OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains routines used for analyzing expressions and |
| 13 ** for generating VDBE code that evaluates expressions in SQLite. |
| 14 */ |
| 15 #include "sqliteInt.h" |
| 16 |
| 17 /* Forward declarations */ |
| 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); |
| 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); |
| 20 |
| 21 /* |
| 22 ** Return the affinity character for a single column of a table. |
| 23 */ |
| 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ |
| 25 assert( iCol<pTab->nCol ); |
| 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; |
| 27 } |
| 28 |
| 29 /* |
| 30 ** Return the 'affinity' of the expression pExpr if any. |
| 31 ** |
| 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, |
| 33 ** or a sub-select with a column as the return value, then the |
| 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, |
| 35 ** indicating no affinity for the expression. |
| 36 ** |
| 37 ** i.e. the WHERE clause expressions in the following statements all |
| 38 ** have an affinity: |
| 39 ** |
| 40 ** CREATE TABLE t1(a); |
| 41 ** SELECT * FROM t1 WHERE a; |
| 42 ** SELECT a AS b FROM t1 WHERE b; |
| 43 ** SELECT * FROM t1 WHERE (select a from t1); |
| 44 */ |
| 45 char sqlite3ExprAffinity(Expr *pExpr){ |
| 46 int op; |
| 47 pExpr = sqlite3ExprSkipCollate(pExpr); |
| 48 if( pExpr->flags & EP_Generic ) return 0; |
| 49 op = pExpr->op; |
| 50 if( op==TK_SELECT ){ |
| 51 assert( pExpr->flags&EP_xIsSelect ); |
| 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); |
| 53 } |
| 54 if( op==TK_REGISTER ) op = pExpr->op2; |
| 55 #ifndef SQLITE_OMIT_CAST |
| 56 if( op==TK_CAST ){ |
| 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 58 return sqlite3AffinityType(pExpr->u.zToken, 0); |
| 59 } |
| 60 #endif |
| 61 if( op==TK_AGG_COLUMN || op==TK_COLUMN ){ |
| 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); |
| 63 } |
| 64 if( op==TK_SELECT_COLUMN ){ |
| 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); |
| 66 return sqlite3ExprAffinity( |
| 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr |
| 68 ); |
| 69 } |
| 70 return pExpr->affinity; |
| 71 } |
| 72 |
| 73 /* |
| 74 ** Set the collating sequence for expression pExpr to be the collating |
| 75 ** sequence named by pToken. Return a pointer to a new Expr node that |
| 76 ** implements the COLLATE operator. |
| 77 ** |
| 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db |
| 79 ** and the pExpr parameter is returned unchanged. |
| 80 */ |
| 81 Expr *sqlite3ExprAddCollateToken( |
| 82 Parse *pParse, /* Parsing context */ |
| 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ |
| 84 const Token *pCollName, /* Name of collating sequence */ |
| 85 int dequote /* True to dequote pCollName */ |
| 86 ){ |
| 87 if( pCollName->n>0 ){ |
| 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); |
| 89 if( pNew ){ |
| 90 pNew->pLeft = pExpr; |
| 91 pNew->flags |= EP_Collate|EP_Skip; |
| 92 pExpr = pNew; |
| 93 } |
| 94 } |
| 95 return pExpr; |
| 96 } |
| 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ |
| 98 Token s; |
| 99 assert( zC!=0 ); |
| 100 sqlite3TokenInit(&s, (char*)zC); |
| 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); |
| 102 } |
| 103 |
| 104 /* |
| 105 ** Skip over any TK_COLLATE operators and any unlikely() |
| 106 ** or likelihood() function at the root of an expression. |
| 107 */ |
| 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ |
| 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ |
| 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ |
| 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
| 112 assert( pExpr->x.pList->nExpr>0 ); |
| 113 assert( pExpr->op==TK_FUNCTION ); |
| 114 pExpr = pExpr->x.pList->a[0].pExpr; |
| 115 }else{ |
| 116 assert( pExpr->op==TK_COLLATE ); |
| 117 pExpr = pExpr->pLeft; |
| 118 } |
| 119 } |
| 120 return pExpr; |
| 121 } |
| 122 |
| 123 /* |
| 124 ** Return the collation sequence for the expression pExpr. If |
| 125 ** there is no defined collating sequence, return NULL. |
| 126 ** |
| 127 ** The collating sequence might be determined by a COLLATE operator |
| 128 ** or by the presence of a column with a defined collating sequence. |
| 129 ** COLLATE operators take first precedence. Left operands take |
| 130 ** precedence over right operands. |
| 131 */ |
| 132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
| 133 sqlite3 *db = pParse->db; |
| 134 CollSeq *pColl = 0; |
| 135 Expr *p = pExpr; |
| 136 while( p ){ |
| 137 int op = p->op; |
| 138 if( p->flags & EP_Generic ) break; |
| 139 if( op==TK_CAST || op==TK_UPLUS ){ |
| 140 p = p->pLeft; |
| 141 continue; |
| 142 } |
| 143 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ |
| 144 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); |
| 145 break; |
| 146 } |
| 147 if( (op==TK_AGG_COLUMN || op==TK_COLUMN |
| 148 || op==TK_REGISTER || op==TK_TRIGGER) |
| 149 && p->pTab!=0 |
| 150 ){ |
| 151 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally |
| 152 ** a TK_COLUMN but was previously evaluated and cached in a register */ |
| 153 int j = p->iColumn; |
| 154 if( j>=0 ){ |
| 155 const char *zColl = p->pTab->aCol[j].zColl; |
| 156 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); |
| 157 } |
| 158 break; |
| 159 } |
| 160 if( p->flags & EP_Collate ){ |
| 161 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ |
| 162 p = p->pLeft; |
| 163 }else{ |
| 164 Expr *pNext = p->pRight; |
| 165 /* The Expr.x union is never used at the same time as Expr.pRight */ |
| 166 assert( p->x.pList==0 || p->pRight==0 ); |
| 167 /* p->flags holds EP_Collate and p->pLeft->flags does not. And |
| 168 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at |
| 169 ** least one EP_Collate. Thus the following two ALWAYS. */ |
| 170 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ |
| 171 int i; |
| 172 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ |
| 173 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ |
| 174 pNext = p->x.pList->a[i].pExpr; |
| 175 break; |
| 176 } |
| 177 } |
| 178 } |
| 179 p = pNext; |
| 180 } |
| 181 }else{ |
| 182 break; |
| 183 } |
| 184 } |
| 185 if( sqlite3CheckCollSeq(pParse, pColl) ){ |
| 186 pColl = 0; |
| 187 } |
| 188 return pColl; |
| 189 } |
| 190 |
| 191 /* |
| 192 ** pExpr is an operand of a comparison operator. aff2 is the |
| 193 ** type affinity of the other operand. This routine returns the |
| 194 ** type affinity that should be used for the comparison operator. |
| 195 */ |
| 196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
| 197 char aff1 = sqlite3ExprAffinity(pExpr); |
| 198 if( aff1 && aff2 ){ |
| 199 /* Both sides of the comparison are columns. If one has numeric |
| 200 ** affinity, use that. Otherwise use no affinity. |
| 201 */ |
| 202 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ |
| 203 return SQLITE_AFF_NUMERIC; |
| 204 }else{ |
| 205 return SQLITE_AFF_BLOB; |
| 206 } |
| 207 }else if( !aff1 && !aff2 ){ |
| 208 /* Neither side of the comparison is a column. Compare the |
| 209 ** results directly. |
| 210 */ |
| 211 return SQLITE_AFF_BLOB; |
| 212 }else{ |
| 213 /* One side is a column, the other is not. Use the columns affinity. */ |
| 214 assert( aff1==0 || aff2==0 ); |
| 215 return (aff1 + aff2); |
| 216 } |
| 217 } |
| 218 |
| 219 /* |
| 220 ** pExpr is a comparison operator. Return the type affinity that should |
| 221 ** be applied to both operands prior to doing the comparison. |
| 222 */ |
| 223 static char comparisonAffinity(Expr *pExpr){ |
| 224 char aff; |
| 225 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
| 226 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
| 227 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); |
| 228 assert( pExpr->pLeft ); |
| 229 aff = sqlite3ExprAffinity(pExpr->pLeft); |
| 230 if( pExpr->pRight ){ |
| 231 aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
| 232 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| 233 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); |
| 234 }else if( aff==0 ){ |
| 235 aff = SQLITE_AFF_BLOB; |
| 236 } |
| 237 return aff; |
| 238 } |
| 239 |
| 240 /* |
| 241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
| 242 ** idx_affinity is the affinity of an indexed column. Return true |
| 243 ** if the index with affinity idx_affinity may be used to implement |
| 244 ** the comparison in pExpr. |
| 245 */ |
| 246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
| 247 char aff = comparisonAffinity(pExpr); |
| 248 switch( aff ){ |
| 249 case SQLITE_AFF_BLOB: |
| 250 return 1; |
| 251 case SQLITE_AFF_TEXT: |
| 252 return idx_affinity==SQLITE_AFF_TEXT; |
| 253 default: |
| 254 return sqlite3IsNumericAffinity(idx_affinity); |
| 255 } |
| 256 } |
| 257 |
| 258 /* |
| 259 ** Return the P5 value that should be used for a binary comparison |
| 260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
| 261 */ |
| 262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
| 263 u8 aff = (char)sqlite3ExprAffinity(pExpr2); |
| 264 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; |
| 265 return aff; |
| 266 } |
| 267 |
| 268 /* |
| 269 ** Return a pointer to the collation sequence that should be used by |
| 270 ** a binary comparison operator comparing pLeft and pRight. |
| 271 ** |
| 272 ** If the left hand expression has a collating sequence type, then it is |
| 273 ** used. Otherwise the collation sequence for the right hand expression |
| 274 ** is used, or the default (BINARY) if neither expression has a collating |
| 275 ** type. |
| 276 ** |
| 277 ** Argument pRight (but not pLeft) may be a null pointer. In this case, |
| 278 ** it is not considered. |
| 279 */ |
| 280 CollSeq *sqlite3BinaryCompareCollSeq( |
| 281 Parse *pParse, |
| 282 Expr *pLeft, |
| 283 Expr *pRight |
| 284 ){ |
| 285 CollSeq *pColl; |
| 286 assert( pLeft ); |
| 287 if( pLeft->flags & EP_Collate ){ |
| 288 pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| 289 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ |
| 290 pColl = sqlite3ExprCollSeq(pParse, pRight); |
| 291 }else{ |
| 292 pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| 293 if( !pColl ){ |
| 294 pColl = sqlite3ExprCollSeq(pParse, pRight); |
| 295 } |
| 296 } |
| 297 return pColl; |
| 298 } |
| 299 |
| 300 /* |
| 301 ** Generate code for a comparison operator. |
| 302 */ |
| 303 static int codeCompare( |
| 304 Parse *pParse, /* The parsing (and code generating) context */ |
| 305 Expr *pLeft, /* The left operand */ |
| 306 Expr *pRight, /* The right operand */ |
| 307 int opcode, /* The comparison opcode */ |
| 308 int in1, int in2, /* Register holding operands */ |
| 309 int dest, /* Jump here if true. */ |
| 310 int jumpIfNull /* If true, jump if either operand is NULL */ |
| 311 ){ |
| 312 int p5; |
| 313 int addr; |
| 314 CollSeq *p4; |
| 315 |
| 316 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); |
| 317 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); |
| 318 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, |
| 319 (void*)p4, P4_COLLSEQ); |
| 320 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); |
| 321 return addr; |
| 322 } |
| 323 |
| 324 /* |
| 325 ** Return true if expression pExpr is a vector, or false otherwise. |
| 326 ** |
| 327 ** A vector is defined as any expression that results in two or more |
| 328 ** columns of result. Every TK_VECTOR node is an vector because the |
| 329 ** parser will not generate a TK_VECTOR with fewer than two entries. |
| 330 ** But a TK_SELECT might be either a vector or a scalar. It is only |
| 331 ** considered a vector if it has two or more result columns. |
| 332 */ |
| 333 int sqlite3ExprIsVector(Expr *pExpr){ |
| 334 return sqlite3ExprVectorSize(pExpr)>1; |
| 335 } |
| 336 |
| 337 /* |
| 338 ** If the expression passed as the only argument is of type TK_VECTOR |
| 339 ** return the number of expressions in the vector. Or, if the expression |
| 340 ** is a sub-select, return the number of columns in the sub-select. For |
| 341 ** any other type of expression, return 1. |
| 342 */ |
| 343 int sqlite3ExprVectorSize(Expr *pExpr){ |
| 344 u8 op = pExpr->op; |
| 345 if( op==TK_REGISTER ) op = pExpr->op2; |
| 346 if( op==TK_VECTOR ){ |
| 347 return pExpr->x.pList->nExpr; |
| 348 }else if( op==TK_SELECT ){ |
| 349 return pExpr->x.pSelect->pEList->nExpr; |
| 350 }else{ |
| 351 return 1; |
| 352 } |
| 353 } |
| 354 |
| 355 #ifndef SQLITE_OMIT_SUBQUERY |
| 356 /* |
| 357 ** Return a pointer to a subexpression of pVector that is the i-th |
| 358 ** column of the vector (numbered starting with 0). The caller must |
| 359 ** ensure that i is within range. |
| 360 ** |
| 361 ** If pVector is really a scalar (and "scalar" here includes subqueries |
| 362 ** that return a single column!) then return pVector unmodified. |
| 363 ** |
| 364 ** pVector retains ownership of the returned subexpression. |
| 365 ** |
| 366 ** If the vector is a (SELECT ...) then the expression returned is |
| 367 ** just the expression for the i-th term of the result set, and may |
| 368 ** not be ready for evaluation because the table cursor has not yet |
| 369 ** been positioned. |
| 370 */ |
| 371 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ |
| 372 assert( i<sqlite3ExprVectorSize(pVector) ); |
| 373 if( sqlite3ExprIsVector(pVector) ){ |
| 374 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); |
| 375 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ |
| 376 return pVector->x.pSelect->pEList->a[i].pExpr; |
| 377 }else{ |
| 378 return pVector->x.pList->a[i].pExpr; |
| 379 } |
| 380 } |
| 381 return pVector; |
| 382 } |
| 383 #endif /* !defined(SQLITE_OMIT_SUBQUERY) */ |
| 384 |
| 385 #ifndef SQLITE_OMIT_SUBQUERY |
| 386 /* |
| 387 ** Compute and return a new Expr object which when passed to |
| 388 ** sqlite3ExprCode() will generate all necessary code to compute |
| 389 ** the iField-th column of the vector expression pVector. |
| 390 ** |
| 391 ** It is ok for pVector to be a scalar (as long as iField==0). |
| 392 ** In that case, this routine works like sqlite3ExprDup(). |
| 393 ** |
| 394 ** The caller owns the returned Expr object and is responsible for |
| 395 ** ensuring that the returned value eventually gets freed. |
| 396 ** |
| 397 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, |
| 398 ** then the returned object will reference pVector and so pVector must remain |
| 399 ** valid for the life of the returned object. If pVector is a TK_VECTOR |
| 400 ** or a scalar expression, then it can be deleted as soon as this routine |
| 401 ** returns. |
| 402 ** |
| 403 ** A trick to cause a TK_SELECT pVector to be deleted together with |
| 404 ** the returned Expr object is to attach the pVector to the pRight field |
| 405 ** of the returned TK_SELECT_COLUMN Expr object. |
| 406 */ |
| 407 Expr *sqlite3ExprForVectorField( |
| 408 Parse *pParse, /* Parsing context */ |
| 409 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ |
| 410 int iField /* Which column of the vector to return */ |
| 411 ){ |
| 412 Expr *pRet; |
| 413 if( pVector->op==TK_SELECT ){ |
| 414 assert( pVector->flags & EP_xIsSelect ); |
| 415 /* The TK_SELECT_COLUMN Expr node: |
| 416 ** |
| 417 ** pLeft: pVector containing TK_SELECT. Not deleted. |
| 418 ** pRight: not used. But recursively deleted. |
| 419 ** iColumn: Index of a column in pVector |
| 420 ** iTable: 0 or the number of columns on the LHS of an assignment |
| 421 ** pLeft->iTable: First in an array of register holding result, or 0 |
| 422 ** if the result is not yet computed. |
| 423 ** |
| 424 ** sqlite3ExprDelete() specifically skips the recursive delete of |
| 425 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector |
| 426 ** can be attached to pRight to cause this node to take ownership of |
| 427 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes |
| 428 ** with the same pLeft pointer to the pVector, but only one of them |
| 429 ** will own the pVector. |
| 430 */ |
| 431 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); |
| 432 if( pRet ){ |
| 433 pRet->iColumn = iField; |
| 434 pRet->pLeft = pVector; |
| 435 } |
| 436 assert( pRet==0 || pRet->iTable==0 ); |
| 437 }else{ |
| 438 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; |
| 439 pRet = sqlite3ExprDup(pParse->db, pVector, 0); |
| 440 } |
| 441 return pRet; |
| 442 } |
| 443 #endif /* !define(SQLITE_OMIT_SUBQUERY) */ |
| 444 |
| 445 /* |
| 446 ** If expression pExpr is of type TK_SELECT, generate code to evaluate |
| 447 ** it. Return the register in which the result is stored (or, if the |
| 448 ** sub-select returns more than one column, the first in an array |
| 449 ** of registers in which the result is stored). |
| 450 ** |
| 451 ** If pExpr is not a TK_SELECT expression, return 0. |
| 452 */ |
| 453 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ |
| 454 int reg = 0; |
| 455 #ifndef SQLITE_OMIT_SUBQUERY |
| 456 if( pExpr->op==TK_SELECT ){ |
| 457 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); |
| 458 } |
| 459 #endif |
| 460 return reg; |
| 461 } |
| 462 |
| 463 /* |
| 464 ** Argument pVector points to a vector expression - either a TK_VECTOR |
| 465 ** or TK_SELECT that returns more than one column. This function returns |
| 466 ** the register number of a register that contains the value of |
| 467 ** element iField of the vector. |
| 468 ** |
| 469 ** If pVector is a TK_SELECT expression, then code for it must have |
| 470 ** already been generated using the exprCodeSubselect() routine. In this |
| 471 ** case parameter regSelect should be the first in an array of registers |
| 472 ** containing the results of the sub-select. |
| 473 ** |
| 474 ** If pVector is of type TK_VECTOR, then code for the requested field |
| 475 ** is generated. In this case (*pRegFree) may be set to the number of |
| 476 ** a temporary register to be freed by the caller before returning. |
| 477 ** |
| 478 ** Before returning, output parameter (*ppExpr) is set to point to the |
| 479 ** Expr object corresponding to element iElem of the vector. |
| 480 */ |
| 481 static int exprVectorRegister( |
| 482 Parse *pParse, /* Parse context */ |
| 483 Expr *pVector, /* Vector to extract element from */ |
| 484 int iField, /* Field to extract from pVector */ |
| 485 int regSelect, /* First in array of registers */ |
| 486 Expr **ppExpr, /* OUT: Expression element */ |
| 487 int *pRegFree /* OUT: Temp register to free */ |
| 488 ){ |
| 489 u8 op = pVector->op; |
| 490 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); |
| 491 if( op==TK_REGISTER ){ |
| 492 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); |
| 493 return pVector->iTable+iField; |
| 494 } |
| 495 if( op==TK_SELECT ){ |
| 496 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; |
| 497 return regSelect+iField; |
| 498 } |
| 499 *ppExpr = pVector->x.pList->a[iField].pExpr; |
| 500 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); |
| 501 } |
| 502 |
| 503 /* |
| 504 ** Expression pExpr is a comparison between two vector values. Compute |
| 505 ** the result of the comparison (1, 0, or NULL) and write that |
| 506 ** result into register dest. |
| 507 ** |
| 508 ** The caller must satisfy the following preconditions: |
| 509 ** |
| 510 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ |
| 511 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ |
| 512 ** otherwise: op==pExpr->op and p5==0 |
| 513 */ |
| 514 static void codeVectorCompare( |
| 515 Parse *pParse, /* Code generator context */ |
| 516 Expr *pExpr, /* The comparison operation */ |
| 517 int dest, /* Write results into this register */ |
| 518 u8 op, /* Comparison operator */ |
| 519 u8 p5 /* SQLITE_NULLEQ or zero */ |
| 520 ){ |
| 521 Vdbe *v = pParse->pVdbe; |
| 522 Expr *pLeft = pExpr->pLeft; |
| 523 Expr *pRight = pExpr->pRight; |
| 524 int nLeft = sqlite3ExprVectorSize(pLeft); |
| 525 int i; |
| 526 int regLeft = 0; |
| 527 int regRight = 0; |
| 528 u8 opx = op; |
| 529 int addrDone = sqlite3VdbeMakeLabel(v); |
| 530 |
| 531 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ |
| 532 sqlite3ErrorMsg(pParse, "row value misused"); |
| 533 return; |
| 534 } |
| 535 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE |
| 536 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT |
| 537 || pExpr->op==TK_LT || pExpr->op==TK_GT |
| 538 || pExpr->op==TK_LE || pExpr->op==TK_GE |
| 539 ); |
| 540 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) |
| 541 || (pExpr->op==TK_ISNOT && op==TK_NE) ); |
| 542 assert( p5==0 || pExpr->op!=op ); |
| 543 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); |
| 544 |
| 545 p5 |= SQLITE_STOREP2; |
| 546 if( opx==TK_LE ) opx = TK_LT; |
| 547 if( opx==TK_GE ) opx = TK_GT; |
| 548 |
| 549 regLeft = exprCodeSubselect(pParse, pLeft); |
| 550 regRight = exprCodeSubselect(pParse, pRight); |
| 551 |
| 552 for(i=0; 1 /*Loop exits by "break"*/; i++){ |
| 553 int regFree1 = 0, regFree2 = 0; |
| 554 Expr *pL, *pR; |
| 555 int r1, r2; |
| 556 assert( i>=0 && i<nLeft ); |
| 557 if( i>0 ) sqlite3ExprCachePush(pParse); |
| 558 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); |
| 559 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); |
| 560 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); |
| 561 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
| 562 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
| 563 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
| 564 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
| 565 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
| 566 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
| 567 sqlite3ReleaseTempReg(pParse, regFree1); |
| 568 sqlite3ReleaseTempReg(pParse, regFree2); |
| 569 if( i>0 ) sqlite3ExprCachePop(pParse); |
| 570 if( i==nLeft-1 ){ |
| 571 break; |
| 572 } |
| 573 if( opx==TK_EQ ){ |
| 574 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); |
| 575 p5 |= SQLITE_KEEPNULL; |
| 576 }else if( opx==TK_NE ){ |
| 577 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); |
| 578 p5 |= SQLITE_KEEPNULL; |
| 579 }else{ |
| 580 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); |
| 581 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); |
| 582 VdbeCoverageIf(v, op==TK_LT); |
| 583 VdbeCoverageIf(v, op==TK_GT); |
| 584 VdbeCoverageIf(v, op==TK_LE); |
| 585 VdbeCoverageIf(v, op==TK_GE); |
| 586 if( i==nLeft-2 ) opx = op; |
| 587 } |
| 588 } |
| 589 sqlite3VdbeResolveLabel(v, addrDone); |
| 590 } |
| 591 |
| 592 #if SQLITE_MAX_EXPR_DEPTH>0 |
| 593 /* |
| 594 ** Check that argument nHeight is less than or equal to the maximum |
| 595 ** expression depth allowed. If it is not, leave an error message in |
| 596 ** pParse. |
| 597 */ |
| 598 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ |
| 599 int rc = SQLITE_OK; |
| 600 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; |
| 601 if( nHeight>mxHeight ){ |
| 602 sqlite3ErrorMsg(pParse, |
| 603 "Expression tree is too large (maximum depth %d)", mxHeight |
| 604 ); |
| 605 rc = SQLITE_ERROR; |
| 606 } |
| 607 return rc; |
| 608 } |
| 609 |
| 610 /* The following three functions, heightOfExpr(), heightOfExprList() |
| 611 ** and heightOfSelect(), are used to determine the maximum height |
| 612 ** of any expression tree referenced by the structure passed as the |
| 613 ** first argument. |
| 614 ** |
| 615 ** If this maximum height is greater than the current value pointed |
| 616 ** to by pnHeight, the second parameter, then set *pnHeight to that |
| 617 ** value. |
| 618 */ |
| 619 static void heightOfExpr(Expr *p, int *pnHeight){ |
| 620 if( p ){ |
| 621 if( p->nHeight>*pnHeight ){ |
| 622 *pnHeight = p->nHeight; |
| 623 } |
| 624 } |
| 625 } |
| 626 static void heightOfExprList(ExprList *p, int *pnHeight){ |
| 627 if( p ){ |
| 628 int i; |
| 629 for(i=0; i<p->nExpr; i++){ |
| 630 heightOfExpr(p->a[i].pExpr, pnHeight); |
| 631 } |
| 632 } |
| 633 } |
| 634 static void heightOfSelect(Select *p, int *pnHeight){ |
| 635 if( p ){ |
| 636 heightOfExpr(p->pWhere, pnHeight); |
| 637 heightOfExpr(p->pHaving, pnHeight); |
| 638 heightOfExpr(p->pLimit, pnHeight); |
