==0 ); |
+ return (aff1 + aff2); |
+ } |
+} |
+ |
+/* |
+** pExpr is a comparison operator. Return the type affinity that should |
+** be applied to both operands prior to doing the comparison. |
+*/ |
+static char comparisonAffinity(Expr *pExpr){ |
+ char aff; |
+ assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
+ pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
+ pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); |
+ assert( pExpr->pLeft ); |
+ aff = sqlite3ExprAffinity(pExpr->pLeft); |
+ if( pExpr->pRight ){ |
+ aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
+ }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); |
+ }else if( aff==0 ){ |
+ aff = SQLITE_AFF_BLOB; |
+ } |
+ return aff; |
+} |
+ |
+/* |
+** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
+** idx_affinity is the affinity of an indexed column. Return true |
+** if the index with affinity idx_affinity may be used to implement |
+** the comparison in pExpr. |
+*/ |
+int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
+ char aff = comparisonAffinity(pExpr); |
+ switch( aff ){ |
+ case SQLITE_AFF_BLOB: |
+ return 1; |
+ case SQLITE_AFF_TEXT: |
+ return idx_affinity==SQLITE_AFF_TEXT; |
+ default: |
+ return sqlite3IsNumericAffinity(idx_affinity); |
+ } |
+} |
+ |
+/* |
+** Return the P5 value that should be used for a binary comparison |
+** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
+*/ |
+static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
+ u8 aff = (char)sqlite3ExprAffinity(pExpr2); |
+ aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; |
+ return aff; |
+} |
+ |
+/* |
+** Return a pointer to the collation sequence that should be used by |
+** a binary comparison operator comparing pLeft and pRight. |
+** |
+** If the left hand expression has a collating sequence type, then it is |
+** used. Otherwise the collation sequence for the right hand expression |
+** is used, or the default (BINARY) if neither expression has a collating |
+** type. |
+** |
+** Argument pRight (but not pLeft) may be a null pointer. In this case, |
+** it is not considered. |
+*/ |
+CollSeq *sqlite3BinaryCompareCollSeq( |
+ Parse *pParse, |
+ Expr *pLeft, |
+ Expr *pRight |
+){ |
+ CollSeq *pColl; |
+ assert( pLeft ); |
+ if( pLeft->flags & EP_Collate ){ |
+ pColl = sqlite3ExprCollSeq(pParse, pLeft); |
+ }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ |
+ pColl = sqlite3ExprCollSeq(pParse, pRight); |
+ }else{ |
+ pColl = sqlite3ExprCollSeq(pParse, pLeft); |
+ if( !pColl ){ |
+ pColl = sqlite3ExprCollSeq(pParse, pRight); |
+ } |
+ } |
+ return pColl; |
+} |
+ |
+/* |
+** Generate code for a comparison operator. |
+*/ |
+static int codeCompare( |
+ Parse *pParse, /* The parsing (and code generating) context */ |
+ Expr *pLeft, /* The left operand */ |
+ Expr *pRight, /* The right operand */ |
+ int opcode, /* The comparison opcode */ |
+ int in1, int in2, /* Register holding operands */ |
+ int dest, /* Jump here if true. */ |
+ int jumpIfNull /* If true, jump if either operand is NULL */ |
+){ |
+ int p5; |
+ int addr; |
+ CollSeq *p4; |
+ |
+ p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); |
+ p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); |
+ addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, |
+ (void*)p4, P4_COLLSEQ); |
+ sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); |
+ return addr; |
+} |
+ |
+/* |
+** Return true if expression pExpr is a vector, or false otherwise. |
+** |
+** A vector is defined as any expression that results in two or more |
+** columns of result. Every TK_VECTOR node is an vector because the |
+** parser will not generate a TK_VECTOR with fewer than two entries. |
+** But a TK_SELECT might be either a vector or a scalar. It is only |
+** considered a vector if it has two or more result columns. |
+*/ |
+int sqlite3ExprIsVector(Expr *pExpr){ |
+ return sqlite3ExprVectorSize(pExpr)>1; |
+} |
+ |
+/* |
+** If the expression passed as the only argument is of type TK_VECTOR |
+** return the number of expressions in the vector. Or, if the expression |
+** is a sub-select, return the number of columns in the sub-select. For |
+** any other type of expression, return 1. |
+*/ |
+int sqlite3ExprVectorSize(Expr *pExpr){ |
+ u8 op = pExpr->op; |
+ if( op==TK_REGISTER ) op = pExpr->op2; |
+ if( op==TK_VECTOR ){ |
+ return pExpr->x.pList->nExpr; |
+ }else if( op==TK_SELECT ){ |
+ return pExpr->x.pSelect->pEList->nExpr; |
+ }else{ |
+ return 1; |
+ } |
+} |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** Return a pointer to a subexpression of pVector that is the i-th |
+** column of the vector (numbered starting with 0). The caller must |
+** ensure that i is within range. |
+** |
+** If pVector is really a scalar (and "scalar" here includes subqueries |
+** that return a single column!) then return pVector unmodified. |
+** |
+** pVector retains ownership of the returned subexpression. |
+** |
+** If the vector is a (SELECT ...) then the expression returned is |
+** just the expression for the i-th term of the result set, and may |
+** not be ready for evaluation because the table cursor has not yet |
+** been positioned. |
+*/ |
+Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ |
+ assert( i<sqlite3ExprVectorSize(pVector) ); |
+ if( sqlite3ExprIsVector(pVector) ){ |
+ assert( pVector->op2==0 || pVector->op==TK_REGISTER ); |
+ if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ |
+ return pVector->x.pSelect->pEList->a[i].pExpr; |
+ }else{ |
+ return pVector->x.pList->a[i].pExpr; |
+ } |
+ } |
+ return pVector; |
+} |
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) */ |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** Compute and return a new Expr object which when passed to |
+** sqlite3ExprCode() will generate all necessary code to compute |
+** the iField-th column of the vector expression pVector. |
+** |
+** It is ok for pVector to be a scalar (as long as iField==0). |
+** In that case, this routine works like sqlite3ExprDup(). |
+** |
+** The caller owns the returned Expr object and is responsible for |
+** ensuring that the returned value eventually gets freed. |
+** |
+** The caller retains ownership of pVector. If pVector is a TK_SELECT, |
+** then the returned object will reference pVector and so pVector must remain |
+** valid for the life of the returned object. If pVector is a TK_VECTOR |
+** or a scalar expression, then it can be deleted as soon as this routine |
+** returns. |
+** |
+** A trick to cause a TK_SELECT pVector to be deleted together with |
+** the returned Expr object is to attach the pVector to the pRight field |
+** of the returned TK_SELECT_COLUMN Expr object. |
+*/ |
+Expr *sqlite3ExprForVectorField( |
+ Parse *pParse, /* Parsing context */ |
+ Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ |
+ int iField /* Which column of the vector to return */ |
+){ |
+ Expr *pRet; |
+ if( pVector->op==TK_SELECT ){ |
+ assert( pVector->flags & EP_xIsSelect ); |
+ /* The TK_SELECT_COLUMN Expr node: |
+ ** |
+ ** pLeft: pVector containing TK_SELECT. Not deleted. |
+ ** pRight: not used. But recursively deleted. |
+ ** iColumn: Index of a column in pVector |
+ ** iTable: 0 or the number of columns on the LHS of an assignment |
+ ** pLeft->iTable: First in an array of register holding result, or 0 |
+ ** if the result is not yet computed. |
+ ** |
+ ** sqlite3ExprDelete() specifically skips the recursive delete of |
+ ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector |
+ ** can be attached to pRight to cause this node to take ownership of |
+ ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes |
+ ** with the same pLeft pointer to the pVector, but only one of them |
+ ** will own the pVector. |
+ */ |
+ pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); |
+ if( pRet ){ |
+ pRet->iColumn = iField; |
+ pRet->pLeft = pVector; |
+ } |
+ assert( pRet==0 || pRet->iTable==0 ); |
+ }else{ |
+ if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; |
+ pRet = sqlite3ExprDup(pParse->db, pVector, 0); |
+ } |
+ return pRet; |
+} |
+#endif /* !define(SQLITE_OMIT_SUBQUERY) */ |
+ |
+/* |
+** If expression pExpr is of type TK_SELECT, generate code to evaluate |
+** it. Return the register in which the result is stored (or, if the |
+** sub-select returns more than one column, the first in an array |
+** of registers in which the result is stored). |
+** |
+** If pExpr is not a TK_SELECT expression, return 0. |
+*/ |
+static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ |
+ int reg = 0; |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ if( pExpr->op==TK_SELECT ){ |
+ reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); |
+ } |
+#endif |
+ return reg; |
+} |
+ |
+/* |
+** Argument pVector points to a vector expression - either a TK_VECTOR |
+** or TK_SELECT that returns more than one column. This function returns |
+** the register number of a register that contains the value of |
+** element iField of the vector. |
+** |
+** If pVector is a TK_SELECT expression, then code for it must have |
+** already been generated using the exprCodeSubselect() routine. In this |
+** case parameter regSelect should be the first in an array of registers |
+** containing the results of the sub-select. |
+** |
+** If pVector is of type TK_VECTOR, then code for the requested field |
+** is generated. In this case (*pRegFree) may be set to the number of |
+** a temporary register to be freed by the caller before returning. |
+** |
+** Before returning, output parameter (*ppExpr) is set to point to the |
+** Expr object corresponding to element iElem of the vector. |
+*/ |
+static int exprVectorRegister( |
+ Parse *pParse, /* Parse context */ |
+ Expr *pVector, /* Vector to extract element from */ |
+ int iField, /* Field to extract from pVector */ |
+ int regSelect, /* First in array of registers */ |
+ Expr **ppExpr, /* OUT: Expression element */ |
+ int *pRegFree /* OUT: Temp register to free */ |
+){ |
+ u8 op = pVector->op; |
+ assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); |
+ if( op==TK_REGISTER ){ |
+ *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); |
+ return pVector->iTable+iField; |
+ } |
+ if( op==TK_SELECT ){ |
+ *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; |
+ return regSelect+iField; |
+ } |
+ *ppExpr = pVector->x.pList->a[iField].pExpr; |
+ return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); |
+} |
+ |
+/* |
+** Expression pExpr is a comparison between two vector values. Compute |
+** the result of the comparison (1, 0, or NULL) and write that |
+** result into register dest. |
+** |
+** The caller must satisfy the following preconditions: |
+** |
+** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ |
+** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ |
+** otherwise: op==pExpr->op and p5==0 |
+*/ |
+static void codeVectorCompare( |
+ Parse *pParse, /* Code generator context */ |
+ Expr *pExpr, /* The comparison operation */ |
+ int dest, /* Write results into this register */ |
+ u8 op, /* Comparison operator */ |
+ u8 p5 /* SQLITE_NULLEQ or zero */ |
+){ |
+ Vdbe *v = pParse->pVdbe; |
+ Expr *pLeft = pExpr->pLeft; |
+ Expr *pRight = pExpr->pRight; |
+ int nLeft = sqlite3ExprVectorSize(pLeft); |
+ int i; |
+ int regLeft = 0; |
+ int regRight = 0; |
+ u8 opx = op; |
+ int addrDone = sqlite3VdbeMakeLabel(v); |
+ |
+ if( nLeft!=sqlite3ExprVectorSize(pRight) ){ |
+ sqlite3ErrorMsg(pParse, "row value misused"); |
+ return; |
+ } |
+ assert( pExpr->op==TK_EQ || pExpr->op==TK_NE |
+ || pExpr->op==TK_IS || pExpr->op==TK_ISNOT |
+ || pExpr->op==TK_LT || pExpr->op==TK_GT |
+ || pExpr->op==TK_LE || pExpr->op==TK_GE |
+ ); |
+ assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) |
+ || (pExpr->op==TK_ISNOT && op==TK_NE) ); |
+ assert( p5==0 || pExpr->op!=op ); |
+ assert( p5==SQLITE_NULLEQ || pExpr->op==op ); |
+ |
+ p5 |= SQLITE_STOREP2; |
+ if( opx==TK_LE ) opx = TK_LT; |
+ if( opx==TK_GE ) opx = TK_GT; |
+ |
+ regLeft = exprCodeSubselect(pParse, pLeft); |
+ regRight = exprCodeSubselect(pParse, pRight); |
+ |
+ for(i=0; 1 /*Loop exits by "break"*/; i++){ |
+ int regFree1 = 0, regFree2 = 0; |
+ Expr *pL, *pR; |
+ int r1, r2; |
+ assert( i>=0 && i<nLeft ); |
+ if( i>0 ) sqlite3ExprCachePush(pParse); |
+ r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); |
+ r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); |
+ codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); |
+ testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
+ testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
+ testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
+ testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
+ testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
+ testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
+ sqlite3ReleaseTempReg(pParse, regFree1); |
+ sqlite3ReleaseTempReg(pParse, regFree2); |
+ if( i>0 ) sqlite3ExprCachePop(pParse); |
+ if( i==nLeft-1 ){ |
+ break; |
+ } |
+ if( opx==TK_EQ ){ |
+ sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); |
+ p5 |= SQLITE_KEEPNULL; |
+ }else if( opx==TK_NE ){ |
+ sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); |
+ p5 |= SQLITE_KEEPNULL; |
+ }else{ |
+ assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); |
+ sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); |
+ VdbeCoverageIf(v, op==TK_LT); |
+ VdbeCoverageIf(v, op==TK_GT); |
+ VdbeCoverageIf(v, op==TK_LE); |
+ VdbeCoverageIf(v, op==TK_GE); |
+ if( i==nLeft-2 ) opx = op; |
+ } |
+ } |
+ sqlite3VdbeResolveLabel(v, addrDone); |
+} |
+ |
+#if SQLITE_MAX_EXPR_DEPTH>0 |
+/* |
+** Check that argument nHeight is less than or equal to the maximum |
+** expression depth allowed. If it is not, leave an error message in |
+** pParse. |
+*/ |
+int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ |
+ int rc = SQLITE_OK; |
+ int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; |
+ if( nHeight>mxHeight ){ |
+ sqlite3ErrorMsg(pParse, |
+ "Expression tree is too large (maximum depth %d)", mxHeight |
+ ); |
+ rc = SQLITE_ERROR; |
+ } |
+ return rc; |
+} |
+ |
+/* The following three functions, heightOfExpr(), heightOfExprList() |
+** and heightOfSelect(), are used to determine the maximum height |
+** of any expression tree referenced by the structure passed as the |
+** first argument. |
+** |
+** If this maximum height is greater than the current value pointed |
+** to by pnHeight, the second parameter, then set *pnHeight to that |
+** value. |
+*/ |
+static void heightOfExpr(Expr *p, int *pnHeight){ |
+ if( p ){ |
+ if( p->nHeight>*pnHeight ){ |
+ *pnHeight = p->nHeight; |
+ } |
+ } |
+} |
+static void heightOfExprList(ExprList *p, int *pnHeight){ |
+ if( p ){ |
+ int i; |
+ for(i=0; i<p->nExpr; i++){ |
+ heightOfExpr(p->a[i].pExpr, pnHeight); |
+ } |
+ } |
+} |
+static void heightOfSelect(Select *p, int *pnHeight){ |
+ if( p ){ |
+ heightOfExpr(p->pWhere, pnHeight); |
+ heightOfExpr(p->pHaving, pnHeight); |
+ heightOfExpr(p->pLimit, pnHeight); |
+ heightOfExpr(p->pOffset, pnHeight); |
+ heightOfExprList(p->pEList, pnHeight); |
+ heightOfExprList(p->pGroupBy, pnHeight); |
+ heightOfExprList(p->pOrderBy, pnHeight); |
+ heightOfSelect(p->pPrior, pnHeight); |
+ } |
+} |
+ |
+/* |
+** Set the Expr.nHeight variable in the structure passed as an |
+** argument. An expression with no children, Expr.pList or |
+** Expr.pSelect member has a height of 1. Any other expression |
+** has a height equal to the maximum height of any other |
+** referenced Expr plus one. |
+** |
+** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, |
+** if appropriate. |
+*/ |
+static void exprSetHeight(Expr *p){ |
+ int nHeight = 0; |
+ heightOfExpr(p->pLeft, &nHeight); |
+ heightOfExpr(p->pRight, &nHeight); |
+ if( ExprHasProperty(p, EP_xIsSelect) ){ |
+ heightOfSelect(p->x.pSelect, &nHeight); |
+ }else if( p->x.pList ){ |
+ heightOfExprList(p->x.pList, &nHeight); |
+ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); |
+ } |
+ p->nHeight = nHeight + 1; |
+} |
+ |
+/* |
+** Set the Expr.nHeight variable using the exprSetHeight() function. If |
+** the height is greater than the maximum allowed expression depth, |
+** leave an error in pParse. |
+** |
+** Also propagate all EP_Propagate flags from the Expr.x.pList into |
+** Expr.flags. |
+*/ |
+void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ |
+ if( pParse->nErr ) return; |
+ exprSetHeight(p); |
+ sqlite3ExprCheckHeight(pParse, p->nHeight); |
+} |
+ |
+/* |
+** Return the maximum height of any expression tree referenced |
+** by the select statement passed as an argument. |
+*/ |
+int sqlite3SelectExprHeight(Select *p){ |
+ int nHeight = 0; |
+ heightOfSelect(p, &nHeight); |
+ return nHeight; |
+} |
+#else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ |
+/* |
+** Propagate all EP_Propagate flags from the Expr.x.pList into |
+** Expr.flags. |
+*/ |
+void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ |
+ if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ |
+ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); |
+ } |
+} |
+#define exprSetHeight(y) |
+#endif /* SQLITE_MAX_EXPR_DEPTH>0 */ |
+ |
+/* |
+** This routine is the core allocator for Expr nodes. |
+** |
+** Construct a new expression node and return a pointer to it. Memory |
+** for this node and for the pToken argument is a single allocation |
+** obtained from sqlite3DbMalloc(). The calling function |
+** is responsible for making sure the node eventually gets freed. |
+** |
+** If dequote is true, then the token (if it exists) is dequoted. |
+** If dequote is false, no dequoting is performed. The deQuote |
+** parameter is ignored if pToken is NULL or if the token does not |
+** appear to be quoted. If the quotes were of the form "..." (double-quotes) |
+** then the EP_DblQuoted flag is set on the expression node. |
+** |
+** Special case: If op==TK_INTEGER and pToken points to a string that |
+** can be translated into a 32-bit integer, then the token is not |
+** stored in u.zToken. Instead, the integer values is written |
+** into u.iValue and the EP_IntValue flag is set. No extra storage |
+** is allocated to hold the integer text and the dequote flag is ignored. |
+*/ |
+Expr *sqlite3ExprAlloc( |
+ sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ |
+ int op, /* Expression opcode */ |
+ const Token *pToken, /* Token argument. Might be NULL */ |
+ int dequote /* True to dequote */ |
+){ |
+ Expr *pNew; |
+ int nExtra = 0; |
+ int iValue = 0; |
+ |
+ assert( db!=0 ); |
+ if( pToken ){ |
+ if( op!=TK_INTEGER || pToken->z==0 |
+ || sqlite3GetInt32(pToken->z, &iValue)==0 ){ |
+ nExtra = pToken->n+1; |
+ assert( iValue>=0 ); |
+ } |
+ } |
+ pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); |
+ if( pNew ){ |
+ memset(pNew, 0, sizeof(Expr)); |
+ pNew->op = (u8)op; |
+ pNew->iAgg = -1; |
+ if( pToken ){ |
+ if( nExtra==0 ){ |
+ pNew->flags |= EP_IntValue; |
+ pNew->u.iValue = iValue; |
+ }else{ |
+ pNew->u.zToken = (char*)&pNew[1]; |
+ assert( pToken->z!=0 || pToken->n==0 ); |
+ if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); |
+ pNew->u.zToken[pToken->n] = 0; |
+ if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ |
+ if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; |
+ sqlite3Dequote(pNew->u.zToken); |
+ } |
+ } |
+ } |
+#if SQLITE_MAX_EXPR_DEPTH>0 |
+ pNew->nHeight = 1; |
+#endif |
+ } |
+ return pNew; |
+} |
+ |
+/* |
+** Allocate a new expression node from a zero-terminated token that has |
+** already been dequoted. |
+*/ |
+Expr *sqlite3Expr( |
+ sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
+ int op, /* Expression opcode */ |
+ const char *zToken /* Token argument. Might be NULL */ |
+){ |
+ Token x; |
+ x.z = zToken; |
+ x.n = zToken ? sqlite3Strlen30(zToken) : 0; |
+ return sqlite3ExprAlloc(db, op, &x, 0); |
+} |
+ |
+/* |
+** Attach subtrees pLeft and pRight to the Expr node pRoot. |
+** |
+** If pRoot==NULL that means that a memory allocation error has occurred. |
+** In that case, delete the subtrees pLeft and pRight. |
+*/ |
+void sqlite3ExprAttachSubtrees( |
+ sqlite3 *db, |
+ Expr *pRoot, |
+ Expr *pLeft, |
+ Expr *pRight |
+){ |
+ if( pRoot==0 ){ |
+ assert( db->mallocFailed ); |
+ sqlite3ExprDelete(db, pLeft); |
+ sqlite3ExprDelete(db, pRight); |
+ }else{ |
+ if( pRight ){ |
+ pRoot->pRight = pRight; |
+ pRoot->flags |= EP_Propagate & pRight->flags; |
+ } |
+ if( pLeft ){ |
+ pRoot->pLeft = pLeft; |
+ pRoot->flags |= EP_Propagate & pLeft->flags; |
+ } |
+ exprSetHeight(pRoot); |
+ } |
+} |
+ |
+/* |
+** Allocate an Expr node which joins as many as two subtrees. |
+** |
+** One or both of the subtrees can be NULL. Return a pointer to the new |
+** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, |