| 639 heightOfExpr(p->pOffset, pnHeight); |
| 640 heightOfExprList(p->pEList, pnHeight); |
| 641 heightOfExprList(p->pGroupBy, pnHeight); |
| 642 heightOfExprList(p->pOrderBy, pnHeight); |
| 643 heightOfSelect(p->pPrior, pnHeight); |
| 644 } |
| 645 } |
| 646 |
| 647 /* |
| 648 ** Set the Expr.nHeight variable in the structure passed as an |
| 649 ** argument. An expression with no children, Expr.pList or |
| 650 ** Expr.pSelect member has a height of 1. Any other expression |
| 651 ** has a height equal to the maximum height of any other |
| 652 ** referenced Expr plus one. |
| 653 ** |
| 654 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, |
| 655 ** if appropriate. |
| 656 */ |
| 657 static void exprSetHeight(Expr *p){ |
| 658 int nHeight = 0; |
| 659 heightOfExpr(p->pLeft, &nHeight); |
| 660 heightOfExpr(p->pRight, &nHeight); |
| 661 if( ExprHasProperty(p, EP_xIsSelect) ){ |
| 662 heightOfSelect(p->x.pSelect, &nHeight); |
| 663 }else if( p->x.pList ){ |
| 664 heightOfExprList(p->x.pList, &nHeight); |
| 665 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); |
| 666 } |
| 667 p->nHeight = nHeight + 1; |
| 668 } |
| 669 |
| 670 /* |
| 671 ** Set the Expr.nHeight variable using the exprSetHeight() function. If |
| 672 ** the height is greater than the maximum allowed expression depth, |
| 673 ** leave an error in pParse. |
| 674 ** |
| 675 ** Also propagate all EP_Propagate flags from the Expr.x.pList into |
| 676 ** Expr.flags. |
| 677 */ |
| 678 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ |
| 679 if( pParse->nErr ) return; |
| 680 exprSetHeight(p); |
| 681 sqlite3ExprCheckHeight(pParse, p->nHeight); |
| 682 } |
| 683 |
| 684 /* |
| 685 ** Return the maximum height of any expression tree referenced |
| 686 ** by the select statement passed as an argument. |
| 687 */ |
| 688 int sqlite3SelectExprHeight(Select *p){ |
| 689 int nHeight = 0; |
| 690 heightOfSelect(p, &nHeight); |
| 691 return nHeight; |
| 692 } |
| 693 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ |
| 694 /* |
| 695 ** Propagate all EP_Propagate flags from the Expr.x.pList into |
| 696 ** Expr.flags. |
| 697 */ |
| 698 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ |
| 699 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ |
| 700 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); |
| 701 } |
| 702 } |
| 703 #define exprSetHeight(y) |
| 704 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ |
| 705 |
| 706 /* |
| 707 ** This routine is the core allocator for Expr nodes. |
| 708 ** |
| 709 ** Construct a new expression node and return a pointer to it. Memory |
| 710 ** for this node and for the pToken argument is a single allocation |
| 711 ** obtained from sqlite3DbMalloc(). The calling function |
| 712 ** is responsible for making sure the node eventually gets freed. |
| 713 ** |
| 714 ** If dequote is true, then the token (if it exists) is dequoted. |
| 715 ** If dequote is false, no dequoting is performed. The deQuote |
| 716 ** parameter is ignored if pToken is NULL or if the token does not |
| 717 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) |
| 718 ** then the EP_DblQuoted flag is set on the expression node. |
| 719 ** |
| 720 ** Special case: If op==TK_INTEGER and pToken points to a string that |
| 721 ** can be translated into a 32-bit integer, then the token is not |
| 722 ** stored in u.zToken. Instead, the integer values is written |
| 723 ** into u.iValue and the EP_IntValue flag is set. No extra storage |
| 724 ** is allocated to hold the integer text and the dequote flag is ignored. |
| 725 */ |
| 726 Expr *sqlite3ExprAlloc( |
| 727 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ |
| 728 int op, /* Expression opcode */ |
| 729 const Token *pToken, /* Token argument. Might be NULL */ |
| 730 int dequote /* True to dequote */ |
| 731 ){ |
| 732 Expr *pNew; |
| 733 int nExtra = 0; |
| 734 int iValue = 0; |
| 735 |
| 736 assert( db!=0 ); |
| 737 if( pToken ){ |
| 738 if( op!=TK_INTEGER || pToken->z==0 |
| 739 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ |
| 740 nExtra = pToken->n+1; |
| 741 assert( iValue>=0 ); |
| 742 } |
| 743 } |
| 744 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); |
| 745 if( pNew ){ |
| 746 memset(pNew, 0, sizeof(Expr)); |
| 747 pNew->op = (u8)op; |
| 748 pNew->iAgg = -1; |
| 749 if( pToken ){ |
| 750 if( nExtra==0 ){ |
| 751 pNew->flags |= EP_IntValue; |
| 752 pNew->u.iValue = iValue; |
| 753 }else{ |
| 754 pNew->u.zToken = (char*)&pNew[1]; |
| 755 assert( pToken->z!=0 || pToken->n==0 ); |
| 756 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); |
| 757 pNew->u.zToken[pToken->n] = 0; |
| 758 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ |
| 759 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; |
| 760 sqlite3Dequote(pNew->u.zToken); |
| 761 } |
| 762 } |
| 763 } |
| 764 #if SQLITE_MAX_EXPR_DEPTH>0 |
| 765 pNew->nHeight = 1; |
| 766 #endif |
| 767 } |
| 768 return pNew; |
| 769 } |
| 770 |
| 771 /* |
| 772 ** Allocate a new expression node from a zero-terminated token that has |
| 773 ** already been dequoted. |
| 774 */ |
| 775 Expr *sqlite3Expr( |
| 776 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
| 777 int op, /* Expression opcode */ |
| 778 const char *zToken /* Token argument. Might be NULL */ |
| 779 ){ |
| 780 Token x; |
| 781 x.z = zToken; |
| 782 x.n = zToken ? sqlite3Strlen30(zToken) : 0; |
| 783 return sqlite3ExprAlloc(db, op, &x, 0); |
| 784 } |
| 785 |
| 786 /* |
| 787 ** Attach subtrees pLeft and pRight to the Expr node pRoot. |
| 788 ** |
| 789 ** If pRoot==NULL that means that a memory allocation error has occurred. |
| 790 ** In that case, delete the subtrees pLeft and pRight. |
| 791 */ |
| 792 void sqlite3ExprAttachSubtrees( |
| 793 sqlite3 *db, |
| 794 Expr *pRoot, |
| 795 Expr *pLeft, |
| 796 Expr *pRight |
| 797 ){ |
| 798 if( pRoot==0 ){ |
| 799 assert( db->mallocFailed ); |
| 800 sqlite3ExprDelete(db, pLeft); |
| 801 sqlite3ExprDelete(db, pRight); |
| 802 }else{ |
| 803 if( pRight ){ |
| 804 pRoot->pRight = pRight; |
| 805 pRoot->flags |= EP_Propagate & pRight->flags; |
| 806 } |
| 807 if( pLeft ){ |
| 808 pRoot->pLeft = pLeft; |
| 809 pRoot->flags |= EP_Propagate & pLeft->flags; |
| 810 } |
| 811 exprSetHeight(pRoot); |
| 812 } |
| 813 } |
| 814 |
| 815 /* |
| 816 ** Allocate an Expr node which joins as many as two subtrees. |
| 817 ** |
| 818 ** One or both of the subtrees can be NULL. Return a pointer to the new |
| 819 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, |
| 820 ** free the subtrees and return NULL. |
| 821 */ |
| 822 Expr *sqlite3PExpr( |
| 823 Parse *pParse, /* Parsing context */ |
| 824 int op, /* Expression opcode */ |
| 825 Expr *pLeft, /* Left operand */ |
| 826 Expr *pRight /* Right operand */ |
| 827 ){ |
| 828 Expr *p; |
| 829 if( op==TK_AND && pParse->nErr==0 ){ |
| 830 /* Take advantage of short-circuit false optimization for AND */ |
| 831 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); |
| 832 }else{ |
| 833 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); |
| 834 if( p ){ |
| 835 memset(p, 0, sizeof(Expr)); |
| 836 p->op = op & TKFLG_MASK; |
| 837 p->iAgg = -1; |
| 838 } |
| 839 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); |
| 840 } |
| 841 if( p ) { |
| 842 sqlite3ExprCheckHeight(pParse, p->nHeight); |
| 843 } |
| 844 return p; |
| 845 } |
| 846 |
| 847 /* |
| 848 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due |
| 849 ** do a memory allocation failure) then delete the pSelect object. |
| 850 */ |
| 851 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ |
| 852 if( pExpr ){ |
| 853 pExpr->x.pSelect = pSelect; |
| 854 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); |
| 855 sqlite3ExprSetHeightAndFlags(pParse, pExpr); |
| 856 }else{ |
| 857 assert( pParse->db->mallocFailed ); |
| 858 sqlite3SelectDelete(pParse->db, pSelect); |
| 859 } |
| 860 } |
| 861 |
| 862 |
| 863 /* |
| 864 ** If the expression is always either TRUE or FALSE (respectively), |
| 865 ** then return 1. If one cannot determine the truth value of the |
| 866 ** expression at compile-time return 0. |
| 867 ** |
| 868 ** This is an optimization. If is OK to return 0 here even if |
| 869 ** the expression really is always false or false (a false negative). |
| 870 ** But it is a bug to return 1 if the expression might have different |
| 871 ** boolean values in different circumstances (a false positive.) |
| 872 ** |
| 873 ** Note that if the expression is part of conditional for a |
| 874 ** LEFT JOIN, then we cannot determine at compile-time whether or not |
| 875 ** is it true or false, so always return 0. |
| 876 */ |
| 877 static int exprAlwaysTrue(Expr *p){ |
| 878 int v = 0; |
| 879 if( ExprHasProperty(p, EP_FromJoin) ) return 0; |
| 880 if( !sqlite3ExprIsInteger(p, &v) ) return 0; |
| 881 return v!=0; |
| 882 } |
| 883 static int exprAlwaysFalse(Expr *p){ |
| 884 int v = 0; |
| 885 if( ExprHasProperty(p, EP_FromJoin) ) return 0; |
| 886 if( !sqlite3ExprIsInteger(p, &v) ) return 0; |
| 887 return v==0; |
| 888 } |
| 889 |
| 890 /* |
| 891 ** Join two expressions using an AND operator. If either expression is |
| 892 ** NULL, then just return the other expression. |
| 893 ** |
| 894 ** If one side or the other of the AND is known to be false, then instead |
| 895 ** of returning an AND expression, just return a constant expression with |
| 896 ** a value of false. |
| 897 */ |
| 898 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ |
| 899 if( pLeft==0 ){ |
| 900 return pRight; |
| 901 }else if( pRight==0 ){ |
| 902 return pLeft; |
| 903 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ |
| 904 sqlite3ExprDelete(db, pLeft); |
| 905 sqlite3ExprDelete(db, pRight); |
| 906 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); |
| 907 }else{ |
| 908 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); |
| 909 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); |
| 910 return pNew; |
| 911 } |
| 912 } |
| 913 |
| 914 /* |
| 915 ** Construct a new expression node for a function with multiple |
| 916 ** arguments. |
| 917 */ |
| 918 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ |
| 919 Expr *pNew; |
| 920 sqlite3 *db = pParse->db; |
| 921 assert( pToken ); |
| 922 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); |
| 923 if( pNew==0 ){ |
| 924 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ |
| 925 return 0; |
| 926 } |
| 927 pNew->x.pList = pList; |
| 928 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
| 929 sqlite3ExprSetHeightAndFlags(pParse, pNew); |
| 930 return pNew; |
| 931 } |
| 932 |
| 933 /* |
| 934 ** Assign a variable number to an expression that encodes a wildcard |
| 935 ** in the original SQL statement. |
| 936 ** |
| 937 ** Wildcards consisting of a single "?" are assigned the next sequential |
| 938 ** variable number. |
| 939 ** |
| 940 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
| 941 ** sure "nnn" is not too big to avoid a denial of service attack when |
| 942 ** the SQL statement comes from an external source. |
| 943 ** |
| 944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number |
| 945 ** as the previous instance of the same wildcard. Or if this is the first |
| 946 ** instance of the wildcard, the next sequential variable number is |
| 947 ** assigned. |
| 948 */ |
| 949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ |
| 950 sqlite3 *db = pParse->db; |
| 951 const char *z; |
| 952 ynVar x; |
| 953 |
| 954 if( pExpr==0 ) return; |
| 955 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); |
| 956 z = pExpr->u.zToken; |
| 957 assert( z!=0 ); |
| 958 assert( z[0]!=0 ); |
| 959 assert( n==sqlite3Strlen30(z) ); |
| 960 if( z[1]==0 ){ |
| 961 /* Wildcard of the form "?". Assign the next variable number */ |
| 962 assert( z[0]=='?' ); |
| 963 x = (ynVar)(++pParse->nVar); |
| 964 }else{ |
| 965 int doAdd = 0; |
| 966 if( z[0]=='?' ){ |
| 967 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
| 968 ** use it as the variable number */ |
| 969 i64 i; |
| 970 int bOk; |
| 971 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ |
| 972 i = z[1]-'0'; /* The common case of ?N for a single digit N */ |
| 973 bOk = 1; |
| 974 }else{ |
| 975 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); |
| 976 } |
| 977 testcase( i==0 ); |
| 978 testcase( i==1 ); |
| 979 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); |
| 980 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); |
| 981 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
| 982 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
| 983 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); |
| 984 return; |
| 985 } |
| 986 x = (ynVar)i; |
| 987 if( x>pParse->nVar ){ |
| 988 pParse->nVar = (int)x; |
| 989 doAdd = 1; |
| 990 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ |
| 991 doAdd = 1; |
| 992 } |
| 993 }else{ |
| 994 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable |
| 995 ** number as the prior appearance of the same name, or if the name |
| 996 ** has never appeared before, reuse the same variable number |
| 997 */ |
| 998 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); |
| 999 if( x==0 ){ |
| 1000 x = (ynVar)(++pParse->nVar); |
| 1001 doAdd = 1; |
| 1002 } |
| 1003 } |
| 1004 if( doAdd ){ |
| 1005 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); |
| 1006 } |
| 1007 } |
| 1008 pExpr->iColumn = x; |
| 1009 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
| 1010 sqlite3ErrorMsg(pParse, "too many SQL variables"); |
| 1011 } |
| 1012 } |
| 1013 |
| 1014 /* |
| 1015 ** Recursively delete an expression tree. |
| 1016 */ |
| 1017 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ |
| 1018 assert( p!=0 ); |
| 1019 /* Sanity check: Assert that the IntValue is non-negative if it exists */ |
| 1020 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); |
| 1021 #ifdef SQLITE_DEBUG |
| 1022 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ |
| 1023 assert( p->pLeft==0 ); |
| 1024 assert( p->pRight==0 ); |
| 1025 assert( p->x.pSelect==0 ); |
| 1026 } |
| 1027 #endif |
| 1028 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ |
| 1029 /* The Expr.x union is never used at the same time as Expr.pRight */ |
| 1030 assert( p->x.pList==0 || p->pRight==0 ); |
| 1031 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); |
| 1032 sqlite3ExprDelete(db, p->pRight); |
| 1033 if( ExprHasProperty(p, EP_xIsSelect) ){ |
| 1034 sqlite3SelectDelete(db, p->x.pSelect); |
| 1035 }else{ |
| 1036 sqlite3ExprListDelete(db, p->x.pList); |
| 1037 } |
| 1038 } |
| 1039 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); |
| 1040 if( !ExprHasProperty(p, EP_Static) ){ |
| 1041 sqlite3DbFree(db, p); |
| 1042 } |
| 1043 } |
| 1044 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ |
| 1045 if( p ) sqlite3ExprDeleteNN(db, p); |
| 1046 } |
| 1047 |
| 1048 /* |
| 1049 ** Return the number of bytes allocated for the expression structure |
| 1050 ** passed as the first argument. This is always one of EXPR_FULLSIZE, |
| 1051 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. |
| 1052 */ |
| 1053 static int exprStructSize(Expr *p){ |
| 1054 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; |
| 1055 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; |
| 1056 return EXPR_FULLSIZE; |
| 1057 } |
| 1058 |
| 1059 /* |
| 1060 ** The dupedExpr*Size() routines each return the number of bytes required |
| 1061 ** to store a copy of an expression or expression tree. They differ in |
| 1062 ** how much of the tree is measured. |
| 1063 ** |
| 1064 ** dupedExprStructSize() Size of only the Expr structure |
| 1065 ** dupedExprNodeSize() Size of Expr + space for token |
| 1066 ** dupedExprSize() Expr + token + subtree components |
| 1067 ** |
| 1068 *************************************************************************** |
| 1069 ** |
| 1070 ** The dupedExprStructSize() function returns two values OR-ed together: |
| 1071 ** (1) the space required for a copy of the Expr structure only and |
| 1072 ** (2) the EP_xxx flags that indicate what the structure size should be. |
| 1073 ** The return values is always one of: |
| 1074 ** |
| 1075 ** EXPR_FULLSIZE |
| 1076 ** EXPR_REDUCEDSIZE | EP_Reduced |
| 1077 ** EXPR_TOKENONLYSIZE | EP_TokenOnly |
| 1078 ** |
| 1079 ** The size of the structure can be found by masking the return value |
| 1080 ** of this routine with 0xfff. The flags can be found by masking the |
| 1081 ** return value with EP_Reduced|EP_TokenOnly. |
| 1082 ** |
| 1083 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size |
| 1084 ** (unreduced) Expr objects as they or originally constructed by the parser. |
| 1085 ** During expression analysis, extra information is computed and moved into |
| 1086 ** later parts of teh Expr object and that extra information might get chopped |
| 1087 ** off if the expression is reduced. Note also that it does not work to |
| 1088 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal |
| 1089 ** to reduce a pristine expression tree from the parser. The implementation |
| 1090 ** of dupedExprStructSize() contain multiple assert() statements that attempt |
| 1091 ** to enforce this constraint. |
| 1092 */ |
| 1093 static int dupedExprStructSize(Expr *p, int flags){ |
| 1094 int nSize; |
| 1095 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ |
| 1096 assert( EXPR_FULLSIZE<=0xfff ); |
| 1097 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); |
| 1098 if( 0==flags || p->op==TK_SELECT_COLUMN ){ |
| 1099 nSize = EXPR_FULLSIZE; |
| 1100 }else{ |
| 1101 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
| 1102 assert( !ExprHasProperty(p, EP_FromJoin) ); |
| 1103 assert( !ExprHasProperty(p, EP_MemToken) ); |
| 1104 assert( !ExprHasProperty(p, EP_NoReduce) ); |
| 1105 if( p->pLeft || p->x.pList ){ |
| 1106 nSize = EXPR_REDUCEDSIZE | EP_Reduced; |
| 1107 }else{ |
| 1108 assert( p->pRight==0 ); |
| 1109 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; |
| 1110 } |
| 1111 } |
| 1112 return nSize; |
| 1113 } |
| 1114 |
| 1115 /* |
| 1116 ** This function returns the space in bytes required to store the copy |
| 1117 ** of the Expr structure and a copy of the Expr.u.zToken string (if that |
| 1118 ** string is defined.) |
| 1119 */ |
| 1120 static int dupedExprNodeSize(Expr *p, int flags){ |
| 1121 int nByte = dupedExprStructSize(p, flags) & 0xfff; |
| 1122 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
| 1123 nByte += sqlite3Strlen30(p->u.zToken)+1; |
| 1124 } |
| 1125 return ROUND8(nByte); |
| 1126 } |
| 1127 |
| 1128 /* |
| 1129 ** Return the number of bytes required to create a duplicate of the |
| 1130 ** expression passed as the first argument. The second argument is a |
| 1131 ** mask containing EXPRDUP_XXX flags. |
| 1132 ** |
| 1133 ** The value returned includes space to create a copy of the Expr struct |
| 1134 ** itself and the buffer referred to by Expr.u.zToken, if any. |
| 1135 ** |
| 1136 ** If the EXPRDUP_REDUCE flag is set, then the return value includes |
| 1137 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft |
| 1138 ** and Expr.pRight variables (but not for any structures pointed to or |
| 1139 ** descended from the Expr.x.pList or Expr.x.pSelect variables). |
| 1140 */ |
| 1141 static int dupedExprSize(Expr *p, int flags){ |
| 1142 int nByte = 0; |
| 1143 if( p ){ |
| 1144 nByte = dupedExprNodeSize(p, flags); |
| 1145 if( flags&EXPRDUP_REDUCE ){ |
| 1146 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); |
| 1147 } |
| 1148 } |
| 1149 return nByte; |
| 1150 } |
| 1151 |
| 1152 /* |
| 1153 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer |
| 1154 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough |
| 1155 ** to store the copy of expression p, the copies of p->u.zToken |
| 1156 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, |
| 1157 ** if any. Before returning, *pzBuffer is set to the first byte past the |
| 1158 ** portion of the buffer copied into by this function. |
| 1159 */ |
| 1160 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ |
| 1161 Expr *pNew; /* Value to return */ |
| 1162 u8 *zAlloc; /* Memory space from which to build Expr object */ |
| 1163 u32 staticFlag; /* EP_Static if space not obtained from malloc */ |
| 1164 |
| 1165 assert( db!=0 ); |
| 1166 assert( p ); |
| 1167 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); |
| 1168 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); |
| 1169 |
| 1170 /* Figure out where to write the new Expr structure. */ |
| 1171 if( pzBuffer ){ |
| 1172 zAlloc = *pzBuffer; |
| 1173 staticFlag = EP_Static; |
| 1174 }else{ |
| 1175 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); |
| 1176 staticFlag = 0; |
| 1177 } |
| 1178 pNew = (Expr *)zAlloc; |
| 1179 |
| 1180 if( pNew ){ |
| 1181 /* Set nNewSize to the size allocated for the structure pointed to |
| 1182 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or |
| 1183 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed |
| 1184 ** by the copy of the p->u.zToken string (if any). |
| 1185 */ |
| 1186 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); |
| 1187 const int nNewSize = nStructSize & 0xfff; |
| 1188 int nToken; |
| 1189 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
| 1190 nToken = sqlite3Strlen30(p->u.zToken) + 1; |
| 1191 }else{ |
| 1192 nToken = 0; |
| 1193 } |
| 1194 if( dupFlags ){ |
| 1195 assert( ExprHasProperty(p, EP_Reduced)==0 ); |
| 1196 memcpy(zAlloc, p, nNewSize); |
| 1197 }else{ |
| 1198 u32 nSize = (u32)exprStructSize(p); |
| 1199 memcpy(zAlloc, p, nSize); |
| 1200 if( nSize<EXPR_FULLSIZE ){ |
| 1201 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); |
| 1202 } |
| 1203 } |
| 1204 |
| 1205 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ |
| 1206 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); |
| 1207 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); |
| 1208 pNew->flags |= staticFlag; |
| 1209 |
| 1210 /* Copy the p->u.zToken string, if any. */ |
| 1211 if( nToken ){ |
| 1212 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; |
| 1213 memcpy(zToken, p->u.zToken, nToken); |
| 1214 } |
| 1215 |
| 1216 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ |
| 1217 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ |
| 1218 if( ExprHasProperty(p, EP_xIsSelect) ){ |
| 1219 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); |
| 1220 }else{ |
| 1221 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); |
| 1222 } |
| 1223 } |
| 1224 |
| 1225 /* Fill in pNew->pLeft and pNew->pRight. */ |
| 1226 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ |
| 1227 zAlloc += dupedExprNodeSize(p, dupFlags); |
| 1228 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ |
| 1229 pNew->pLeft = p->pLeft ? |
| 1230 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; |
| 1231 pNew->pRight = p->pRight ? |
| 1232 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; |
| 1233 } |
| 1234 if( pzBuffer ){ |
| 1235 *pzBuffer = zAlloc; |
| 1236 } |
| 1237 }else{ |
| 1238 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ |
| 1239 if( pNew->op==TK_SELECT_COLUMN ){ |
| 1240 pNew->pLeft = p->pLeft; |
| 1241 assert( p->iColumn==0 || p->pRight==0 ); |
| 1242 assert( p->pRight==0 || p->pRight==p->pLeft ); |
| 1243 }else{ |
| 1244 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); |
| 1245 } |
| 1246 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); |
| 1247 } |
| 1248 } |
| 1249 } |
| 1250 return pNew; |
| 1251 } |
| 1252 |
| 1253 /* |
| 1254 ** Create and return a deep copy of the object passed as the second |
| 1255 ** argument. If an OOM condition is encountered, NULL is returned |
| 1256 ** and the db->mallocFailed flag set. |
| 1257 */ |
| 1258 #ifndef SQLITE_OMIT_CTE |
| 1259 static With *withDup(sqlite3 *db, With *p){ |
| 1260 With *pRet = 0; |
| 1261 if( p ){ |
| 1262 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); |
| 1263 pRet = sqlite3DbMallocZero(db, nByte); |
| 1264 if( pRet ){ |
| 1265 int i; |
| 1266 pRet->nCte = p->nCte; |
| 1267 for(i=0; i<p->nCte; i++){ |
| 1268 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); |
| 1269 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); |
| 1270 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); |
| 1271 } |
| 1272 } |
| 1273 } |
| 1274 return pRet; |
| 1275 } |
| 1276 #else |
| 1277 # define withDup(x,y) 0 |
| 1278 #endif |
| 1279 |
| 1280 /* |
| 1281 ** The following group of routines make deep copies of expressions, |
| 1282 ** expression lists, ID lists, and select statements. The copies can |
| 1283 ** be deleted (by being passed to their respective ...Delete() routines) |
| 1284 ** without effecting the originals. |
| 1285 ** |
| 1286 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
| 1287 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
| 1288 ** by subsequent calls to sqlite*ListAppend() routines. |
| 1289 ** |
| 1290 ** Any tables that the SrcList might point to are not duplicated. |
| 1291 ** |
| 1292 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. |
| 1293 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a |
| 1294 ** truncated version of the usual Expr structure that will be stored as |
| 1295 ** part of the in-memory representation of the database schema. |
| 1296 */ |
| 1297 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ |
| 1298 assert( flags==0 || flags==EXPRDUP_REDUCE ); |
| 1299 return p ? exprDup(db, p, flags, 0) : 0; |
| 1300 } |
| 1301 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ |
| 1302 ExprList *pNew; |
| 1303 struct ExprList_item *pItem, *pOldItem; |
| 1304 int i; |
| 1305 Expr *pPriorSelectCol = 0; |
| 1306 assert( db!=0 ); |
| 1307 if( p==0 ) return 0; |
| 1308 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); |
| 1309 if( pNew==0 ) return 0; |
| 1310 pNew->nExpr = i = p->nExpr; |
| 1311 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} |
| 1312 pNew->a = pItem = sqlite3DbMallocRawNN(db, i*sizeof(p->a[0]) ); |
| 1313 if( pItem==0 ){ |
| 1314 sqlite3DbFree(db, pNew); |
| 1315 return 0; |
| 1316 } |
| 1317 pOldItem = p->a; |
| 1318 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
| 1319 Expr *pOldExpr = pOldItem->pExpr; |
| 1320 Expr *pNewExpr; |
| 1321 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); |
| 1322 if( pOldExpr |
| 1323 && pOldExpr->op==TK_SELECT_COLUMN |
| 1324 && (pNewExpr = pItem->pExpr)!=0 |
| 1325 ){ |
| 1326 assert( pNewExpr->iColumn==0 || i>0 ); |
| 1327 if( pNewExpr->iColumn==0 ){ |
| 1328 assert( pOldExpr->pLeft==pOldExpr->pRight ); |
| 1329 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; |
| 1330 }else{ |
| 1331 assert( i>0 ); |
| 1332 assert( pItem[-1].pExpr!=0 ); |
| 1333 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); |
| 1334 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); |
| 1335 pNewExpr->pLeft = pPriorSelectCol; |
| 1336 } |
| 1337 } |
| 1338 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| 1339 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); |
| 1340 pItem->sortOrder = pOldItem->sortOrder; |
| 1341 pItem->done = 0; |
| 1342 pItem->bSpanIsTab = pOldItem->bSpanIsTab; |
| 1343 pItem->u = pOldItem->u; |
| 1344 } |
| 1345 return pNew; |
| 1346 } |
| 1347 |
| 1348 /* |
| 1349 ** If cursors, triggers, views and subqueries are all omitted from |
| 1350 ** the build, then none of the following routines, except for |
| 1351 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
| 1352 ** called with a NULL argument. |
| 1353 */ |
| 1354 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
| 1355 || !defined(SQLITE_OMIT_SUBQUERY) |
| 1356 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ |
| 1357 SrcList *pNew; |
| 1358 int i; |
| 1359 int nByte; |
| 1360 assert( db!=0 ); |
| 1361 if( p==0 ) return 0; |
| 1362 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
| 1363 pNew = sqlite3DbMallocRawNN(db, nByte ); |
| 1364 if( pNew==0 ) return 0; |
| 1365 pNew->nSrc = pNew->nAlloc = p->nSrc; |
| 1366 for(i=0; i<p->nSrc; i++){ |
| 1367 struct SrcList_item *pNewItem = &pNew->a[i]; |
| 1368 struct SrcList_item *pOldItem = &p->a[i]; |
| 1369 Table *pTab; |
| 1370 pNewItem->pSchema = pOldItem->pSchema; |
| 1371 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); |
| 1372 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| 1373 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); |
| 1374 pNewItem->fg = pOldItem->fg; |
| 1375 pNewItem->iCursor = pOldItem->iCursor; |
| 1376 pNewItem->addrFillSub = pOldItem->addrFillSub; |
| 1377 pNewItem->regReturn = pOldItem->regReturn; |
| 1378 if( pNewItem->fg.isIndexedBy ){ |
| 1379 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); |
| 1380 } |
| 1381 pNewItem->pIBIndex = pOldItem->pIBIndex; |
| 1382 if( pNewItem->fg.isTabFunc ){ |
| 1383 pNewItem->u1.pFuncArg = |
| 1384 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); |
| 1385 } |
| 1386 pTab = pNewItem->pTab = pOldItem->pTab; |
| 1387 if( pTab ){ |
| 1388 pTab->nTabRef++; |
| 1389 } |
| 1390 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); |
| 1391 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); |
| 1392 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); |
| 1393 pNewItem->colUsed = pOldItem->colUsed; |
| 1394 } |
| 1395 return pNew; |
| 1396 } |
| 1397 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ |
| 1398 IdList *pNew; |
| 1399 int i; |
| 1400 assert( db!=0 ); |
| 1401 if( p==0 ) return 0; |
| 1402 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); |
| 1403 if( pNew==0 ) return 0; |
| 1404 pNew->nId = p->nId; |
| 1405 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); |
| 1406 if( pNew->a==0 ){ |
| 1407 sqlite3DbFree(db, pNew); |
| 1408 return 0; |
| 1409 } |
| 1410 /* Note that because the size of the allocation for p->a[] is not |
| 1411 ** necessarily a power of two, sqlite3IdListAppend() may not be called |
| 1412 ** on the duplicate created by this function. */ |
| 1413 for(i=0; i<p->nId; i++){ |
| 1414 struct IdList_item *pNewItem = &pNew->a[i]; |
| 1415 struct IdList_item *pOldItem = &p->a[i]; |
| 1416 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| 1417 pNewItem->idx = pOldItem->idx; |
| 1418 } |
| 1419 return pNew; |
| 1420 } |
| 1421 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ |
| 1422 Select *pRet = 0; |
| 1423 Select *pNext = 0; |
| 1424 Select **pp = &pRet; |
| 1425 Select *p; |
| 1426 |
| 1427 assert( db!=0 ); |
| 1428 for(p=pDup; p; p=p->pPrior){ |
| 1429 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); |
| 1430 if( pNew==0 ) break; |
| 1431 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); |
| 1432 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); |
| 1433 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); |
| 1434 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); |
| 1435 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); |
| 1436 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); |
| 1437 pNew->op = p->op; |
| 1438 pNew->pNext = pNext; |
| 1439 pNew->pPrior = 0; |
| 1440 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); |
| 1441 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); |
| 1442 pNew->iLimit = 0; |
| 1443 pNew->iOffset = 0; |
| 1444 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; |
| 1445 pNew->addrOpenEphm[0] = -1; |
| 1446 pNew->addrOpenEphm[1] = -1; |
| 1447 pNew->nSelectRow = p->nSelectRow; |
| 1448 pNew->pWith = withDup(db, p->pWith); |
| 1449 sqlite3SelectSetName(pNew, p->zSelName); |
| 1450 *pp = pNew; |
| 1451 pp = &pNew->pPrior; |
| 1452 pNext = pNew; |
| 1453 } |
| 1454 |
| 1455 return pRet; |
| 1456 } |
| 1457 #else |
| 1458 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ |
| 1459 assert( p==0 ); |
| 1460 return 0; |
| 1461 } |
| 1462 #endif |
| 1463 |
| 1464 |
| 1465 /* |
| 1466 ** Add a new element to the end of an expression list. If pList is |
| 1467 ** initially NULL, then create a new expression list. |
| 1468 ** |
| 1469 ** If a memory allocation error occurs, the entire list is freed and |
| 1470 ** NULL is returned. If non-NULL is returned, then it is guaranteed |
| 1471 ** that the new entry was successfully appended. |
| 1472 */ |
| 1473 ExprList *sqlite3ExprListAppend( |
| 1474 Parse *pParse, /* Parsing context */ |
| 1475 ExprList *pList, /* List to which to append. Might be NULL */ |
| 1476 Expr *pExpr /* Expression to be appended. Might be NULL */ |
| 1477 ){ |
| 1478 sqlite3 *db = pParse->db; |
| 1479 assert( db!=0 ); |
| 1480 if( pList==0 ){ |
| 1481 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); |
| 1482 if( pList==0 ){ |
| 1483 goto no_mem; |
| 1484 } |
| 1485 pList->nExpr = 0; |
| 1486 pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0])); |
| 1487 if( pList->a==0 ) goto no_mem; |
| 1488 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ |
| 1489 struct ExprList_item *a; |
| 1490 assert( pList->nExpr>0 ); |
| 1491 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); |
| 1492 if( a==0 ){ |
| 1493 goto no_mem; |
| 1494 } |
| 1495 pList->a = a; |
| 1496 } |
| 1497 assert( pList->a!=0 ); |
| 1498 if( 1 ){ |
| 1499 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; |
| 1500 memset(pItem, 0, sizeof(*pItem)); |
| 1501 pItem->pExpr = pExpr; |
| 1502 } |
| 1503 return pList; |
| 1504 |
| 1505 no_mem: |
| 1506 /* Avoid leaking memory if malloc has failed. */ |
| 1507 sqlite3ExprDelete(db, pExpr); |
| 1508 sqlite3ExprListDelete(db, pList); |
| 1509 return 0; |
| 1510 } |
| 1511 |
| 1512 /* |
| 1513 ** pColumns and pExpr form a vector assignment which is part of the SET |
| 1514 ** clause of an UPDATE statement. Like this: |
| 1515 ** |
| 1516 ** (a,b,c) = (expr1,expr2,expr3) |
| 1517 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) |
| 1518 ** |
| 1519 ** For each term of the vector assignment, append new entries to the |
| 1520 ** expression list pList. In the case of a subquery on the RHS, append |
| 1521 ** TK_SELECT_COLUMN expressions. |
| 1522 */ |
| 1523 ExprList *sqlite3ExprListAppendVector( |
| 1524 Parse *pParse, /* Parsing context */ |
| 1525 ExprList *pList, /* List to which to append. Might be NULL */ |
| 1526 IdList *pColumns, /* List of names of LHS of the assignment */ |
| 1527 Expr *pExpr /* Vector expression to be appended. Might be NULL */ |
| 1528 ){ |
| 1529 sqlite3 *db = pParse->db; |
| 1530 int n; |
| 1531 int i; |
| 1532 int iFirst = pList ? pList->nExpr : 0; |
| 1533 /* pColumns can only be NULL due to an OOM but an OOM will cause an |
| 1534 ** exit prior to this routine being invoked */ |
| 1535 if( NEVER(pColumns==0) ) goto vector_append_error; |
| 1536 if( pExpr==0 ) goto vector_append_error; |
| 1537 |
| 1538 /* If the RHS is a vector, then we can immediately check to see that |
| 1539 ** the size of the RHS and LHS match. But if the RHS is a SELECT, |
| 1540 ** wildcards ("*") in the result set of the SELECT must be expanded before |
| 1541 ** we can do the size check, so defer the size check until code generation. |
| 1542 */ |
| 1543 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ |
| 1544 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", |
| 1545 pColumns->nId, n); |
| 1546 goto vector_append_error; |
| 1547 } |
| 1548 |
| 1549 for(i=0; i<pColumns->nId; i++){ |
| 1550 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); |
| 1551 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); |
| 1552 if( pList ){ |
| 1553 assert( pList->nExpr==iFirst+i+1 ); |
| 1554 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; |
| 1555 pColumns->a[i].zName = 0; |
| 1556 } |
| 1557 } |
| 1558 |
| 1559 if( pExpr->op==TK_SELECT ){ |
| 1560 if( pList && pList->a[iFirst].pExpr ){ |
| 1561 Expr *pFirst = pList->a[iFirst].pExpr; |
| 1562 assert( pFirst->op==TK_SELECT_COLUMN ); |
| 1563 |
| 1564 /* Store the SELECT statement in pRight so it will be deleted when |
| 1565 ** sqlite3ExprListDelete() is called */ |
| 1566 pFirst->pRight = pExpr; |
| 1567 pExpr = 0; |
| 1568 |
| 1569 /* Remember the size of the LHS in iTable so that we can check that |
| 1570 ** the RHS and LHS sizes match during code generation. */ |
| 1571 pFirst->iTable = pColumns->nId; |
| 1572 } |
| 1573 } |
| 1574 |
| 1575 vector_append_error: |
| 1576 sqlite3ExprDelete(db, pExpr); |
| 1577 sqlite3IdListDelete(db, pColumns); |
| 1578 return pList; |
| 1579 } |
| 1580 |
| 1581 /* |
| 1582 ** Set the sort order for the last element on the given ExprList. |
| 1583 */ |
| 1584 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ |
| 1585 if( p==0 ) return; |
| 1586 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); |
| 1587 assert( p->nExpr>0 ); |
| 1588 if( iSortOrder<0 ){ |
| 1589 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); |
| 1590 return; |
| 1591 } |
| 1592 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; |
| 1593 } |
| 1594 |
| 1595 /* |
| 1596 ** Set the ExprList.a[].zName element of the most recently added item |
| 1597 ** on the expression list. |
| 1598 ** |
| 1599 ** pList might be NULL following an OOM error. But pName should never be |
| 1600 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
| 1601 ** is set. |
| 1602 */ |
| 1603 void sqlite3ExprListSetName( |
| 1604 Parse *pParse, /* Parsing context */ |
| 1605 ExprList *pList, /* List to which to add the span. */ |
| 1606 Token *pName, /* Name to be added */ |
| 1607 int dequote /* True to cause the name to be dequoted */ |
| 1608 ){ |
| 1609 assert( pList!=0 || pParse->db->mallocFailed!=0 ); |
| 1610 if( pList ){ |
| 1611 struct ExprList_item *pItem; |
| 1612 assert( pList->nExpr>0 ); |
| 1613 pItem = &pList->a[pList->nExpr-1]; |
| 1614 assert( pItem->zName==0 ); |
| 1615 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); |
| 1616 if( dequote ) sqlite3Dequote(pItem->zName); |
| 1617 } |
| 1618 } |
| 1619 |
| 1620 /* |
| 1621 ** Set the ExprList.a[].zSpan element of the most recently added item |
| 1622 ** on the expression list. |
| 1623 ** |
| 1624 ** pList might be NULL following an OOM error. But pSpan should never be |
| 1625 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
| 1626 ** is set. |
| 1627 */ |
| 1628 void sqlite3ExprListSetSpan( |
| 1629 Parse *pParse, /* Parsing context */ |
| 1630 ExprList *pList, /* List to which to add the span. */ |
| 1631 ExprSpan *pSpan /* The span to be added */ |
| 1632 ){ |
| 1633 sqlite3 *db = pParse->db; |
| 1634 assert( pList!=0 || db->mallocFailed!=0 ); |
| 1635 if( pList ){ |
| 1636 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; |
| 1637 assert( pList->nExpr>0 ); |
| 1638 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); |
| 1639 sqlite3DbFree(db, pItem->zSpan); |
| 1640 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, |
| 1641 (int)(pSpan->zEnd - pSpan->zStart)); |
| 1642 } |
| 1643 } |
| 1644 |
| 1645 /* |
| 1646 ** If the expression list pEList contains more than iLimit elements, |
| 1647 ** leave an error message in pParse. |
| 1648 */ |
| 1649 void sqlite3ExprListCheckLength( |
| 1650 Parse *pParse, |
| 1651 ExprList *pEList, |
| 1652 const char *zObject |
| 1653 ){ |
| 1654 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; |
| 1655 testcase( pEList && pEList->nExpr==mx ); |
| 1656 testcase( pEList && pEList->nExpr==mx+1 ); |
| 1657 if( pEList && pEList->nExpr>mx ){ |
| 1658 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); |
| 1659 } |
| 1660 } |
| 1661 |
| 1662 /* |
| 1663 ** Delete an entire expression list. |
| 1664 */ |
| 1665 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ |
| 1666 int i; |
| 1667 struct ExprList_item *pItem; |
| 1668 assert( pList->a!=0 || pList->nExpr==0 ); |
| 1669 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
| 1670 sqlite3ExprDelete(db, pItem->pExpr); |
| 1671 sqlite3DbFree(db, pItem->zName); |
| 1672 sqlite3DbFree(db, pItem->zSpan); |
| 1673 } |
| 1674 sqlite3DbFree(db, pList->a); |
| 1675 sqlite3DbFree(db, pList); |
| 1676 } |
| 1677 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ |
| 1678 if( pList ) exprListDeleteNN(db, pList); |
| 1679 } |
| 1680 |
| 1681 /* |
| 1682 ** Return the bitwise-OR of all Expr.flags fields in the given |
| 1683 ** ExprList. |
| 1684 */ |
| 1685 u32 sqlite3ExprListFlags(const ExprList *pList){ |
| 1686 int i; |
| 1687 u32 m = 0; |
| 1688 if( pList ){ |
| 1689 for(i=0; i<pList->nExpr; i++){ |
| 1690 Expr *pExpr = pList->a[i].pExpr; |
| 1691 assert( pExpr!=0 ); |
| 1692 m |= pExpr->flags; |
| 1693 } |
| 1694 } |
| 1695 return m; |
| 1696 } |
| 1697 |
| 1698 /* |
| 1699 ** These routines are Walker callbacks used to check expressions to |
| 1700 ** see if they are "constant" for some definition of constant. The |
| 1701 ** Walker.eCode value determines the type of "constant" we are looking |
| 1702 ** for. |
| 1703 ** |
| 1704 ** These callback routines are used to implement the following: |
| 1705 ** |
| 1706 ** sqlite3ExprIsConstant() pWalker->eCode==1 |
| 1707 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 |
| 1708 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 |
| 1709 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 |
| 1710 ** |
| 1711 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression |
| 1712 ** is found to not be a constant. |
| 1713 ** |
| 1714 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions |
| 1715 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing |
| 1716 ** an existing schema and 4 when processing a new statement. A bound |
| 1717 ** parameter raises an error for new statements, but is silently converted |
| 1718 ** to NULL for existing schemas. This allows sqlite_master tables that |
| 1719 ** contain a bound parameter because they were generated by older versions |
| 1720 ** of SQLite to be parsed by newer versions of SQLite without raising a |
| 1721 ** malformed schema error. |
| 1722 */ |
| 1723 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ |
| 1724 |
| 1725 /* If pWalker->eCode is 2 then any term of the expression that comes from |
| 1726 ** the ON or USING clauses of a left join disqualifies the expression |
| 1727 ** from being considered constant. */ |
| 1728 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ |
| 1729 pWalker->eCode = 0; |
| 1730 return WRC_Abort; |
| 1731 } |
| 1732 |
| 1733 switch( pExpr->op ){ |
| 1734 /* Consider functions to be constant if all their arguments are constant |
| 1735 ** and either pWalker->eCode==4 or 5 or the function has the |
| 1736 ** SQLITE_FUNC_CONST flag. */ |
| 1737 case TK_FUNCTION: |
| 1738 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ |
| 1739 return WRC_Continue; |
| 1740 }else{ |
| 1741 pWalker->eCode = 0; |
| 1742 return WRC_Abort; |
| 1743 } |
| 1744 case TK_ID: |
| 1745 case TK_COLUMN: |
| 1746 case TK_AGG_FUNCTION: |
| 1747 case TK_AGG_COLUMN: |
| 1748 testcase( pExpr->op==TK_ID ); |
| 1749 testcase( pExpr->op==TK_COLUMN ); |
| 1750 testcase( pExpr->op==TK_AGG_FUNCTION ); |
| 1751 testcase( pExpr->op==TK_AGG_COLUMN ); |
| 1752 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ |
| 1753 return WRC_Continue; |
| 1754 }else{ |
| 1755 pWalker->eCode = 0; |
| 1756 return WRC_Abort; |
| 1757 } |
| 1758 case TK_VARIABLE: |
| 1759 if( pWalker->eCode==5 ){ |
| 1760 /* Silently convert bound parameters that appear inside of CREATE |
| 1761 ** statements into a NULL when parsing the CREATE statement text out |
| 1762 ** of the sqlite_master table */ |
| 1763 pExpr->op = TK_NULL; |
| 1764 }else if( pWalker->eCode==4 ){ |
| 1765 /* A bound parameter in a CREATE statement that originates from |
| 1766 ** sqlite3_prepare() causes an error */ |
| 1767 pWalker->eCode = 0; |
| 1768 return WRC_Abort; |
| 1769 } |
| 1770 /* Fall through */ |
| 1771 default: |
| 1772 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ |
| 1773 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ |
| 1774 return WRC_Continue; |
| 1775 } |
| 1776 } |
| 1777 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ |
| 1778 UNUSED_PARAMETER(NotUsed); |
| 1779 pWalker->eCode = 0; |
| 1780 return WRC_Abort; |
| 1781 } |
| 1782 static int exprIsConst(Expr *p, int initFlag, int iCur){ |
| 1783 Walker w; |
| 1784 memset(&w, 0, sizeof(w)); |
| 1785 w.eCode = initFlag; |
| 1786 w.xExprCallback = exprNodeIsConstant; |
| 1787 w.xSelectCallback = selectNodeIsConstant; |
| 1788 w.u.iCur = iCur; |
| 1789 sqlite3WalkExpr(&w, p); |
| 1790 return w.eCode; |
| 1791 } |
| 1792 |
| 1793 /* |
| 1794 ** Walk an expression tree. Return non-zero if the expression is constant |
| 1795 ** and 0 if it involves variables or function calls. |
| 1796 ** |
| 1797 ** For the purposes of this function, a double-quoted string (ex: "abc") |
| 1798 ** is considered a variable but a single-quoted string (ex: 'abc') is |
| 1799 ** a constant. |
| 1800 */ |
| 1801 int sqlite3ExprIsConstant(Expr *p){ |
| 1802 return exprIsConst(p, 1, 0); |
| 1803 } |
| 1804 |
| 1805 /* |
| 1806 ** Walk an expression tree. Return non-zero if the expression is constant |
| 1807 ** that does no originate from the ON or USING clauses of a join. |
| 1808 ** Return 0 if it involves variables or function calls or terms from |
| 1809 ** an ON or USING clause. |
| 1810 */ |
| 1811 int sqlite3ExprIsConstantNotJoin(Expr *p){ |
| 1812 return exprIsConst(p, 2, 0); |
| 1813 } |
| 1814 |
| 1815 /* |
| 1816 ** Walk an expression tree. Return non-zero if the expression is constant |
| 1817 ** for any single row of the table with cursor iCur. In other words, the |
| 1818 ** expression must not refer to any non-deterministic function nor any |
| 1819 ** table other than iCur. |
| 1820 */ |
| 1821 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ |
| 1822 return exprIsConst(p, 3, iCur); |
| 1823 } |
| 1824 |
| 1825 /* |
| 1826 ** Walk an expression tree. Return non-zero if the expression is constant |
| 1827 ** or a function call with constant arguments. Return and 0 if there |
| 1828 ** are any variables. |
| 1829 ** |
| 1830 ** For the purposes of this function, a double-quoted string (ex: "abc") |
| 1831 ** is considered a variable but a single-quoted string (ex: 'abc') is |
| 1832 ** a constant. |
| 1833 */ |
| 1834 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ |
| 1835 assert( isInit==0 || isInit==1 ); |
| 1836 return exprIsConst(p, 4+isInit, 0); |
| 1837 } |
| 1838 |
| 1839 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 1840 /* |
| 1841 ** Walk an expression tree. Return 1 if the expression contains a |
| 1842 ** subquery of some kind. Return 0 if there are no subqueries. |
| 1843 */ |
| 1844 int sqlite3ExprContainsSubquery(Expr *p){ |
| 1845 Walker w; |
| 1846 memset(&w, 0, sizeof(w)); |
| 1847 w.eCode = 1; |
| 1848 w.xExprCallback = sqlite3ExprWalkNoop; |
| 1849 w.xSelectCallback = selectNodeIsConstant; |
| 1850 sqlite3WalkExpr(&w, p); |
| 1851 return w.eCode==0; |
| 1852 } |
| 1853 #endif |
| 1854 |
| 1855 /* |
| 1856 ** If the expression p codes a constant integer that is small enough |
| 1857 ** to fit in a 32-bit integer, return 1 and put the value of the integer |
| 1858 ** in *pValue. If the expression is not an integer or if it is too big |
| 1859 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
| 1860 */ |
| 1861 int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
| 1862 int rc = 0; |
| 1863 |
| 1864 /* If an expression is an integer literal that fits in a signed 32-bit |
| 1865 ** integer, then the EP_IntValue flag will have already been set */ |
| 1866 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 |
| 1867 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); |
| 1868 |
| 1869 if( p->flags & EP_IntValue ){ |
| 1870 *pValue = p->u.iValue; |
| 1871 return 1; |
| 1872 } |
| 1873 switch( p->op ){ |
| 1874 case TK_UPLUS: { |
| 1875 rc = sqlite3ExprIsInteger(p->pLeft, pValue); |
| 1876 break; |
| 1877 } |
| 1878 case TK_UMINUS: { |
| 1879 int v; |
| 1880 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
| 1881 assert( v!=(-2147483647-1) ); |
| 1882 *pValue = -v; |
| 1883 rc = 1; |
| 1884 } |
| 1885 break; |
| 1886 } |
| 1887 default: break; |
| 1888 } |
| 1889 return rc; |
| 1890 } |
| 1891 |
| 1892 /* |
| 1893 ** Return FALSE if there is no chance that the expression can be NULL. |
| 1894 ** |
| 1895 ** If the expression might be NULL or if the expression is too complex |
| 1896 ** to tell return TRUE. |