+** free the subtrees and return NULL. |
+*/ |
+Expr *sqlite3PExpr( |
+ Parse *pParse, /* Parsing context */ |
+ int op, /* Expression opcode */ |
+ Expr *pLeft, /* Left operand */ |
+ Expr *pRight /* Right operand */ |
+){ |
+ Expr *p; |
+ if( op==TK_AND && pParse->nErr==0 ){ |
+ /* Take advantage of short-circuit false optimization for AND */ |
+ p = sqlite3ExprAnd(pParse->db, pLeft, pRight); |
+ }else{ |
+ p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); |
+ if( p ){ |
+ memset(p, 0, sizeof(Expr)); |
+ p->op = op & TKFLG_MASK; |
+ p->iAgg = -1; |
+ } |
+ sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); |
+ } |
+ if( p ) { |
+ sqlite3ExprCheckHeight(pParse, p->nHeight); |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due |
+** do a memory allocation failure) then delete the pSelect object. |
+*/ |
+void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ |
+ if( pExpr ){ |
+ pExpr->x.pSelect = pSelect; |
+ ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); |
+ sqlite3ExprSetHeightAndFlags(pParse, pExpr); |
+ }else{ |
+ assert( pParse->db->mallocFailed ); |
+ sqlite3SelectDelete(pParse->db, pSelect); |
+ } |
+} |
+ |
+ |
+/* |
+** If the expression is always either TRUE or FALSE (respectively), |
+** then return 1. If one cannot determine the truth value of the |
+** expression at compile-time return 0. |
+** |
+** This is an optimization. If is OK to return 0 here even if |
+** the expression really is always false or false (a false negative). |
+** But it is a bug to return 1 if the expression might have different |
+** boolean values in different circumstances (a false positive.) |
+** |
+** Note that if the expression is part of conditional for a |
+** LEFT JOIN, then we cannot determine at compile-time whether or not |
+** is it true or false, so always return 0. |
+*/ |
+static int exprAlwaysTrue(Expr *p){ |
+ int v = 0; |
+ if( ExprHasProperty(p, EP_FromJoin) ) return 0; |
+ if( !sqlite3ExprIsInteger(p, &v) ) return 0; |
+ return v!=0; |
+} |
+static int exprAlwaysFalse(Expr *p){ |
+ int v = 0; |
+ if( ExprHasProperty(p, EP_FromJoin) ) return 0; |
+ if( !sqlite3ExprIsInteger(p, &v) ) return 0; |
+ return v==0; |
+} |
+ |
+/* |
+** Join two expressions using an AND operator. If either expression is |
+** NULL, then just return the other expression. |
+** |
+** If one side or the other of the AND is known to be false, then instead |
+** of returning an AND expression, just return a constant expression with |
+** a value of false. |
+*/ |
+Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ |
+ if( pLeft==0 ){ |
+ return pRight; |
+ }else if( pRight==0 ){ |
+ return pLeft; |
+ }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ |
+ sqlite3ExprDelete(db, pLeft); |
+ sqlite3ExprDelete(db, pRight); |
+ return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); |
+ }else{ |
+ Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); |
+ sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); |
+ return pNew; |
+ } |
+} |
+ |
+/* |
+** Construct a new expression node for a function with multiple |
+** arguments. |
+*/ |
+Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ |
+ Expr *pNew; |
+ sqlite3 *db = pParse->db; |
+ assert( pToken ); |
+ pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); |
+ if( pNew==0 ){ |
+ sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ |
+ return 0; |
+ } |
+ pNew->x.pList = pList; |
+ assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
+ sqlite3ExprSetHeightAndFlags(pParse, pNew); |
+ return pNew; |
+} |
+ |
+/* |
+** Assign a variable number to an expression that encodes a wildcard |
+** in the original SQL statement. |
+** |
+** Wildcards consisting of a single "?" are assigned the next sequential |
+** variable number. |
+** |
+** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
+** sure "nnn" is not too big to avoid a denial of service attack when |
+** the SQL statement comes from an external source. |
+** |
+** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number |
+** as the previous instance of the same wildcard. Or if this is the first |
+** instance of the wildcard, the next sequential variable number is |
+** assigned. |
+*/ |
+void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ |
+ sqlite3 *db = pParse->db; |
+ const char *z; |
+ ynVar x; |
+ |
+ if( pExpr==0 ) return; |
+ assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); |
+ z = pExpr->u.zToken; |
+ assert( z!=0 ); |
+ assert( z[0]!=0 ); |
+ assert( n==sqlite3Strlen30(z) ); |
+ if( z[1]==0 ){ |
+ /* Wildcard of the form "?". Assign the next variable number */ |
+ assert( z[0]=='?' ); |
+ x = (ynVar)(++pParse->nVar); |
+ }else{ |
+ int doAdd = 0; |
+ if( z[0]=='?' ){ |
+ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
+ ** use it as the variable number */ |
+ i64 i; |
+ int bOk; |
+ if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ |
+ i = z[1]-'0'; /* The common case of ?N for a single digit N */ |
+ bOk = 1; |
+ }else{ |
+ bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); |
+ } |
+ testcase( i==0 ); |
+ testcase( i==1 ); |
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); |
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); |
+ if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
+ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
+ db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); |
+ return; |
+ } |
+ x = (ynVar)i; |
+ if( x>pParse->nVar ){ |
+ pParse->nVar = (int)x; |
+ doAdd = 1; |
+ }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ |
+ doAdd = 1; |
+ } |
+ }else{ |
+ /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable |
+ ** number as the prior appearance of the same name, or if the name |
+ ** has never appeared before, reuse the same variable number |
+ */ |
+ x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); |
+ if( x==0 ){ |
+ x = (ynVar)(++pParse->nVar); |
+ doAdd = 1; |
+ } |
+ } |
+ if( doAdd ){ |
+ pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); |
+ } |
+ } |
+ pExpr->iColumn = x; |
+ if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
+ sqlite3ErrorMsg(pParse, "too many SQL variables"); |
+ } |
+} |
+ |
+/* |
+** Recursively delete an expression tree. |
+*/ |
+static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ |
+ assert( p!=0 ); |
+ /* Sanity check: Assert that the IntValue is non-negative if it exists */ |
+ assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); |
+#ifdef SQLITE_DEBUG |
+ if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ |
+ assert( p->pLeft==0 ); |
+ assert( p->pRight==0 ); |
+ assert( p->x.pSelect==0 ); |
+ } |
+#endif |
+ if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ |
+ /* The Expr.x union is never used at the same time as Expr.pRight */ |
+ assert( p->x.pList==0 || p->pRight==0 ); |
+ if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); |
+ sqlite3ExprDelete(db, p->pRight); |
+ if( ExprHasProperty(p, EP_xIsSelect) ){ |
+ sqlite3SelectDelete(db, p->x.pSelect); |
+ }else{ |
+ sqlite3ExprListDelete(db, p->x.pList); |
+ } |
+ } |
+ if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); |
+ if( !ExprHasProperty(p, EP_Static) ){ |
+ sqlite3DbFree(db, p); |
+ } |
+} |
+void sqlite3ExprDelete(sqlite3 *db, Expr *p){ |
+ if( p ) sqlite3ExprDeleteNN(db, p); |
+} |
+ |
+/* |
+** Return the number of bytes allocated for the expression structure |
+** passed as the first argument. This is always one of EXPR_FULLSIZE, |
+** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. |
+*/ |
+static int exprStructSize(Expr *p){ |
+ if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; |
+ if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; |
+ return EXPR_FULLSIZE; |
+} |
+ |
+/* |
+** The dupedExpr*Size() routines each return the number of bytes required |
+** to store a copy of an expression or expression tree. They differ in |
+** how much of the tree is measured. |
+** |
+** dupedExprStructSize() Size of only the Expr structure |
+** dupedExprNodeSize() Size of Expr + space for token |
+** dupedExprSize() Expr + token + subtree components |
+** |
+*************************************************************************** |
+** |
+** The dupedExprStructSize() function returns two values OR-ed together: |
+** (1) the space required for a copy of the Expr structure only and |
+** (2) the EP_xxx flags that indicate what the structure size should be. |
+** The return values is always one of: |
+** |
+** EXPR_FULLSIZE |
+** EXPR_REDUCEDSIZE | EP_Reduced |
+** EXPR_TOKENONLYSIZE | EP_TokenOnly |
+** |
+** The size of the structure can be found by masking the return value |
+** of this routine with 0xfff. The flags can be found by masking the |
+** return value with EP_Reduced|EP_TokenOnly. |
+** |
+** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size |
+** (unreduced) Expr objects as they or originally constructed by the parser. |
+** During expression analysis, extra information is computed and moved into |
+** later parts of teh Expr object and that extra information might get chopped |
+** off if the expression is reduced. Note also that it does not work to |
+** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal |
+** to reduce a pristine expression tree from the parser. The implementation |
+** of dupedExprStructSize() contain multiple assert() statements that attempt |
+** to enforce this constraint. |
+*/ |
+static int dupedExprStructSize(Expr *p, int flags){ |
+ int nSize; |
+ assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ |
+ assert( EXPR_FULLSIZE<=0xfff ); |
+ assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); |
+ if( 0==flags || p->op==TK_SELECT_COLUMN ){ |
+ nSize = EXPR_FULLSIZE; |
+ }else{ |
+ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
+ assert( !ExprHasProperty(p, EP_FromJoin) ); |
+ assert( !ExprHasProperty(p, EP_MemToken) ); |
+ assert( !ExprHasProperty(p, EP_NoReduce) ); |
+ if( p->pLeft || p->x.pList ){ |
+ nSize = EXPR_REDUCEDSIZE | EP_Reduced; |
+ }else{ |
+ assert( p->pRight==0 ); |
+ nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; |
+ } |
+ } |
+ return nSize; |
+} |
+ |
+/* |
+** This function returns the space in bytes required to store the copy |
+** of the Expr structure and a copy of the Expr.u.zToken string (if that |
+** string is defined.) |
+*/ |
+static int dupedExprNodeSize(Expr *p, int flags){ |
+ int nByte = dupedExprStructSize(p, flags) & 0xfff; |
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
+ nByte += sqlite3Strlen30(p->u.zToken)+1; |
+ } |
+ return ROUND8(nByte); |
+} |
+ |
+/* |
+** Return the number of bytes required to create a duplicate of the |
+** expression passed as the first argument. The second argument is a |
+** mask containing EXPRDUP_XXX flags. |
+** |
+** The value returned includes space to create a copy of the Expr struct |
+** itself and the buffer referred to by Expr.u.zToken, if any. |
+** |
+** If the EXPRDUP_REDUCE flag is set, then the return value includes |
+** space to duplicate all Expr nodes in the tree formed by Expr.pLeft |
+** and Expr.pRight variables (but not for any structures pointed to or |
+** descended from the Expr.x.pList or Expr.x.pSelect variables). |
+*/ |
+static int dupedExprSize(Expr *p, int flags){ |
+ int nByte = 0; |
+ if( p ){ |
+ nByte = dupedExprNodeSize(p, flags); |
+ if( flags&EXPRDUP_REDUCE ){ |
+ nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); |
+ } |
+ } |
+ return nByte; |
+} |
+ |
+/* |
+** This function is similar to sqlite3ExprDup(), except that if pzBuffer |
+** is not NULL then *pzBuffer is assumed to point to a buffer large enough |
+** to store the copy of expression p, the copies of p->u.zToken |
+** (if applicable), and the copies of the p->pLeft and p->pRight expressions, |
+** if any. Before returning, *pzBuffer is set to the first byte past the |
+** portion of the buffer copied into by this function. |
+*/ |
+static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ |
+ Expr *pNew; /* Value to return */ |
+ u8 *zAlloc; /* Memory space from which to build Expr object */ |
+ u32 staticFlag; /* EP_Static if space not obtained from malloc */ |
+ |
+ assert( db!=0 ); |
+ assert( p ); |
+ assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); |
+ assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); |
+ |
+ /* Figure out where to write the new Expr structure. */ |
+ if( pzBuffer ){ |
+ zAlloc = *pzBuffer; |
+ staticFlag = EP_Static; |
+ }else{ |
+ zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); |
+ staticFlag = 0; |
+ } |
+ pNew = (Expr *)zAlloc; |
+ |
+ if( pNew ){ |
+ /* Set nNewSize to the size allocated for the structure pointed to |
+ ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or |
+ ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed |
+ ** by the copy of the p->u.zToken string (if any). |
+ */ |
+ const unsigned nStructSize = dupedExprStructSize(p, dupFlags); |
+ const int nNewSize = nStructSize & 0xfff; |
+ int nToken; |
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
+ nToken = sqlite3Strlen30(p->u.zToken) + 1; |
+ }else{ |
+ nToken = 0; |
+ } |
+ if( dupFlags ){ |
+ assert( ExprHasProperty(p, EP_Reduced)==0 ); |
+ memcpy(zAlloc, p, nNewSize); |
+ }else{ |
+ u32 nSize = (u32)exprStructSize(p); |
+ memcpy(zAlloc, p, nSize); |
+ if( nSize<EXPR_FULLSIZE ){ |
+ memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); |
+ } |
+ } |
+ |
+ /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ |
+ pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); |
+ pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); |
+ pNew->flags |= staticFlag; |
+ |
+ /* Copy the p->u.zToken string, if any. */ |
+ if( nToken ){ |
+ char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; |
+ memcpy(zToken, p->u.zToken, nToken); |
+ } |
+ |
+ if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ |
+ /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ |
+ if( ExprHasProperty(p, EP_xIsSelect) ){ |
+ pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); |
+ }else{ |
+ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); |
+ } |
+ } |
+ |
+ /* Fill in pNew->pLeft and pNew->pRight. */ |
+ if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ |
+ zAlloc += dupedExprNodeSize(p, dupFlags); |
+ if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ |
+ pNew->pLeft = p->pLeft ? |
+ exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; |
+ pNew->pRight = p->pRight ? |
+ exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; |
+ } |
+ if( pzBuffer ){ |
+ *pzBuffer = zAlloc; |
+ } |
+ }else{ |
+ if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ |
+ if( pNew->op==TK_SELECT_COLUMN ){ |
+ pNew->pLeft = p->pLeft; |
+ assert( p->iColumn==0 || p->pRight==0 ); |
+ assert( p->pRight==0 || p->pRight==p->pLeft ); |
+ }else{ |
+ pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); |
+ } |
+ pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); |
+ } |
+ } |
+ } |
+ return pNew; |
+} |
+ |
+/* |
+** Create and return a deep copy of the object passed as the second |
+** argument. If an OOM condition is encountered, NULL is returned |
+** and the db->mallocFailed flag set. |
+*/ |
+#ifndef SQLITE_OMIT_CTE |
+static With *withDup(sqlite3 *db, With *p){ |
+ With *pRet = 0; |
+ if( p ){ |
+ int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); |
+ pRet = sqlite3DbMallocZero(db, nByte); |
+ if( pRet ){ |
+ int i; |
+ pRet->nCte = p->nCte; |
+ for(i=0; i<p->nCte; i++){ |
+ pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); |
+ pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); |
+ pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); |
+ } |
+ } |
+ } |
+ return pRet; |
+} |
+#else |
+# define withDup(x,y) 0 |
+#endif |
+ |
+/* |
+** The following group of routines make deep copies of expressions, |
+** expression lists, ID lists, and select statements. The copies can |
+** be deleted (by being passed to their respective ...Delete() routines) |
+** without effecting the originals. |
+** |
+** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
+** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
+** by subsequent calls to sqlite*ListAppend() routines. |
+** |
+** Any tables that the SrcList might point to are not duplicated. |
+** |
+** The flags parameter contains a combination of the EXPRDUP_XXX flags. |
+** If the EXPRDUP_REDUCE flag is set, then the structure returned is a |
+** truncated version of the usual Expr structure that will be stored as |
+** part of the in-memory representation of the database schema. |
+*/ |
+Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ |
+ assert( flags==0 || flags==EXPRDUP_REDUCE ); |
+ return p ? exprDup(db, p, flags, 0) : 0; |
+} |
+ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ |
+ ExprList *pNew; |
+ struct ExprList_item *pItem, *pOldItem; |
+ int i; |
+ Expr *pPriorSelectCol = 0; |
+ assert( db!=0 ); |
+ if( p==0 ) return 0; |
+ pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); |
+ if( pNew==0 ) return 0; |
+ pNew->nExpr = i = p->nExpr; |
+ if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} |
+ pNew->a = pItem = sqlite3DbMallocRawNN(db, i*sizeof(p->a[0]) ); |
+ if( pItem==0 ){ |
+ sqlite3DbFree(db, pNew); |
+ return 0; |
+ } |
+ pOldItem = p->a; |
+ for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
+ Expr *pOldExpr = pOldItem->pExpr; |
+ Expr *pNewExpr; |
+ pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); |
+ if( pOldExpr |
+ && pOldExpr->op==TK_SELECT_COLUMN |
+ && (pNewExpr = pItem->pExpr)!=0 |
+ ){ |
+ assert( pNewExpr->iColumn==0 || i>0 ); |
+ if( pNewExpr->iColumn==0 ){ |
+ assert( pOldExpr->pLeft==pOldExpr->pRight ); |
+ pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; |
+ }else{ |
+ assert( i>0 ); |
+ assert( pItem[-1].pExpr!=0 ); |
+ assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); |
+ assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); |
+ pNewExpr->pLeft = pPriorSelectCol; |
+ } |
+ } |
+ pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
+ pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); |
+ pItem->sortOrder = pOldItem->sortOrder; |
+ pItem->done = 0; |
+ pItem->bSpanIsTab = pOldItem->bSpanIsTab; |
+ pItem->u = pOldItem->u; |
+ } |
+ return pNew; |
+} |
+ |
+/* |
+** If cursors, triggers, views and subqueries are all omitted from |
+** the build, then none of the following routines, except for |
+** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
+** called with a NULL argument. |
+*/ |
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
+ || !defined(SQLITE_OMIT_SUBQUERY) |
+SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ |
+ SrcList *pNew; |
+ int i; |
+ int nByte; |
+ assert( db!=0 ); |
+ if( p==0 ) return 0; |
+ nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
+ pNew = sqlite3DbMallocRawNN(db, nByte ); |
+ if( pNew==0 ) return 0; |
+ pNew->nSrc = pNew->nAlloc = p->nSrc; |
+ for(i=0; i<p->nSrc; i++){ |
+ struct SrcList_item *pNewItem = &pNew->a[i]; |
+ struct SrcList_item *pOldItem = &p->a[i]; |
+ Table *pTab; |
+ pNewItem->pSchema = pOldItem->pSchema; |
+ pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); |
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
+ pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); |
+ pNewItem->fg = pOldItem->fg; |
+ pNewItem->iCursor = pOldItem->iCursor; |
+ pNewItem->addrFillSub = pOldItem->addrFillSub; |
+ pNewItem->regReturn = pOldItem->regReturn; |
+ if( pNewItem->fg.isIndexedBy ){ |
+ pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); |
+ } |
+ pNewItem->pIBIndex = pOldItem->pIBIndex; |
+ if( pNewItem->fg.isTabFunc ){ |
+ pNewItem->u1.pFuncArg = |
+ sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); |
+ } |
+ pTab = pNewItem->pTab = pOldItem->pTab; |
+ if( pTab ){ |
+ pTab->nTabRef++; |
+ } |
+ pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); |
+ pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); |
+ pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); |
+ pNewItem->colUsed = pOldItem->colUsed; |
+ } |
+ return pNew; |
+} |
+IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ |
+ IdList *pNew; |
+ int i; |
+ assert( db!=0 ); |
+ if( p==0 ) return 0; |
+ pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); |
+ if( pNew==0 ) return 0; |
+ pNew->nId = p->nId; |
+ pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); |
+ if( pNew->a==0 ){ |
+ sqlite3DbFree(db, pNew); |
+ return 0; |
+ } |
+ /* Note that because the size of the allocation for p->a[] is not |
+ ** necessarily a power of two, sqlite3IdListAppend() may not be called |
+ ** on the duplicate created by this function. */ |
+ for(i=0; i<p->nId; i++){ |
+ struct IdList_item *pNewItem = &pNew->a[i]; |
+ struct IdList_item *pOldItem = &p->a[i]; |
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
+ pNewItem->idx = pOldItem->idx; |
+ } |
+ return pNew; |
+} |
+Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ |
+ Select *pRet = 0; |
+ Select *pNext = 0; |
+ Select **pp = &pRet; |
+ Select *p; |
+ |
+ assert( db!=0 ); |
+ for(p=pDup; p; p=p->pPrior){ |
+ Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); |
+ if( pNew==0 ) break; |
+ pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); |
+ pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); |
+ pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); |
+ pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); |
+ pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); |
+ pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); |
+ pNew->op = p->op; |
+ pNew->pNext = pNext; |
+ pNew->pPrior = 0; |
+ pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); |
+ pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); |
+ pNew->iLimit = 0; |
+ pNew->iOffset = 0; |
+ pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; |
+ pNew->addrOpenEphm[0] = -1; |
+ pNew->addrOpenEphm[1] = -1; |
+ pNew->nSelectRow = p->nSelectRow; |
+ pNew->pWith = withDup(db, p->pWith); |
+ sqlite3SelectSetName(pNew, p->zSelName); |
+ *pp = pNew; |
+ pp = &pNew->pPrior; |
+ pNext = pNew; |
+ } |
+ |
+ return pRet; |
+} |
+#else |
+Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ |
+ assert( p==0 ); |
+ return 0; |
+} |
+#endif |
+ |
+ |
+/* |
+** Add a new element to the end of an expression list. If pList is |
+** initially NULL, then create a new expression list. |
+** |
+** If a memory allocation error occurs, the entire list is freed and |
+** NULL is returned. If non-NULL is returned, then it is guaranteed |
+** that the new entry was successfully appended. |
+*/ |
+ExprList *sqlite3ExprListAppend( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* List to which to append. Might be NULL */ |
+ Expr *pExpr /* Expression to be appended. Might be NULL */ |
+){ |
+ sqlite3 *db = pParse->db; |
+ assert( db!=0 ); |
+ if( pList==0 ){ |
+ pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); |
+ if( pList==0 ){ |
+ goto no_mem; |
+ } |
+ pList->nExpr = 0; |
+ pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0])); |
+ if( pList->a==0 ) goto no_mem; |
+ }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ |
+ struct ExprList_item *a; |
+ assert( pList->nExpr>0 ); |
+ a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); |
+ if( a==0 ){ |
+ goto no_mem; |
+ } |
+ pList->a = a; |
+ } |
+ assert( pList->a!=0 ); |
+ if( 1 ){ |
+ struct ExprList_item *pItem = &pList->a[pList->nExpr++]; |
+ memset(pItem, 0, sizeof(*pItem)); |
+ pItem->pExpr = pExpr; |
+ } |
+ return pList; |
+ |
+no_mem: |
+ /* Avoid leaking memory if malloc has failed. */ |
+ sqlite3ExprDelete(db, pExpr); |
+ sqlite3ExprListDelete(db, pList); |
+ return 0; |
+} |
+ |
+/* |
+** pColumns and pExpr form a vector assignment which is part of the SET |
+** clause of an UPDATE statement. Like this: |
+** |
+** (a,b,c) = (expr1,expr2,expr3) |
+** Or: (a,b,c) = (SELECT x,y,z FROM ....) |
+** |
+** For each term of the vector assignment, append new entries to the |
+** expression list pList. In the case of a subquery on the RHS, append |
+** TK_SELECT_COLUMN expressions. |
+*/ |
+ExprList *sqlite3ExprListAppendVector( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* List to which to append. Might be NULL */ |
+ IdList *pColumns, /* List of names of LHS of the assignment */ |
+ Expr *pExpr /* Vector expression to be appended. Might be NULL */ |
+){ |
+ sqlite3 *db = pParse->db; |
+ int n; |
+ int i; |
+ int iFirst = pList ? pList->nExpr : 0; |
+ /* pColumns can only be NULL due to an OOM but an OOM will cause an |
+ ** exit prior to this routine being invoked */ |
+ if( NEVER(pColumns==0) ) goto vector_append_error; |
+ if( pExpr==0 ) goto vector_append_error; |
+ |
+ /* If the RHS is a vector, then we can immediately check to see that |
+ ** the size of the RHS and LHS match. But if the RHS is a SELECT, |
+ ** wildcards ("*") in the result set of the SELECT must be expanded before |
+ ** we can do the size check, so defer the size check until code generation. |
+ */ |
+ if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ |
+ sqlite3ErrorMsg(pParse, "%d columns assigned %d values", |
+ pColumns->nId, n); |
+ goto vector_append_error; |
+ } |
+ |
+ for(i=0; i<pColumns->nId; i++){ |
+ Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); |
+ pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); |
+ if( pList ){ |
+ assert( pList->nExpr==iFirst+i+1 ); |
+ pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; |
+ pColumns->a[i].zName = 0; |
+ } |
+ } |
+ |
+ if( pExpr->op==TK_SELECT ){ |
+ if( pList && pList->a[iFirst].pExpr ){ |
+ Expr *pFirst = pList->a[iFirst].pExpr; |
+ assert( pFirst->op==TK_SELECT_COLUMN ); |
+ |
+ /* Store the SELECT statement in pRight so it will be deleted when |
+ ** sqlite3ExprListDelete() is called */ |
+ pFirst->pRight = pExpr; |
+ pExpr = 0; |
+ |
+ /* Remember the size of the LHS in iTable so that we can check that |
+ ** the RHS and LHS sizes match during code generation. */ |
+ pFirst->iTable = pColumns->nId; |
+ } |
+ } |
+ |
+vector_append_error: |
+ sqlite3ExprDelete(db, pExpr); |
+ sqlite3IdListDelete(db, pColumns); |
+ return pList; |
+} |
+ |
+/* |
+** Set the sort order for the last element on the given ExprList. |
+*/ |
+void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ |
+ if( p==0 ) return; |
+ assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); |
+ assert( p->nExpr>0 ); |
+ if( iSortOrder<0 ){ |
+ assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); |
+ return; |
+ } |
+ p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; |
+} |
+ |
+/* |
+** Set the ExprList.a[].zName element of the most recently added item |
+** on the expression list. |
+** |
+** pList might be NULL following an OOM error. But pName should never be |
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
+** is set. |
+*/ |
+void sqlite3ExprListSetName( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* List to which to add the span. */ |
+ Token *pName, /* Name to be added */ |
+ int dequote /* True to cause the name to be dequoted */ |
+){ |
+ assert( pList!=0 || pParse->db->mallocFailed!=0 ); |
+ if( pList ){ |
+ struct ExprList_item *pItem; |
+ assert( pList->nExpr>0 ); |
+ pItem = &pList->a[pList->nExpr-1]; |
+ assert( pItem->zName==0 ); |
+ pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); |
+ if( dequote ) sqlite3Dequote(pItem->zName); |
+ } |
+} |
+ |
+/* |
+** Set the ExprList.a[].zSpan element of the most recently added item |
+** on the expression list. |
+** |
+** pList might be NULL following an OOM error. But pSpan should never be |
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
+** is set. |
+*/ |
+void sqlite3ExprListSetSpan( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* List to which to add the span. */ |
+ ExprSpan *pSpan /* The span to be added */ |
+){ |
+ sqlite3 *db = pParse->db; |
+ assert( pList!=0 || db->mallocFailed!=0 ); |
+ if( pList ){ |
+ struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; |
+ assert( pList->nExpr>0 ); |
+ assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); |
+ sqlite3DbFree(db, pItem->zSpan); |
+ pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, |
+ (int)(pSpan->zEnd - pSpan->zStart)); |
+ } |
+} |
+ |
+/* |
+** If the expression list pEList contains more than iLimit elements, |
+** leave an error message in pParse. |
+*/ |
+void sqlite3ExprListCheckLength( |
+ Parse *pParse, |
+ ExprList *pEList, |
+ const char *zObject |
+){ |
+ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; |
+ testcase( pEList && pEList->nExpr==mx ); |
+ testcase( pEList && pEList->nExpr==mx+1 ); |
+ if( pEList && pEList->nExpr>mx ){ |
+ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); |
+ } |
+} |
+ |
+/* |
+** Delete an entire expression list. |
+*/ |
+static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ |
+ int i; |
+ struct ExprList_item *pItem; |
+ assert( pList->a!=0 || pList->nExpr==0 ); |
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
+ sqlite3ExprDelete(db, pItem->pExpr); |
+ sqlite3DbFree(db, pItem->zName); |
+ sqlite3DbFree(db, pItem->zSpan); |
+ } |
+ sqlite3DbFree(db, pList->a); |
+ sqlite3DbFree(db, pList); |
+} |
+void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ |
+ if( pList ) exprListDeleteNN(db, pList); |
+} |
+ |
+/* |
+** Return the bitwise-OR of all Expr.flags fields in the given |
+** ExprList. |
+*/ |
+u32 sqlite3ExprListFlags(const ExprList *pList){ |
+ int i; |
+ u32 m = 0; |
+ if( pList ){ |
+ for(i=0; i<pList->nExpr; i++){ |
+ Expr *pExpr = pList->a[i].pExpr; |
+ assert( pExpr!=0 ); |
+ m |= pExpr->flags; |
+ } |
+ } |
+ return m; |
+} |
+ |
+/* |
+** These routines are Walker callbacks used to check expressions to |
+** see if they are "constant" for some definition of constant. The |
+** Walker.eCode value determines the type of "constant" we are looking |
+** for. |
+** |
+** These callback routines are used to implement the following: |
+** |
+** sqlite3ExprIsConstant() pWalker->eCode==1 |
+** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 |
+** sqlite3ExprIsTableConstant() pWalker->eCode==3 |
+** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 |
+** |
+** In all cases, the callbacks set Walker.eCode=0 and abort if the expression |
+** is found to not be a constant. |
+** |
+** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions |
+** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing |
+** an existing schema and 4 when processing a new statement. A bound |
+** parameter raises an error for new statements, but is silently converted |
+** to NULL for existing schemas. This allows sqlite_master tables that |
+** contain a bound parameter because they were generated by older versions |
+** of SQLite to be parsed by newer versions of SQLite without raising a |
+** malformed schema error. |
+*/ |
+static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ |
+ |
+ /* If pWalker->eCode is 2 then any term of the expression that comes from |
+ ** the ON or USING clauses of a left join disqualifies the expression |
+ ** from being considered constant. */ |
+ if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ |
+ pWalker->eCode = 0; |
+ return WRC_Abort; |
+ } |
+ |
+ switch( pExpr->op ){ |
+ /* Consider functions to be constant if all their arguments are constant |
+ ** and either pWalker->eCode==4 or 5 or the function has the |
+ ** SQLITE_FUNC_CONST flag. */ |
+ case TK_FUNCTION: |
+ if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ |
+ return WRC_Continue; |
+ }else{ |
+ pWalker->eCode = 0; |
+ return WRC_Abort; |
+ } |
+ case TK_ID: |
+ case TK_COLUMN: |
+ case TK_AGG_FUNCTION: |
+ case TK_AGG_COLUMN: |
+ testcase( pExpr->op==TK_ID ); |
+ testcase( pExpr->op==TK_COLUMN ); |
+ testcase( pExpr->op==TK_AGG_FUNCTION ); |
+ testcase( pExpr->op==TK_AGG_COLUMN ); |
+ if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ |
+ return WRC_Continue; |
+ }else{ |
+ pWalker->eCode = 0; |
+ return WRC_Abort; |
+ } |
+ case TK_VARIABLE: |
+ if( pWalker->eCode==5 ){ |
+ /* Silently convert bound parameters that appear inside of CREATE |
+ ** statements into a NULL when parsing the CREATE statement text out |
+ ** of the sqlite_master table */ |
+ pExpr->op = TK_NULL; |
+ }else if( pWalker->eCode==4 ){ |
+ /* A bound parameter in a CREATE statement that originates from |
+ ** sqlite3_prepare() causes an error */ |
+ pWalker->eCode = 0; |
+ return WRC_Abort; |
+ } |
+ /* Fall through */ |
+ default: |
+ testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ |
+ testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ |
+ return WRC_Continue; |
+ } |
+} |
+static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ |
+ UNUSED_PARAMETER(NotUsed); |
+ pWalker->eCode = 0; |
+ return WRC_Abort; |
+} |
+static int exprIsConst(Expr *p, int initFlag, int iCur){ |
+ Walker w; |
+ memset(&w, 0, sizeof(w)); |
+ w.eCode = initFlag; |
+ w.xExprCallback = exprNodeIsConstant; |
+ w.xSelectCallback = selectNodeIsConstant; |
+ w.u.iCur = iCur; |
+ sqlite3WalkExpr(&w, p); |
+ return w.eCode; |
+} |
+ |
+/* |
+** Walk an expression tree. Return non-zero if the expression is constant |
+** and 0 if it involves variables or function calls. |
+** |
+** For the purposes of this function, a double-quoted string (ex: "abc") |
+** is considered a variable but a single-quoted string (ex: 'abc') is |
+** a constant. |
+*/ |
+int sqlite3ExprIsConstant(Expr *p){ |
+ return exprIsConst(p, 1, 0); |
+} |
+ |
+/* |
+** Walk an expression tree. Return non-zero if the expression is constant |
+** that does no originate from the ON or USING clauses of a join. |
+** Return 0 if it involves variables or function calls or terms from |
+** an ON or USING clause. |
+*/ |
+int sqlite3ExprIsConstantNotJoin(Expr *p){ |
+ return exprIsConst(p, 2, 0); |
+} |
+ |
+/* |
+** Walk an expression tree. Return non-zero if the expression is constant |
+** for any single row of the table with cursor iCur. In other words, the |
+** expression must not refer to any non-deterministic function nor any |
+** table other than iCur. |
+*/ |
+int sqlite3ExprIsTableConstant(Expr *p, int iCur){ |
+ return exprIsConst(p, 3, iCur); |
+} |
+ |
+/* |
+** Walk an expression tree. Return non-zero if the expression is constant |
+** or a function call with constant arguments. Return and 0 if there |
+** are any variables. |
+** |
+** For the purposes of this function, a double-quoted string (ex: "abc") |
+** is considered a variable but a single-quoted string (ex: 'abc') is |
+** a constant. |
+*/ |
+int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ |
+ assert( isInit==0 || isInit==1 ); |
+ return exprIsConst(p, 4+isInit, 0); |
+} |
+ |
+#ifdef SQLITE_ENABLE_CURSOR_HINTS |
+/* |
+** Walk an expression tree. Return 1 if the expression contains a |
+** subquery of some kind. Return 0 if there are no subqueries. |
+*/ |
+int sqlite3ExprContainsSubquery(Expr *p){ |
+ Walker w; |
+ memset(&w, 0, sizeof(w)); |
+ w.eCode = 1; |
+ w.xExprCallback = sqlite3ExprWalkNoop; |
+ w.xSelectCallback = selectNodeIsConstant; |
+ sqlite3WalkExpr(&w, p); |
+ return w.eCode==0; |
+} |
+#endif |
+ |
+/* |
+** If the expression p codes a constant integer that is small enough |
+** to fit in a 32-bit integer, return 1 and put the value of the integer |
+** in *pValue. If the expression is not an integer or if it is too big |
+** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
+*/ |
+int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
+ int rc = 0; |
+ |
+ /* If an expression is an integer literal that fits in a signed 32-bit |
+ ** integer, then the EP_IntValue flag will have already been set */ |
+ assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 |
+ || sqlite3GetInt32(p->u.zToken, &rc)==0 ); |
+ |
+ if( p->flags & EP_IntValue ){ |
+ *pValue = p->u.iValue; |
+ return 1; |
+ } |
+ switch( p->op ){ |
+ case TK_UPLUS: { |
+ rc = sqlite3ExprIsInteger(p->pLeft, pValue); |
+ break; |
+ } |
+ case TK_UMINUS: { |
+ int v; |
+ if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
+ assert( v!=(-2147483647-1) ); |
+ *pValue = -v; |
+ rc = 1; |
+ } |
+ break; |
+ } |
+ default: break; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return FALSE if there is no chance that the expression can be NULL. |
+** |
+** If the expression might be NULL or if the expression is too complex |
+** to tell return TRUE. |
+** |
+** This routine is used as an optimization, to skip OP_IsNull opcodes |
+** when we know that a value cannot be NULL. Hence, a false positive |
+** (returning TRUE when in fact the expression can never be NULL) might |
+** be a small performance hit but is otherwise harmless. On the other |
+** hand, a false negative (returning FALSE when the result could be NULL) |
+** will likely result in an incorrect answer. So when in doubt, return |
+** TRUE. |
+*/ |
+int sqlite3ExprCanBeNull(const Expr *p){ |
+ u8 op; |
+ while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } |
+ op = p->op; |
+ if( op==TK_REGISTER ) op = p->op2; |
+ switch( op ){ |
+ case TK_INTEGER: |
+ case TK_STRING: |
+ case TK_FLOAT: |
+ case TK_BLOB: |
+ return 0; |
+ case TK_COLUMN: |
+ assert( p->pTab!=0 ); |
+ return ExprHasProperty(p, EP_CanBeNull) || |
+ (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); |
+ default: |
+ return 1; |
+ } |
+} |
+ |
+/* |
+** Return TRUE if the given expression is a constant which would be |
+** unchanged by OP_Affinity with the affinity given in the second |
+** argument. |
+** |
+** This routine is used to determine if the OP_Affinity operation |
+** can be omitted. When in doubt return FALSE. A false negative |
+** is harmless. A false positive, however, can result in the wrong |
+** answer. |
+*/ |
+int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ |
+ u8 op; |
+ if( aff==SQLITE_AFF_BLOB ) return 1; |
+ while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } |
+ op = p->op; |
+ if( op==TK_REGISTER ) op = p->op2; |
+ switch( op ){ |
+ case TK_INTEGER: { |
+ return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; |
+ } |
+ case TK_FLOAT: { |
+ return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; |
+ } |
+ case TK_STRING: { |
+ return aff==SQLITE_AFF_TEXT; |
+ } |
+ case TK_BLOB: { |
+ return 1; |
+ } |
+ case TK_COLUMN: { |
+ assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ |
+ return p->iColumn<0 |
+ && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); |
+ } |
+ default: { |
+ return 0; |
+ } |
+ } |
+} |
+ |
+/* |
+** Return TRUE if the given string is a row-id column name. |
+*/ |
+int sqlite3IsRowid(const char *z){ |
+ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
+ if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
+ if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
+ return 0; |
+} |
+ |
+/* |
+** pX is the RHS of an IN operator. If pX is a SELECT statement |
+** that can be simplified to a direct table access, then return |
+** a pointer to the SELECT statement. If pX is not a SELECT statement, |
+** or if the SELECT statement needs to be manifested into a transient |
+** table, then return NULL. |
+*/ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+static Select *isCandidateForInOpt(Expr *pX){ |
+ Select *p; |
+ SrcList *pSrc; |
+ ExprList *pEList; |
+ Table *pTab; |
+ int i; |
+ if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ |
+ if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ |
+ p = pX->x.pSelect; |
+ if( p->pPrior ) return 0; /* Not a compound SELECT */ |
+ if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ |
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
+ return 0; /* No DISTINCT keyword and no aggregate functions */ |
+ } |
+ assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ |
+ if( p->pLimit ) return 0; /* Has no LIMIT clause */ |
+ assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ |
+ if( p->pWhere ) return 0; /* Has no WHERE clause */ |
+ pSrc = p->pSrc; |
+ assert( pSrc!=0 ); |
+ if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ |
+ if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ |
+ pTab = pSrc->a[0].pTab; |
+ assert( pTab!=0 ); |
+ assert( pTab->pSelect==0 ); /* FROM clause is not a view */ |
+ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ |
+ pEList = p->pEList; |
+ assert( pEList!=0 ); |
+ /* All SELECT results must be columns. */ |
+ for(i=0; i<pEList->nExpr; i++){ |
+ Expr *pRes = pEList->a[i].pExpr; |
+ if( pRes->op!=TK_COLUMN ) return 0; |
+ assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ |
+ } |
+ return p; |
+} |
+#endif /* SQLITE_OMIT_SUBQUERY */ |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** Generate code that checks the left-most column of index table iCur to see if |
+** it contains any NULL entries. Cause the register at regHasNull to be set |
+** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull |
+** to be set to NULL if iCur contains one or more NULL values. |
+*/ |
+static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ |
+ int addr1; |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); |
+ addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); |
+ sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); |
+ VdbeComment((v, "first_entry_in(%d)", iCur)); |
+ sqlite3VdbeJumpHere(v, addr1); |
+} |
+#endif |
+ |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** The argument is an IN operator with a list (not a subquery) on the |
+** right-hand side. Return TRUE if that list is constant. |
+*/ |
+static int sqlite3InRhsIsConstant(Expr *pIn){ |