| 1897 ** |
| 1898 ** This routine is used as an optimization, to skip OP_IsNull opcodes |
| 1899 ** when we know that a value cannot be NULL. Hence, a false positive |
| 1900 ** (returning TRUE when in fact the expression can never be NULL) might |
| 1901 ** be a small performance hit but is otherwise harmless. On the other |
| 1902 ** hand, a false negative (returning FALSE when the result could be NULL) |
| 1903 ** will likely result in an incorrect answer. So when in doubt, return |
| 1904 ** TRUE. |
| 1905 */ |
| 1906 int sqlite3ExprCanBeNull(const Expr *p){ |
| 1907 u8 op; |
| 1908 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } |
| 1909 op = p->op; |
| 1910 if( op==TK_REGISTER ) op = p->op2; |
| 1911 switch( op ){ |
| 1912 case TK_INTEGER: |
| 1913 case TK_STRING: |
| 1914 case TK_FLOAT: |
| 1915 case TK_BLOB: |
| 1916 return 0; |
| 1917 case TK_COLUMN: |
| 1918 assert( p->pTab!=0 ); |
| 1919 return ExprHasProperty(p, EP_CanBeNull) || |
| 1920 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); |
| 1921 default: |
| 1922 return 1; |
| 1923 } |
| 1924 } |
| 1925 |
| 1926 /* |
| 1927 ** Return TRUE if the given expression is a constant which would be |
| 1928 ** unchanged by OP_Affinity with the affinity given in the second |
| 1929 ** argument. |
| 1930 ** |
| 1931 ** This routine is used to determine if the OP_Affinity operation |
| 1932 ** can be omitted. When in doubt return FALSE. A false negative |
| 1933 ** is harmless. A false positive, however, can result in the wrong |
| 1934 ** answer. |
| 1935 */ |
| 1936 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ |
| 1937 u8 op; |
| 1938 if( aff==SQLITE_AFF_BLOB ) return 1; |
| 1939 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } |
| 1940 op = p->op; |
| 1941 if( op==TK_REGISTER ) op = p->op2; |
| 1942 switch( op ){ |
| 1943 case TK_INTEGER: { |
| 1944 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; |
| 1945 } |
| 1946 case TK_FLOAT: { |
| 1947 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; |
| 1948 } |
| 1949 case TK_STRING: { |
| 1950 return aff==SQLITE_AFF_TEXT; |
| 1951 } |
| 1952 case TK_BLOB: { |
| 1953 return 1; |
| 1954 } |
| 1955 case TK_COLUMN: { |
| 1956 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ |
| 1957 return p->iColumn<0 |
| 1958 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); |
| 1959 } |
| 1960 default: { |
| 1961 return 0; |
| 1962 } |
| 1963 } |
| 1964 } |
| 1965 |
| 1966 /* |
| 1967 ** Return TRUE if the given string is a row-id column name. |
| 1968 */ |
| 1969 int sqlite3IsRowid(const char *z){ |
| 1970 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
| 1971 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
| 1972 if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
| 1973 return 0; |
| 1974 } |
| 1975 |
| 1976 /* |
| 1977 ** pX is the RHS of an IN operator. If pX is a SELECT statement |
| 1978 ** that can be simplified to a direct table access, then return |
| 1979 ** a pointer to the SELECT statement. If pX is not a SELECT statement, |
| 1980 ** or if the SELECT statement needs to be manifested into a transient |
| 1981 ** table, then return NULL. |
| 1982 */ |
| 1983 #ifndef SQLITE_OMIT_SUBQUERY |
| 1984 static Select *isCandidateForInOpt(Expr *pX){ |
| 1985 Select *p; |
| 1986 SrcList *pSrc; |
| 1987 ExprList *pEList; |
| 1988 Table *pTab; |
| 1989 int i; |
| 1990 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ |
| 1991 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ |
| 1992 p = pX->x.pSelect; |
| 1993 if( p->pPrior ) return 0; /* Not a compound SELECT */ |
| 1994 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ |
| 1995 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
| 1996 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
| 1997 return 0; /* No DISTINCT keyword and no aggregate functions */ |
| 1998 } |
| 1999 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ |
| 2000 if( p->pLimit ) return 0; /* Has no LIMIT clause */ |
| 2001 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ |
| 2002 if( p->pWhere ) return 0; /* Has no WHERE clause */ |
| 2003 pSrc = p->pSrc; |
| 2004 assert( pSrc!=0 ); |
| 2005 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ |
| 2006 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ |
| 2007 pTab = pSrc->a[0].pTab; |
| 2008 assert( pTab!=0 ); |
| 2009 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ |
| 2010 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ |
| 2011 pEList = p->pEList; |
| 2012 assert( pEList!=0 ); |
| 2013 /* All SELECT results must be columns. */ |
| 2014 for(i=0; i<pEList->nExpr; i++){ |
| 2015 Expr *pRes = pEList->a[i].pExpr; |
| 2016 if( pRes->op!=TK_COLUMN ) return 0; |
| 2017 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ |
| 2018 } |
| 2019 return p; |
| 2020 } |
| 2021 #endif /* SQLITE_OMIT_SUBQUERY */ |
| 2022 |
| 2023 #ifndef SQLITE_OMIT_SUBQUERY |
| 2024 /* |
| 2025 ** Generate code that checks the left-most column of index table iCur to see if |
| 2026 ** it contains any NULL entries. Cause the register at regHasNull to be set |
| 2027 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull |
| 2028 ** to be set to NULL if iCur contains one or more NULL values. |
| 2029 */ |
| 2030 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ |
| 2031 int addr1; |
| 2032 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); |
| 2033 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); |
| 2034 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); |
| 2035 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); |
| 2036 VdbeComment((v, "first_entry_in(%d)", iCur)); |
| 2037 sqlite3VdbeJumpHere(v, addr1); |
| 2038 } |
| 2039 #endif |
| 2040 |
| 2041 |
| 2042 #ifndef SQLITE_OMIT_SUBQUERY |
| 2043 /* |
| 2044 ** The argument is an IN operator with a list (not a subquery) on the |
| 2045 ** right-hand side. Return TRUE if that list is constant. |
| 2046 */ |
| 2047 static int sqlite3InRhsIsConstant(Expr *pIn){ |
| 2048 Expr *pLHS; |
| 2049 int res; |
| 2050 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); |
| 2051 pLHS = pIn->pLeft; |
| 2052 pIn->pLeft = 0; |
| 2053 res = sqlite3ExprIsConstant(pIn); |
| 2054 pIn->pLeft = pLHS; |
| 2055 return res; |
| 2056 } |
| 2057 #endif |
| 2058 |
| 2059 /* |
| 2060 ** This function is used by the implementation of the IN (...) operator. |
| 2061 ** The pX parameter is the expression on the RHS of the IN operator, which |
| 2062 ** might be either a list of expressions or a subquery. |
| 2063 ** |
| 2064 ** The job of this routine is to find or create a b-tree object that can |
| 2065 ** be used either to test for membership in the RHS set or to iterate through |
| 2066 ** all members of the RHS set, skipping duplicates. |
| 2067 ** |
| 2068 ** A cursor is opened on the b-tree object that is the RHS of the IN operator |
| 2069 ** and pX->iTable is set to the index of that cursor. |
| 2070 ** |
| 2071 ** The returned value of this function indicates the b-tree type, as follows: |
| 2072 ** |
| 2073 ** IN_INDEX_ROWID - The cursor was opened on a database table. |
| 2074 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. |
| 2075 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. |
| 2076 ** IN_INDEX_EPH - The cursor was opened on a specially created and |
| 2077 ** populated epheremal table. |
| 2078 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be |
| 2079 ** implemented as a sequence of comparisons. |
| 2080 ** |
| 2081 ** An existing b-tree might be used if the RHS expression pX is a simple |
| 2082 ** subquery such as: |
| 2083 ** |
| 2084 ** SELECT <column1>, <column2>... FROM <table> |
| 2085 ** |
| 2086 ** If the RHS of the IN operator is a list or a more complex subquery, then |
| 2087 ** an ephemeral table might need to be generated from the RHS and then |
| 2088 ** pX->iTable made to point to the ephemeral table instead of an |
| 2089 ** existing table. |
| 2090 ** |
| 2091 ** The inFlags parameter must contain exactly one of the bits |
| 2092 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains |
| 2093 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a |
| 2094 ** fast membership test. When the IN_INDEX_LOOP bit is set, the |
| 2095 ** IN index will be used to loop over all values of the RHS of the |
| 2096 ** IN operator. |
| 2097 ** |
| 2098 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate |
| 2099 ** through the set members) then the b-tree must not contain duplicates. |
| 2100 ** An epheremal table must be used unless the selected columns are guaranteed |
| 2101 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to |
| 2102 ** a UNIQUE constraint or index. |
| 2103 ** |
| 2104 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used |
| 2105 ** for fast set membership tests) then an epheremal table must |
| 2106 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an |
| 2107 ** index can be found with the specified <columns> as its left-most. |
| 2108 ** |
| 2109 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and |
| 2110 ** if the RHS of the IN operator is a list (not a subquery) then this |
| 2111 ** routine might decide that creating an ephemeral b-tree for membership |
| 2112 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the |
| 2113 ** calling routine should implement the IN operator using a sequence |
| 2114 ** of Eq or Ne comparison operations. |
| 2115 ** |
| 2116 ** When the b-tree is being used for membership tests, the calling function |
| 2117 ** might need to know whether or not the RHS side of the IN operator |
| 2118 ** contains a NULL. If prRhsHasNull is not a NULL pointer and |
| 2119 ** if there is any chance that the (...) might contain a NULL value at |
| 2120 ** runtime, then a register is allocated and the register number written |
| 2121 ** to *prRhsHasNull. If there is no chance that the (...) contains a |
| 2122 ** NULL value, then *prRhsHasNull is left unchanged. |
| 2123 ** |
| 2124 ** If a register is allocated and its location stored in *prRhsHasNull, then |
| 2125 ** the value in that register will be NULL if the b-tree contains one or more |
| 2126 ** NULL values, and it will be some non-NULL value if the b-tree contains no |
| 2127 ** NULL values. |
| 2128 ** |
| 2129 ** If the aiMap parameter is not NULL, it must point to an array containing |
| 2130 ** one element for each column returned by the SELECT statement on the RHS |
| 2131 ** of the IN(...) operator. The i'th entry of the array is populated with the |
| 2132 ** offset of the index column that matches the i'th column returned by the |
| 2133 ** SELECT. For example, if the expression and selected index are: |
| 2134 ** |
| 2135 ** (?,?,?) IN (SELECT a, b, c FROM t1) |
| 2136 ** CREATE INDEX i1 ON t1(b, c, a); |
| 2137 ** |
| 2138 ** then aiMap[] is populated with {2, 0, 1}. |
| 2139 */ |
| 2140 #ifndef SQLITE_OMIT_SUBQUERY |
| 2141 int sqlite3FindInIndex( |
| 2142 Parse *pParse, /* Parsing context */ |
| 2143 Expr *pX, /* The right-hand side (RHS) of the IN operator */ |
| 2144 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ |
| 2145 int *prRhsHasNull, /* Register holding NULL status. See notes */ |
| 2146 int *aiMap /* Mapping from Index fields to RHS fields */ |
| 2147 ){ |
| 2148 Select *p; /* SELECT to the right of IN operator */ |
| 2149 int eType = 0; /* Type of RHS table. IN_INDEX_* */ |
| 2150 int iTab = pParse->nTab++; /* Cursor of the RHS table */ |
| 2151 int mustBeUnique; /* True if RHS must be unique */ |
| 2152 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ |
| 2153 |
| 2154 assert( pX->op==TK_IN ); |
| 2155 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; |
| 2156 |
| 2157 /* If the RHS of this IN(...) operator is a SELECT, and if it matters |
| 2158 ** whether or not the SELECT result contains NULL values, check whether |
| 2159 ** or not NULL is actually possible (it may not be, for example, due |
| 2160 ** to NOT NULL constraints in the schema). If no NULL values are possible, |
| 2161 ** set prRhsHasNull to 0 before continuing. */ |
| 2162 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ |
| 2163 int i; |
| 2164 ExprList *pEList = pX->x.pSelect->pEList; |
| 2165 for(i=0; i<pEList->nExpr; i++){ |
| 2166 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; |
| 2167 } |
| 2168 if( i==pEList->nExpr ){ |
| 2169 prRhsHasNull = 0; |
| 2170 } |
| 2171 } |
| 2172 |
| 2173 /* Check to see if an existing table or index can be used to |
| 2174 ** satisfy the query. This is preferable to generating a new |
| 2175 ** ephemeral table. */ |
| 2176 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ |
| 2177 sqlite3 *db = pParse->db; /* Database connection */ |
| 2178 Table *pTab; /* Table <table>. */ |
| 2179 i16 iDb; /* Database idx for pTab */ |
| 2180 ExprList *pEList = p->pEList; |
| 2181 int nExpr = pEList->nExpr; |
| 2182 |
| 2183 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ |
| 2184 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ |
| 2185 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ |
| 2186 pTab = p->pSrc->a[0].pTab; |
| 2187 |
| 2188 /* Code an OP_Transaction and OP_TableLock for <table>. */ |
| 2189 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 2190 sqlite3CodeVerifySchema(pParse, iDb); |
| 2191 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
| 2192 |
| 2193 assert(v); /* sqlite3GetVdbe() has always been previously called */ |
| 2194 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ |
| 2195 /* The "x IN (SELECT rowid FROM table)" case */ |
| 2196 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); |
| 2197 VdbeCoverage(v); |
| 2198 |
| 2199 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
| 2200 eType = IN_INDEX_ROWID; |
| 2201 |
| 2202 sqlite3VdbeJumpHere(v, iAddr); |
| 2203 }else{ |
| 2204 Index *pIdx; /* Iterator variable */ |
| 2205 int affinity_ok = 1; |
| 2206 int i; |
| 2207 |
| 2208 /* Check that the affinity that will be used to perform each |
| 2209 ** comparison is the same as the affinity of each column in table |
| 2210 ** on the RHS of the IN operator. If it not, it is not possible to |
| 2211 ** use any index of the RHS table. */ |
| 2212 for(i=0; i<nExpr && affinity_ok; i++){ |
| 2213 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); |
| 2214 int iCol = pEList->a[i].pExpr->iColumn; |
| 2215 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ |
| 2216 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); |
| 2217 testcase( cmpaff==SQLITE_AFF_BLOB ); |
| 2218 testcase( cmpaff==SQLITE_AFF_TEXT ); |
| 2219 switch( cmpaff ){ |
| 2220 case SQLITE_AFF_BLOB: |
| 2221 break; |
| 2222 case SQLITE_AFF_TEXT: |
| 2223 /* sqlite3CompareAffinity() only returns TEXT if one side or the |
| 2224 ** other has no affinity and the other side is TEXT. Hence, |
| 2225 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT |
| 2226 ** and for the term on the LHS of the IN to have no affinity. */ |
| 2227 assert( idxaff==SQLITE_AFF_TEXT ); |
| 2228 break; |
| 2229 default: |
| 2230 affinity_ok = sqlite3IsNumericAffinity(idxaff); |
| 2231 } |
| 2232 } |
| 2233 |
| 2234 if( affinity_ok ){ |
| 2235 /* Search for an existing index that will work for this IN operator */ |
| 2236 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ |
| 2237 Bitmask colUsed; /* Columns of the index used */ |
| 2238 Bitmask mCol; /* Mask for the current column */ |
| 2239 if( pIdx->nColumn<nExpr ) continue; |
| 2240 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute |
| 2241 ** BITMASK(nExpr) without overflowing */ |
| 2242 testcase( pIdx->nColumn==BMS-2 ); |
| 2243 testcase( pIdx->nColumn==BMS-1 ); |
| 2244 if( pIdx->nColumn>=BMS-1 ) continue; |
| 2245 if( mustBeUnique ){ |
| 2246 if( pIdx->nKeyCol>nExpr |
| 2247 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) |
| 2248 ){ |
| 2249 continue; /* This index is not unique over the IN RHS columns */ |
| 2250 } |
| 2251 } |
| 2252 |
| 2253 colUsed = 0; /* Columns of index used so far */ |
| 2254 for(i=0; i<nExpr; i++){ |
| 2255 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); |
| 2256 Expr *pRhs = pEList->a[i].pExpr; |
| 2257 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); |
| 2258 int j; |
| 2259 |
| 2260 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); |
| 2261 for(j=0; j<nExpr; j++){ |
| 2262 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; |
| 2263 assert( pIdx->azColl[j] ); |
| 2264 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ |
| 2265 continue; |
| 2266 } |
| 2267 break; |
| 2268 } |
| 2269 if( j==nExpr ) break; |
| 2270 mCol = MASKBIT(j); |
| 2271 if( mCol & colUsed ) break; /* Each column used only once */ |
| 2272 colUsed |= mCol; |
| 2273 if( aiMap ) aiMap[i] = j; |
| 2274 } |
| 2275 |
| 2276 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); |
| 2277 if( colUsed==(MASKBIT(nExpr)-1) ){ |
| 2278 /* If we reach this point, that means the index pIdx is usable */ |
| 2279 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| 2280 #ifndef SQLITE_OMIT_EXPLAIN |
| 2281 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, |
| 2282 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), |
| 2283 P4_DYNAMIC); |
| 2284 #endif |
| 2285 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); |
| 2286 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
| 2287 VdbeComment((v, "%s", pIdx->zName)); |
| 2288 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); |
| 2289 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; |
| 2290 |
| 2291 if( prRhsHasNull ){ |
| 2292 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
| 2293 i64 mask = (1<<nExpr)-1; |
| 2294 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, |
| 2295 iTab, 0, 0, (u8*)&mask, P4_INT64); |
| 2296 #endif |
| 2297 *prRhsHasNull = ++pParse->nMem; |
| 2298 if( nExpr==1 ){ |
| 2299 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); |
| 2300 } |
| 2301 } |
| 2302 sqlite3VdbeJumpHere(v, iAddr); |
| 2303 } |
| 2304 } /* End loop over indexes */ |
| 2305 } /* End if( affinity_ok ) */ |
| 2306 } /* End if not an rowid index */ |
| 2307 } /* End attempt to optimize using an index */ |
| 2308 |
| 2309 /* If no preexisting index is available for the IN clause |
| 2310 ** and IN_INDEX_NOOP is an allowed reply |
| 2311 ** and the RHS of the IN operator is a list, not a subquery |
| 2312 ** and the RHS is not constant or has two or fewer terms, |
| 2313 ** then it is not worth creating an ephemeral table to evaluate |
| 2314 ** the IN operator so return IN_INDEX_NOOP. |
| 2315 */ |
| 2316 if( eType==0 |
| 2317 && (inFlags & IN_INDEX_NOOP_OK) |
| 2318 && !ExprHasProperty(pX, EP_xIsSelect) |
| 2319 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) |
| 2320 ){ |
| 2321 eType = IN_INDEX_NOOP; |
| 2322 } |
| 2323 |
| 2324 if( eType==0 ){ |
| 2325 /* Could not find an existing table or index to use as the RHS b-tree. |
| 2326 ** We will have to generate an ephemeral table to do the job. |
| 2327 */ |
| 2328 u32 savedNQueryLoop = pParse->nQueryLoop; |
| 2329 int rMayHaveNull = 0; |
| 2330 eType = IN_INDEX_EPH; |
| 2331 if( inFlags & IN_INDEX_LOOP ){ |
| 2332 pParse->nQueryLoop = 0; |
| 2333 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ |
| 2334 eType = IN_INDEX_ROWID; |
| 2335 } |
| 2336 }else if( prRhsHasNull ){ |
| 2337 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; |
| 2338 } |
| 2339 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); |
| 2340 pParse->nQueryLoop = savedNQueryLoop; |
| 2341 }else{ |
| 2342 pX->iTable = iTab; |
| 2343 } |
| 2344 |
| 2345 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ |
| 2346 int i, n; |
| 2347 n = sqlite3ExprVectorSize(pX->pLeft); |
| 2348 for(i=0; i<n; i++) aiMap[i] = i; |
| 2349 } |
| 2350 return eType; |
| 2351 } |
| 2352 #endif |
| 2353 |
| 2354 #ifndef SQLITE_OMIT_SUBQUERY |
| 2355 /* |
| 2356 ** Argument pExpr is an (?, ?...) IN(...) expression. This |
| 2357 ** function allocates and returns a nul-terminated string containing |
| 2358 ** the affinities to be used for each column of the comparison. |
| 2359 ** |
| 2360 ** It is the responsibility of the caller to ensure that the returned |
| 2361 ** string is eventually freed using sqlite3DbFree(). |
| 2362 */ |
| 2363 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ |
| 2364 Expr *pLeft = pExpr->pLeft; |
| 2365 int nVal = sqlite3ExprVectorSize(pLeft); |
| 2366 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; |
| 2367 char *zRet; |
| 2368 |
| 2369 assert( pExpr->op==TK_IN ); |
| 2370 zRet = sqlite3DbMallocZero(pParse->db, nVal+1); |
| 2371 if( zRet ){ |
| 2372 int i; |
| 2373 for(i=0; i<nVal; i++){ |
| 2374 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); |
| 2375 char a = sqlite3ExprAffinity(pA); |
| 2376 if( pSelect ){ |
| 2377 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); |
| 2378 }else{ |
| 2379 zRet[i] = a; |
| 2380 } |
| 2381 } |
| 2382 zRet[nVal] = '\0'; |
| 2383 } |
| 2384 return zRet; |
| 2385 } |
| 2386 #endif |
| 2387 |
| 2388 #ifndef SQLITE_OMIT_SUBQUERY |
| 2389 /* |
| 2390 ** Load the Parse object passed as the first argument with an error |
| 2391 ** message of the form: |
| 2392 ** |
| 2393 ** "sub-select returns N columns - expected M" |
| 2394 */ |
| 2395 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ |
| 2396 const char *zFmt = "sub-select returns %d columns - expected %d"; |
| 2397 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); |
| 2398 } |
| 2399 #endif |
| 2400 |
| 2401 /* |
| 2402 ** Expression pExpr is a vector that has been used in a context where |
| 2403 ** it is not permitted. If pExpr is a sub-select vector, this routine |
| 2404 ** loads the Parse object with a message of the form: |
| 2405 ** |
| 2406 ** "sub-select returns N columns - expected 1" |
| 2407 ** |
| 2408 ** Or, if it is a regular scalar vector: |
| 2409 ** |
| 2410 ** "row value misused" |
| 2411 */ |
| 2412 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ |
| 2413 #ifndef SQLITE_OMIT_SUBQUERY |
| 2414 if( pExpr->flags & EP_xIsSelect ){ |
| 2415 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); |
| 2416 }else |
| 2417 #endif |
| 2418 { |
| 2419 sqlite3ErrorMsg(pParse, "row value misused"); |
| 2420 } |
| 2421 } |
| 2422 |
| 2423 /* |
| 2424 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, |
| 2425 ** or IN operators. Examples: |
| 2426 ** |
| 2427 ** (SELECT a FROM b) -- subquery |
| 2428 ** EXISTS (SELECT a FROM b) -- EXISTS subquery |
| 2429 ** x IN (4,5,11) -- IN operator with list on right-hand side |
| 2430 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right |
| 2431 ** |
| 2432 ** The pExpr parameter describes the expression that contains the IN |
| 2433 ** operator or subquery. |
| 2434 ** |
| 2435 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed |
| 2436 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference |
| 2437 ** to some integer key column of a table B-Tree. In this case, use an |
| 2438 ** intkey B-Tree to store the set of IN(...) values instead of the usual |
| 2439 ** (slower) variable length keys B-Tree. |
| 2440 ** |
| 2441 ** If rMayHaveNull is non-zero, that means that the operation is an IN |
| 2442 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. |
| 2443 ** All this routine does is initialize the register given by rMayHaveNull |
| 2444 ** to NULL. Calling routines will take care of changing this register |
| 2445 ** value to non-NULL if the RHS is NULL-free. |
| 2446 ** |
| 2447 ** For a SELECT or EXISTS operator, return the register that holds the |
| 2448 ** result. For a multi-column SELECT, the result is stored in a contiguous |
| 2449 ** array of registers and the return value is the register of the left-most |
| 2450 ** result column. Return 0 for IN operators or if an error occurs. |
| 2451 */ |
| 2452 #ifndef SQLITE_OMIT_SUBQUERY |
| 2453 int sqlite3CodeSubselect( |
| 2454 Parse *pParse, /* Parsing context */ |
| 2455 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ |
| 2456 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ |
| 2457 int isRowid /* If true, LHS of IN operator is a rowid */ |
| 2458 ){ |