+ Expr *pLHS; |
+ int res; |
+ assert( !ExprHasProperty(pIn, EP_xIsSelect) ); |
+ pLHS = pIn->pLeft; |
+ pIn->pLeft = 0; |
+ res = sqlite3ExprIsConstant(pIn); |
+ pIn->pLeft = pLHS; |
+ return res; |
+} |
+#endif |
+ |
+/* |
+** This function is used by the implementation of the IN (...) operator. |
+** The pX parameter is the expression on the RHS of the IN operator, which |
+** might be either a list of expressions or a subquery. |
+** |
+** The job of this routine is to find or create a b-tree object that can |
+** be used either to test for membership in the RHS set or to iterate through |
+** all members of the RHS set, skipping duplicates. |
+** |
+** A cursor is opened on the b-tree object that is the RHS of the IN operator |
+** and pX->iTable is set to the index of that cursor. |
+** |
+** The returned value of this function indicates the b-tree type, as follows: |
+** |
+** IN_INDEX_ROWID - The cursor was opened on a database table. |
+** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. |
+** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. |
+** IN_INDEX_EPH - The cursor was opened on a specially created and |
+** populated epheremal table. |
+** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be |
+** implemented as a sequence of comparisons. |
+** |
+** An existing b-tree might be used if the RHS expression pX is a simple |
+** subquery such as: |
+** |
+** SELECT <column1>, <column2>... FROM <table> |
+** |
+** If the RHS of the IN operator is a list or a more complex subquery, then |
+** an ephemeral table might need to be generated from the RHS and then |
+** pX->iTable made to point to the ephemeral table instead of an |
+** existing table. |
+** |
+** The inFlags parameter must contain exactly one of the bits |
+** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains |
+** IN_INDEX_MEMBERSHIP, then the generated table will be used for a |
+** fast membership test. When the IN_INDEX_LOOP bit is set, the |
+** IN index will be used to loop over all values of the RHS of the |
+** IN operator. |
+** |
+** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate |
+** through the set members) then the b-tree must not contain duplicates. |
+** An epheremal table must be used unless the selected columns are guaranteed |
+** to be unique - either because it is an INTEGER PRIMARY KEY or due to |
+** a UNIQUE constraint or index. |
+** |
+** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used |
+** for fast set membership tests) then an epheremal table must |
+** be used unless <columns> is a single INTEGER PRIMARY KEY column or an |
+** index can be found with the specified <columns> as its left-most. |
+** |
+** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and |
+** if the RHS of the IN operator is a list (not a subquery) then this |
+** routine might decide that creating an ephemeral b-tree for membership |
+** testing is too expensive and return IN_INDEX_NOOP. In that case, the |
+** calling routine should implement the IN operator using a sequence |
+** of Eq or Ne comparison operations. |
+** |
+** When the b-tree is being used for membership tests, the calling function |
+** might need to know whether or not the RHS side of the IN operator |
+** contains a NULL. If prRhsHasNull is not a NULL pointer and |
+** if there is any chance that the (...) might contain a NULL value at |
+** runtime, then a register is allocated and the register number written |
+** to *prRhsHasNull. If there is no chance that the (...) contains a |
+** NULL value, then *prRhsHasNull is left unchanged. |
+** |
+** If a register is allocated and its location stored in *prRhsHasNull, then |
+** the value in that register will be NULL if the b-tree contains one or more |
+** NULL values, and it will be some non-NULL value if the b-tree contains no |
+** NULL values. |
+** |
+** If the aiMap parameter is not NULL, it must point to an array containing |
+** one element for each column returned by the SELECT statement on the RHS |
+** of the IN(...) operator. The i'th entry of the array is populated with the |
+** offset of the index column that matches the i'th column returned by the |
+** SELECT. For example, if the expression and selected index are: |
+** |
+** (?,?,?) IN (SELECT a, b, c FROM t1) |
+** CREATE INDEX i1 ON t1(b, c, a); |
+** |
+** then aiMap[] is populated with {2, 0, 1}. |
+*/ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+int sqlite3FindInIndex( |
+ Parse *pParse, /* Parsing context */ |
+ Expr *pX, /* The right-hand side (RHS) of the IN operator */ |
+ u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ |
+ int *prRhsHasNull, /* Register holding NULL status. See notes */ |
+ int *aiMap /* Mapping from Index fields to RHS fields */ |
+){ |
+ Select *p; /* SELECT to the right of IN operator */ |
+ int eType = 0; /* Type of RHS table. IN_INDEX_* */ |
+ int iTab = pParse->nTab++; /* Cursor of the RHS table */ |
+ int mustBeUnique; /* True if RHS must be unique */ |
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ |
+ |
+ assert( pX->op==TK_IN ); |
+ mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; |
+ |
+ /* If the RHS of this IN(...) operator is a SELECT, and if it matters |
+ ** whether or not the SELECT result contains NULL values, check whether |
+ ** or not NULL is actually possible (it may not be, for example, due |
+ ** to NOT NULL constraints in the schema). If no NULL values are possible, |
+ ** set prRhsHasNull to 0 before continuing. */ |
+ if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ |
+ int i; |
+ ExprList *pEList = pX->x.pSelect->pEList; |
+ for(i=0; i<pEList->nExpr; i++){ |
+ if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; |
+ } |
+ if( i==pEList->nExpr ){ |
+ prRhsHasNull = 0; |
+ } |
+ } |
+ |
+ /* Check to see if an existing table or index can be used to |
+ ** satisfy the query. This is preferable to generating a new |
+ ** ephemeral table. */ |
+ if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ Table *pTab; /* Table <table>. */ |
+ i16 iDb; /* Database idx for pTab */ |
+ ExprList *pEList = p->pEList; |
+ int nExpr = pEList->nExpr; |
+ |
+ assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ |
+ assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ |
+ assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ |
+ pTab = p->pSrc->a[0].pTab; |
+ |
+ /* Code an OP_Transaction and OP_TableLock for <table>. */ |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ sqlite3CodeVerifySchema(pParse, iDb); |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
+ |
+ assert(v); /* sqlite3GetVdbe() has always been previously called */ |
+ if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ |
+ /* The "x IN (SELECT rowid FROM table)" case */ |
+ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); |
+ VdbeCoverage(v); |
+ |
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
+ eType = IN_INDEX_ROWID; |
+ |
+ sqlite3VdbeJumpHere(v, iAddr); |
+ }else{ |
+ Index *pIdx; /* Iterator variable */ |
+ int affinity_ok = 1; |
+ int i; |
+ |
+ /* Check that the affinity that will be used to perform each |
+ ** comparison is the same as the affinity of each column in table |
+ ** on the RHS of the IN operator. If it not, it is not possible to |
+ ** use any index of the RHS table. */ |
+ for(i=0; i<nExpr && affinity_ok; i++){ |
+ Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); |
+ int iCol = pEList->a[i].pExpr->iColumn; |
+ char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ |
+ char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); |
+ testcase( cmpaff==SQLITE_AFF_BLOB ); |
+ testcase( cmpaff==SQLITE_AFF_TEXT ); |
+ switch( cmpaff ){ |
+ case SQLITE_AFF_BLOB: |
+ break; |
+ case SQLITE_AFF_TEXT: |
+ /* sqlite3CompareAffinity() only returns TEXT if one side or the |
+ ** other has no affinity and the other side is TEXT. Hence, |
+ ** the only way for cmpaff to be TEXT is for idxaff to be TEXT |
+ ** and for the term on the LHS of the IN to have no affinity. */ |
+ assert( idxaff==SQLITE_AFF_TEXT ); |
+ break; |
+ default: |
+ affinity_ok = sqlite3IsNumericAffinity(idxaff); |
+ } |
+ } |
+ |
+ if( affinity_ok ){ |
+ /* Search for an existing index that will work for this IN operator */ |
+ for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ |
+ Bitmask colUsed; /* Columns of the index used */ |
+ Bitmask mCol; /* Mask for the current column */ |
+ if( pIdx->nColumn<nExpr ) continue; |
+ /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute |
+ ** BITMASK(nExpr) without overflowing */ |
+ testcase( pIdx->nColumn==BMS-2 ); |
+ testcase( pIdx->nColumn==BMS-1 ); |
+ if( pIdx->nColumn>=BMS-1 ) continue; |
+ if( mustBeUnique ){ |
+ if( pIdx->nKeyCol>nExpr |
+ ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) |
+ ){ |
+ continue; /* This index is not unique over the IN RHS columns */ |
+ } |
+ } |
+ |
+ colUsed = 0; /* Columns of index used so far */ |
+ for(i=0; i<nExpr; i++){ |
+ Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); |
+ Expr *pRhs = pEList->a[i].pExpr; |
+ CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); |
+ int j; |
+ |
+ assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); |
+ for(j=0; j<nExpr; j++){ |
+ if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; |
+ assert( pIdx->azColl[j] ); |
+ if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ |
+ continue; |
+ } |
+ break; |
+ } |
+ if( j==nExpr ) break; |
+ mCol = MASKBIT(j); |
+ if( mCol & colUsed ) break; /* Each column used only once */ |
+ colUsed |= mCol; |
+ if( aiMap ) aiMap[i] = j; |
+ } |
+ |
+ assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); |
+ if( colUsed==(MASKBIT(nExpr)-1) ){ |
+ /* If we reach this point, that means the index pIdx is usable */ |
+ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
+#ifndef SQLITE_OMIT_EXPLAIN |
+ sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, |
+ sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), |
+ P4_DYNAMIC); |
+#endif |
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
+ VdbeComment((v, "%s", pIdx->zName)); |
+ assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); |
+ eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; |
+ |
+ if( prRhsHasNull ){ |
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
+ i64 mask = (1<<nExpr)-1; |
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, |
+ iTab, 0, 0, (u8*)&mask, P4_INT64); |
+#endif |
+ *prRhsHasNull = ++pParse->nMem; |
+ if( nExpr==1 ){ |
+ sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); |
+ } |
+ } |
+ sqlite3VdbeJumpHere(v, iAddr); |
+ } |
+ } /* End loop over indexes */ |
+ } /* End if( affinity_ok ) */ |
+ } /* End if not an rowid index */ |
+ } /* End attempt to optimize using an index */ |
+ |
+ /* If no preexisting index is available for the IN clause |
+ ** and IN_INDEX_NOOP is an allowed reply |
+ ** and the RHS of the IN operator is a list, not a subquery |
+ ** and the RHS is not constant or has two or fewer terms, |
+ ** then it is not worth creating an ephemeral table to evaluate |
+ ** the IN operator so return IN_INDEX_NOOP. |
+ */ |
+ if( eType==0 |
+ && (inFlags & IN_INDEX_NOOP_OK) |
+ && !ExprHasProperty(pX, EP_xIsSelect) |
+ && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) |
+ ){ |
+ eType = IN_INDEX_NOOP; |
+ } |
+ |
+ if( eType==0 ){ |
+ /* Could not find an existing table or index to use as the RHS b-tree. |
+ ** We will have to generate an ephemeral table to do the job. |
+ */ |
+ u32 savedNQueryLoop = pParse->nQueryLoop; |
+ int rMayHaveNull = 0; |
+ eType = IN_INDEX_EPH; |
+ if( inFlags & IN_INDEX_LOOP ){ |
+ pParse->nQueryLoop = 0; |
+ if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ |
+ eType = IN_INDEX_ROWID; |
+ } |
+ }else if( prRhsHasNull ){ |
+ *prRhsHasNull = rMayHaveNull = ++pParse->nMem; |
+ } |
+ sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); |
+ pParse->nQueryLoop = savedNQueryLoop; |
+ }else{ |
+ pX->iTable = iTab; |
+ } |
+ |
+ if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ |
+ int i, n; |
+ n = sqlite3ExprVectorSize(pX->pLeft); |
+ for(i=0; i<n; i++) aiMap[i] = i; |
+ } |
+ return eType; |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** Argument pExpr is an (?, ?...) IN(...) expression. This |
+** function allocates and returns a nul-terminated string containing |
+** the affinities to be used for each column of the comparison. |
+** |
+** It is the responsibility of the caller to ensure that the returned |
+** string is eventually freed using sqlite3DbFree(). |
+*/ |
+static char *exprINAffinity(Parse *pParse, Expr *pExpr){ |
+ Expr *pLeft = pExpr->pLeft; |
+ int nVal = sqlite3ExprVectorSize(pLeft); |
+ Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; |
+ char *zRet; |
+ |
+ assert( pExpr->op==TK_IN ); |
+ zRet = sqlite3DbMallocZero(pParse->db, nVal+1); |
+ if( zRet ){ |
+ int i; |
+ for(i=0; i<nVal; i++){ |
+ Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); |
+ char a = sqlite3ExprAffinity(pA); |
+ if( pSelect ){ |
+ zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); |
+ }else{ |
+ zRet[i] = a; |
+ } |
+ } |
+ zRet[nVal] = '\0'; |
+ } |
+ return zRet; |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** Load the Parse object passed as the first argument with an error |
+** message of the form: |
+** |
+** "sub-select returns N columns - expected M" |
+*/ |
+void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ |
+ const char *zFmt = "sub-select returns %d columns - expected %d"; |
+ sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); |
+} |
+#endif |
+ |
+/* |
+** Expression pExpr is a vector that has been used in a context where |
+** it is not permitted. If pExpr is a sub-select vector, this routine |
+** loads the Parse object with a message of the form: |
+** |
+** "sub-select returns N columns - expected 1" |
+** |
+** Or, if it is a regular scalar vector: |
+** |
+** "row value misused" |
+*/ |
+void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ if( pExpr->flags & EP_xIsSelect ){ |
+ sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); |
+ }else |
+#endif |
+ { |
+ sqlite3ErrorMsg(pParse, "row value misused"); |
+ } |
+} |
+ |
+/* |
+** Generate code for scalar subqueries used as a subquery expression, EXISTS, |
+** or IN operators. Examples: |
+** |
+** (SELECT a FROM b) -- subquery |
+** EXISTS (SELECT a FROM b) -- EXISTS subquery |
+** x IN (4,5,11) -- IN operator with list on right-hand side |
+** x IN (SELECT a FROM b) -- IN operator with subquery on the right |
+** |
+** The pExpr parameter describes the expression that contains the IN |
+** operator or subquery. |
+** |
+** If parameter isRowid is non-zero, then expression pExpr is guaranteed |
+** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference |
+** to some integer key column of a table B-Tree. In this case, use an |
+** intkey B-Tree to store the set of IN(...) values instead of the usual |
+** (slower) variable length keys B-Tree. |
+** |
+** If rMayHaveNull is non-zero, that means that the operation is an IN |
+** (not a SELECT or EXISTS) and that the RHS might contains NULLs. |
+** All this routine does is initialize the register given by rMayHaveNull |
+** to NULL. Calling routines will take care of changing this register |
+** value to non-NULL if the RHS is NULL-free. |
+** |
+** For a SELECT or EXISTS operator, return the register that holds the |
+** result. For a multi-column SELECT, the result is stored in a contiguous |
+** array of registers and the return value is the register of the left-most |
+** result column. Return 0 for IN operators or if an error occurs. |
+*/ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+int sqlite3CodeSubselect( |
+ Parse *pParse, /* Parsing context */ |
+ Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ |
+ int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ |
+ int isRowid /* If true, LHS of IN operator is a rowid */ |
+){ |
+ int jmpIfDynamic = -1; /* One-time test address */ |
+ int rReg = 0; /* Register storing resulting */ |
+ Vdbe *v = sqlite3GetVdbe(pParse); |
+ if( NEVER(v==0) ) return 0; |
+ sqlite3ExprCachePush(pParse); |
+ |
+ /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it |
+ ** is encountered if any of the following is true: |
+ ** |
+ ** * The right-hand side is a correlated subquery |
+ ** * The right-hand side is an expression list containing variables |
+ ** * We are inside a trigger |
+ ** |
+ ** If all of the above are false, then we can run this code just once |
+ ** save the results, and reuse the same result on subsequent invocations. |
+ */ |
+ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ |
+ jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
+ } |
+ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+ if( pParse->explain==2 ){ |
+ char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", |
+ jmpIfDynamic>=0?"":"CORRELATED ", |
+ pExpr->op==TK_IN?"LIST":"SCALAR", |
+ pParse->iNextSelectId |
+ ); |
+ sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); |
+ } |
+#endif |
+ |
+ switch( pExpr->op ){ |
+ case TK_IN: { |
+ int addr; /* Address of OP_OpenEphemeral instruction */ |
+ Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ |
+ KeyInfo *pKeyInfo = 0; /* Key information */ |
+ int nVal; /* Size of vector pLeft */ |
+ |
+ nVal = sqlite3ExprVectorSize(pLeft); |
+ assert( !isRowid || nVal==1 ); |
+ |
+ /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' |
+ ** expression it is handled the same way. An ephemeral table is |
+ ** filled with index keys representing the results from the |
+ ** SELECT or the <exprlist>. |
+ ** |
+ ** If the 'x' expression is a column value, or the SELECT... |
+ ** statement returns a column value, then the affinity of that |
+ ** column is used to build the index keys. If both 'x' and the |
+ ** SELECT... statement are columns, then numeric affinity is used |
+ ** if either column has NUMERIC or INTEGER affinity. If neither |
+ ** 'x' nor the SELECT... statement are columns, then numeric affinity |
+ ** is used. |
+ */ |
+ pExpr->iTable = pParse->nTab++; |
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, |
+ pExpr->iTable, (isRowid?0:nVal)); |
+ pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); |
+ |
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ /* Case 1: expr IN (SELECT ...) |
+ ** |
+ ** Generate code to write the results of the select into the temporary |
+ ** table allocated and opened above. |
+ */ |
+ Select *pSelect = pExpr->x.pSelect; |
+ ExprList *pEList = pSelect->pEList; |
+ |
+ assert( !isRowid ); |
+ /* If the LHS and RHS of the IN operator do not match, that |
+ ** error will have been caught long before we reach this point. */ |
+ if( ALWAYS(pEList->nExpr==nVal) ){ |
+ SelectDest dest; |
+ int i; |
+ sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); |
+ dest.zAffSdst = exprINAffinity(pParse, pExpr); |
+ assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); |
+ pSelect->iLimit = 0; |
+ testcase( pSelect->selFlags & SF_Distinct ); |
+ testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ |
+ if( sqlite3Select(pParse, pSelect, &dest) ){ |
+ sqlite3DbFree(pParse->db, dest.zAffSdst); |
+ sqlite3KeyInfoUnref(pKeyInfo); |
+ return 0; |
+ } |
+ sqlite3DbFree(pParse->db, dest.zAffSdst); |
+ assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ |
+ assert( pEList!=0 ); |
+ assert( pEList->nExpr>0 ); |
+ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
+ for(i=0; i<nVal; i++){ |
+ Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); |
+ pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( |
+ pParse, p, pEList->a[i].pExpr |
+ ); |
+ } |
+ } |
+ }else if( ALWAYS(pExpr->x.pList!=0) ){ |
+ /* Case 2: expr IN (exprlist) |
+ ** |
+ ** For each expression, build an index key from the evaluation and |
+ ** store it in the temporary table. If <expr> is a column, then use |
+ ** that columns affinity when building index keys. If <expr> is not |
+ ** a column, use numeric affinity. |
+ */ |
+ char affinity; /* Affinity of the LHS of the IN */ |
+ int i; |
+ ExprList *pList = pExpr->x.pList; |
+ struct ExprList_item *pItem; |
+ int r1, r2, r3; |
+ |
+ affinity = sqlite3ExprAffinity(pLeft); |
+ if( !affinity ){ |
+ affinity = SQLITE_AFF_BLOB; |
+ } |
+ if( pKeyInfo ){ |
+ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
+ pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
+ } |
+ |
+ /* Loop through each expression in <exprlist>. */ |
+ r1 = sqlite3GetTempReg(pParse); |
+ r2 = sqlite3GetTempReg(pParse); |
+ if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); |
+ for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
+ Expr *pE2 = pItem->pExpr; |
+ int iValToIns; |
+ |
+ /* If the expression is not constant then we will need to |
+ ** disable the test that was generated above that makes sure |
+ ** this code only executes once. Because for a non-constant |
+ ** expression we need to rerun this code each time. |
+ */ |
+ if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ |
+ sqlite3VdbeChangeToNoop(v, jmpIfDynamic); |
+ jmpIfDynamic = -1; |
+ } |
+ |
+ /* Evaluate the expression and insert it into the temp table */ |
+ if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ |
+ sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); |
+ }else{ |
+ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); |
+ if( isRowid ){ |
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, |
+ sqlite3VdbeCurrentAddr(v)+2); |
+ VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); |
+ }else{ |
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); |
+ sqlite3ExprCacheAffinityChange(pParse, r3, 1); |
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); |
+ } |
+ } |
+ } |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ sqlite3ReleaseTempReg(pParse, r2); |
+ } |
+ if( pKeyInfo ){ |
+ sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); |
+ } |
+ break; |
+ } |
+ |
+ case TK_EXISTS: |
+ case TK_SELECT: |
+ default: { |
+ /* Case 3: (SELECT ... FROM ...) |
+ ** or: EXISTS(SELECT ... FROM ...) |
+ ** |
+ ** For a SELECT, generate code to put the values for all columns of |
+ ** the first row into an array of registers and return the index of |
+ ** the first register. |
+ ** |
+ ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) |
+ ** into a register and return that register number. |
+ ** |
+ ** In both cases, the query is augmented with "LIMIT 1". Any |
+ ** preexisting limit is discarded in place of the new LIMIT 1. |
+ */ |
+ Select *pSel; /* SELECT statement to encode */ |
+ SelectDest dest; /* How to deal with SELECT result */ |
+ int nReg; /* Registers to allocate */ |
+ |
+ testcase( pExpr->op==TK_EXISTS ); |
+ testcase( pExpr->op==TK_SELECT ); |
+ assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); |
+ assert( ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ |
+ pSel = pExpr->x.pSelect; |
+ nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; |
+ sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); |
+ pParse->nMem += nReg; |
+ if( pExpr->op==TK_SELECT ){ |
+ dest.eDest = SRT_Mem; |
+ dest.iSdst = dest.iSDParm; |
+ dest.nSdst = nReg; |
+ sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); |
+ VdbeComment((v, "Init subquery result")); |
+ }else{ |
+ dest.eDest = SRT_Exists; |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); |
+ VdbeComment((v, "Init EXISTS result")); |
+ } |
+ sqlite3ExprDelete(pParse->db, pSel->pLimit); |
+ pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, |
+ &sqlite3IntTokens[1], 0); |
+ pSel->iLimit = 0; |
+ pSel->selFlags &= ~SF_MultiValue; |
+ if( sqlite3Select(pParse, pSel, &dest) ){ |
+ return 0; |
+ } |
+ rReg = dest.iSDParm; |
+ ExprSetVVAProperty(pExpr, EP_NoReduce); |
+ break; |
+ } |
+ } |
+ |
+ if( rHasNullFlag ){ |
+ sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); |
+ } |
+ |
+ if( jmpIfDynamic>=0 ){ |
+ sqlite3VdbeJumpHere(v, jmpIfDynamic); |
+ } |
+ sqlite3ExprCachePop(pParse); |
+ |
+ return rReg; |
+} |
+#endif /* SQLITE_OMIT_SUBQUERY */ |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** Expr pIn is an IN(...) expression. This function checks that the |
+** sub-select on the RHS of the IN() operator has the same number of |
+** columns as the vector on the LHS. Or, if the RHS of the IN() is not |
+** a sub-query, that the LHS is a vector of size 1. |
+*/ |
+int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ |
+ int nVector = sqlite3ExprVectorSize(pIn->pLeft); |
+ if( (pIn->flags & EP_xIsSelect) ){ |
+ if( nVector!=pIn->x.pSelect->pEList->nExpr ){ |
+ sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); |
+ return 1; |
+ } |
+ }else if( nVector!=1 ){ |
+ sqlite3VectorErrorMsg(pParse, pIn->pLeft); |
+ return 1; |
+ } |
+ return 0; |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_SUBQUERY |
+/* |
+** Generate code for an IN expression. |
+** |
+** x IN (SELECT ...) |
+** x IN (value, value, ...) |
+** |
+** The left-hand side (LHS) is a scalar or vector expression. The |
+** right-hand side (RHS) is an array of zero or more scalar values, or a |
+** subquery. If the RHS is a subquery, the number of result columns must |
+** match the number of columns in the vector on the LHS. If the RHS is |
+** a list of values, the LHS must be a scalar. |
+** |
+** The IN operator is true if the LHS value is contained within the RHS. |
+** The result is false if the LHS is definitely not in the RHS. The |
+** result is NULL if the presence of the LHS in the RHS cannot be |
+** determined due to NULLs. |
+** |
+** This routine generates code that jumps to destIfFalse if the LHS is not |
+** contained within the RHS. If due to NULLs we cannot determine if the LHS |
+** is contained in the RHS then jump to destIfNull. If the LHS is contained |
+** within the RHS then fall through. |
+** |
+** See the separate in-operator.md documentation file in the canonical |
+** SQLite source tree for additional information. |
+*/ |
+static void sqlite3ExprCodeIN( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Expr *pExpr, /* The IN expression */ |
+ int destIfFalse, /* Jump here if LHS is not contained in the RHS */ |
+ int destIfNull /* Jump here if the results are unknown due to NULLs */ |
+){ |
+ int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ |
+ int eType; /* Type of the RHS */ |
+ int rLhs; /* Register(s) holding the LHS values */ |
+ int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ |
+ Vdbe *v; /* Statement under construction */ |
+ int *aiMap = 0; /* Map from vector field to index column */ |
+ char *zAff = 0; /* Affinity string for comparisons */ |
+ int nVector; /* Size of vectors for this IN operator */ |
+ int iDummy; /* Dummy parameter to exprCodeVector() */ |
+ Expr *pLeft; /* The LHS of the IN operator */ |
+ int i; /* loop counter */ |
+ int destStep2; /* Where to jump when NULLs seen in step 2 */ |
+ int destStep6 = 0; /* Start of code for Step 6 */ |
+ int addrTruthOp; /* Address of opcode that determines the IN is true */ |
+ int destNotNull; /* Jump here if a comparison is not true in step 6 */ |
+ int addrTop; /* Top of the step-6 loop */ |
+ |
+ pLeft = pExpr->pLeft; |
+ if( sqlite3ExprCheckIN(pParse, pExpr) ) return; |
+ zAff = exprINAffinity(pParse, pExpr); |
+ nVector = sqlite3ExprVectorSize(pExpr->pLeft); |
+ aiMap = (int*)sqlite3DbMallocZero( |
+ pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 |
+ ); |
+ if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; |
+ |
+ /* Attempt to compute the RHS. After this step, if anything other than |
+ ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable |
+ ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, |
+ ** the RHS has not yet been coded. */ |
+ v = pParse->pVdbe; |
+ assert( v!=0 ); /* OOM detected prior to this routine */ |
+ VdbeNoopComment((v, "begin IN expr")); |
+ eType = sqlite3FindInIndex(pParse, pExpr, |
+ IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, |
+ destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); |
+ |
+ assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH |
+ || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC |
+ ); |
+#ifdef SQLITE_DEBUG |
+ /* Confirm that aiMap[] contains nVector integer values between 0 and |
+ ** nVector-1. */ |
+ for(i=0; i<nVector; i++){ |
+ int j, cnt; |
+ for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; |
+ assert( cnt==1 ); |
+ } |
+#endif |
+ |
+ /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a |
+ ** vector, then it is stored in an array of nVector registers starting |
+ ** at r1. |
+ ** |
+ ** sqlite3FindInIndex() might have reordered the fields of the LHS vector |
+ ** so that the fields are in the same order as an existing index. The |
+ ** aiMap[] array contains a mapping from the original LHS field order to |
+ ** the field order that matches the RHS index. |
+ */ |
+ sqlite3ExprCachePush(pParse); |
+ rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); |
+ for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ |
+ if( i==nVector ){ |
+ /* LHS fields are not reordered */ |
+ rLhs = rLhsOrig; |
+ }else{ |
+ /* Need to reorder the LHS fields according to aiMap */ |
+ rLhs = sqlite3GetTempRange(pParse, nVector); |
+ for(i=0; i<nVector; i++){ |
+ sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); |
+ } |
+ } |
+ |
+ /* If sqlite3FindInIndex() did not find or create an index that is |
+ ** suitable for evaluating the IN operator, then evaluate using a |
+ ** sequence of comparisons. |
+ ** |
+ ** This is step (1) in the in-operator.md optimized algorithm. |
+ */ |
+ if( eType==IN_INDEX_NOOP ){ |
+ ExprList *pList = pExpr->x.pList; |
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
+ int labelOk = sqlite3VdbeMakeLabel(v); |
+ int r2, regToFree; |
+ int regCkNull = 0; |
+ int ii; |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ if( destIfNull!=destIfFalse ){ |
+ regCkNull = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); |
+ } |
+ for(ii=0; ii<pList->nExpr; ii++){ |
+ r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); |
+ if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ |
+ sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); |
+ } |
+ if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ |
+ sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, |
+ (void*)pColl, P4_COLLSEQ); |
+ VdbeCoverageIf(v, ii<pList->nExpr-1); |
+ VdbeCoverageIf(v, ii==pList->nExpr-1); |
+ sqlite3VdbeChangeP5(v, zAff[0]); |
+ }else{ |
+ assert( destIfNull==destIfFalse ); |
+ sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, |
+ (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); |
+ sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); |
+ } |
+ sqlite3ReleaseTempReg(pParse, regToFree); |
+ } |
+ if( regCkNull ){ |
+ sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); |
+ sqlite3VdbeGoto(v, destIfFalse); |
+ } |
+ sqlite3VdbeResolveLabel(v, labelOk); |
+ sqlite3ReleaseTempReg(pParse, regCkNull); |
+ goto sqlite3ExprCodeIN_finished; |
+ } |
+ |
+ /* Step 2: Check to see if the LHS contains any NULL columns. If the |
+ ** LHS does contain NULLs then the result must be either FALSE or NULL. |
+ ** We will then skip the binary search of the RHS. |
+ */ |
+ if( destIfNull==destIfFalse ){ |
+ destStep2 = destIfFalse; |
+ }else{ |
+ destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); |
+ } |
+ for(i=0; i<nVector; i++){ |
+ Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); |
+ if( sqlite3ExprCanBeNull(p) ){ |
+ sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); |
+ VdbeCoverage(v); |
+ } |
+ } |
+ |
+ /* Step 3. The LHS is now known to be non-NULL. Do the binary search |
+ ** of the RHS using the LHS as a probe. If found, the result is |
+ ** true. |
+ */ |
+ if( eType==IN_INDEX_ROWID ){ |
+ /* In this case, the RHS is the ROWID of table b-tree and so we also |
+ ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 |
+ ** into a single opcode. */ |
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); |
+ VdbeCoverage(v); |
+ addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ |
+ }else{ |
+ sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); |
+ if( destIfFalse==destIfNull ){ |
+ /* Combine Step 3 and Step 5 into a single opcode */ |
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, |
+ rLhs, nVector); VdbeCoverage(v); |
+ goto sqlite3ExprCodeIN_finished; |
+ } |
+ /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ |
+ addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, |
+ rLhs, nVector); VdbeCoverage(v); |
+ } |
+ |
+ /* Step 4. If the RHS is known to be non-NULL and we did not find |
+ ** an match on the search above, then the result must be FALSE. |
+ */ |
+ if( rRhsHasNull && nVector==1 ){ |
+ sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); |
+ VdbeCoverage(v); |
+ } |
+ |
+ /* Step 5. If we do not care about the difference between NULL and |
+ ** FALSE, then just return false. |
+ */ |
+ if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); |
+ |
+ /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. |
+ ** If any comparison is NULL, then the result is NULL. If all |
+ ** comparisons are FALSE then the final result is FALSE. |
+ ** |
+ ** For a scalar LHS, it is sufficient to check just the first row |
+ ** of the RHS. |
+ */ |
+ if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); |
+ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); |
+ VdbeCoverage(v); |
+ if( nVector>1 ){ |
+ destNotNull = sqlite3VdbeMakeLabel(v); |
+ }else{ |
+ /* For nVector==1, combine steps 6 and 7 by immediately returning |
+ ** FALSE if the first comparison is not NULL */ |
+ destNotNull = destIfFalse; |
+ } |
+ for(i=0; i<nVector; i++){ |
+ Expr *p; |
+ CollSeq *pColl; |
+ int r3 = sqlite3GetTempReg(pParse); |
+ p = sqlite3VectorFieldSubexpr(pLeft, i); |
+ pColl = sqlite3ExprCollSeq(pParse, p); |
+ sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); |
+ sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, |
+ (void*)pColl, P4_COLLSEQ); |
+ VdbeCoverage(v); |
+ sqlite3ReleaseTempReg(pParse, r3); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); |
+ if( nVector>1 ){ |
+ sqlite3VdbeResolveLabel(v, destNotNull); |
+ sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); |
+ VdbeCoverage(v); |
+ |
+ /* Step 7: If we reach this point, we know that the result must |
+ ** be false. */ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); |
+ } |
+ |
+ /* Jumps here in order to return true. */ |
+ sqlite3VdbeJumpHere(v, addrTruthOp); |
+ |
+sqlite3ExprCodeIN_finished: |
+ if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); |
+ sqlite3ExprCachePop(pParse); |
+ VdbeComment((v, "end IN expr")); |
+sqlite3ExprCodeIN_oom_error: |
+ sqlite3DbFree(pParse->db, aiMap); |
+ sqlite3DbFree(pParse->db, zAff); |
+} |
+#endif /* SQLITE_OMIT_SUBQUERY */ |
+ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+/* |
+** Generate an instruction that will put the floating point |
+** value described by z[0..n-1] into register iMem. |
+** |
+** The z[] string will probably not be zero-terminated. But the |
+** z[n] character is guaranteed to be something that does not look |
+** like the continuation of the number. |
+*/ |
+static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ |
+ if( ALWAYS(z!=0) ){ |
+ double value; |
+ sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); |
+ assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ |
+ if( negateFlag ) value = -value; |
+ sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); |
+ } |
+} |
+#endif |
+ |
+ |
+/* |
+** Generate an instruction that will put the integer describe by |
+** text z[0..n-1] into register iMem. |
+** |
+** Expr.u.zToken is always UTF8 and zero-terminated. |
+*/ |
+static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ |
+ Vdbe *v = pParse->pVdbe; |
+ if( pExpr->flags & EP_IntValue ){ |
+ int i = pExpr->u.iValue; |
+ assert( i>=0 ); |
+ if( negFlag ) i = -i; |
+ sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); |
+ }else{ |
+ int c; |
+ i64 value; |
+ const char *z = pExpr->u.zToken; |
+ assert( z!=0 ); |
+ c = sqlite3DecOrHexToI64(z, &value); |
+ if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){ |
+#ifdef SQLITE_OMIT_FLOATING_POINT |
+ sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); |
+#else |
+#ifndef SQLITE_OMIT_HEX_INTEGER |
+ if( sqlite3_strnicmp(z,"0x",2)==0 ){ |
+ sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); |
+ }else |
+#endif |
+ { |
+ codeReal(v, z, negFlag, iMem); |
+ } |
+#endif |
+ }else{ |
+ if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } |
+ sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); |
+ } |
+ } |
+} |
+ |
+/* |
+** Erase column-cache entry number i |
+*/ |
+static void cacheEntryClear(Parse *pParse, int i){ |
+ if( pParse->aColCache[i].tempReg ){ |
+ if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
+ pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; |
+ } |
+ } |
+ pParse->nColCache--; |
+ if( i<pParse->nColCache ){ |
+ pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; |
+ } |
+} |
+ |
+ |
+/* |
+** Record in the column cache that a particular column from a |
+** particular table is stored in a particular register. |
+*/ |
+void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ |
+ int i; |
+ int minLru; |
+ int idxLru; |
+ struct yColCache *p; |
+ |
+ /* Unless an error has occurred, register numbers are always positive. */ |
+ assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); |
+ assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ |
+ |
+ /* The SQLITE_ColumnCache flag disables the column cache. This is used |
+ ** for testing only - to verify that SQLite always gets the same answer |
+ ** with and without the column cache. |
+ */ |
+ if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; |
+ |
+ /* First replace any existing entry. |
+ ** |
+ ** Actually, the way the column cache is currently used, we are guaranteed |
+ ** that the object will never already be in cache. Verify this guarantee. |
+ */ |
+#ifndef NDEBUG |
+ for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
+ assert( p->iTable!=iTab || p->iColumn!=iCol ); |
+ } |
+#endif |
+ |
+ /* If the cache is already full, delete the least recently used entry */ |
+ if( pParse->nColCache>=SQLITE_N_COLCACHE ){ |
+ minLru = 0x7fffffff; |
+ idxLru = -1; |
+ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
+ if( p->lru<minLru ){ |
+ idxLru = i; |
+ minLru = p->lru; |
+ } |
+ } |
+ p = &pParse->aColCache[idxLru]; |
+ }else{ |
+ p = &pParse->aColCache[pParse->nColCache++]; |
+ } |
+ |
+ /* Add the new entry to the end of the cache */ |
+ p->iLevel = pParse->iCacheLevel; |
+ p->iTable = iTab; |
+ p->iColumn = iCol; |
+ p->iReg = iReg; |
+ p->tempReg = 0; |
+ p->lru = pParse->iCacheCnt++; |
+} |
+ |
+/* |
+** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. |
+** Purge the range of registers from the column cache. |
+*/ |
+void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ |
+ int i = 0; |
+ while( i<pParse->nColCache ){ |
+ struct yColCache *p = &pParse->aColCache[i]; |
+ if( p->iReg >= iReg && p->iReg < iReg+nReg ){ |
+ cacheEntryClear(pParse, i); |
+ }else{ |
+ i++; |
+ } |
+ } |
+} |
+ |
+/* |
+** Remember the current column cache context. Any new entries added |
+** added to the column cache after this call are removed when the |
+** corresponding pop occurs. |
+*/ |
+void sqlite3ExprCachePush(Parse *pParse){ |
+ pParse->iCacheLevel++; |
+#ifdef SQLITE_DEBUG |
+ if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
+ printf("PUSH to %d\n", pParse->iCacheLevel); |
+ } |
+#endif |
+} |
+ |
+/* |
+** Remove from the column cache any entries that were added since the |
+** the previous sqlite3ExprCachePush operation. In other words, restore |
+** the cache to the state it was in prior the most recent Push. |
+*/ |
+void sqlite3ExprCachePop(Parse *pParse){ |
+ int i = 0; |
+ assert( pParse->iCacheLevel>=1 ); |
+ pParse->iCacheLevel--; |
+#ifdef SQLITE_DEBUG |
+ if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
+ printf("POP to %d\n", pParse->iCacheLevel); |
+ } |
+#endif |
+ while( i<pParse->nColCache ){ |
+ if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ |
+ cacheEntryClear(pParse, i); |
+ }else{ |
+ i++; |
+ } |
+ } |
+} |
+ |
+/* |
+** When a cached column is reused, make sure that its register is |
+** no longer available as a temp register. ticket #3879: that same |
+** register might be in the cache in multiple places, so be sure to |
+** get them all. |
+*/ |
+static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ |
+ int i; |
+ struct yColCache *p; |
+ for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
+ if( p->iReg==iReg ){ |
+ p->tempReg = 0; |
+ } |
+ } |
+} |
+ |
+/* Generate code that will load into register regOut a value that is |
+** appropriate for the iIdxCol-th column of index pIdx. |
+*/ |
+void sqlite3ExprCodeLoadIndexColumn( |
+ Parse *pParse, /* The parsing context */ |
+ Index *pIdx, /* The index whose column is to be loaded */ |
+ int iTabCur, /* Cursor pointing to a table row */ |
+ int iIdxCol, /* The column of the index to be loaded */ |
+ int regOut /* Store the index column value in this register */ |
+){ |
+ i16 iTabCol = pIdx->aiColumn[iIdxCol]; |
+ if( iTabCol==XN_EXPR ){ |
+ assert( pIdx->aColExpr ); |
+ assert( pIdx->aColExpr->nExpr>iIdxCol ); |
+ pParse->iSelfTab = iTabCur; |
+ sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); |
+ }else{ |
+ sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, |