| 2459 int jmpIfDynamic = -1; /* One-time test address */ |
| 2460 int rReg = 0; /* Register storing resulting */ |
| 2461 Vdbe *v = sqlite3GetVdbe(pParse); |
| 2462 if( NEVER(v==0) ) return 0; |
| 2463 sqlite3ExprCachePush(pParse); |
| 2464 |
| 2465 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it |
| 2466 ** is encountered if any of the following is true: |
| 2467 ** |
| 2468 ** * The right-hand side is a correlated subquery |
| 2469 ** * The right-hand side is an expression list containing variables |
| 2470 ** * We are inside a trigger |
| 2471 ** |
| 2472 ** If all of the above are false, then we can run this code just once |
| 2473 ** save the results, and reuse the same result on subsequent invocations. |
| 2474 */ |
| 2475 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ |
| 2476 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| 2477 } |
| 2478 |
| 2479 #ifndef SQLITE_OMIT_EXPLAIN |
| 2480 if( pParse->explain==2 ){ |
| 2481 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", |
| 2482 jmpIfDynamic>=0?"":"CORRELATED ", |
| 2483 pExpr->op==TK_IN?"LIST":"SCALAR", |
| 2484 pParse->iNextSelectId |
| 2485 ); |
| 2486 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); |
| 2487 } |
| 2488 #endif |
| 2489 |
| 2490 switch( pExpr->op ){ |
| 2491 case TK_IN: { |
| 2492 int addr; /* Address of OP_OpenEphemeral instruction */ |
| 2493 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ |
| 2494 KeyInfo *pKeyInfo = 0; /* Key information */ |
| 2495 int nVal; /* Size of vector pLeft */ |
| 2496 |
| 2497 nVal = sqlite3ExprVectorSize(pLeft); |
| 2498 assert( !isRowid || nVal==1 ); |
| 2499 |
| 2500 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' |
| 2501 ** expression it is handled the same way. An ephemeral table is |
| 2502 ** filled with index keys representing the results from the |
| 2503 ** SELECT or the <exprlist>. |
| 2504 ** |
| 2505 ** If the 'x' expression is a column value, or the SELECT... |
| 2506 ** statement returns a column value, then the affinity of that |
| 2507 ** column is used to build the index keys. If both 'x' and the |
| 2508 ** SELECT... statement are columns, then numeric affinity is used |
| 2509 ** if either column has NUMERIC or INTEGER affinity. If neither |
| 2510 ** 'x' nor the SELECT... statement are columns, then numeric affinity |
| 2511 ** is used. |
| 2512 */ |
| 2513 pExpr->iTable = pParse->nTab++; |
| 2514 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, |
| 2515 pExpr->iTable, (isRowid?0:nVal)); |
| 2516 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); |
| 2517 |
| 2518 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| 2519 /* Case 1: expr IN (SELECT ...) |
| 2520 ** |
| 2521 ** Generate code to write the results of the select into the temporary |
| 2522 ** table allocated and opened above. |
| 2523 */ |
| 2524 Select *pSelect = pExpr->x.pSelect; |
| 2525 ExprList *pEList = pSelect->pEList; |
| 2526 |
| 2527 assert( !isRowid ); |
| 2528 /* If the LHS and RHS of the IN operator do not match, that |
| 2529 ** error will have been caught long before we reach this point. */ |
| 2530 if( ALWAYS(pEList->nExpr==nVal) ){ |
| 2531 SelectDest dest; |
| 2532 int i; |
| 2533 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); |
| 2534 dest.zAffSdst = exprINAffinity(pParse, pExpr); |
| 2535 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); |
| 2536 pSelect->iLimit = 0; |
| 2537 testcase( pSelect->selFlags & SF_Distinct ); |
| 2538 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ |
| 2539 if( sqlite3Select(pParse, pSelect, &dest) ){ |
| 2540 sqlite3DbFree(pParse->db, dest.zAffSdst); |
| 2541 sqlite3KeyInfoUnref(pKeyInfo); |
| 2542 return 0; |
| 2543 } |
| 2544 sqlite3DbFree(pParse->db, dest.zAffSdst); |
| 2545 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ |
| 2546 assert( pEList!=0 ); |
| 2547 assert( pEList->nExpr>0 ); |
| 2548 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
| 2549 for(i=0; i<nVal; i++){ |
| 2550 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); |
| 2551 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( |
| 2552 pParse, p, pEList->a[i].pExpr |
| 2553 ); |
| 2554 } |
| 2555 } |
| 2556 }else if( ALWAYS(pExpr->x.pList!=0) ){ |
| 2557 /* Case 2: expr IN (exprlist) |
| 2558 ** |
| 2559 ** For each expression, build an index key from the evaluation and |
| 2560 ** store it in the temporary table. If <expr> is a column, then use |
| 2561 ** that columns affinity when building index keys. If <expr> is not |
| 2562 ** a column, use numeric affinity. |
| 2563 */ |
| 2564 char affinity; /* Affinity of the LHS of the IN */ |
| 2565 int i; |
| 2566 ExprList *pList = pExpr->x.pList; |
| 2567 struct ExprList_item *pItem; |
| 2568 int r1, r2, r3; |
| 2569 |
| 2570 affinity = sqlite3ExprAffinity(pLeft); |
| 2571 if( !affinity ){ |
| 2572 affinity = SQLITE_AFF_BLOB; |
| 2573 } |
| 2574 if( pKeyInfo ){ |
| 2575 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
| 2576 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| 2577 } |
| 2578 |
| 2579 /* Loop through each expression in <exprlist>. */ |
| 2580 r1 = sqlite3GetTempReg(pParse); |
| 2581 r2 = sqlite3GetTempReg(pParse); |
| 2582 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); |
| 2583 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
| 2584 Expr *pE2 = pItem->pExpr; |
| 2585 int iValToIns; |
| 2586 |
| 2587 /* If the expression is not constant then we will need to |
| 2588 ** disable the test that was generated above that makes sure |
| 2589 ** this code only executes once. Because for a non-constant |
| 2590 ** expression we need to rerun this code each time. |
| 2591 */ |
| 2592 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ |
| 2593 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); |
| 2594 jmpIfDynamic = -1; |
| 2595 } |
| 2596 |
| 2597 /* Evaluate the expression and insert it into the temp table */ |
| 2598 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ |
| 2599 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); |
| 2600 }else{ |
| 2601 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); |
| 2602 if( isRowid ){ |
| 2603 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, |
| 2604 sqlite3VdbeCurrentAddr(v)+2); |
| 2605 VdbeCoverage(v); |
| 2606 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); |
| 2607 }else{ |
| 2608 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); |
| 2609 sqlite3ExprCacheAffinityChange(pParse, r3, 1); |
| 2610 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); |
| 2611 } |
| 2612 } |
| 2613 } |
| 2614 sqlite3ReleaseTempReg(pParse, r1); |
| 2615 sqlite3ReleaseTempReg(pParse, r2); |
| 2616 } |
| 2617 if( pKeyInfo ){ |
| 2618 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); |
| 2619 } |
| 2620 break; |
| 2621 } |
| 2622 |
| 2623 case TK_EXISTS: |
| 2624 case TK_SELECT: |
| 2625 default: { |
| 2626 /* Case 3: (SELECT ... FROM ...) |
| 2627 ** or: EXISTS(SELECT ... FROM ...) |
| 2628 ** |
| 2629 ** For a SELECT, generate code to put the values for all columns of |
| 2630 ** the first row into an array of registers and return the index of |
| 2631 ** the first register. |
| 2632 ** |
| 2633 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) |
| 2634 ** into a register and return that register number. |
| 2635 ** |
| 2636 ** In both cases, the query is augmented with "LIMIT 1". Any |
| 2637 ** preexisting limit is discarded in place of the new LIMIT 1. |
| 2638 */ |
| 2639 Select *pSel; /* SELECT statement to encode */ |
| 2640 SelectDest dest; /* How to deal with SELECT result */ |
| 2641 int nReg; /* Registers to allocate */ |
| 2642 |
| 2643 testcase( pExpr->op==TK_EXISTS ); |
| 2644 testcase( pExpr->op==TK_SELECT ); |
| 2645 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); |
| 2646 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); |
| 2647 |
| 2648 pSel = pExpr->x.pSelect; |
| 2649 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; |
| 2650 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); |
| 2651 pParse->nMem += nReg; |
| 2652 if( pExpr->op==TK_SELECT ){ |
| 2653 dest.eDest = SRT_Mem; |
| 2654 dest.iSdst = dest.iSDParm; |
| 2655 dest.nSdst = nReg; |
| 2656 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); |
| 2657 VdbeComment((v, "Init subquery result")); |
| 2658 }else{ |
| 2659 dest.eDest = SRT_Exists; |
| 2660 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); |
| 2661 VdbeComment((v, "Init EXISTS result")); |
| 2662 } |
| 2663 sqlite3ExprDelete(pParse->db, pSel->pLimit); |
| 2664 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, |
| 2665 &sqlite3IntTokens[1], 0); |
| 2666 pSel->iLimit = 0; |
| 2667 pSel->selFlags &= ~SF_MultiValue; |
| 2668 if( sqlite3Select(pParse, pSel, &dest) ){ |
| 2669 return 0; |
| 2670 } |
| 2671 rReg = dest.iSDParm; |
| 2672 ExprSetVVAProperty(pExpr, EP_NoReduce); |
| 2673 break; |
| 2674 } |
| 2675 } |
| 2676 |
| 2677 if( rHasNullFlag ){ |
| 2678 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); |
| 2679 } |
| 2680 |
| 2681 if( jmpIfDynamic>=0 ){ |
| 2682 sqlite3VdbeJumpHere(v, jmpIfDynamic); |
| 2683 } |
| 2684 sqlite3ExprCachePop(pParse); |
| 2685 |
| 2686 return rReg; |
| 2687 } |
| 2688 #endif /* SQLITE_OMIT_SUBQUERY */ |
| 2689 |
| 2690 #ifndef SQLITE_OMIT_SUBQUERY |
| 2691 /* |
| 2692 ** Expr pIn is an IN(...) expression. This function checks that the |
| 2693 ** sub-select on the RHS of the IN() operator has the same number of |
| 2694 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not |
| 2695 ** a sub-query, that the LHS is a vector of size 1. |
| 2696 */ |
| 2697 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ |
| 2698 int nVector = sqlite3ExprVectorSize(pIn->pLeft); |
| 2699 if( (pIn->flags & EP_xIsSelect) ){ |
| 2700 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ |
| 2701 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); |
| 2702 return 1; |
| 2703 } |
| 2704 }else if( nVector!=1 ){ |
| 2705 sqlite3VectorErrorMsg(pParse, pIn->pLeft); |
| 2706 return 1; |
| 2707 } |
| 2708 return 0; |
| 2709 } |
| 2710 #endif |
| 2711 |
| 2712 #ifndef SQLITE_OMIT_SUBQUERY |
| 2713 /* |
| 2714 ** Generate code for an IN expression. |
| 2715 ** |
| 2716 ** x IN (SELECT ...) |
| 2717 ** x IN (value, value, ...) |
| 2718 ** |
| 2719 ** The left-hand side (LHS) is a scalar or vector expression. The |
| 2720 ** right-hand side (RHS) is an array of zero or more scalar values, or a |
| 2721 ** subquery. If the RHS is a subquery, the number of result columns must |
| 2722 ** match the number of columns in the vector on the LHS. If the RHS is |
| 2723 ** a list of values, the LHS must be a scalar. |
| 2724 ** |
| 2725 ** The IN operator is true if the LHS value is contained within the RHS. |
| 2726 ** The result is false if the LHS is definitely not in the RHS. The |
| 2727 ** result is NULL if the presence of the LHS in the RHS cannot be |
| 2728 ** determined due to NULLs. |
| 2729 ** |
| 2730 ** This routine generates code that jumps to destIfFalse if the LHS is not |
| 2731 ** contained within the RHS. If due to NULLs we cannot determine if the LHS |
| 2732 ** is contained in the RHS then jump to destIfNull. If the LHS is contained |
| 2733 ** within the RHS then fall through. |
| 2734 ** |
| 2735 ** See the separate in-operator.md documentation file in the canonical |
| 2736 ** SQLite source tree for additional information. |
| 2737 */ |
| 2738 static void sqlite3ExprCodeIN( |
| 2739 Parse *pParse, /* Parsing and code generating context */ |
| 2740 Expr *pExpr, /* The IN expression */ |
| 2741 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ |
| 2742 int destIfNull /* Jump here if the results are unknown due to NULLs */ |
| 2743 ){ |
| 2744 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ |
| 2745 int eType; /* Type of the RHS */ |
| 2746 int rLhs; /* Register(s) holding the LHS values */ |
| 2747 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ |
| 2748 Vdbe *v; /* Statement under construction */ |
| 2749 int *aiMap = 0; /* Map from vector field to index column */ |
| 2750 char *zAff = 0; /* Affinity string for comparisons */ |
| 2751 int nVector; /* Size of vectors for this IN operator */ |
| 2752 int iDummy; /* Dummy parameter to exprCodeVector() */ |
| 2753 Expr *pLeft; /* The LHS of the IN operator */ |
| 2754 int i; /* loop counter */ |
| 2755 int destStep2; /* Where to jump when NULLs seen in step 2 */ |
| 2756 int destStep6 = 0; /* Start of code for Step 6 */ |
| 2757 int addrTruthOp; /* Address of opcode that determines the IN is true */ |
| 2758 int destNotNull; /* Jump here if a comparison is not true in step 6 */ |
| 2759 int addrTop; /* Top of the step-6 loop */ |
| 2760 |
| 2761 pLeft = pExpr->pLeft; |
| 2762 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; |
| 2763 zAff = exprINAffinity(pParse, pExpr); |
| 2764 nVector = sqlite3ExprVectorSize(pExpr->pLeft); |
| 2765 aiMap = (int*)sqlite3DbMallocZero( |
| 2766 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 |
| 2767 ); |
| 2768 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; |
| 2769 |
| 2770 /* Attempt to compute the RHS. After this step, if anything other than |
| 2771 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable |
| 2772 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, |
| 2773 ** the RHS has not yet been coded. */ |
| 2774 v = pParse->pVdbe; |
| 2775 assert( v!=0 ); /* OOM detected prior to this routine */ |
| 2776 VdbeNoopComment((v, "begin IN expr")); |
| 2777 eType = sqlite3FindInIndex(pParse, pExpr, |
| 2778 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, |
| 2779 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); |
| 2780 |
| 2781 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH |
| 2782 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC |
| 2783 ); |
| 2784 #ifdef SQLITE_DEBUG |
| 2785 /* Confirm that aiMap[] contains nVector integer values between 0 and |
| 2786 ** nVector-1. */ |
| 2787 for(i=0; i<nVector; i++){ |
| 2788 int j, cnt; |
| 2789 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; |
| 2790 assert( cnt==1 ); |
| 2791 } |
| 2792 #endif |
| 2793 |
| 2794 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a |
| 2795 ** vector, then it is stored in an array of nVector registers starting |
| 2796 ** at r1. |
| 2797 ** |
| 2798 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector |
| 2799 ** so that the fields are in the same order as an existing index. The |
| 2800 ** aiMap[] array contains a mapping from the original LHS field order to |
| 2801 ** the field order that matches the RHS index. |
| 2802 */ |
| 2803 sqlite3ExprCachePush(pParse); |
| 2804 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); |
| 2805 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ |
| 2806 if( i==nVector ){ |
| 2807 /* LHS fields are not reordered */ |
| 2808 rLhs = rLhsOrig; |
| 2809 }else{ |
| 2810 /* Need to reorder the LHS fields according to aiMap */ |
| 2811 rLhs = sqlite3GetTempRange(pParse, nVector); |
| 2812 for(i=0; i<nVector; i++){ |
| 2813 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); |
| 2814 } |
| 2815 } |
| 2816 |
| 2817 /* If sqlite3FindInIndex() did not find or create an index that is |
| 2818 ** suitable for evaluating the IN operator, then evaluate using a |
| 2819 ** sequence of comparisons. |
| 2820 ** |
| 2821 ** This is step (1) in the in-operator.md optimized algorithm. |
| 2822 */ |
| 2823 if( eType==IN_INDEX_NOOP ){ |
| 2824 ExprList *pList = pExpr->x.pList; |
| 2825 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| 2826 int labelOk = sqlite3VdbeMakeLabel(v); |
| 2827 int r2, regToFree; |
| 2828 int regCkNull = 0; |
| 2829 int ii; |
| 2830 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
| 2831 if( destIfNull!=destIfFalse ){ |
| 2832 regCkNull = sqlite3GetTempReg(pParse); |
| 2833 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); |
| 2834 } |
| 2835 for(ii=0; ii<pList->nExpr; ii++){ |
| 2836 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); |
| 2837 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ |
| 2838 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); |
| 2839 } |
| 2840 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ |
| 2841 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, |
| 2842 (void*)pColl, P4_COLLSEQ); |
| 2843 VdbeCoverageIf(v, ii<pList->nExpr-1); |
| 2844 VdbeCoverageIf(v, ii==pList->nExpr-1); |
| 2845 sqlite3VdbeChangeP5(v, zAff[0]); |
| 2846 }else{ |
| 2847 assert( destIfNull==destIfFalse ); |
| 2848 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, |
| 2849 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); |
| 2850 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); |
| 2851 } |
| 2852 sqlite3ReleaseTempReg(pParse, regToFree); |
| 2853 } |
| 2854 if( regCkNull ){ |
| 2855 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); |
| 2856 sqlite3VdbeGoto(v, destIfFalse); |
| 2857 } |
| 2858 sqlite3VdbeResolveLabel(v, labelOk); |
| 2859 sqlite3ReleaseTempReg(pParse, regCkNull); |
| 2860 goto sqlite3ExprCodeIN_finished; |
| 2861 } |
| 2862 |
| 2863 /* Step 2: Check to see if the LHS contains any NULL columns. If the |
| 2864 ** LHS does contain NULLs then the result must be either FALSE or NULL. |
| 2865 ** We will then skip the binary search of the RHS. |
| 2866 */ |
| 2867 if( destIfNull==destIfFalse ){ |
| 2868 destStep2 = destIfFalse; |
| 2869 }else{ |
| 2870 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); |
| 2871 } |
| 2872 for(i=0; i<nVector; i++){ |
| 2873 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); |
| 2874 if( sqlite3ExprCanBeNull(p) ){ |
| 2875 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); |
| 2876 VdbeCoverage(v); |
| 2877 } |
| 2878 } |
| 2879 |
| 2880 /* Step 3. The LHS is now known to be non-NULL. Do the binary search |
| 2881 ** of the RHS using the LHS as a probe. If found, the result is |
| 2882 ** true. |
| 2883 */ |
| 2884 if( eType==IN_INDEX_ROWID ){ |
| 2885 /* In this case, the RHS is the ROWID of table b-tree and so we also |
| 2886 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 |
| 2887 ** into a single opcode. */ |
| 2888 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); |
| 2889 VdbeCoverage(v); |
| 2890 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ |
| 2891 }else{ |
| 2892 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); |
| 2893 if( destIfFalse==destIfNull ){ |
| 2894 /* Combine Step 3 and Step 5 into a single opcode */ |
| 2895 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, |
| 2896 rLhs, nVector); VdbeCoverage(v); |
| 2897 goto sqlite3ExprCodeIN_finished; |
| 2898 } |
| 2899 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ |
| 2900 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, |
| 2901 rLhs, nVector); VdbeCoverage(v); |
| 2902 } |
| 2903 |
| 2904 /* Step 4. If the RHS is known to be non-NULL and we did not find |
| 2905 ** an match on the search above, then the result must be FALSE. |
| 2906 */ |
| 2907 if( rRhsHasNull && nVector==1 ){ |
| 2908 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); |
| 2909 VdbeCoverage(v); |
| 2910 } |
| 2911 |
| 2912 /* Step 5. If we do not care about the difference between NULL and |
| 2913 ** FALSE, then just return false. |
| 2914 */ |
| 2915 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); |
| 2916 |
| 2917 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. |
| 2918 ** If any comparison is NULL, then the result is NULL. If all |
| 2919 ** comparisons are FALSE then the final result is FALSE. |
| 2920 ** |
| 2921 ** For a scalar LHS, it is sufficient to check just the first row |
| 2922 ** of the RHS. |
| 2923 */ |
| 2924 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); |
| 2925 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); |
| 2926 VdbeCoverage(v); |
| 2927 if( nVector>1 ){ |
| 2928 destNotNull = sqlite3VdbeMakeLabel(v); |
| 2929 }else{ |
| 2930 /* For nVector==1, combine steps 6 and 7 by immediately returning |
| 2931 ** FALSE if the first comparison is not NULL */ |
| 2932 destNotNull = destIfFalse; |
| 2933 } |
| 2934 for(i=0; i<nVector; i++){ |
| 2935 Expr *p; |
| 2936 CollSeq *pColl; |
| 2937 int r3 = sqlite3GetTempReg(pParse); |
| 2938 p = sqlite3VectorFieldSubexpr(pLeft, i); |
| 2939 pColl = sqlite3ExprCollSeq(pParse, p); |
| 2940 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); |
| 2941 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, |
| 2942 (void*)pColl, P4_COLLSEQ); |
| 2943 VdbeCoverage(v); |
| 2944 sqlite3ReleaseTempReg(pParse, r3); |
| 2945 } |
| 2946 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); |
| 2947 if( nVector>1 ){ |
| 2948 sqlite3VdbeResolveLabel(v, destNotNull); |
| 2949 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); |
| 2950 VdbeCoverage(v); |
| 2951 |
| 2952 /* Step 7: If we reach this point, we know that the result must |
| 2953 ** be false. */ |
| 2954 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); |
| 2955 } |
| 2956 |
| 2957 /* Jumps here in order to return true. */ |
| 2958 sqlite3VdbeJumpHere(v, addrTruthOp); |
| 2959 |
| 2960 sqlite3ExprCodeIN_finished: |
| 2961 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); |
| 2962 sqlite3ExprCachePop(pParse); |
| 2963 VdbeComment((v, "end IN expr")); |
| 2964 sqlite3ExprCodeIN_oom_error: |
| 2965 sqlite3DbFree(pParse->db, aiMap); |
| 2966 sqlite3DbFree(pParse->db, zAff); |
| 2967 } |
| 2968 #endif /* SQLITE_OMIT_SUBQUERY */ |
| 2969 |
| 2970 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 2971 /* |
| 2972 ** Generate an instruction that will put the floating point |
| 2973 ** value described by z[0..n-1] into register iMem. |
| 2974 ** |
| 2975 ** The z[] string will probably not be zero-terminated. But the |
| 2976 ** z[n] character is guaranteed to be something that does not look |
| 2977 ** like the continuation of the number. |
| 2978 */ |
| 2979 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ |
| 2980 if( ALWAYS(z!=0) ){ |
| 2981 double value; |
| 2982 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); |
| 2983 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ |
| 2984 if( negateFlag ) value = -value; |
| 2985 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); |
| 2986 } |
| 2987 } |
| 2988 #endif |
| 2989 |
| 2990 |
| 2991 /* |
| 2992 ** Generate an instruction that will put the integer describe by |
| 2993 ** text z[0..n-1] into register iMem. |
| 2994 ** |
| 2995 ** Expr.u.zToken is always UTF8 and zero-terminated. |
| 2996 */ |
| 2997 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ |
| 2998 Vdbe *v = pParse->pVdbe; |
| 2999 if( pExpr->flags & EP_IntValue ){ |
| 3000 int i = pExpr->u.iValue; |
| 3001 assert( i>=0 ); |
| 3002 if( negFlag ) i = -i; |
| 3003 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); |
| 3004 }else{ |
| 3005 int c; |
| 3006 i64 value; |
| 3007 const char *z = pExpr->u.zToken; |
| 3008 assert( z!=0 ); |
| 3009 c = sqlite3DecOrHexToI64(z, &value); |
| 3010 if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){ |
| 3011 #ifdef SQLITE_OMIT_FLOATING_POINT |
| 3012 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); |
| 3013 #else |
| 3014 #ifndef SQLITE_OMIT_HEX_INTEGER |
| 3015 if( sqlite3_strnicmp(z,"0x",2)==0 ){ |
| 3016 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); |
| 3017 }else |
| 3018 #endif |
| 3019 { |
| 3020 codeReal(v, z, negFlag, iMem); |
| 3021 } |
| 3022 #endif |
| 3023 }else{ |
| 3024 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } |
| 3025 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); |
| 3026 } |
| 3027 } |
| 3028 } |
| 3029 |
| 3030 /* |
| 3031 ** Erase column-cache entry number i |
| 3032 */ |
| 3033 static void cacheEntryClear(Parse *pParse, int i){ |
| 3034 if( pParse->aColCache[i].tempReg ){ |
| 3035 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
| 3036 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; |
| 3037 } |
| 3038 } |
| 3039 pParse->nColCache--; |
| 3040 if( i<pParse->nColCache ){ |
| 3041 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; |
| 3042 } |
| 3043 } |
| 3044 |
| 3045 |
| 3046 /* |
| 3047 ** Record in the column cache that a particular column from a |
| 3048 ** particular table is stored in a particular register. |
| 3049 */ |
| 3050 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ |
| 3051 int i; |
| 3052 int minLru; |
| 3053 int idxLru; |
| 3054 struct yColCache *p; |
| 3055 |
| 3056 /* Unless an error has occurred, register numbers are always positive. */ |
| 3057 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); |
| 3058 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ |
| 3059 |
| 3060 /* The SQLITE_ColumnCache flag disables the column cache. This is used |
| 3061 ** for testing only - to verify that SQLite always gets the same answer |
| 3062 ** with and without the column cache. |
| 3063 */ |
| 3064 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; |
| 3065 |
| 3066 /* First replace any existing entry. |
| 3067 ** |
| 3068 ** Actually, the way the column cache is currently used, we are guaranteed |
| 3069 ** that the object will never already be in cache. Verify this guarantee. |
| 3070 */ |
| 3071 #ifndef NDEBUG |
| 3072 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
| 3073 assert( p->iTable!=iTab || p->iColumn!=iCol ); |
| 3074 } |
| 3075 #endif |
| 3076 |
| 3077 /* If the cache is already full, delete the least recently used entry */ |
| 3078 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ |
| 3079 minLru = 0x7fffffff; |
| 3080 idxLru = -1; |
| 3081 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
| 3082 if( p->lru<minLru ){ |
| 3083 idxLru = i; |
| 3084 minLru = p->lru; |
| 3085 } |
| 3086 } |
| 3087 p = &pParse->aColCache[idxLru]; |
| 3088 }else{ |
| 3089 p = &pParse->aColCache[pParse->nColCache++]; |
| 3090 } |
| 3091 |
| 3092 /* Add the new entry to the end of the cache */ |
| 3093 p->iLevel = pParse->iCacheLevel; |
| 3094 p->iTable = iTab; |
| 3095 p->iColumn = iCol; |
| 3096 p->iReg = iReg; |
| 3097 p->tempReg = 0; |
| 3098 p->lru = pParse->iCacheCnt++; |
| 3099 } |
| 3100 |
| 3101 /* |
| 3102 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. |
| 3103 ** Purge the range of registers from the column cache. |
| 3104 */ |
| 3105 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ |
| 3106 int i = 0; |
| 3107 while( i<pParse->nColCache ){ |
| 3108 struct yColCache *p = &pParse->aColCache[i]; |
| 3109 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ |
| 3110 cacheEntryClear(pParse, i); |
| 3111 }else{ |
| 3112 i++; |
| 3113 } |
| 3114 } |
| 3115 } |
| 3116 |
| 3117 /* |
| 3118 ** Remember the current column cache context. Any new entries added |
| 3119 ** added to the column cache after this call are removed when the |
| 3120 ** corresponding pop occurs. |
| 3121 */ |
| 3122 void sqlite3ExprCachePush(Parse *pParse){ |
| 3123 pParse->iCacheLevel++; |
| 3124 #ifdef SQLITE_DEBUG |
| 3125 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
| 3126 printf("PUSH to %d\n", pParse->iCacheLevel); |
| 3127 } |
| 3128 #endif |
| 3129 } |
| 3130 |
| 3131 /* |
| 3132 ** Remove from the column cache any entries that were added since the |
| 3133 ** the previous sqlite3ExprCachePush operation. In other words, restore |
| 3134 ** the cache to the state it was in prior the most recent Push. |
| 3135 */ |
| 3136 void sqlite3ExprCachePop(Parse *pParse){ |
| 3137 int i = 0; |
| 3138 assert( pParse->iCacheLevel>=1 ); |
| 3139 pParse->iCacheLevel--; |
| 3140 #ifdef SQLITE_DEBUG |
| 3141 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
| 3142 printf("POP to %d\n", pParse->iCacheLevel); |
| 3143 } |
| 3144 #endif |
| 3145 while( i<pParse->nColCache ){ |
| 3146 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ |
| 3147 cacheEntryClear(pParse, i); |
| 3148 }else{ |
| 3149 i++; |
| 3150 } |
| 3151 } |
| 3152 } |
| 3153 |
| 3154 /* |
| 3155 ** When a cached column is reused, make sure that its register is |
| 3156 ** no longer available as a temp register. ticket #3879: that same |
| 3157 ** register might be in the cache in multiple places, so be sure to |
| 3158 ** get them all. |
| 3159 */ |
| 3160 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ |
| 3161 int i; |
| 3162 struct yColCache *p; |
| 3163 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
| 3164 if( p->iReg==iReg ){ |
| 3165 p->tempReg = 0; |
| 3166 } |
| 3167 } |
| 3168 } |
| 3169 |
| 3170 /* Generate code that will load into register regOut a value that is |
| 3171 ** appropriate for the iIdxCol-th column of index pIdx. |
| 3172 */ |
| 3173 void sqlite3ExprCodeLoadIndexColumn( |
| 3174 Parse *pParse, /* The parsing context */ |
| 3175 Index *pIdx, /* The index whose column is to be loaded */ |
| 3176 int iTabCur, /* Cursor pointing to a table row */ |
| 3177 int iIdxCol, /* The column of the index to be loaded */ |
| 3178 int regOut /* Store the index column value in this register */ |
| 3179 ){ |
| 3180 i16 iTabCol = pIdx->aiColumn[iIdxCol]; |
| 3181 if( iTabCol==XN_EXPR ){ |
| 3182 assert( pIdx->aColExpr ); |
| 3183 assert( pIdx->aColExpr->nExpr>iIdxCol ); |
| 3184 pParse->iSelfTab = iTabCur; |
| 3185 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); |
| 3186 }else{ |
| 3187 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, |
| 3188 iTabCol, regOut); |
| 3189 } |
| 3190 } |
| 3191 |
| 3192 /* |
| 3193 ** Generate code to extract the value of the iCol-th column of a table. |
| 3194 */ |
| 3195 void sqlite3ExprCodeGetColumnOfTable( |
| 3196 Vdbe *v, /* The VDBE under construction */ |
| 3197 Table *pTab, /* The table containing the value */ |
| 3198 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ |
| 3199 int iCol, /* Index of the column to extract */ |
| 3200 int regOut /* Extract the value into this register */ |
| 3201 ){ |
| 3202 if( iCol<0 || iCol==pTab->iPKey ){ |
| 3203 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); |
| 3204 }else{ |
| 3205 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; |
| 3206 int x = iCol; |
| 3207 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ |
| 3208 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); |
| 3209 } |
| 3210 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); |
| 3211 } |
| 3212 if( iCol>=0 ){ |
| 3213 sqlite3ColumnDefault(v, pTab, iCol, regOut); |
| 3214 } |
| 3215 } |
| 3216 |
| 3217 /* |
| 3218 ** Generate code that will extract the iColumn-th column from |
| 3219 ** table pTab and store the column value in a register. |
| 3220 ** |
| 3221 ** An effort is made to store the column value in register iReg. This |
| 3222 ** is not garanteeed for GetColumn() - the result can be stored in |
| 3223 ** any register. But the result is guaranteed to land in register iReg |
| 3224 ** for GetColumnToReg(). |
| 3225 ** |
| 3226 ** There must be an open cursor to pTab in iTable when this routine |
| 3227 ** is called. If iColumn<0 then code is generated that extracts the rowid. |
| 3228 */ |
| 3229 int sqlite3ExprCodeGetColumn( |
| 3230 Parse *pParse, /* Parsing and code generating context */ |
| 3231 Table *pTab, /* Description of the table we are reading from */ |
| 3232 int iColumn, /* Index of the table column */ |
| 3233 int iTable, /* The cursor pointing to the table */ |
| 3234 int iReg, /* Store results here */ |
| 3235 u8 p5 /* P5 value for OP_Column + FLAGS */ |
| 3236 ){ |
| 3237 Vdbe *v = pParse->pVdbe; |
| 3238 int i; |
| 3239 struct yColCache *p; |
| 3240 |
| 3241 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
| 3242 if( p->iTable==iTable && p->iColumn==iColumn ){ |
| 3243 p->lru = pParse->iCacheCnt++; |
| 3244 sqlite3ExprCachePinRegister(pParse, p->iReg); |
| 3245 return p->iReg; |
| 3246 } |
| 3247 } |
| 3248 assert( v!=0 ); |
| 3249 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); |
| 3250 if( p5 ){ |
| 3251 sqlite3VdbeChangeP5(v, p5); |
| 3252 }else{ |
| 3253 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); |
| 3254 } |
| 3255 return iReg; |
| 3256 } |
| 3257 void sqlite3ExprCodeGetColumnToReg( |
| 3258 Parse *pParse, /* Parsing and code generating context */ |
| 3259 Table *pTab, /* Description of the table we are reading from */ |
| 3260 int iColumn, /* Index of the table column */ |
| 3261 int iTable, /* The cursor pointing to the table */ |
| 3262 int iReg /* Store results here */ |
| 3263 ){ |
| 3264 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); |
| 3265 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); |
| 3266 } |
| 3267 |
| 3268 |
| 3269 /* |
| 3270 ** Clear all column cache entries. |
| 3271 */ |
| 3272 void sqlite3ExprCacheClear(Parse *pParse){ |
| 3273 int i; |
| 3274 |
| 3275 #if SQLITE_DEBUG |
| 3276 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
| 3277 printf("CLEAR\n"); |
| 3278 } |
| 3279 #endif |
| 3280 for(i=0; i<pParse->nColCache; i++){ |
| 3281 if( pParse->aColCache[i].tempReg |
| 3282 && pParse->nTempReg<ArraySize(pParse->aTempReg) |
| 3283 ){ |
| 3284 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; |
| 3285 } |
| 3286 } |
| 3287 pParse->nColCache = 0; |
| 3288 } |
| 3289 |
| 3290 /* |
| 3291 ** Record the fact that an affinity change has occurred on iCount |
| 3292 ** registers starting with iStart. |
| 3293 */ |
| 3294 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ |
| 3295 sqlite3ExprCacheRemove(pParse, iStart, iCount); |
| 3296 } |
| 3297 |
| 3298 /* |
| 3299 ** Generate code to move content from registers iFrom...iFrom+nReg-1 |
| 3300 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. |
| 3301 */ |
| 3302 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ |
| 3303 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); |
| 3304 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); |
| 3305 sqlite3ExprCacheRemove(pParse, iFrom, nReg); |
| 3306 } |
| 3307 |
| 3308 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) |
| 3309 /* |
| 3310 ** Return true if any register in the range iFrom..iTo (inclusive) |
| 3311 ** is used as part of the column cache. |
| 3312 ** |
| 3313 ** This routine is used within assert() and testcase() macros only |
| 3314 ** and does not appear in a normal build. |
| 3315 */ |
| 3316 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ |
| 3317 int i; |
| 3318 struct yColCache *p; |
| 3319 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
| 3320 int r = p->iReg; |
| 3321 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ |
| 3322 } |
| 3323 return 0; |
| 3324 } |
| 3325 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ |
| 3326 |
| 3327 |
| 3328 /* |
| 3329 ** Convert a scalar expression node to a TK_REGISTER referencing |
| 3330 ** register iReg. The caller must ensure that iReg already contains |
| 3331 ** the correct value for the expression. |
| 3332 */ |
| 3333 static void exprToRegister(Expr *p, int iReg){ |
| 3334 p->op2 = p->op; |
| 3335 p->op = TK_REGISTER; |
| 3336 p->iTable = iReg; |
| 3337 ExprClearProperty(p, EP_Skip); |
| 3338 } |
| 3339 |
| 3340 /* |
| 3341 ** Evaluate an expression (either a vector or a scalar expression) and store |
| 3342 ** the result in continguous temporary registers. Return the index of |
| 3343 ** the first register used to store the result. |
| 3344 ** |
| 3345 ** If the returned result register is a temporary scalar, then also write |
| 3346 ** that register number into *piFreeable. If the returned result register |
| 3347 ** is not a temporary or if the expression is a vector set *piFreeable |
| 3348 ** to 0. |
| 3349 */ |
| 3350 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ |
| 3351 int iResult; |
| 3352 int nResult = sqlite3ExprVectorSize(p); |
| 3353 if( nResult==1 ){ |
| 3354 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); |
| 3355 }else{ |
| 3356 *piFreeable = 0; |
| 3357 if( p->op==TK_SELECT ){ |
| 3358 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); |
| 3359 }else{ |
| 3360 int i; |
| 3361 iResult = pParse->nMem+1; |
| 3362 pParse->nMem += nResult; |
| 3363 for(i=0; i<nResult; i++){ |
| 3364 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); |
| 3365 } |
| 3366 } |
| 3367 } |
| 3368 return iResult; |
| 3369 } |
| 3370 |
| 3371 |
| 3372 /* |
| 3373 ** Generate code into the current Vdbe to evaluate the given |
| 3374 ** expression. Attempt to store the results in register "target". |
| 3375 ** Return the register where results are stored. |
| 3376 ** |
| 3377 ** With this routine, there is no guarantee that results will |
| 3378 ** be stored in target. The result might be stored in some other |
| 3379 ** register if it is convenient to do so. The calling function |
| 3380 ** must check the return code and move the results to the desired |
| 3381 ** register. |
| 3382 */ |
| 3383 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ |
| 3384 Vdbe *v = pParse->pVdbe; /* The VM under construction */ |
| 3385 int op; /* The opcode being coded */ |
| 3386 int inReg = target; /* Results stored in register inReg */ |
| 3387 int regFree1 = 0; /* If non-zero free this temporary register */ |
| 3388 int regFree2 = 0; /* If non-zero free this temporary register */ |
| 3389 int r1, r2; /* Various register numbers */ |
| 3390 Expr tempX; /* Temporary expression node */ |
| 3391 int p5 = 0; |
| 3392 |
| 3393 assert( target>0 && target<=pParse->nMem ); |
| 3394 if( v==0 ){ |
| 3395 assert( pParse->db->mallocFailed ); |
| 3396 return 0; |
| 3397 } |
| 3398 |
| 3399 if( pExpr==0 ){ |
| 3400 op = TK_NULL; |
| 3401 }else{ |
| 3402 op = pExpr->op; |
| 3403 } |
| 3404 switch( op ){ |
| 3405 case TK_AGG_COLUMN: { |
| 3406 AggInfo *pAggInfo = pExpr->pAggInfo; |
| 3407 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; |
| 3408 if( !pAggInfo->directMode ){ |
| 3409 assert( pCol->iMem>0 ); |
| 3410 return pCol->iMem; |
| 3411 }else if( pAggInfo->useSortingIdx ){ |
| 3412 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, |
| 3413 pCol->iSorterColumn, target); |
| 3414 return target; |
| 3415 } |
| 3416 /* Otherwise, fall thru into the TK_COLUMN case */ |
| 3417 } |
| 3418 case TK_COLUMN: { |
| 3419 int iTab = pExpr->iTable; |
| 3420 if( iTab<0 ){ |
| 3421 if( pParse->ckBase>0 ){ |
| 3422 /* Generating CHECK constraints or inserting into partial index */ |
| 3423 return pExpr->iColumn + pParse->ckBase; |
| 3424 }else{ |
| 3425 /* Coding an expression that is part of an index where column names |
| 3426 ** in the index refer to the table to which the index belongs */ |
| 3427 iTab = pParse->iSelfTab; |
| 3428 } |
| 3429 } |
| 3430 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, |
| 3431 pExpr->iColumn, iTab, target, |
| 3432 pExpr->op2); |
| 3433 } |
| 3434 case TK_INTEGER: { |
| 3435 codeInteger(pParse, pExpr, 0, target); |
| 3436 return target; |
| 3437 } |
| 3438 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 3439 case TK_FLOAT: { |
| 3440 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 3441 codeReal(v, pExpr->u.zToken, 0, target); |
| 3442 return target; |
| 3443 } |
| 3444 #endif |
| 3445 case TK_STRING: { |
| 3446 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 3447 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); |
| 3448 return target; |
| 3449 } |
| 3450 case TK_NULL: { |
| 3451 sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| 3452 return target; |
| 3453 } |
| 3454 #ifndef SQLITE_OMIT_BLOB_LITERAL |
| 3455 case TK_BLOB: { |
| 3456 int n; |
| 3457 const char *z; |
| 3458 char *zBlob; |
| 3459 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 3460 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
| 3461 assert( pExpr->u.zToken[1]=='\'' ); |
| 3462 z = &pExpr->u.zToken[2]; |
| 3463 n = sqlite3Strlen30(z) - 1; |
| 3464 assert( z[n]=='\'' ); |
| 3465 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); |
| 3466 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); |
| 3467 return target; |
| 3468 } |
| 3469 #endif |
| 3470 case TK_VARIABLE: { |
| 3471 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 3472 assert( pExpr->u.zToken!=0 ); |
| 3473 assert( pExpr->u.zToken[0]!=0 ); |
| 3474 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); |
| 3475 if( pExpr->u.zToken[1]!=0 ){ |
| 3476 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); |
| 3477 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); |
| 3478 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ |
| 3479 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); |
| 3480 } |
| 3481 return target; |
| 3482 } |
| 3483 case TK_REGISTER: { |
| 3484 return pExpr->iTable; |
| 3485 } |
| 3486 #ifndef SQLITE_OMIT_CAST |
| 3487 case TK_CAST: { |
| 3488 /* Expressions of the form: CAST(pLeft AS token) */ |
| 3489 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
| 3490 if( inReg!=target ){ |
| 3491 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); |
| 3492 inReg = target; |
| 3493 } |
| 3494 sqlite3VdbeAddOp2(v, OP_Cast, target, |
| 3495 sqlite3AffinityType(pExpr->u.zToken, 0)); |
| 3496 testcase( usedAsColumnCache(pParse, inReg, inReg) ); |
| 3497 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); |
| 3498 return inReg; |
| 3499 } |
| 3500 #endif /* SQLITE_OMIT_CAST */ |
| 3501 case TK_IS: |
| 3502 case TK_ISNOT: |
| 3503 op = (op==TK_IS) ? TK_EQ : TK_NE; |
| 3504 p5 = SQLITE_NULLEQ; |
| 3505 /* fall-through */ |
| 3506 case TK_LT: |
| 3507 case TK_LE: |
| 3508 case TK_GT: |
| 3509 case TK_GE: |
| 3510 case TK_NE: |
| 3511 case TK_EQ: { |
| 3512 Expr *pLeft = pExpr->pLeft; |
| 3513 if( sqlite3ExprIsVector(pLeft) ){ |
| 3514 codeVectorCompare(pParse, pExpr, target, op, p5); |
| 3515 }else{ |
| 3516 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); |
| 3517 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
| 3518 codeCompare(pParse, pLeft, pExpr->pRight, op, |
| 3519 r1, r2, inReg, SQLITE_STOREP2 | p5); |
| 3520 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
| 3521 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
| 3522 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
| 3523 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
| 3524 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
| 3525 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
| 3526 testcase( regFree1==0 ); |
| 3527 testcase( regFree2==0 ); |
| 3528 } |
| 3529 break; |
| 3530 } |
| 3531 case TK_AND: |
| 3532 case TK_OR: |
| 3533 case TK_PLUS: |
| 3534 case TK_STAR: |
| 3535 case TK_MINUS: |
| 3536 case TK_REM: |
| 3537 case TK_BITAND: |
| 3538 case TK_BITOR: |
| 3539 case TK_SLASH: |
| 3540 case TK_LSHIFT: |
| 3541 case TK_RSHIFT: |
| 3542 case TK_CONCAT: { |
| 3543 assert( TK_AND==OP_And ); testcase( op==TK_AND ); |
| 3544 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); |
| 3545 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); |
| 3546 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); |
| 3547 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); |
| 3548 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); |
| 3549 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); |
| 3550 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); |
| 3551 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); |
| 3552 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); |
| 3553 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); |
| 3554 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| 3555 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
| 3556 sqlite3VdbeAddOp3(v, op, r2, r1, target); |
| 3557 testcase( regFree1==0 ); |
| 3558 testcase( regFree2==0 ); |
| 3559 break; |
| 3560 } |
| 3561 case TK_UMINUS: { |
| 3562 Expr *pLeft = pExpr->pLeft; |
| 3563 assert( pLeft ); |
| 3564 if( pLeft->op==TK_INTEGER ){ |
| 3565 codeInteger(pParse, pLeft, 1, target); |
| 3566 return target; |
| 3567 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 3568 }else if( pLeft->op==TK_FLOAT ){ |
| 3569 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 3570 codeReal(v, pLeft->u.zToken, 1, target); |
| 3571 return target; |
| 3572 #endif |
| 3573 }else{ |
| 3574 tempX.op = TK_INTEGER; |
| 3575 tempX.flags = EP_IntValue|EP_TokenOnly; |
| 3576 tempX.u.iValue = 0; |
| 3577 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); |
| 3578 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); |
| 3579 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); |
| 3580 testcase( regFree2==0 ); |
| 3581 } |
| 3582 break; |
| 3583 } |
| 3584 case TK_BITNOT: |
| 3585 case TK_NOT: { |
| 3586 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); |
| 3587 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); |
| 3588 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| 3589 testcase( regFree1==0 ); |
| 3590 sqlite3VdbeAddOp2(v, op, r1, inReg); |
| 3591 break; |
| 3592 } |
| 3593 case TK_ISNULL: |
| 3594 case TK_NOTNULL: { |
| 3595 int addr; |
| 3596 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
| 3597 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
| 3598 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
| 3599 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| 3600 testcase( regFree1==0 ); |
| 3601 addr = sqlite3VdbeAddOp1(v, op, r1); |
| 3602 VdbeCoverageIf(v, op==TK_ISNULL); |
| 3603 VdbeCoverageIf(v, op==TK_NOTNULL); |
| 3604 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); |
| 3605 sqlite3VdbeJumpHere(v, addr); |
| 3606 break; |
| 3607 } |
| 3608 case TK_AGG_FUNCTION: { |
| 3609 AggInfo *pInfo = pExpr->pAggInfo; |
| 3610 if( pInfo==0 ){ |
| 3611 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 3612 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); |
| 3613 }else{ |
| 3614 return pInfo->aFunc[pExpr->iAgg].iMem; |
| 3615 } |
| 3616 break; |
| 3617 } |
| 3618 case TK_FUNCTION: { |
| 3619 ExprList *pFarg; /* List of function arguments */ |
| 3620 int nFarg; /* Number of function arguments */ |
| 3621 FuncDef *pDef; /* The function definition object */ |
| 3622 const char *zId; /* The function name */ |
| 3623 u32 constMask = 0; /* Mask of function arguments that are constant */ |
| 3624 int i; /* Loop counter */ |
| 3625 sqlite3 *db = pParse->db; /* The database connection */ |
| 3626 u8 enc = ENC(db); /* The text encoding used by this database */ |
| 3627 CollSeq *pColl = 0; /* A collating sequence */ |
| 3628 |
| 3629 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ |
| 3630 /* SQL functions can be expensive. So try to move constant functions |
| 3631 ** out of the inner loop, even if that means an extra OP_Copy. */ |
| 3632 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); |
| 3633 } |
| 3634 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
| 3635 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ |
| 3636 pFarg = 0; |
| 3637 }else{ |
| 3638 pFarg = pExpr->x.pList; |
| 3639 } |
| 3640 nFarg = pFarg ? pFarg->nExpr : 0; |
| 3641 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 3642 zId = pExpr->u.zToken; |
| 3643 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); |
| 3644 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION |
| 3645 if( pDef==0 && pParse->explain ){ |
| 3646 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); |
| 3647 } |
| 3648 #endif |
| 3649 if( pDef==0 || pDef->xFinalize!=0 ){ |
| 3650 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); |
| 3651 break; |
| 3652 } |
| 3653 |
| 3654 /* Attempt a direct implementation of the built-in COALESCE() and |
| 3655 ** IFNULL() functions. This avoids unnecessary evaluation of |
| 3656 ** arguments past the first non-NULL argument. |
| 3657 */ |
| 3658 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ |
| 3659 int endCoalesce = sqlite3VdbeMakeLabel(v); |
| 3660 assert( nFarg>=2 ); |
| 3661 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); |
| 3662 for(i=1; i<nFarg; i++){ |
| 3663 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); |
| 3664 VdbeCoverage(v); |
| 3665 sqlite3ExprCacheRemove(pParse, target, 1); |
| 3666 sqlite3ExprCachePush(pParse); |
| 3667 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); |
| 3668 sqlite3ExprCachePop(pParse); |
| 3669 } |
| 3670 sqlite3VdbeResolveLabel(v, endCoalesce); |
| 3671 break; |
| 3672 } |
| 3673 |
| 3674 /* The UNLIKELY() function is a no-op. The result is the value |
| 3675 ** of the first argument. |
| 3676 */ |
| 3677 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ |
| 3678 assert( nFarg>=1 ); |