+ iTabCol, regOut); |
+ } |
+} |
+ |
+/* |
+** Generate code to extract the value of the iCol-th column of a table. |
+*/ |
+void sqlite3ExprCodeGetColumnOfTable( |
+ Vdbe *v, /* The VDBE under construction */ |
+ Table *pTab, /* The table containing the value */ |
+ int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ |
+ int iCol, /* Index of the column to extract */ |
+ int regOut /* Extract the value into this register */ |
+){ |
+ if( iCol<0 || iCol==pTab->iPKey ){ |
+ sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); |
+ }else{ |
+ int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; |
+ int x = iCol; |
+ if( !HasRowid(pTab) && !IsVirtual(pTab) ){ |
+ x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); |
+ } |
+ sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); |
+ } |
+ if( iCol>=0 ){ |
+ sqlite3ColumnDefault(v, pTab, iCol, regOut); |
+ } |
+} |
+ |
+/* |
+** Generate code that will extract the iColumn-th column from |
+** table pTab and store the column value in a register. |
+** |
+** An effort is made to store the column value in register iReg. This |
+** is not garanteeed for GetColumn() - the result can be stored in |
+** any register. But the result is guaranteed to land in register iReg |
+** for GetColumnToReg(). |
+** |
+** There must be an open cursor to pTab in iTable when this routine |
+** is called. If iColumn<0 then code is generated that extracts the rowid. |
+*/ |
+int sqlite3ExprCodeGetColumn( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Table *pTab, /* Description of the table we are reading from */ |
+ int iColumn, /* Index of the table column */ |
+ int iTable, /* The cursor pointing to the table */ |
+ int iReg, /* Store results here */ |
+ u8 p5 /* P5 value for OP_Column + FLAGS */ |
+){ |
+ Vdbe *v = pParse->pVdbe; |
+ int i; |
+ struct yColCache *p; |
+ |
+ for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
+ if( p->iTable==iTable && p->iColumn==iColumn ){ |
+ p->lru = pParse->iCacheCnt++; |
+ sqlite3ExprCachePinRegister(pParse, p->iReg); |
+ return p->iReg; |
+ } |
+ } |
+ assert( v!=0 ); |
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); |
+ if( p5 ){ |
+ sqlite3VdbeChangeP5(v, p5); |
+ }else{ |
+ sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); |
+ } |
+ return iReg; |
+} |
+void sqlite3ExprCodeGetColumnToReg( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Table *pTab, /* Description of the table we are reading from */ |
+ int iColumn, /* Index of the table column */ |
+ int iTable, /* The cursor pointing to the table */ |
+ int iReg /* Store results here */ |
+){ |
+ int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); |
+ if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); |
+} |
+ |
+ |
+/* |
+** Clear all column cache entries. |
+*/ |
+void sqlite3ExprCacheClear(Parse *pParse){ |
+ int i; |
+ |
+#if SQLITE_DEBUG |
+ if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
+ printf("CLEAR\n"); |
+ } |
+#endif |
+ for(i=0; i<pParse->nColCache; i++){ |
+ if( pParse->aColCache[i].tempReg |
+ && pParse->nTempReg<ArraySize(pParse->aTempReg) |
+ ){ |
+ pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; |
+ } |
+ } |
+ pParse->nColCache = 0; |
+} |
+ |
+/* |
+** Record the fact that an affinity change has occurred on iCount |
+** registers starting with iStart. |
+*/ |
+void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ |
+ sqlite3ExprCacheRemove(pParse, iStart, iCount); |
+} |
+ |
+/* |
+** Generate code to move content from registers iFrom...iFrom+nReg-1 |
+** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. |
+*/ |
+void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ |
+ assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); |
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); |
+ sqlite3ExprCacheRemove(pParse, iFrom, nReg); |
+} |
+ |
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) |
+/* |
+** Return true if any register in the range iFrom..iTo (inclusive) |
+** is used as part of the column cache. |
+** |
+** This routine is used within assert() and testcase() macros only |
+** and does not appear in a normal build. |
+*/ |
+static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ |
+ int i; |
+ struct yColCache *p; |
+ for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
+ int r = p->iReg; |
+ if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ |
+ } |
+ return 0; |
+} |
+#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ |
+ |
+ |
+/* |
+** Convert a scalar expression node to a TK_REGISTER referencing |
+** register iReg. The caller must ensure that iReg already contains |
+** the correct value for the expression. |
+*/ |
+static void exprToRegister(Expr *p, int iReg){ |
+ p->op2 = p->op; |
+ p->op = TK_REGISTER; |
+ p->iTable = iReg; |
+ ExprClearProperty(p, EP_Skip); |
+} |
+ |
+/* |
+** Evaluate an expression (either a vector or a scalar expression) and store |
+** the result in continguous temporary registers. Return the index of |
+** the first register used to store the result. |
+** |
+** If the returned result register is a temporary scalar, then also write |
+** that register number into *piFreeable. If the returned result register |
+** is not a temporary or if the expression is a vector set *piFreeable |
+** to 0. |
+*/ |
+static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ |
+ int iResult; |
+ int nResult = sqlite3ExprVectorSize(p); |
+ if( nResult==1 ){ |
+ iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); |
+ }else{ |
+ *piFreeable = 0; |
+ if( p->op==TK_SELECT ){ |
+ iResult = sqlite3CodeSubselect(pParse, p, 0, 0); |
+ }else{ |
+ int i; |
+ iResult = pParse->nMem+1; |
+ pParse->nMem += nResult; |
+ for(i=0; i<nResult; i++){ |
+ sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); |
+ } |
+ } |
+ } |
+ return iResult; |
+} |
+ |
+ |
+/* |
+** Generate code into the current Vdbe to evaluate the given |
+** expression. Attempt to store the results in register "target". |
+** Return the register where results are stored. |
+** |
+** With this routine, there is no guarantee that results will |
+** be stored in target. The result might be stored in some other |
+** register if it is convenient to do so. The calling function |
+** must check the return code and move the results to the desired |
+** register. |
+*/ |
+int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ |
+ Vdbe *v = pParse->pVdbe; /* The VM under construction */ |
+ int op; /* The opcode being coded */ |
+ int inReg = target; /* Results stored in register inReg */ |
+ int regFree1 = 0; /* If non-zero free this temporary register */ |
+ int regFree2 = 0; /* If non-zero free this temporary register */ |
+ int r1, r2; /* Various register numbers */ |
+ Expr tempX; /* Temporary expression node */ |
+ int p5 = 0; |
+ |
+ assert( target>0 && target<=pParse->nMem ); |
+ if( v==0 ){ |
+ assert( pParse->db->mallocFailed ); |
+ return 0; |
+ } |
+ |
+ if( pExpr==0 ){ |
+ op = TK_NULL; |
+ }else{ |
+ op = pExpr->op; |
+ } |
+ switch( op ){ |
+ case TK_AGG_COLUMN: { |
+ AggInfo *pAggInfo = pExpr->pAggInfo; |
+ struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; |
+ if( !pAggInfo->directMode ){ |
+ assert( pCol->iMem>0 ); |
+ return pCol->iMem; |
+ }else if( pAggInfo->useSortingIdx ){ |
+ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, |
+ pCol->iSorterColumn, target); |
+ return target; |
+ } |
+ /* Otherwise, fall thru into the TK_COLUMN case */ |
+ } |
+ case TK_COLUMN: { |
+ int iTab = pExpr->iTable; |
+ if( iTab<0 ){ |
+ if( pParse->ckBase>0 ){ |
+ /* Generating CHECK constraints or inserting into partial index */ |
+ return pExpr->iColumn + pParse->ckBase; |
+ }else{ |
+ /* Coding an expression that is part of an index where column names |
+ ** in the index refer to the table to which the index belongs */ |
+ iTab = pParse->iSelfTab; |
+ } |
+ } |
+ return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, |
+ pExpr->iColumn, iTab, target, |
+ pExpr->op2); |
+ } |
+ case TK_INTEGER: { |
+ codeInteger(pParse, pExpr, 0, target); |
+ return target; |
+ } |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ case TK_FLOAT: { |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ codeReal(v, pExpr->u.zToken, 0, target); |
+ return target; |
+ } |
+#endif |
+ case TK_STRING: { |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ sqlite3VdbeLoadString(v, target, pExpr->u.zToken); |
+ return target; |
+ } |
+ case TK_NULL: { |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
+ return target; |
+ } |
+#ifndef SQLITE_OMIT_BLOB_LITERAL |
+ case TK_BLOB: { |
+ int n; |
+ const char *z; |
+ char *zBlob; |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
+ assert( pExpr->u.zToken[1]=='\'' ); |
+ z = &pExpr->u.zToken[2]; |
+ n = sqlite3Strlen30(z) - 1; |
+ assert( z[n]=='\'' ); |
+ zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); |
+ sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); |
+ return target; |
+ } |
+#endif |
+ case TK_VARIABLE: { |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ assert( pExpr->u.zToken!=0 ); |
+ assert( pExpr->u.zToken[0]!=0 ); |
+ sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); |
+ if( pExpr->u.zToken[1]!=0 ){ |
+ const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); |
+ assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); |
+ pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ |
+ sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); |
+ } |
+ return target; |
+ } |
+ case TK_REGISTER: { |
+ return pExpr->iTable; |
+ } |
+#ifndef SQLITE_OMIT_CAST |
+ case TK_CAST: { |
+ /* Expressions of the form: CAST(pLeft AS token) */ |
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
+ if( inReg!=target ){ |
+ sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); |
+ inReg = target; |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Cast, target, |
+ sqlite3AffinityType(pExpr->u.zToken, 0)); |
+ testcase( usedAsColumnCache(pParse, inReg, inReg) ); |
+ sqlite3ExprCacheAffinityChange(pParse, inReg, 1); |
+ return inReg; |
+ } |
+#endif /* SQLITE_OMIT_CAST */ |
+ case TK_IS: |
+ case TK_ISNOT: |
+ op = (op==TK_IS) ? TK_EQ : TK_NE; |
+ p5 = SQLITE_NULLEQ; |
+ /* fall-through */ |
+ case TK_LT: |
+ case TK_LE: |
+ case TK_GT: |
+ case TK_GE: |
+ case TK_NE: |
+ case TK_EQ: { |
+ Expr *pLeft = pExpr->pLeft; |
+ if( sqlite3ExprIsVector(pLeft) ){ |
+ codeVectorCompare(pParse, pExpr, target, op, p5); |
+ }else{ |
+ r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ codeCompare(pParse, pLeft, pExpr->pRight, op, |
+ r1, r2, inReg, SQLITE_STOREP2 | p5); |
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ } |
+ break; |
+ } |
+ case TK_AND: |
+ case TK_OR: |
+ case TK_PLUS: |
+ case TK_STAR: |
+ case TK_MINUS: |
+ case TK_REM: |
+ case TK_BITAND: |
+ case TK_BITOR: |
+ case TK_SLASH: |
+ case TK_LSHIFT: |
+ case TK_RSHIFT: |
+ case TK_CONCAT: { |
+ assert( TK_AND==OP_And ); testcase( op==TK_AND ); |
+ assert( TK_OR==OP_Or ); testcase( op==TK_OR ); |
+ assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); |
+ assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); |
+ assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); |
+ assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); |
+ assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); |
+ assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); |
+ assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); |
+ assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); |
+ assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ sqlite3VdbeAddOp3(v, op, r2, r1, target); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_UMINUS: { |
+ Expr *pLeft = pExpr->pLeft; |
+ assert( pLeft ); |
+ if( pLeft->op==TK_INTEGER ){ |
+ codeInteger(pParse, pLeft, 1, target); |
+ return target; |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ }else if( pLeft->op==TK_FLOAT ){ |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ codeReal(v, pLeft->u.zToken, 1, target); |
+ return target; |
+#endif |
+ }else{ |
+ tempX.op = TK_INTEGER; |
+ tempX.flags = EP_IntValue|EP_TokenOnly; |
+ tempX.u.iValue = 0; |
+ r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); |
+ sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); |
+ testcase( regFree2==0 ); |
+ } |
+ break; |
+ } |
+ case TK_BITNOT: |
+ case TK_NOT: { |
+ assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); |
+ assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ testcase( regFree1==0 ); |
+ sqlite3VdbeAddOp2(v, op, r1, inReg); |
+ break; |
+ } |
+ case TK_ISNULL: |
+ case TK_NOTNULL: { |
+ int addr; |
+ assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
+ assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ testcase( regFree1==0 ); |
+ addr = sqlite3VdbeAddOp1(v, op, r1); |
+ VdbeCoverageIf(v, op==TK_ISNULL); |
+ VdbeCoverageIf(v, op==TK_NOTNULL); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, target); |
+ sqlite3VdbeJumpHere(v, addr); |
+ break; |
+ } |
+ case TK_AGG_FUNCTION: { |
+ AggInfo *pInfo = pExpr->pAggInfo; |
+ if( pInfo==0 ){ |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); |
+ }else{ |
+ return pInfo->aFunc[pExpr->iAgg].iMem; |
+ } |
+ break; |
+ } |
+ case TK_FUNCTION: { |
+ ExprList *pFarg; /* List of function arguments */ |
+ int nFarg; /* Number of function arguments */ |
+ FuncDef *pDef; /* The function definition object */ |
+ const char *zId; /* The function name */ |
+ u32 constMask = 0; /* Mask of function arguments that are constant */ |
+ int i; /* Loop counter */ |
+ sqlite3 *db = pParse->db; /* The database connection */ |
+ u8 enc = ENC(db); /* The text encoding used by this database */ |
+ CollSeq *pColl = 0; /* A collating sequence */ |
+ |
+ if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ |
+ /* SQL functions can be expensive. So try to move constant functions |
+ ** out of the inner loop, even if that means an extra OP_Copy. */ |
+ return sqlite3ExprCodeAtInit(pParse, pExpr, -1); |
+ } |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ if( ExprHasProperty(pExpr, EP_TokenOnly) ){ |
+ pFarg = 0; |
+ }else{ |
+ pFarg = pExpr->x.pList; |
+ } |
+ nFarg = pFarg ? pFarg->nExpr : 0; |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ zId = pExpr->u.zToken; |
+ pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); |
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION |
+ if( pDef==0 && pParse->explain ){ |
+ pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); |
+ } |
+#endif |
+ if( pDef==0 || pDef->xFinalize!=0 ){ |
+ sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); |
+ break; |
+ } |
+ |
+ /* Attempt a direct implementation of the built-in COALESCE() and |
+ ** IFNULL() functions. This avoids unnecessary evaluation of |
+ ** arguments past the first non-NULL argument. |
+ */ |
+ if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ |
+ int endCoalesce = sqlite3VdbeMakeLabel(v); |
+ assert( nFarg>=2 ); |
+ sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); |
+ for(i=1; i<nFarg; i++){ |
+ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); |
+ VdbeCoverage(v); |
+ sqlite3ExprCacheRemove(pParse, target, 1); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); |
+ sqlite3ExprCachePop(pParse); |
+ } |
+ sqlite3VdbeResolveLabel(v, endCoalesce); |
+ break; |
+ } |
+ |
+ /* The UNLIKELY() function is a no-op. The result is the value |
+ ** of the first argument. |
+ */ |
+ if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ |
+ assert( nFarg>=1 ); |
+ return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); |
+ } |
+ |
+#ifdef SQLITE_DEBUG |
+ /* The AFFINITY() function evaluates to a string that describes |
+ ** the type affinity of the argument. This is used for testing of |
+ ** the SQLite type logic. |
+ */ |
+ if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ |
+ const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; |
+ char aff; |
+ assert( nFarg==1 ); |
+ aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); |
+ sqlite3VdbeLoadString(v, target, |
+ aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); |
+ return target; |
+ } |
+#endif |
+ |
+ for(i=0; i<nFarg; i++){ |
+ if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ |
+ testcase( i==31 ); |
+ constMask |= MASKBIT32(i); |
+ } |
+ if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ |
+ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); |
+ } |
+ } |
+ if( pFarg ){ |
+ if( constMask ){ |
+ r1 = pParse->nMem+1; |
+ pParse->nMem += nFarg; |
+ }else{ |
+ r1 = sqlite3GetTempRange(pParse, nFarg); |
+ } |
+ |
+ /* For length() and typeof() functions with a column argument, |
+ ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG |
+ ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data |
+ ** loading. |
+ */ |
+ if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ |
+ u8 exprOp; |
+ assert( nFarg==1 ); |
+ assert( pFarg->a[0].pExpr!=0 ); |
+ exprOp = pFarg->a[0].pExpr->op; |
+ if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ |
+ assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); |
+ assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); |
+ testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); |
+ pFarg->a[0].pExpr->op2 = |
+ pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); |
+ } |
+ } |
+ |
+ sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ |
+ sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, |
+ SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); |
+ sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ |
+ }else{ |
+ r1 = 0; |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ /* Possibly overload the function if the first argument is |
+ ** a virtual table column. |
+ ** |
+ ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the |
+ ** second argument, not the first, as the argument to test to |
+ ** see if it is a column in a virtual table. This is done because |
+ ** the left operand of infix functions (the operand we want to |
+ ** control overloading) ends up as the second argument to the |
+ ** function. The expression "A glob B" is equivalent to |
+ ** "glob(B,A). We want to use the A in "A glob B" to test |
+ ** for function overloading. But we use the B term in "glob(B,A)". |
+ */ |
+ if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ |
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); |
+ }else if( nFarg>0 ){ |
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); |
+ } |
+#endif |
+ if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
+ if( !pColl ) pColl = db->pDfltColl; |
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); |
+ } |
+ sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, |
+ (char*)pDef, P4_FUNCDEF); |
+ sqlite3VdbeChangeP5(v, (u8)nFarg); |
+ if( nFarg && constMask==0 ){ |
+ sqlite3ReleaseTempRange(pParse, r1, nFarg); |
+ } |
+ return target; |
+ } |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ case TK_EXISTS: |
+ case TK_SELECT: { |
+ int nCol; |
+ testcase( op==TK_EXISTS ); |
+ testcase( op==TK_SELECT ); |
+ if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ |
+ sqlite3SubselectError(pParse, nCol, 1); |
+ }else{ |
+ return sqlite3CodeSubselect(pParse, pExpr, 0, 0); |
+ } |
+ break; |
+ } |
+ case TK_SELECT_COLUMN: { |
+ int n; |
+ if( pExpr->pLeft->iTable==0 ){ |
+ pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); |
+ } |
+ assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); |
+ if( pExpr->iTable |
+ && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) |
+ ){ |
+ sqlite3ErrorMsg(pParse, "%d columns assigned %d values", |
+ pExpr->iTable, n); |
+ } |
+ return pExpr->pLeft->iTable + pExpr->iColumn; |
+ } |
+ case TK_IN: { |
+ int destIfFalse = sqlite3VdbeMakeLabel(v); |
+ int destIfNull = sqlite3VdbeMakeLabel(v); |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
+ sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
+ sqlite3VdbeResolveLabel(v, destIfFalse); |
+ sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); |
+ sqlite3VdbeResolveLabel(v, destIfNull); |
+ return target; |
+ } |
+#endif /* SQLITE_OMIT_SUBQUERY */ |
+ |
+ |
+ /* |
+ ** x BETWEEN y AND z |
+ ** |
+ ** This is equivalent to |
+ ** |
+ ** x>=y AND x<=z |
+ ** |
+ ** X is stored in pExpr->pLeft. |
+ ** Y is stored in pExpr->pList->a[0].pExpr. |
+ ** Z is stored in pExpr->pList->a[1].pExpr. |
+ */ |
+ case TK_BETWEEN: { |
+ exprCodeBetween(pParse, pExpr, target, 0, 0); |
+ return target; |
+ } |
+ case TK_SPAN: |
+ case TK_COLLATE: |
+ case TK_UPLUS: { |
+ return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
+ } |
+ |
+ case TK_TRIGGER: { |
+ /* If the opcode is TK_TRIGGER, then the expression is a reference |
+ ** to a column in the new.* or old.* pseudo-tables available to |