| 3679 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); |
| 3680 } |
| 3681 |
| 3682 #ifdef SQLITE_DEBUG |
| 3683 /* The AFFINITY() function evaluates to a string that describes |
| 3684 ** the type affinity of the argument. This is used for testing of |
| 3685 ** the SQLite type logic. |
| 3686 */ |
| 3687 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ |
| 3688 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; |
| 3689 char aff; |
| 3690 assert( nFarg==1 ); |
| 3691 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); |
| 3692 sqlite3VdbeLoadString(v, target, |
| 3693 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); |
| 3694 return target; |
| 3695 } |
| 3696 #endif |
| 3697 |
| 3698 for(i=0; i<nFarg; i++){ |
| 3699 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ |
| 3700 testcase( i==31 ); |
| 3701 constMask |= MASKBIT32(i); |
| 3702 } |
| 3703 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ |
| 3704 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); |
| 3705 } |
| 3706 } |
| 3707 if( pFarg ){ |
| 3708 if( constMask ){ |
| 3709 r1 = pParse->nMem+1; |
| 3710 pParse->nMem += nFarg; |
| 3711 }else{ |
| 3712 r1 = sqlite3GetTempRange(pParse, nFarg); |
| 3713 } |
| 3714 |
| 3715 /* For length() and typeof() functions with a column argument, |
| 3716 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG |
| 3717 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data |
| 3718 ** loading. |
| 3719 */ |
| 3720 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ |
| 3721 u8 exprOp; |
| 3722 assert( nFarg==1 ); |
| 3723 assert( pFarg->a[0].pExpr!=0 ); |
| 3724 exprOp = pFarg->a[0].pExpr->op; |
| 3725 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ |
| 3726 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); |
| 3727 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); |
| 3728 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); |
| 3729 pFarg->a[0].pExpr->op2 = |
| 3730 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); |
| 3731 } |
| 3732 } |
| 3733 |
| 3734 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ |
| 3735 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, |
| 3736 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); |
| 3737 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ |
| 3738 }else{ |
| 3739 r1 = 0; |
| 3740 } |
| 3741 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 3742 /* Possibly overload the function if the first argument is |
| 3743 ** a virtual table column. |
| 3744 ** |
| 3745 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the |
| 3746 ** second argument, not the first, as the argument to test to |
| 3747 ** see if it is a column in a virtual table. This is done because |
| 3748 ** the left operand of infix functions (the operand we want to |
| 3749 ** control overloading) ends up as the second argument to the |
| 3750 ** function. The expression "A glob B" is equivalent to |
| 3751 ** "glob(B,A). We want to use the A in "A glob B" to test |
| 3752 ** for function overloading. But we use the B term in "glob(B,A)". |
| 3753 */ |
| 3754 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ |
| 3755 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); |
| 3756 }else if( nFarg>0 ){ |
| 3757 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); |
| 3758 } |
| 3759 #endif |
| 3760 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
| 3761 if( !pColl ) pColl = db->pDfltColl; |
| 3762 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); |
| 3763 } |
| 3764 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, |
| 3765 (char*)pDef, P4_FUNCDEF); |
| 3766 sqlite3VdbeChangeP5(v, (u8)nFarg); |
| 3767 if( nFarg && constMask==0 ){ |
| 3768 sqlite3ReleaseTempRange(pParse, r1, nFarg); |
| 3769 } |
| 3770 return target; |
| 3771 } |
| 3772 #ifndef SQLITE_OMIT_SUBQUERY |
| 3773 case TK_EXISTS: |
| 3774 case TK_SELECT: { |
| 3775 int nCol; |
| 3776 testcase( op==TK_EXISTS ); |
| 3777 testcase( op==TK_SELECT ); |
| 3778 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ |
| 3779 sqlite3SubselectError(pParse, nCol, 1); |
| 3780 }else{ |
| 3781 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); |
| 3782 } |
| 3783 break; |
| 3784 } |
| 3785 case TK_SELECT_COLUMN: { |
| 3786 int n; |
| 3787 if( pExpr->pLeft->iTable==0 ){ |
| 3788 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); |
| 3789 } |
| 3790 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); |
| 3791 if( pExpr->iTable |
| 3792 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) |
| 3793 ){ |
| 3794 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", |
| 3795 pExpr->iTable, n); |
| 3796 } |
| 3797 return pExpr->pLeft->iTable + pExpr->iColumn; |
| 3798 } |
| 3799 case TK_IN: { |
| 3800 int destIfFalse = sqlite3VdbeMakeLabel(v); |
| 3801 int destIfNull = sqlite3VdbeMakeLabel(v); |
| 3802 sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| 3803 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
| 3804 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
| 3805 sqlite3VdbeResolveLabel(v, destIfFalse); |
| 3806 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); |
| 3807 sqlite3VdbeResolveLabel(v, destIfNull); |
| 3808 return target; |
| 3809 } |
| 3810 #endif /* SQLITE_OMIT_SUBQUERY */ |
| 3811 |
| 3812 |
| 3813 /* |
| 3814 ** x BETWEEN y AND z |
| 3815 ** |
| 3816 ** This is equivalent to |
| 3817 ** |
| 3818 ** x>=y AND x<=z |
| 3819 ** |
| 3820 ** X is stored in pExpr->pLeft. |
| 3821 ** Y is stored in pExpr->pList->a[0].pExpr. |
| 3822 ** Z is stored in pExpr->pList->a[1].pExpr. |
| 3823 */ |
| 3824 case TK_BETWEEN: { |
| 3825 exprCodeBetween(pParse, pExpr, target, 0, 0); |
| 3826 return target; |
| 3827 } |
| 3828 case TK_SPAN: |
| 3829 case TK_COLLATE: |
| 3830 case TK_UPLUS: { |
| 3831 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
| 3832 } |
| 3833 |
| 3834 case TK_TRIGGER: { |
| 3835 /* If the opcode is TK_TRIGGER, then the expression is a reference |
| 3836 ** to a column in the new.* or old.* pseudo-tables available to |
| 3837 ** trigger programs. In this case Expr.iTable is set to 1 for the |
| 3838 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn |
| 3839 ** is set to the column of the pseudo-table to read, or to -1 to |
| 3840 ** read the rowid field. |
| 3841 ** |
| 3842 ** The expression is implemented using an OP_Param opcode. The p1 |
| 3843 ** parameter is set to 0 for an old.rowid reference, or to (i+1) |
| 3844 ** to reference another column of the old.* pseudo-table, where |
| 3845 ** i is the index of the column. For a new.rowid reference, p1 is |
| 3846 ** set to (n+1), where n is the number of columns in each pseudo-table. |
| 3847 ** For a reference to any other column in the new.* pseudo-table, p1 |
| 3848 ** is set to (n+2+i), where n and i are as defined previously. For |
| 3849 ** example, if the table on which triggers are being fired is |
| 3850 ** declared as: |
| 3851 ** |
| 3852 ** CREATE TABLE t1(a, b); |
| 3853 ** |
| 3854 ** Then p1 is interpreted as follows: |
| 3855 ** |
| 3856 ** p1==0 -> old.rowid p1==3 -> new.rowid |
| 3857 ** p1==1 -> old.a p1==4 -> new.a |
| 3858 ** p1==2 -> old.b p1==5 -> new.b |
| 3859 */ |
| 3860 Table *pTab = pExpr->pTab; |
| 3861 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; |
| 3862 |
| 3863 assert( pExpr->iTable==0 || pExpr->iTable==1 ); |
| 3864 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); |
| 3865 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); |
| 3866 assert( p1>=0 && p1<(pTab->nCol*2+2) ); |
| 3867 |
| 3868 sqlite3VdbeAddOp2(v, OP_Param, p1, target); |
| 3869 VdbeComment((v, "%s.%s -> $%d", |
| 3870 (pExpr->iTable ? "new" : "old"), |
| 3871 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), |
| 3872 target |
| 3873 )); |
| 3874 |
| 3875 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 3876 /* If the column has REAL affinity, it may currently be stored as an |
| 3877 ** integer. Use OP_RealAffinity to make sure it is really real. |
| 3878 ** |
| 3879 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to |
| 3880 ** floating point when extracting it from the record. */ |
| 3881 if( pExpr->iColumn>=0 |
| 3882 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL |
| 3883 ){ |
| 3884 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); |
| 3885 } |
| 3886 #endif |
| 3887 break; |
| 3888 } |
| 3889 |
| 3890 case TK_VECTOR: { |
| 3891 sqlite3ErrorMsg(pParse, "row value misused"); |
| 3892 break; |
| 3893 } |
| 3894 |
| 3895 /* |
| 3896 ** Form A: |
| 3897 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
| 3898 ** |
| 3899 ** Form B: |
| 3900 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
| 3901 ** |
| 3902 ** Form A is can be transformed into the equivalent form B as follows: |
| 3903 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... |
| 3904 ** WHEN x=eN THEN rN ELSE y END |
| 3905 ** |
| 3906 ** X (if it exists) is in pExpr->pLeft. |
| 3907 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is |
| 3908 ** odd. The Y is also optional. If the number of elements in x.pList |
| 3909 ** is even, then Y is omitted and the "otherwise" result is NULL. |
| 3910 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. |
| 3911 ** |
| 3912 ** The result of the expression is the Ri for the first matching Ei, |
| 3913 ** or if there is no matching Ei, the ELSE term Y, or if there is |
| 3914 ** no ELSE term, NULL. |
| 3915 */ |
| 3916 default: assert( op==TK_CASE ); { |
| 3917 int endLabel; /* GOTO label for end of CASE stmt */ |
| 3918 int nextCase; /* GOTO label for next WHEN clause */ |
| 3919 int nExpr; /* 2x number of WHEN terms */ |
| 3920 int i; /* Loop counter */ |
| 3921 ExprList *pEList; /* List of WHEN terms */ |
| 3922 struct ExprList_item *aListelem; /* Array of WHEN terms */ |
| 3923 Expr opCompare; /* The X==Ei expression */ |
| 3924 Expr *pX; /* The X expression */ |
| 3925 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ |
| 3926 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) |
| 3927 |
| 3928 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); |
| 3929 assert(pExpr->x.pList->nExpr > 0); |
| 3930 pEList = pExpr->x.pList; |
| 3931 aListelem = pEList->a; |
| 3932 nExpr = pEList->nExpr; |
| 3933 endLabel = sqlite3VdbeMakeLabel(v); |
| 3934 if( (pX = pExpr->pLeft)!=0 ){ |
| 3935 tempX = *pX; |
| 3936 testcase( pX->op==TK_COLUMN ); |
| 3937 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); |
| 3938 testcase( regFree1==0 ); |
| 3939 memset(&opCompare, 0, sizeof(opCompare)); |
| 3940 opCompare.op = TK_EQ; |
| 3941 opCompare.pLeft = &tempX; |
| 3942 pTest = &opCompare; |
| 3943 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: |
| 3944 ** The value in regFree1 might get SCopy-ed into the file result. |
| 3945 ** So make sure that the regFree1 register is not reused for other |
| 3946 ** purposes and possibly overwritten. */ |
| 3947 regFree1 = 0; |
| 3948 } |
| 3949 for(i=0; i<nExpr-1; i=i+2){ |
| 3950 sqlite3ExprCachePush(pParse); |
| 3951 if( pX ){ |
| 3952 assert( pTest!=0 ); |
| 3953 opCompare.pRight = aListelem[i].pExpr; |
| 3954 }else{ |
| 3955 pTest = aListelem[i].pExpr; |
| 3956 } |
| 3957 nextCase = sqlite3VdbeMakeLabel(v); |
| 3958 testcase( pTest->op==TK_COLUMN ); |
| 3959 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); |
| 3960 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); |
| 3961 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); |
| 3962 sqlite3VdbeGoto(v, endLabel); |
| 3963 sqlite3ExprCachePop(pParse); |
| 3964 sqlite3VdbeResolveLabel(v, nextCase); |
| 3965 } |
| 3966 if( (nExpr&1)!=0 ){ |
| 3967 sqlite3ExprCachePush(pParse); |
| 3968 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); |
| 3969 sqlite3ExprCachePop(pParse); |
| 3970 }else{ |
| 3971 sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| 3972 } |
| 3973 assert( pParse->db->mallocFailed || pParse->nErr>0 |
| 3974 || pParse->iCacheLevel==iCacheLevel ); |
| 3975 sqlite3VdbeResolveLabel(v, endLabel); |
| 3976 break; |
| 3977 } |
| 3978 #ifndef SQLITE_OMIT_TRIGGER |
| 3979 case TK_RAISE: { |
| 3980 assert( pExpr->affinity==OE_Rollback |
| 3981 || pExpr->affinity==OE_Abort |
| 3982 || pExpr->affinity==OE_Fail |
| 3983 || pExpr->affinity==OE_Ignore |
| 3984 ); |
| 3985 if( !pParse->pTriggerTab ){ |
| 3986 sqlite3ErrorMsg(pParse, |
| 3987 "RAISE() may only be used within a trigger-program"); |
| 3988 return 0; |
| 3989 } |
| 3990 if( pExpr->affinity==OE_Abort ){ |
| 3991 sqlite3MayAbort(pParse); |
| 3992 } |
| 3993 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 3994 if( pExpr->affinity==OE_Ignore ){ |
| 3995 sqlite3VdbeAddOp4( |
| 3996 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); |
| 3997 VdbeCoverage(v); |
| 3998 }else{ |
| 3999 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, |
| 4000 pExpr->affinity, pExpr->u.zToken, 0, 0); |
| 4001 } |
| 4002 |
| 4003 break; |
| 4004 } |
| 4005 #endif |
| 4006 } |
| 4007 sqlite3ReleaseTempReg(pParse, regFree1); |
| 4008 sqlite3ReleaseTempReg(pParse, regFree2); |
| 4009 return inReg; |
| 4010 } |
| 4011 |
| 4012 /* |
| 4013 ** Factor out the code of the given expression to initialization time. |
| 4014 ** |
| 4015 ** If regDest>=0 then the result is always stored in that register and the |
| 4016 ** result is not reusable. If regDest<0 then this routine is free to |
| 4017 ** store the value whereever it wants. The register where the expression |
| 4018 ** is stored is returned. When regDest<0, two identical expressions will |
| 4019 ** code to the same register. |
| 4020 */ |
| 4021 int sqlite3ExprCodeAtInit( |
| 4022 Parse *pParse, /* Parsing context */ |
| 4023 Expr *pExpr, /* The expression to code when the VDBE initializes */ |
| 4024 int regDest /* Store the value in this register */ |
| 4025 ){ |
| 4026 ExprList *p; |
| 4027 assert( ConstFactorOk(pParse) ); |
| 4028 p = pParse->pConstExpr; |
| 4029 if( regDest<0 && p ){ |
| 4030 struct ExprList_item *pItem; |
| 4031 int i; |
| 4032 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ |
| 4033 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ |
| 4034 return pItem->u.iConstExprReg; |
| 4035 } |
| 4036 } |
| 4037 } |
| 4038 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); |
| 4039 p = sqlite3ExprListAppend(pParse, p, pExpr); |
| 4040 if( p ){ |
| 4041 struct ExprList_item *pItem = &p->a[p->nExpr-1]; |
| 4042 pItem->reusable = regDest<0; |
| 4043 if( regDest<0 ) regDest = ++pParse->nMem; |
| 4044 pItem->u.iConstExprReg = regDest; |
| 4045 } |
| 4046 pParse->pConstExpr = p; |
| 4047 return regDest; |
| 4048 } |
| 4049 |
| 4050 /* |
| 4051 ** Generate code to evaluate an expression and store the results |
| 4052 ** into a register. Return the register number where the results |
| 4053 ** are stored. |
| 4054 ** |
| 4055 ** If the register is a temporary register that can be deallocated, |
| 4056 ** then write its number into *pReg. If the result register is not |
| 4057 ** a temporary, then set *pReg to zero. |
| 4058 ** |
| 4059 ** If pExpr is a constant, then this routine might generate this |
| 4060 ** code to fill the register in the initialization section of the |
| 4061 ** VDBE program, in order to factor it out of the evaluation loop. |
| 4062 */ |
| 4063 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ |
| 4064 int r2; |
| 4065 pExpr = sqlite3ExprSkipCollate(pExpr); |
| 4066 if( ConstFactorOk(pParse) |
| 4067 && pExpr->op!=TK_REGISTER |
| 4068 && sqlite3ExprIsConstantNotJoin(pExpr) |
| 4069 ){ |
| 4070 *pReg = 0; |
| 4071 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); |
| 4072 }else{ |
| 4073 int r1 = sqlite3GetTempReg(pParse); |
| 4074 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); |
| 4075 if( r2==r1 ){ |
| 4076 *pReg = r1; |
| 4077 }else{ |
| 4078 sqlite3ReleaseTempReg(pParse, r1); |
| 4079 *pReg = 0; |
| 4080 } |
| 4081 } |
| 4082 return r2; |
| 4083 } |
| 4084 |
| 4085 /* |
| 4086 ** Generate code that will evaluate expression pExpr and store the |
| 4087 ** results in register target. The results are guaranteed to appear |
| 4088 ** in register target. |
| 4089 */ |
| 4090 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ |
| 4091 int inReg; |
| 4092 |
| 4093 assert( target>0 && target<=pParse->nMem ); |
| 4094 if( pExpr && pExpr->op==TK_REGISTER ){ |
| 4095 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); |
| 4096 }else{ |
| 4097 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); |
| 4098 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); |
| 4099 if( inReg!=target && pParse->pVdbe ){ |
| 4100 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); |
| 4101 } |
| 4102 } |
| 4103 } |
| 4104 |
| 4105 /* |
| 4106 ** Make a transient copy of expression pExpr and then code it using |
| 4107 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() |
| 4108 ** except that the input expression is guaranteed to be unchanged. |
| 4109 */ |
| 4110 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ |
| 4111 sqlite3 *db = pParse->db; |
| 4112 pExpr = sqlite3ExprDup(db, pExpr, 0); |
| 4113 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); |
| 4114 sqlite3ExprDelete(db, pExpr); |
| 4115 } |
| 4116 |
| 4117 /* |
| 4118 ** Generate code that will evaluate expression pExpr and store the |
| 4119 ** results in register target. The results are guaranteed to appear |
| 4120 ** in register target. If the expression is constant, then this routine |
| 4121 ** might choose to code the expression at initialization time. |
| 4122 */ |
| 4123 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ |
| 4124 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ |
| 4125 sqlite3ExprCodeAtInit(pParse, pExpr, target); |
| 4126 }else{ |
| 4127 sqlite3ExprCode(pParse, pExpr, target); |
| 4128 } |
| 4129 } |
| 4130 |
| 4131 /* |
| 4132 ** Generate code that evaluates the given expression and puts the result |
| 4133 ** in register target. |
| 4134 ** |
| 4135 ** Also make a copy of the expression results into another "cache" register |
| 4136 ** and modify the expression so that the next time it is evaluated, |
| 4137 ** the result is a copy of the cache register. |
| 4138 ** |
| 4139 ** This routine is used for expressions that are used multiple |
| 4140 ** times. They are evaluated once and the results of the expression |
| 4141 ** are reused. |
| 4142 */ |
| 4143 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ |
| 4144 Vdbe *v = pParse->pVdbe; |
| 4145 int iMem; |
| 4146 |
| 4147 assert( target>0 ); |
| 4148 assert( pExpr->op!=TK_REGISTER ); |
| 4149 sqlite3ExprCode(pParse, pExpr, target); |
| 4150 iMem = ++pParse->nMem; |
| 4151 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); |
| 4152 exprToRegister(pExpr, iMem); |
| 4153 } |
| 4154 |
| 4155 /* |
| 4156 ** Generate code that pushes the value of every element of the given |
| 4157 ** expression list into a sequence of registers beginning at target. |
| 4158 ** |
| 4159 ** Return the number of elements evaluated. |
| 4160 ** |
| 4161 ** The SQLITE_ECEL_DUP flag prevents the arguments from being |
| 4162 ** filled using OP_SCopy. OP_Copy must be used instead. |
| 4163 ** |
| 4164 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be |
| 4165 ** factored out into initialization code. |
| 4166 ** |
| 4167 ** The SQLITE_ECEL_REF flag means that expressions in the list with |
| 4168 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored |
| 4169 ** in registers at srcReg, and so the value can be copied from there. |
| 4170 */ |
| 4171 int sqlite3ExprCodeExprList( |
| 4172 Parse *pParse, /* Parsing context */ |
| 4173 ExprList *pList, /* The expression list to be coded */ |
| 4174 int target, /* Where to write results */ |
| 4175 int srcReg, /* Source registers if SQLITE_ECEL_REF */ |
| 4176 u8 flags /* SQLITE_ECEL_* flags */ |
| 4177 ){ |
| 4178 struct ExprList_item *pItem; |
| 4179 int i, j, n; |
| 4180 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; |
| 4181 Vdbe *v = pParse->pVdbe; |
| 4182 assert( pList!=0 ); |
| 4183 assert( target>0 ); |
| 4184 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ |
| 4185 n = pList->nExpr; |
| 4186 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; |
| 4187 for(pItem=pList->a, i=0; i<n; i++, pItem++){ |
| 4188 Expr *pExpr = pItem->pExpr; |
| 4189 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ |
| 4190 if( flags & SQLITE_ECEL_OMITREF ){ |
| 4191 i--; |
| 4192 n--; |
| 4193 }else{ |
| 4194 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); |
| 4195 } |
| 4196 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ |
| 4197 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); |
| 4198 }else{ |
| 4199 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); |
| 4200 if( inReg!=target+i ){ |
| 4201 VdbeOp *pOp; |
| 4202 if( copyOp==OP_Copy |
| 4203 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy |
| 4204 && pOp->p1+pOp->p3+1==inReg |
| 4205 && pOp->p2+pOp->p3+1==target+i |
| 4206 ){ |
| 4207 pOp->p3++; |
| 4208 }else{ |
| 4209 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); |
| 4210 } |
| 4211 } |
| 4212 } |
| 4213 } |
| 4214 return n; |
| 4215 } |
| 4216 |
| 4217 /* |
| 4218 ** Generate code for a BETWEEN operator. |
| 4219 ** |
| 4220 ** x BETWEEN y AND z |
| 4221 ** |
| 4222 ** The above is equivalent to |
| 4223 ** |
| 4224 ** x>=y AND x<=z |
| 4225 ** |
| 4226 ** Code it as such, taking care to do the common subexpression |
| 4227 ** elimination of x. |
| 4228 ** |
| 4229 ** The xJumpIf parameter determines details: |
| 4230 ** |
| 4231 ** NULL: Store the boolean result in reg[dest] |
| 4232 ** sqlite3ExprIfTrue: Jump to dest if true |
| 4233 ** sqlite3ExprIfFalse: Jump to dest if false |
| 4234 ** |
| 4235 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. |
| 4236 */ |
| 4237 static void exprCodeBetween( |
| 4238 Parse *pParse, /* Parsing and code generating context */ |
| 4239 Expr *pExpr, /* The BETWEEN expression */ |
| 4240 int dest, /* Jump destination or storage location */ |
| 4241 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ |
| 4242 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ |
| 4243 ){ |
| 4244 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ |
| 4245 Expr compLeft; /* The x>=y term */ |
| 4246 Expr compRight; /* The x<=z term */ |
| 4247 Expr exprX; /* The x subexpression */ |
| 4248 int regFree1 = 0; /* Temporary use register */ |
| 4249 |
| 4250 |
| 4251 memset(&compLeft, 0, sizeof(Expr)); |
| 4252 memset(&compRight, 0, sizeof(Expr)); |
| 4253 memset(&exprAnd, 0, sizeof(Expr)); |
| 4254 |
| 4255 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
| 4256 exprX = *pExpr->pLeft; |
| 4257 exprAnd.op = TK_AND; |
| 4258 exprAnd.pLeft = &compLeft; |
| 4259 exprAnd.pRight = &compRight; |
| 4260 compLeft.op = TK_GE; |
| 4261 compLeft.pLeft = &exprX; |
| 4262 compLeft.pRight = pExpr->x.pList->a[0].pExpr; |
| 4263 compRight.op = TK_LE; |
| 4264 compRight.pLeft = &exprX; |
| 4265 compRight.pRight = pExpr->x.pList->a[1].pExpr; |
| 4266 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); |
| 4267 if( xJump ){ |
| 4268 xJump(pParse, &exprAnd, dest, jumpIfNull); |
| 4269 }else{ |
| 4270 /* Mark the expression is being from the ON or USING clause of a join |
| 4271 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move |
| 4272 ** it into the Parse.pConstExpr list. We should use a new bit for this, |
| 4273 ** for clarity, but we are out of bits in the Expr.flags field so we |
| 4274 ** have to reuse the EP_FromJoin bit. Bummer. */ |
| 4275 exprX.flags |= EP_FromJoin; |
| 4276 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); |
| 4277 } |
| 4278 sqlite3ReleaseTempReg(pParse, regFree1); |
| 4279 |
| 4280 /* Ensure adequate test coverage */ |
| 4281 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); |
| 4282 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); |
| 4283 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); |
| 4284 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); |
| 4285 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); |
| 4286 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); |
| 4287 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); |