+ ** trigger programs. In this case Expr.iTable is set to 1 for the |
+ ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn |
+ ** is set to the column of the pseudo-table to read, or to -1 to |
+ ** read the rowid field. |
+ ** |
+ ** The expression is implemented using an OP_Param opcode. The p1 |
+ ** parameter is set to 0 for an old.rowid reference, or to (i+1) |
+ ** to reference another column of the old.* pseudo-table, where |
+ ** i is the index of the column. For a new.rowid reference, p1 is |
+ ** set to (n+1), where n is the number of columns in each pseudo-table. |
+ ** For a reference to any other column in the new.* pseudo-table, p1 |
+ ** is set to (n+2+i), where n and i are as defined previously. For |
+ ** example, if the table on which triggers are being fired is |
+ ** declared as: |
+ ** |
+ ** CREATE TABLE t1(a, b); |
+ ** |
+ ** Then p1 is interpreted as follows: |
+ ** |
+ ** p1==0 -> old.rowid p1==3 -> new.rowid |
+ ** p1==1 -> old.a p1==4 -> new.a |
+ ** p1==2 -> old.b p1==5 -> new.b |
+ */ |
+ Table *pTab = pExpr->pTab; |
+ int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; |
+ |
+ assert( pExpr->iTable==0 || pExpr->iTable==1 ); |
+ assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); |
+ assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); |
+ assert( p1>=0 && p1<(pTab->nCol*2+2) ); |
+ |
+ sqlite3VdbeAddOp2(v, OP_Param, p1, target); |
+ VdbeComment((v, "%s.%s -> $%d", |
+ (pExpr->iTable ? "new" : "old"), |
+ (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), |
+ target |
+ )); |
+ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ /* If the column has REAL affinity, it may currently be stored as an |
+ ** integer. Use OP_RealAffinity to make sure it is really real. |
+ ** |
+ ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to |
+ ** floating point when extracting it from the record. */ |
+ if( pExpr->iColumn>=0 |
+ && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL |
+ ){ |
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, target); |
+ } |
+#endif |
+ break; |
+ } |
+ |
+ case TK_VECTOR: { |
+ sqlite3ErrorMsg(pParse, "row value misused"); |
+ break; |
+ } |
+ |
+ /* |
+ ** Form A: |
+ ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
+ ** |
+ ** Form B: |
+ ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
+ ** |
+ ** Form A is can be transformed into the equivalent form B as follows: |
+ ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... |
+ ** WHEN x=eN THEN rN ELSE y END |
+ ** |
+ ** X (if it exists) is in pExpr->pLeft. |
+ ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is |
+ ** odd. The Y is also optional. If the number of elements in x.pList |
+ ** is even, then Y is omitted and the "otherwise" result is NULL. |
+ ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. |
+ ** |
+ ** The result of the expression is the Ri for the first matching Ei, |
+ ** or if there is no matching Ei, the ELSE term Y, or if there is |
+ ** no ELSE term, NULL. |
+ */ |
+ default: assert( op==TK_CASE ); { |
+ int endLabel; /* GOTO label for end of CASE stmt */ |
+ int nextCase; /* GOTO label for next WHEN clause */ |
+ int nExpr; /* 2x number of WHEN terms */ |
+ int i; /* Loop counter */ |
+ ExprList *pEList; /* List of WHEN terms */ |
+ struct ExprList_item *aListelem; /* Array of WHEN terms */ |
+ Expr opCompare; /* The X==Ei expression */ |
+ Expr *pX; /* The X expression */ |
+ Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ |
+ VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) |
+ |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); |
+ assert(pExpr->x.pList->nExpr > 0); |
+ pEList = pExpr->x.pList; |
+ aListelem = pEList->a; |
+ nExpr = pEList->nExpr; |
+ endLabel = sqlite3VdbeMakeLabel(v); |
+ if( (pX = pExpr->pLeft)!=0 ){ |
+ tempX = *pX; |
+ testcase( pX->op==TK_COLUMN ); |
+ exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); |
+ testcase( regFree1==0 ); |
+ memset(&opCompare, 0, sizeof(opCompare)); |
+ opCompare.op = TK_EQ; |
+ opCompare.pLeft = &tempX; |
+ pTest = &opCompare; |
+ /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: |
+ ** The value in regFree1 might get SCopy-ed into the file result. |
+ ** So make sure that the regFree1 register is not reused for other |
+ ** purposes and possibly overwritten. */ |
+ regFree1 = 0; |
+ } |
+ for(i=0; i<nExpr-1; i=i+2){ |
+ sqlite3ExprCachePush(pParse); |
+ if( pX ){ |
+ assert( pTest!=0 ); |
+ opCompare.pRight = aListelem[i].pExpr; |
+ }else{ |
+ pTest = aListelem[i].pExpr; |
+ } |
+ nextCase = sqlite3VdbeMakeLabel(v); |
+ testcase( pTest->op==TK_COLUMN ); |
+ sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); |
+ testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); |
+ sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); |
+ sqlite3VdbeGoto(v, endLabel); |
+ sqlite3ExprCachePop(pParse); |
+ sqlite3VdbeResolveLabel(v, nextCase); |
+ } |
+ if( (nExpr&1)!=0 ){ |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); |
+ sqlite3ExprCachePop(pParse); |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
+ } |
+ assert( pParse->db->mallocFailed || pParse->nErr>0 |
+ || pParse->iCacheLevel==iCacheLevel ); |
+ sqlite3VdbeResolveLabel(v, endLabel); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_TRIGGER |
+ case TK_RAISE: { |
+ assert( pExpr->affinity==OE_Rollback |
+ || pExpr->affinity==OE_Abort |
+ || pExpr->affinity==OE_Fail |
+ || pExpr->affinity==OE_Ignore |
+ ); |
+ if( !pParse->pTriggerTab ){ |
+ sqlite3ErrorMsg(pParse, |
+ "RAISE() may only be used within a trigger-program"); |
+ return 0; |
+ } |
+ if( pExpr->affinity==OE_Abort ){ |
+ sqlite3MayAbort(pParse); |
+ } |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ if( pExpr->affinity==OE_Ignore ){ |
+ sqlite3VdbeAddOp4( |
+ v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); |
+ VdbeCoverage(v); |
+ }else{ |
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, |
+ pExpr->affinity, pExpr->u.zToken, 0, 0); |
+ } |
+ |
+ break; |
+ } |
+#endif |
+ } |
+ sqlite3ReleaseTempReg(pParse, regFree1); |
+ sqlite3ReleaseTempReg(pParse, regFree2); |
+ return inReg; |
+} |
+ |
+/* |
+** Factor out the code of the given expression to initialization time. |
+** |
+** If regDest>=0 then the result is always stored in that register and the |
+** result is not reusable. If regDest<0 then this routine is free to |
+** store the value whereever it wants. The register where the expression |
+** is stored is returned. When regDest<0, two identical expressions will |
+** code to the same register. |
+*/ |
+int sqlite3ExprCodeAtInit( |
+ Parse *pParse, /* Parsing context */ |
+ Expr *pExpr, /* The expression to code when the VDBE initializes */ |
+ int regDest /* Store the value in this register */ |
+){ |
+ ExprList *p; |
+ assert( ConstFactorOk(pParse) ); |
+ p = pParse->pConstExpr; |
+ if( regDest<0 && p ){ |
+ struct ExprList_item *pItem; |
+ int i; |
+ for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ |
+ if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ |
+ return pItem->u.iConstExprReg; |
+ } |
+ } |
+ } |
+ pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); |
+ p = sqlite3ExprListAppend(pParse, p, pExpr); |
+ if( p ){ |
+ struct ExprList_item *pItem = &p->a[p->nExpr-1]; |
+ pItem->reusable = regDest<0; |
+ if( regDest<0 ) regDest = ++pParse->nMem; |
+ pItem->u.iConstExprReg = regDest; |
+ } |
+ pParse->pConstExpr = p; |
+ return regDest; |
+} |
+ |
+/* |
+** Generate code to evaluate an expression and store the results |
+** into a register. Return the register number where the results |
+** are stored. |
+** |
+** If the register is a temporary register that can be deallocated, |
+** then write its number into *pReg. If the result register is not |
+** a temporary, then set *pReg to zero. |
+** |
+** If pExpr is a constant, then this routine might generate this |
+** code to fill the register in the initialization section of the |
+** VDBE program, in order to factor it out of the evaluation loop. |
+*/ |
+int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ |
+ int r2; |
+ pExpr = sqlite3ExprSkipCollate(pExpr); |
+ if( ConstFactorOk(pParse) |
+ && pExpr->op!=TK_REGISTER |
+ && sqlite3ExprIsConstantNotJoin(pExpr) |
+ ){ |
+ *pReg = 0; |
+ r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); |
+ }else{ |
+ int r1 = sqlite3GetTempReg(pParse); |
+ r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); |
+ if( r2==r1 ){ |
+ *pReg = r1; |
+ }else{ |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ *pReg = 0; |
+ } |
+ } |
+ return r2; |
+} |
+ |
+/* |
+** Generate code that will evaluate expression pExpr and store the |
+** results in register target. The results are guaranteed to appear |
+** in register target. |
+*/ |
+void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ |
+ int inReg; |
+ |
+ assert( target>0 && target<=pParse->nMem ); |
+ if( pExpr && pExpr->op==TK_REGISTER ){ |
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); |
+ }else{ |
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); |
+ assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); |
+ if( inReg!=target && pParse->pVdbe ){ |
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); |
+ } |
+ } |
+} |
+ |
+/* |
+** Make a transient copy of expression pExpr and then code it using |
+** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() |
+** except that the input expression is guaranteed to be unchanged. |
+*/ |
+void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ |
+ sqlite3 *db = pParse->db; |
+ pExpr = sqlite3ExprDup(db, pExpr, 0); |
+ if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); |
+ sqlite3ExprDelete(db, pExpr); |
+} |
+ |
+/* |
+** Generate code that will evaluate expression pExpr and store the |
+** results in register target. The results are guaranteed to appear |
+** in register target. If the expression is constant, then this routine |
+** might choose to code the expression at initialization time. |
+*/ |
+void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ |
+ if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ |
+ sqlite3ExprCodeAtInit(pParse, pExpr, target); |
+ }else{ |
+ sqlite3ExprCode(pParse, pExpr, target); |
+ } |
+} |
+ |
+/* |
+** Generate code that evaluates the given expression and puts the result |
+** in register target. |
+** |
+** Also make a copy of the expression results into another "cache" register |
+** and modify the expression so that the next time it is evaluated, |
+** the result is a copy of the cache register. |
+** |
+** This routine is used for expressions that are used multiple |
+** times. They are evaluated once and the results of the expression |
+** are reused. |
+*/ |
+void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ |
+ Vdbe *v = pParse->pVdbe; |
+ int iMem; |
+ |
+ assert( target>0 ); |
+ assert( pExpr->op!=TK_REGISTER ); |
+ sqlite3ExprCode(pParse, pExpr, target); |
+ iMem = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); |
+ exprToRegister(pExpr, iMem); |
+} |
+ |
+/* |
+** Generate code that pushes the value of every element of the given |
+** expression list into a sequence of registers beginning at target. |
+** |
+** Return the number of elements evaluated. |
+** |
+** The SQLITE_ECEL_DUP flag prevents the arguments from being |
+** filled using OP_SCopy. OP_Copy must be used instead. |
+** |
+** The SQLITE_ECEL_FACTOR argument allows constant arguments to be |
+** factored out into initialization code. |
+** |
+** The SQLITE_ECEL_REF flag means that expressions in the list with |
+** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored |
+** in registers at srcReg, and so the value can be copied from there. |
+*/ |
+int sqlite3ExprCodeExprList( |
+ Parse *pParse, /* Parsing context */ |
+ ExprList *pList, /* The expression list to be coded */ |
+ int target, /* Where to write results */ |
+ int srcReg, /* Source registers if SQLITE_ECEL_REF */ |
+ u8 flags /* SQLITE_ECEL_* flags */ |
+){ |
+ struct ExprList_item *pItem; |
+ int i, j, n; |
+ u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; |
+ Vdbe *v = pParse->pVdbe; |
+ assert( pList!=0 ); |
+ assert( target>0 ); |
+ assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ |
+ n = pList->nExpr; |
+ if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; |
+ for(pItem=pList->a, i=0; i<n; i++, pItem++){ |
+ Expr *pExpr = pItem->pExpr; |
+ if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ |
+ if( flags & SQLITE_ECEL_OMITREF ){ |
+ i--; |
+ n--; |
+ }else{ |
+ sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); |
+ } |
+ }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ |
+ sqlite3ExprCodeAtInit(pParse, pExpr, target+i); |
+ }else{ |
+ int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); |
+ if( inReg!=target+i ){ |
+ VdbeOp *pOp; |
+ if( copyOp==OP_Copy |
+ && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy |
+ && pOp->p1+pOp->p3+1==inReg |
+ && pOp->p2+pOp->p3+1==target+i |
+ ){ |
+ pOp->p3++; |
+ }else{ |
+ sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); |
+ } |
+ } |
+ } |
+ } |
+ return n; |
+} |
+ |
+/* |
+** Generate code for a BETWEEN operator. |
+** |
+** x BETWEEN y AND z |
+** |
+** The above is equivalent to |
+** |
+** x>=y AND x<=z |
+** |
+** Code it as such, taking care to do the common subexpression |
+** elimination of x. |
+** |
+** The xJumpIf parameter determines details: |
+** |
+** NULL: Store the boolean result in reg[dest] |
+** sqlite3ExprIfTrue: Jump to dest if true |
+** sqlite3ExprIfFalse: Jump to dest if false |
+** |
+** The jumpIfNull parameter is ignored if xJumpIf is NULL. |
+*/ |
+static void exprCodeBetween( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Expr *pExpr, /* The BETWEEN expression */ |
+ int dest, /* Jump destination or storage location */ |
+ void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ |
+ int jumpIfNull /* Take the jump if the BETWEEN is NULL */ |
+){ |
+ Expr exprAnd; /* The AND operator in x>=y AND x<=z */ |
+ Expr compLeft; /* The x>=y term */ |
+ Expr compRight; /* The x<=z term */ |
+ Expr exprX; /* The x subexpression */ |
+ int regFree1 = 0; /* Temporary use register */ |
+ |
+ |
+ memset(&compLeft, 0, sizeof(Expr)); |
+ memset(&compRight, 0, sizeof(Expr)); |
+ memset(&exprAnd, 0, sizeof(Expr)); |
+ |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ exprX = *pExpr->pLeft; |
+ exprAnd.op = TK_AND; |
+ exprAnd.pLeft = &compLeft; |
+ exprAnd.pRight = &compRight; |
+ compLeft.op = TK_GE; |
+ compLeft.pLeft = &exprX; |
+ compLeft.pRight = pExpr->x.pList->a[0].pExpr; |
+ compRight.op = TK_LE; |
+ compRight.pLeft = &exprX; |
+ compRight.pRight = pExpr->x.pList->a[1].pExpr; |
+ exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); |
+ if( xJump ){ |
+ xJump(pParse, &exprAnd, dest, jumpIfNull); |
+ }else{ |
+ /* Mark the expression is being from the ON or USING clause of a join |
+ ** so that the sqlite3ExprCodeTarget() routine will not attempt to move |
+ ** it into the Parse.pConstExpr list. We should use a new bit for this, |
+ ** for clarity, but we are out of bits in the Expr.flags field so we |
+ ** have to reuse the EP_FromJoin bit. Bummer. */ |
+ exprX.flags |= EP_FromJoin; |
+ sqlite3ExprCodeTarget(pParse, &exprAnd, dest); |
+ } |
+ sqlite3ReleaseTempReg(pParse, regFree1); |
+ |
+ /* Ensure adequate test coverage */ |
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); |
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); |
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); |
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); |
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); |
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); |
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); |
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); |
+ testcase( xJump==0 ); |
+} |
+ |
+/* |
+** Generate code for a boolean expression such that a jump is made |
+** to the label "dest" if the expression is true but execution |
+** continues straight thru if the expression is false. |
+** |
+** If the expression evaluates to NULL (neither true nor false), then |
+** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. |
+** |
+** This code depends on the fact that certain token values (ex: TK_EQ) |
+** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
+** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
+** the make process cause these values to align. Assert()s in the code |
+** below verify that the numbers are aligned correctly. |
+*/ |
+void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
+ Vdbe *v = pParse->pVdbe; |
+ int op = 0; |
+ int regFree1 = 0; |
+ int regFree2 = 0; |
+ int r1, r2; |
+ |
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
+ if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
+ if( NEVER(pExpr==0) ) return; /* No way this can happen */ |
+ op = pExpr->op; |
+ switch( op ){ |
+ case TK_AND: { |
+ int d2 = sqlite3VdbeMakeLabel(v); |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
+ sqlite3VdbeResolveLabel(v, d2); |
+ sqlite3ExprCachePop(pParse); |
+ break; |
+ } |
+ case TK_OR: { |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
+ sqlite3ExprCachePop(pParse); |
+ break; |
+ } |
+ case TK_NOT: { |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
+ break; |
+ } |
+ case TK_IS: |
+ case TK_ISNOT: |
+ testcase( op==TK_IS ); |
+ testcase( op==TK_ISNOT ); |
+ op = (op==TK_IS) ? TK_EQ : TK_NE; |
+ jumpIfNull = SQLITE_NULLEQ; |
+ /* Fall thru */ |
+ case TK_LT: |
+ case TK_LE: |
+ case TK_GT: |
+ case TK_GE: |
+ case TK_NE: |
+ case TK_EQ: { |
+ if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; |
+ testcase( jumpIfNull==0 ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
+ r1, r2, dest, jumpIfNull); |
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); |
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); |
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); |
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne); |
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); |
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_ISNULL: |
+ case TK_NOTNULL: { |
+ assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
+ assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ sqlite3VdbeAddOp2(v, op, r1, dest); |
+ VdbeCoverageIf(v, op==TK_ISNULL); |
+ VdbeCoverageIf(v, op==TK_NOTNULL); |
+ testcase( regFree1==0 ); |
+ break; |
+ } |
+ case TK_BETWEEN: { |
+ testcase( jumpIfNull==0 ); |
+ exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ case TK_IN: { |
+ int destIfFalse = sqlite3VdbeMakeLabel(v); |
+ int destIfNull = jumpIfNull ? dest : destIfFalse; |
+ sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
+ sqlite3VdbeGoto(v, dest); |
+ sqlite3VdbeResolveLabel(v, destIfFalse); |
+ break; |
+ } |
+#endif |
+ default: { |
+ default_expr: |
+ if( exprAlwaysTrue(pExpr) ){ |
+ sqlite3VdbeGoto(v, dest); |
+ }else if( exprAlwaysFalse(pExpr) ){ |
+ /* No-op */ |
+ }else{ |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
+ sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); |
+ VdbeCoverage(v); |
+ testcase( regFree1==0 ); |
+ testcase( jumpIfNull==0 ); |
+ } |
+ break; |
+ } |
+ } |
+ sqlite3ReleaseTempReg(pParse, regFree1); |
+ sqlite3ReleaseTempReg(pParse, regFree2); |
+} |
+ |
+/* |
+** Generate code for a boolean expression such that a jump is made |
+** to the label "dest" if the expression is false but execution |
+** continues straight thru if the expression is true. |
+** |
+** If the expression evaluates to NULL (neither true nor false) then |
+** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull |
+** is 0. |
+*/ |
+void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
+ Vdbe *v = pParse->pVdbe; |
+ int op = 0; |
+ int regFree1 = 0; |
+ int regFree2 = 0; |
+ int r1, r2; |
+ |
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
+ if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
+ if( pExpr==0 ) return; |
+ |
+ /* The value of pExpr->op and op are related as follows: |
+ ** |
+ ** pExpr->op op |
+ ** --------- ---------- |
+ ** TK_ISNULL OP_NotNull |
+ ** TK_NOTNULL OP_IsNull |
+ ** TK_NE OP_Eq |
+ ** TK_EQ OP_Ne |
+ ** TK_GT OP_Le |
+ ** TK_LE OP_Gt |
+ ** TK_GE OP_Lt |
+ ** TK_LT OP_Ge |
+ ** |
+ ** For other values of pExpr->op, op is undefined and unused. |
+ ** The value of TK_ and OP_ constants are arranged such that we |
+ ** can compute the mapping above using the following expression. |
+ ** Assert()s verify that the computation is correct. |
+ */ |
+ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); |
+ |
+ /* Verify correct alignment of TK_ and OP_ constants |
+ */ |
+ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); |
+ assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); |
+ assert( pExpr->op!=TK_NE || op==OP_Eq ); |
+ assert( pExpr->op!=TK_EQ || op==OP_Ne ); |
+ assert( pExpr->op!=TK_LT || op==OP_Ge ); |
+ assert( pExpr->op!=TK_LE || op==OP_Gt ); |
+ assert( pExpr->op!=TK_GT || op==OP_Le ); |
+ assert( pExpr->op!=TK_GE || op==OP_Lt ); |
+ |
+ switch( pExpr->op ){ |
+ case TK_AND: { |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
+ sqlite3ExprCachePop(pParse); |
+ break; |
+ } |
+ case TK_OR: { |
+ int d2 = sqlite3VdbeMakeLabel(v); |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); |
+ sqlite3ExprCachePush(pParse); |
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
+ sqlite3VdbeResolveLabel(v, d2); |
+ sqlite3ExprCachePop(pParse); |
+ break; |
+ } |
+ case TK_NOT: { |
+ testcase( jumpIfNull==0 ); |
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
+ break; |
+ } |
+ case TK_IS: |
+ case TK_ISNOT: |
+ testcase( pExpr->op==TK_IS ); |
+ testcase( pExpr->op==TK_ISNOT ); |
+ op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; |
+ jumpIfNull = SQLITE_NULLEQ; |
+ /* Fall thru */ |
+ case TK_LT: |
+ case TK_LE: |
+ case TK_GT: |
+ case TK_GE: |
+ case TK_NE: |
+ case TK_EQ: { |
+ if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; |
+ testcase( jumpIfNull==0 ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
+ r1, r2, dest, jumpIfNull); |
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); |
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); |
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); |
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne); |
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); |
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); |
+ testcase( regFree1==0 ); |
+ testcase( regFree2==0 ); |
+ break; |
+ } |
+ case TK_ISNULL: |
+ case TK_NOTNULL: { |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
+ sqlite3VdbeAddOp2(v, op, r1, dest); |
+ testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); |
+ testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); |
+ testcase( regFree1==0 ); |
+ break; |
+ } |
+ case TK_BETWEEN: { |
+ testcase( jumpIfNull==0 ); |
+ exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ case TK_IN: { |
+ if( jumpIfNull ){ |
+ sqlite3ExprCodeIN(pParse, pExpr, dest, dest); |
+ }else{ |
+ int destIfNull = sqlite3VdbeMakeLabel(v); |
+ sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); |
+ sqlite3VdbeResolveLabel(v, destIfNull); |
+ } |
+ break; |
+ } |
+#endif |
+ default: { |
+ default_expr: |
+ if( exprAlwaysFalse(pExpr) ){ |
+ sqlite3VdbeGoto(v, dest); |
+ }else if( exprAlwaysTrue(pExpr) ){ |
+ /* no-op */ |
+ }else{ |
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
+ sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); |
+ VdbeCoverage(v); |
+ testcase( regFree1==0 ); |
+ testcase( jumpIfNull==0 ); |
+ } |
+ break; |
+ } |
+ } |
+ sqlite3ReleaseTempReg(pParse, regFree1); |
+ sqlite3ReleaseTempReg(pParse, regFree2); |
+} |
+ |
+/* |
+** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before |
+** code generation, and that copy is deleted after code generation. This |
+** ensures that the original pExpr is unchanged. |
+*/ |
+void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ |
+ sqlite3 *db = pParse->db; |
+ Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); |
+ if( db->mallocFailed==0 ){ |
+ sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); |
+ } |
+ sqlite3ExprDelete(db, pCopy); |
+} |
+ |
+ |
+/* |
+** Do a deep comparison of two expression trees. Return 0 if the two |
+** expressions are completely identical. Return 1 if they differ only |
+** by a COLLATE operator at the top level. Return 2 if there are differences |
+** other than the top-level COLLATE operator. |
+** |
+** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
+** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
+** |
+** The pA side might be using TK_REGISTER. If that is the case and pB is |
+** not using TK_REGISTER but is otherwise equivalent, then still return 0. |
+** |
+** Sometimes this routine will return 2 even if the two expressions |
+** really are equivalent. If we cannot prove that the expressions are |
+** identical, we return 2 just to be safe. So if this routine |
+** returns 2, then you do not really know for certain if the two |
+** expressions are the same. But if you get a 0 or 1 return, then you |
+** can be sure the expressions are the same. In the places where |
+** this routine is used, it does not hurt to get an extra 2 - that |
+** just might result in some slightly slower code. But returning |
+** an incorrect 0 or 1 could lead to a malfunction. |
+*/ |
+int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ |
+ u32 combinedFlags; |
+ if( pA==0 || pB==0 ){ |
+ return pB==pA ? 0 : 2; |
+ } |
+ combinedFlags = pA->flags | pB->flags; |
+ if( combinedFlags & EP_IntValue ){ |
+ if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ |
+ return 0; |
+ } |
+ return 2; |
+ } |
+ if( pA->op!=pB->op ){ |
+ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ |
+ return 1; |
+ } |
+ if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ |
+ return 1; |
+ } |
+ return 2; |
+ } |
+ if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ |
+ if( pA->op==TK_FUNCTION ){ |
+ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; |
+ }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ |
+ return pA->op==TK_COLLATE ? 1 : 2; |
+ } |
+ } |
+ if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; |
+ if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ |
+ if( combinedFlags & EP_xIsSelect ) return 2; |
+ if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; |
+ if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; |
+ if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; |
+ if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ |
+ if( pA->iColumn!=pB->iColumn ) return 2; |
+ if( pA->iTable!=pB->iTable |
+ && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Compare two ExprList objects. Return 0 if they are identical and |
+** non-zero if they differ in any way. |
+** |
+** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
+** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
+** |
+** This routine might return non-zero for equivalent ExprLists. The |
+** only consequence will be disabled optimizations. But this routine |
+** must never return 0 if the two ExprList objects are different, or |
+** a malfunction will result. |
+** |
+** Two NULL pointers are considered to be the same. But a NULL pointer |
+** always differs from a non-NULL pointer. |
+*/ |
+int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ |
+ int i; |
+ if( pA==0 && pB==0 ) return 0; |
+ if( pA==0 || pB==0 ) return 1; |
+ if( pA->nExpr!=pB->nExpr ) return 1; |
+ for(i=0; i<pA->nExpr; i++){ |
+ Expr *pExprA = pA->a[i].pExpr; |
+ Expr *pExprB = pB->a[i].pExpr; |
+ if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; |
+ if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Return true if we can prove the pE2 will always be true if pE1 is |
+** true. Return false if we cannot complete the proof or if pE2 might |
+** be false. Examples: |
+** |
+** pE1: x==5 pE2: x==5 Result: true |
+** pE1: x>0 pE2: x==5 Result: false |
+** pE1: x=21 pE2: x=21 OR y=43 Result: true |
+** pE1: x!=123 pE2: x IS NOT NULL Result: true |
+** pE1: x!=?1 pE2: x IS NOT NULL Result: true |
+** pE1: x IS NULL pE2: x IS NOT NULL Result: false |
+** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false |
+** |
+** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has |
+** Expr.iTable<0 then assume a table number given by iTab. |
+** |
+** When in doubt, return false. Returning true might give a performance |
+** improvement. Returning false might cause a performance reduction, but |
+** it will always give the correct answer and is hence always safe. |
+*/ |
+int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ |
+ if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ |
+ return 1; |
+ } |
+ if( pE2->op==TK_OR |
+ && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) |
+ || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) |
+ ){ |
+ return 1; |
+ } |
+ if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ |
+ Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); |
+ testcase( pX!=pE1->pLeft ); |
+ if( sqlite3ExprCompare(pX, pE2->pLeft, iTab)==0 ) return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** An instance of the following structure is used by the tree walker |
+** to determine if an expression can be evaluated by reference to the |
+** index only, without having to do a search for the corresponding |
+** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur |
+** is the cursor for the table. |
+*/ |
+struct IdxCover { |
+ Index *pIdx; /* The index to be tested for coverage */ |
+ int iCur; /* Cursor number for the table corresponding to the index */ |
+}; |
+ |
+/* |
+** Check to see if there are references to columns in table |
+** pWalker->u.pIdxCover->iCur can be satisfied using the index |
+** pWalker->u.pIdxCover->pIdx. |
+*/ |
+static int exprIdxCover(Walker *pWalker, Expr *pExpr){ |
+ if( pExpr->op==TK_COLUMN |
+ && pExpr->iTable==pWalker->u.pIdxCover->iCur |
+ && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 |
+ ){ |
+ pWalker->eCode = 1; |
+ return WRC_Abort; |
+ } |
+ return WRC_Continue; |
+} |
+ |
+/* |
+** Determine if an index pIdx on table with cursor iCur contains will |
+** the expression pExpr. Return true if the index does cover the |
+** expression and false if the pExpr expression references table columns |
+** that are not found in the index pIdx. |
+** |
+** An index covering an expression means that the expression can be |
+** evaluated using only the index and without having to lookup the |
+** corresponding table entry. |
+*/ |
+int sqlite3ExprCoveredByIndex( |
+ Expr *pExpr, /* The index to be tested */ |
+ int iCur, /* The cursor number for the corresponding table */ |
+ Index *pIdx /* The index that might be used for coverage */ |
+){ |
+ Walker w; |
+ struct IdxCover xcov; |
+ memset(&w, 0, sizeof(w)); |
+ xcov.iCur = iCur; |
+ xcov.pIdx = pIdx; |
+ w.xExprCallback = exprIdxCover; |
+ w.u.pIdxCover = &xcov; |
+ sqlite3WalkExpr(&w, pExpr); |
+ return !w.eCode; |
+} |
+ |
+ |
+/* |
+** An instance of the following structure is used by the tree walker |
+** to count references to table columns in the arguments of an |
+** aggregate function, in order to implement the |
+** sqlite3FunctionThisSrc() routine. |
+*/ |
+struct SrcCount { |
+ SrcList *pSrc; /* One particular FROM clause in a nested query */ |
+ int nThis; /* Number of references to columns in pSrcList */ |
+ int nOther; /* Number of references to columns in other FROM clauses */ |
+}; |
+ |
+/* |
+** Count the number of references to columns. |
+*/ |
+static int exprSrcCount(Walker *pWalker, Expr *pExpr){ |
+ /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() |
+ ** is always called before sqlite3ExprAnalyzeAggregates() and so the |
+ ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If |
+ ** sqlite3FunctionUsesThisSrc() is used differently in the future, the |
+ ** NEVER() will need to be removed. */ |
+ if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ |
+ int i; |
+ struct SrcCount *p = pWalker->u.pSrcCount; |
+ SrcList *pSrc = p->pSrc; |
+ int nSrc = pSrc ? pSrc->nSrc : 0; |
+ for(i=0; i<nSrc; i++){ |
+ if( pExpr->iTable==pSrc->a[i].iCursor ) break; |
+ } |
+ if( i<nSrc ){ |
+ p->nThis++; |
+ }else{ |
+ p->nOther++; |
+ } |
+ } |
+ return WRC_Continue; |
+} |
+ |
+/* |
+** Determine if any of the arguments to the pExpr Function reference |
+** pSrcList. Return true if they do. Also return true if the function |
+** has no arguments or has only constant arguments. Return false if pExpr |
+** references columns but not columns of tables found in pSrcList. |
+*/ |
+int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ |
+ Walker w; |
+ struct SrcCount cnt; |
+ assert( pExpr->op==TK_AGG_FUNCTION ); |
+ memset(&w, 0, sizeof(w)); |
+ w.xExprCallback = exprSrcCount; |
+ w.u.pSrcCount = &cnt; |
+ cnt.pSrc = pSrcList; |
+ cnt.nThis = 0; |
+ cnt.nOther = 0; |
+ sqlite3WalkExprList(&w, pExpr->x.pList); |
+ return cnt.nThis>0 || cnt.nOther==0; |
+} |
+ |
+/* |
+** Add a new element to the pAggInfo->aCol[] array. Return the index of |
+** the new element. Return a negative number if malloc fails. |
+*/ |
+static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ |
+ int i; |
+ pInfo->aCol = sqlite3ArrayAllocate( |
+ db, |
+ pInfo->aCol, |
+ sizeof(pInfo->aCol[0]), |
+ &pInfo->nColumn, |
+ &i |
+ ); |
+ return i; |
+} |
+ |
+/* |
+** Add a new element to the pAggInfo->aFunc[] array. Return the index of |
+** the new element. Return a negative number if malloc fails. |
+*/ |
+static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ |
+ int i; |
+ pInfo->aFunc = sqlite3ArrayAllocate( |
+ db, |
+ pInfo->aFunc, |
+ sizeof(pInfo->aFunc[0]), |
+ &pInfo->nFunc, |
+ &i |
+ ); |
+ return i; |
+} |
+ |
+/* |
+** This is the xExprCallback for a tree walker. It is used to |
+** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates |
+** for additional information. |
+*/ |
+static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ |
+ int i; |
+ NameContext *pNC = pWalker->u.pNC; |
+ Parse *pParse = pNC->pParse; |
+ SrcList *pSrcList = pNC->pSrcList; |
+ AggInfo *pAggInfo = pNC->pAggInfo; |
+ |
+ switch( pExpr->op ){ |
+ case TK_AGG_COLUMN: |
+ case TK_COLUMN: { |
+ testcase( pExpr->op==TK_AGG_COLUMN ); |
+ testcase( pExpr->op==TK_COLUMN ); |
+ /* Check to see if the column is in one of the tables in the FROM |
+ ** clause of the aggregate query */ |
+ if( ALWAYS(pSrcList!=0) ){ |
+ struct SrcList_item *pItem = pSrcList->a; |
+ for(i=0; i<pSrcList->nSrc; i++, pItem++){ |
+ struct AggInfo_col *pCol; |
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
+ if( pExpr->iTable==pItem->iCursor ){ |
+ /* If we reach this point, it means that pExpr refers to a table |
+ ** that is in the FROM clause of the aggregate query. |
+ ** |
+ ** Make an entry for the column in pAggInfo->aCol[] if there |
+ ** is not an entry there already. |
+ */ |
+ int k; |
+ pCol = pAggInfo->aCol; |
+ for(k=0; k<pAggInfo->nColumn; k++, pCol++){ |
+ if( pCol->iTable==pExpr->iTable && |
+ pCol->iColumn==pExpr->iColumn ){ |
+ break; |
+ } |
+ } |
+ if( (k>=pAggInfo->nColumn) |
+ && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 |
+ ){ |
+ pCol = &pAggInfo->aCol[k]; |
+ pCol->pTab = pExpr->pTab; |
+ pCol->iTable = pExpr->iTable; |
+ pCol->iColumn = pExpr->iColumn; |
+ pCol->iMem = ++pParse->nMem; |
+ pCol->iSorterColumn = -1; |
+ pCol->pExpr = pExpr; |
+ if( pAggInfo->pGroupBy ){ |
+ int j, n; |
+ ExprList *pGB = pAggInfo->pGroupBy; |
+ struct ExprList_item *pTerm = pGB->a; |
+ n = pGB->nExpr; |
+ for(j=0; j<n; j++, pTerm++){ |
+ Expr *pE = pTerm->pExpr; |
+ if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && |
+ pE->iColumn==pExpr->iColumn ){ |
+ pCol->iSorterColumn = j; |
+ break; |
+ } |
+ } |
+ } |
+ if( pCol->iSorterColumn<0 ){ |
+ pCol->iSorterColumn = pAggInfo->nSortingColumn++; |
+ } |
+ } |
+ /* There is now an entry for pExpr in pAggInfo->aCol[] (either |
+ ** because it was there before or because we just created it). |
+ ** Convert the pExpr to be a TK_AGG_COLUMN referring to that |
+ ** pAggInfo->aCol[] entry. |
+ */ |
+ ExprSetVVAProperty(pExpr, EP_NoReduce); |
+ pExpr->pAggInfo = pAggInfo; |
+ pExpr->op = TK_AGG_COLUMN; |
+ pExpr->iAgg = (i16)k; |
+ break; |
+ } /* endif pExpr->iTable==pItem->iCursor */ |
+ } /* end loop over pSrcList */ |
+ } |
+ return WRC_Prune; |
+ } |
+ case TK_AGG_FUNCTION: { |
+ if( (pNC->ncFlags & NC_InAggFunc)==0 |
+ && pWalker->walkerDepth==pExpr->op2 |
+ ){ |
+ /* Check to see if pExpr is a duplicate of another aggregate |
+ ** function that is already in the pAggInfo structure |
+ */ |
+ struct AggInfo_func *pItem = pAggInfo->aFunc; |
+ for(i=0; i<pAggInfo->nFunc; i++, pItem++){ |
+ if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ |
+ break; |
+ } |
+ } |
+ if( i>=pAggInfo->nFunc ){ |
+ /* pExpr is original. Make a new entry in pAggInfo->aFunc[] |
+ */ |
+ u8 enc = ENC(pParse->db); |
+ i = addAggInfoFunc(pParse->db, pAggInfo); |
+ if( i>=0 ){ |
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
+ pItem = &pAggInfo->aFunc[i]; |
+ pItem->pExpr = pExpr; |
+ pItem->iMem = ++pParse->nMem; |
+ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
+ pItem->pFunc = sqlite3FindFunction(pParse->db, |
+ pExpr->u.zToken, |
+ pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); |
+ if( pExpr->flags & EP_Distinct ){ |
+ pItem->iDistinct = pParse->nTab++; |
+ }else{ |
+ pItem->iDistinct = -1; |
+ } |
+ } |
+ } |
+ /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry |
+ */ |
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
+ ExprSetVVAProperty(pExpr, EP_NoReduce); |
+ pExpr->iAgg = (i16)i; |
+ pExpr->pAggInfo = pAggInfo; |
+ return WRC_Prune; |
+ }else{ |
+ return WRC_Continue; |
+ } |
+ } |
+ } |
+ return WRC_Continue; |
+} |
+static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ |
+ UNUSED_PARAMETER(pWalker); |
+ UNUSED_PARAMETER(pSelect); |
+ return WRC_Continue; |
+} |
+ |
+/* |
+** Analyze the pExpr expression looking for aggregate functions and |
+** for variables that need to be added to AggInfo object that pNC->pAggInfo |
+** points to. Additional entries are made on the AggInfo object as |
+** necessary. |
+** |
+** This routine should only be called after the expression has been |
+** analyzed by sqlite3ResolveExprNames(). |
+*/ |
+void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ |
+ Walker w; |
+ memset(&w, 0, sizeof(w)); |
+ w.xExprCallback = analyzeAggregate; |
+ w.xSelectCallback = analyzeAggregatesInSelect; |
+ w.u.pNC = pNC; |
+ assert( pNC->pSrcList!=0 ); |
+ sqlite3WalkExpr(&w, pExpr); |
+} |
+ |
+/* |
+** Call sqlite3ExprAnalyzeAggregates() for every expression in an |
+** expression list. Return the number of errors. |
+** |
+** If an error is found, the analysis is cut short. |
+*/ |
+void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ |
+ struct ExprList_item *pItem; |
+ int i; |
+ if( pList ){ |
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
+ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); |
+ } |
+ } |
+} |
+ |
+/* |
+** Allocate a single new register for use to hold some intermediate result. |
+*/ |
+int sqlite3GetTempReg(Parse *pParse){ |
+ if( pParse->nTempReg==0 ){ |
+ return ++pParse->nMem; |
+ } |
+ return pParse->aTempReg[--pParse->nTempReg]; |
+} |
+ |
+/* |
+** Deallocate a register, making available for reuse for some other |
+** purpose. |
+** |
+** If a register is currently being used by the column cache, then |
+** the deallocation is deferred until the column cache line that uses |
+** the register becomes stale. |
+*/ |
+void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ |
+ if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
+ int i; |
+ struct yColCache *p; |
+ for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
+ if( p->iReg==iReg ){ |
+ p->tempReg = 1; |
+ return; |
+ } |
+ } |
+ pParse->aTempReg[pParse->nTempReg++] = iReg; |
+ } |
+} |
+ |
+/* |
+** Allocate or deallocate a block of nReg consecutive registers. |
+*/ |
+int sqlite3GetTempRange(Parse *pParse, int nReg){ |
+ int i, n; |
+ if( nReg==1 ) return sqlite3GetTempReg(pParse); |
+ i = pParse->iRangeReg; |
+ n = pParse->nRangeReg; |
+ if( nReg<=n ){ |
+ assert( !usedAsColumnCache(pParse, i, i+n-1) ); |
+ pParse->iRangeReg += nReg; |
+ pParse->nRangeReg -= nReg; |
+ }else{ |
+ i = pParse->nMem+1; |
+ pParse->nMem += nReg; |
+ } |
+ return i; |
+} |
+void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ |
+ if( nReg==1 ){ |
+ sqlite3ReleaseTempReg(pParse, iReg); |
+ return; |
+ } |
+ sqlite3ExprCacheRemove(pParse, iReg, nReg); |
+ if( nReg>pParse->nRangeReg ){ |
+ pParse->nRangeReg = nReg; |
+ pParse->iRangeReg = iReg; |
+ } |
+} |
+ |
+/* |
+** Mark all temporary registers as being unavailable for reuse. |
+*/ |
+void sqlite3ClearTempRegCache(Parse *pParse){ |
+ pParse->nTempReg = 0; |
+ pParse->nRangeReg = 0; |
+} |
+ |
+/* |
+** Validate that no temporary register falls within the range of |
+** iFirst..iLast, inclusive. This routine is only call from within assert() |
+** statements. |
+*/ |
+#ifdef SQLITE_DEBUG |
+int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ |
+ int i; |
+ if( pParse->nRangeReg>0 |
+ && pParse->iRangeReg+pParse->nRangeReg<iLast |
+ && pParse->iRangeReg>=iFirst |
+ ){ |
+ return 0; |
+ } |
+ for(i=0; i<pParse->nTempReg; i++){ |
+ if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ |
+ return 0; |
+ } |
+ } |
+ return 1; |
+} |
+#endif /* SQLITE_DEBUG */ |