| 4288 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); |
| 4289 testcase( xJump==0 ); |
| 4290 } |
| 4291 |
| 4292 /* |
| 4293 ** Generate code for a boolean expression such that a jump is made |
| 4294 ** to the label "dest" if the expression is true but execution |
| 4295 ** continues straight thru if the expression is false. |
| 4296 ** |
| 4297 ** If the expression evaluates to NULL (neither true nor false), then |
| 4298 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. |
| 4299 ** |
| 4300 ** This code depends on the fact that certain token values (ex: TK_EQ) |
| 4301 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
| 4302 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
| 4303 ** the make process cause these values to align. Assert()s in the code |
| 4304 ** below verify that the numbers are aligned correctly. |
| 4305 */ |
| 4306 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| 4307 Vdbe *v = pParse->pVdbe; |
| 4308 int op = 0; |
| 4309 int regFree1 = 0; |
| 4310 int regFree2 = 0; |
| 4311 int r1, r2; |
| 4312 |
| 4313 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
| 4314 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
| 4315 if( NEVER(pExpr==0) ) return; /* No way this can happen */ |
| 4316 op = pExpr->op; |
| 4317 switch( op ){ |
| 4318 case TK_AND: { |
| 4319 int d2 = sqlite3VdbeMakeLabel(v); |
| 4320 testcase( jumpIfNull==0 ); |
| 4321 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); |
| 4322 sqlite3ExprCachePush(pParse); |
| 4323 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| 4324 sqlite3VdbeResolveLabel(v, d2); |
| 4325 sqlite3ExprCachePop(pParse); |
| 4326 break; |
| 4327 } |
| 4328 case TK_OR: { |
| 4329 testcase( jumpIfNull==0 ); |
| 4330 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| 4331 sqlite3ExprCachePush(pParse); |
| 4332 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| 4333 sqlite3ExprCachePop(pParse); |
| 4334 break; |
| 4335 } |
| 4336 case TK_NOT: { |
| 4337 testcase( jumpIfNull==0 ); |
| 4338 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| 4339 break; |
| 4340 } |
| 4341 case TK_IS: |
| 4342 case TK_ISNOT: |
| 4343 testcase( op==TK_IS ); |
| 4344 testcase( op==TK_ISNOT ); |
| 4345 op = (op==TK_IS) ? TK_EQ : TK_NE; |
| 4346 jumpIfNull = SQLITE_NULLEQ; |
| 4347 /* Fall thru */ |
| 4348 case TK_LT: |
| 4349 case TK_LE: |
| 4350 case TK_GT: |
| 4351 case TK_GE: |
| 4352 case TK_NE: |
| 4353 case TK_EQ: { |
| 4354 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; |
| 4355 testcase( jumpIfNull==0 ); |
| 4356 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| 4357 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
| 4358 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
| 4359 r1, r2, dest, jumpIfNull); |
| 4360 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
| 4361 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
| 4362 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
| 4363 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
| 4364 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); |
| 4365 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); |
| 4366 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); |
| 4367 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); |
| 4368 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); |
| 4369 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); |
| 4370 testcase( regFree1==0 ); |
| 4371 testcase( regFree2==0 ); |
| 4372 break; |
| 4373 } |
| 4374 case TK_ISNULL: |
| 4375 case TK_NOTNULL: { |
| 4376 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
| 4377 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
| 4378 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| 4379 sqlite3VdbeAddOp2(v, op, r1, dest); |
| 4380 VdbeCoverageIf(v, op==TK_ISNULL); |
| 4381 VdbeCoverageIf(v, op==TK_NOTNULL); |
| 4382 testcase( regFree1==0 ); |
| 4383 break; |
| 4384 } |
| 4385 case TK_BETWEEN: { |
| 4386 testcase( jumpIfNull==0 ); |
| 4387 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); |
| 4388 break; |
| 4389 } |
| 4390 #ifndef SQLITE_OMIT_SUBQUERY |
| 4391 case TK_IN: { |
| 4392 int destIfFalse = sqlite3VdbeMakeLabel(v); |
| 4393 int destIfNull = jumpIfNull ? dest : destIfFalse; |
| 4394 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
| 4395 sqlite3VdbeGoto(v, dest); |
| 4396 sqlite3VdbeResolveLabel(v, destIfFalse); |
| 4397 break; |
| 4398 } |
| 4399 #endif |
| 4400 default: { |
| 4401 default_expr: |
| 4402 if( exprAlwaysTrue(pExpr) ){ |
| 4403 sqlite3VdbeGoto(v, dest); |
| 4404 }else if( exprAlwaysFalse(pExpr) ){ |
| 4405 /* No-op */ |
| 4406 }else{ |
| 4407 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
| 4408 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); |
| 4409 VdbeCoverage(v); |
| 4410 testcase( regFree1==0 ); |
| 4411 testcase( jumpIfNull==0 ); |
| 4412 } |
| 4413 break; |
| 4414 } |
| 4415 } |
| 4416 sqlite3ReleaseTempReg(pParse, regFree1); |
| 4417 sqlite3ReleaseTempReg(pParse, regFree2); |
| 4418 } |
| 4419 |
| 4420 /* |
| 4421 ** Generate code for a boolean expression such that a jump is made |
| 4422 ** to the label "dest" if the expression is false but execution |
| 4423 ** continues straight thru if the expression is true. |
| 4424 ** |
| 4425 ** If the expression evaluates to NULL (neither true nor false) then |
| 4426 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull |
| 4427 ** is 0. |
| 4428 */ |
| 4429 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| 4430 Vdbe *v = pParse->pVdbe; |
| 4431 int op = 0; |
| 4432 int regFree1 = 0; |
| 4433 int regFree2 = 0; |
| 4434 int r1, r2; |
| 4435 |
| 4436 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
| 4437 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
| 4438 if( pExpr==0 ) return; |
| 4439 |
| 4440 /* The value of pExpr->op and op are related as follows: |
| 4441 ** |
| 4442 ** pExpr->op op |
| 4443 ** --------- ---------- |
| 4444 ** TK_ISNULL OP_NotNull |
| 4445 ** TK_NOTNULL OP_IsNull |
| 4446 ** TK_NE OP_Eq |
| 4447 ** TK_EQ OP_Ne |
| 4448 ** TK_GT OP_Le |
| 4449 ** TK_LE OP_Gt |
| 4450 ** TK_GE OP_Lt |
| 4451 ** TK_LT OP_Ge |
| 4452 ** |
| 4453 ** For other values of pExpr->op, op is undefined and unused. |
| 4454 ** The value of TK_ and OP_ constants are arranged such that we |
| 4455 ** can compute the mapping above using the following expression. |
| 4456 ** Assert()s verify that the computation is correct. |
| 4457 */ |
| 4458 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); |
| 4459 |
| 4460 /* Verify correct alignment of TK_ and OP_ constants |
| 4461 */ |
| 4462 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); |
| 4463 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); |
| 4464 assert( pExpr->op!=TK_NE || op==OP_Eq ); |
| 4465 assert( pExpr->op!=TK_EQ || op==OP_Ne ); |
| 4466 assert( pExpr->op!=TK_LT || op==OP_Ge ); |
| 4467 assert( pExpr->op!=TK_LE || op==OP_Gt ); |
| 4468 assert( pExpr->op!=TK_GT || op==OP_Le ); |
| 4469 assert( pExpr->op!=TK_GE || op==OP_Lt ); |
| 4470 |
| 4471 switch( pExpr->op ){ |
| 4472 case TK_AND: { |
| 4473 testcase( jumpIfNull==0 ); |
| 4474 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| 4475 sqlite3ExprCachePush(pParse); |
| 4476 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| 4477 sqlite3ExprCachePop(pParse); |
| 4478 break; |
| 4479 } |
| 4480 case TK_OR: { |
| 4481 int d2 = sqlite3VdbeMakeLabel(v); |
| 4482 testcase( jumpIfNull==0 ); |
| 4483 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); |
| 4484 sqlite3ExprCachePush(pParse); |
| 4485 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| 4486 sqlite3VdbeResolveLabel(v, d2); |
| 4487 sqlite3ExprCachePop(pParse); |
| 4488 break; |
| 4489 } |
| 4490 case TK_NOT: { |
| 4491 testcase( jumpIfNull==0 ); |
| 4492 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| 4493 break; |
| 4494 } |
| 4495 case TK_IS: |
| 4496 case TK_ISNOT: |
| 4497 testcase( pExpr->op==TK_IS ); |
| 4498 testcase( pExpr->op==TK_ISNOT ); |
| 4499 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; |
| 4500 jumpIfNull = SQLITE_NULLEQ; |
| 4501 /* Fall thru */ |
| 4502 case TK_LT: |
| 4503 case TK_LE: |
| 4504 case TK_GT: |
| 4505 case TK_GE: |
| 4506 case TK_NE: |
| 4507 case TK_EQ: { |
| 4508 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; |
| 4509 testcase( jumpIfNull==0 ); |
| 4510 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| 4511 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
| 4512 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
| 4513 r1, r2, dest, jumpIfNull); |
| 4514 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
| 4515 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
| 4516 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
| 4517 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
| 4518 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); |
| 4519 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); |
| 4520 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); |
| 4521 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); |
| 4522 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); |
| 4523 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); |
| 4524 testcase( regFree1==0 ); |
| 4525 testcase( regFree2==0 ); |
| 4526 break; |
| 4527 } |
| 4528 case TK_ISNULL: |
| 4529 case TK_NOTNULL: { |
| 4530 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| 4531 sqlite3VdbeAddOp2(v, op, r1, dest); |
| 4532 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); |
| 4533 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); |
| 4534 testcase( regFree1==0 ); |
| 4535 break; |
| 4536 } |
| 4537 case TK_BETWEEN: { |
| 4538 testcase( jumpIfNull==0 ); |
| 4539 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); |
| 4540 break; |
| 4541 } |
| 4542 #ifndef SQLITE_OMIT_SUBQUERY |
| 4543 case TK_IN: { |
| 4544 if( jumpIfNull ){ |
| 4545 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); |
| 4546 }else{ |
| 4547 int destIfNull = sqlite3VdbeMakeLabel(v); |
| 4548 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); |
| 4549 sqlite3VdbeResolveLabel(v, destIfNull); |
| 4550 } |
| 4551 break; |
| 4552 } |
| 4553 #endif |
| 4554 default: { |
| 4555 default_expr: |
| 4556 if( exprAlwaysFalse(pExpr) ){ |
| 4557 sqlite3VdbeGoto(v, dest); |
| 4558 }else if( exprAlwaysTrue(pExpr) ){ |
| 4559 /* no-op */ |
| 4560 }else{ |
| 4561 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
| 4562 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); |
| 4563 VdbeCoverage(v); |
| 4564 testcase( regFree1==0 ); |
| 4565 testcase( jumpIfNull==0 ); |
| 4566 } |
| 4567 break; |
| 4568 } |
| 4569 } |
| 4570 sqlite3ReleaseTempReg(pParse, regFree1); |
| 4571 sqlite3ReleaseTempReg(pParse, regFree2); |
| 4572 } |
| 4573 |
| 4574 /* |
| 4575 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before |
| 4576 ** code generation, and that copy is deleted after code generation. This |
| 4577 ** ensures that the original pExpr is unchanged. |
| 4578 */ |
| 4579 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ |
| 4580 sqlite3 *db = pParse->db; |
| 4581 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); |
| 4582 if( db->mallocFailed==0 ){ |
| 4583 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); |
| 4584 } |
| 4585 sqlite3ExprDelete(db, pCopy); |
| 4586 } |
| 4587 |
| 4588 |
| 4589 /* |
| 4590 ** Do a deep comparison of two expression trees. Return 0 if the two |
| 4591 ** expressions are completely identical. Return 1 if they differ only |
| 4592 ** by a COLLATE operator at the top level. Return 2 if there are differences |
| 4593 ** other than the top-level COLLATE operator. |
| 4594 ** |
| 4595 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
| 4596 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
| 4597 ** |
| 4598 ** The pA side might be using TK_REGISTER. If that is the case and pB is |
| 4599 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. |
| 4600 ** |
| 4601 ** Sometimes this routine will return 2 even if the two expressions |
| 4602 ** really are equivalent. If we cannot prove that the expressions are |
| 4603 ** identical, we return 2 just to be safe. So if this routine |
| 4604 ** returns 2, then you do not really know for certain if the two |
| 4605 ** expressions are the same. But if you get a 0 or 1 return, then you |
| 4606 ** can be sure the expressions are the same. In the places where |
| 4607 ** this routine is used, it does not hurt to get an extra 2 - that |
| 4608 ** just might result in some slightly slower code. But returning |
| 4609 ** an incorrect 0 or 1 could lead to a malfunction. |
| 4610 */ |
| 4611 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ |
| 4612 u32 combinedFlags; |
| 4613 if( pA==0 || pB==0 ){ |
| 4614 return pB==pA ? 0 : 2; |
| 4615 } |
| 4616 combinedFlags = pA->flags | pB->flags; |
| 4617 if( combinedFlags & EP_IntValue ){ |
| 4618 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ |
| 4619 return 0; |
| 4620 } |
| 4621 return 2; |
| 4622 } |
| 4623 if( pA->op!=pB->op ){ |
| 4624 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ |
| 4625 return 1; |
| 4626 } |
| 4627 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ |
| 4628 return 1; |
| 4629 } |
| 4630 return 2; |
| 4631 } |
| 4632 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ |
| 4633 if( pA->op==TK_FUNCTION ){ |
| 4634 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; |
| 4635 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ |
| 4636 return pA->op==TK_COLLATE ? 1 : 2; |
| 4637 } |
| 4638 } |
| 4639 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; |
| 4640 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ |
| 4641 if( combinedFlags & EP_xIsSelect ) return 2; |
| 4642 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; |
| 4643 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; |
| 4644 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; |
| 4645 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ |
| 4646 if( pA->iColumn!=pB->iColumn ) return 2; |
| 4647 if( pA->iTable!=pB->iTable |
| 4648 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; |
| 4649 } |
| 4650 } |
| 4651 return 0; |
| 4652 } |
| 4653 |
| 4654 /* |
| 4655 ** Compare two ExprList objects. Return 0 if they are identical and |
| 4656 ** non-zero if they differ in any way. |
| 4657 ** |
| 4658 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
| 4659 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
| 4660 ** |
| 4661 ** This routine might return non-zero for equivalent ExprLists. The |
| 4662 ** only consequence will be disabled optimizations. But this routine |
| 4663 ** must never return 0 if the two ExprList objects are different, or |
| 4664 ** a malfunction will result. |
| 4665 ** |
| 4666 ** Two NULL pointers are considered to be the same. But a NULL pointer |
| 4667 ** always differs from a non-NULL pointer. |
| 4668 */ |
| 4669 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ |
| 4670 int i; |
| 4671 if( pA==0 && pB==0 ) return 0; |
| 4672 if( pA==0 || pB==0 ) return 1; |
| 4673 if( pA->nExpr!=pB->nExpr ) return 1; |
| 4674 for(i=0; i<pA->nExpr; i++){ |
| 4675 Expr *pExprA = pA->a[i].pExpr; |
| 4676 Expr *pExprB = pB->a[i].pExpr; |
| 4677 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; |
| 4678 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; |
| 4679 } |
| 4680 return 0; |
| 4681 } |
| 4682 |
| 4683 /* |
| 4684 ** Return true if we can prove the pE2 will always be true if pE1 is |
| 4685 ** true. Return false if we cannot complete the proof or if pE2 might |
| 4686 ** be false. Examples: |
| 4687 ** |
| 4688 ** pE1: x==5 pE2: x==5 Result: true |
| 4689 ** pE1: x>0 pE2: x==5 Result: false |
| 4690 ** pE1: x=21 pE2: x=21 OR y=43 Result: true |
| 4691 ** pE1: x!=123 pE2: x IS NOT NULL Result: true |
| 4692 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true |
| 4693 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false |
| 4694 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false |
| 4695 ** |
| 4696 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has |
| 4697 ** Expr.iTable<0 then assume a table number given by iTab. |
| 4698 ** |
| 4699 ** When in doubt, return false. Returning true might give a performance |
| 4700 ** improvement. Returning false might cause a performance reduction, but |
| 4701 ** it will always give the correct answer and is hence always safe. |
| 4702 */ |
| 4703 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ |
| 4704 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ |
| 4705 return 1; |
| 4706 } |
| 4707 if( pE2->op==TK_OR |
| 4708 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) |
| 4709 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) |
| 4710 ){ |
| 4711 return 1; |
| 4712 } |
| 4713 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ |
| 4714 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); |
| 4715 testcase( pX!=pE1->pLeft ); |
| 4716 if( sqlite3ExprCompare(pX, pE2->pLeft, iTab)==0 ) return 1; |
| 4717 } |
| 4718 return 0; |
| 4719 } |
| 4720 |
| 4721 /* |
| 4722 ** An instance of the following structure is used by the tree walker |
| 4723 ** to determine if an expression can be evaluated by reference to the |
| 4724 ** index only, without having to do a search for the corresponding |
| 4725 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur |
| 4726 ** is the cursor for the table. |
| 4727 */ |
| 4728 struct IdxCover { |
| 4729 Index *pIdx; /* The index to be tested for coverage */ |
| 4730 int iCur; /* Cursor number for the table corresponding to the index */ |
| 4731 }; |
| 4732 |
| 4733 /* |
| 4734 ** Check to see if there are references to columns in table |
| 4735 ** pWalker->u.pIdxCover->iCur can be satisfied using the index |
| 4736 ** pWalker->u.pIdxCover->pIdx. |
| 4737 */ |
| 4738 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ |
| 4739 if( pExpr->op==TK_COLUMN |
| 4740 && pExpr->iTable==pWalker->u.pIdxCover->iCur |
| 4741 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 |
| 4742 ){ |
| 4743 pWalker->eCode = 1; |
| 4744 return WRC_Abort; |
| 4745 } |
| 4746 return WRC_Continue; |
| 4747 } |
| 4748 |
| 4749 /* |
| 4750 ** Determine if an index pIdx on table with cursor iCur contains will |
| 4751 ** the expression pExpr. Return true if the index does cover the |
| 4752 ** expression and false if the pExpr expression references table columns |
| 4753 ** that are not found in the index pIdx. |
| 4754 ** |
| 4755 ** An index covering an expression means that the expression can be |
| 4756 ** evaluated using only the index and without having to lookup the |
| 4757 ** corresponding table entry. |
| 4758 */ |
| 4759 int sqlite3ExprCoveredByIndex( |
| 4760 Expr *pExpr, /* The index to be tested */ |
| 4761 int iCur, /* The cursor number for the corresponding table */ |
| 4762 Index *pIdx /* The index that might be used for coverage */ |
| 4763 ){ |
| 4764 Walker w; |
| 4765 struct IdxCover xcov; |
| 4766 memset(&w, 0, sizeof(w)); |
| 4767 xcov.iCur = iCur; |
| 4768 xcov.pIdx = pIdx; |
| 4769 w.xExprCallback = exprIdxCover; |
| 4770 w.u.pIdxCover = &xcov; |
| 4771 sqlite3WalkExpr(&w, pExpr); |
| 4772 return !w.eCode; |
| 4773 } |
| 4774 |
| 4775 |
| 4776 /* |
| 4777 ** An instance of the following structure is used by the tree walker |
| 4778 ** to count references to table columns in the arguments of an |
| 4779 ** aggregate function, in order to implement the |
| 4780 ** sqlite3FunctionThisSrc() routine. |
| 4781 */ |
| 4782 struct SrcCount { |
| 4783 SrcList *pSrc; /* One particular FROM clause in a nested query */ |
| 4784 int nThis; /* Number of references to columns in pSrcList */ |
| 4785 int nOther; /* Number of references to columns in other FROM clauses */ |
| 4786 }; |
| 4787 |
| 4788 /* |
| 4789 ** Count the number of references to columns. |
| 4790 */ |
| 4791 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ |
| 4792 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() |
| 4793 ** is always called before sqlite3ExprAnalyzeAggregates() and so the |
| 4794 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If |
| 4795 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the |
| 4796 ** NEVER() will need to be removed. */ |
| 4797 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ |
| 4798 int i; |
| 4799 struct SrcCount *p = pWalker->u.pSrcCount; |
| 4800 SrcList *pSrc = p->pSrc; |
| 4801 int nSrc = pSrc ? pSrc->nSrc : 0; |
| 4802 for(i=0; i<nSrc; i++){ |
| 4803 if( pExpr->iTable==pSrc->a[i].iCursor ) break; |
| 4804 } |
| 4805 if( i<nSrc ){ |
| 4806 p->nThis++; |
| 4807 }else{ |
| 4808 p->nOther++; |
| 4809 } |
| 4810 } |
| 4811 return WRC_Continue; |
| 4812 } |
| 4813 |
| 4814 /* |
| 4815 ** Determine if any of the arguments to the pExpr Function reference |
| 4816 ** pSrcList. Return true if they do. Also return true if the function |
| 4817 ** has no arguments or has only constant arguments. Return false if pExpr |
| 4818 ** references columns but not columns of tables found in pSrcList. |
| 4819 */ |
| 4820 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ |
| 4821 Walker w; |
| 4822 struct SrcCount cnt; |
| 4823 assert( pExpr->op==TK_AGG_FUNCTION ); |
| 4824 memset(&w, 0, sizeof(w)); |
| 4825 w.xExprCallback = exprSrcCount; |
| 4826 w.u.pSrcCount = &cnt; |
| 4827 cnt.pSrc = pSrcList; |
| 4828 cnt.nThis = 0; |
| 4829 cnt.nOther = 0; |
| 4830 sqlite3WalkExprList(&w, pExpr->x.pList); |
| 4831 return cnt.nThis>0 || cnt.nOther==0; |
| 4832 } |
| 4833 |
| 4834 /* |
| 4835 ** Add a new element to the pAggInfo->aCol[] array. Return the index of |
| 4836 ** the new element. Return a negative number if malloc fails. |
| 4837 */ |
| 4838 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ |
| 4839 int i; |
| 4840 pInfo->aCol = sqlite3ArrayAllocate( |
| 4841 db, |
| 4842 pInfo->aCol, |
| 4843 sizeof(pInfo->aCol[0]), |
| 4844 &pInfo->nColumn, |
| 4845 &i |
| 4846 ); |
| 4847 return i; |
| 4848 } |
| 4849 |
| 4850 /* |
| 4851 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of |
| 4852 ** the new element. Return a negative number if malloc fails. |
| 4853 */ |
| 4854 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ |
| 4855 int i; |
| 4856 pInfo->aFunc = sqlite3ArrayAllocate( |
| 4857 db, |
| 4858 pInfo->aFunc, |
| 4859 sizeof(pInfo->aFunc[0]), |
| 4860 &pInfo->nFunc, |
| 4861 &i |
| 4862 ); |
| 4863 return i; |
| 4864 } |
| 4865 |
| 4866 /* |
| 4867 ** This is the xExprCallback for a tree walker. It is used to |
| 4868 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates |
| 4869 ** for additional information. |
| 4870 */ |
| 4871 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ |
| 4872 int i; |
| 4873 NameContext *pNC = pWalker->u.pNC; |
| 4874 Parse *pParse = pNC->pParse; |
| 4875 SrcList *pSrcList = pNC->pSrcList; |
| 4876 AggInfo *pAggInfo = pNC->pAggInfo; |
| 4877 |
| 4878 switch( pExpr->op ){ |
| 4879 case TK_AGG_COLUMN: |
| 4880 case TK_COLUMN: { |
| 4881 testcase( pExpr->op==TK_AGG_COLUMN ); |
| 4882 testcase( pExpr->op==TK_COLUMN ); |
| 4883 /* Check to see if the column is in one of the tables in the FROM |
| 4884 ** clause of the aggregate query */ |
| 4885 if( ALWAYS(pSrcList!=0) ){ |
| 4886 struct SrcList_item *pItem = pSrcList->a; |
| 4887 for(i=0; i<pSrcList->nSrc; i++, pItem++){ |
| 4888 struct AggInfo_col *pCol; |
| 4889 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
| 4890 if( pExpr->iTable==pItem->iCursor ){ |
| 4891 /* If we reach this point, it means that pExpr refers to a table |
| 4892 ** that is in the FROM clause of the aggregate query. |
| 4893 ** |
| 4894 ** Make an entry for the column in pAggInfo->aCol[] if there |
| 4895 ** is not an entry there already. |
| 4896 */ |
| 4897 int k; |
| 4898 pCol = pAggInfo->aCol; |
| 4899 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ |
| 4900 if( pCol->iTable==pExpr->iTable && |
| 4901 pCol->iColumn==pExpr->iColumn ){ |
| 4902 break; |
| 4903 } |
| 4904 } |
| 4905 if( (k>=pAggInfo->nColumn) |
| 4906 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 |
| 4907 ){ |
| 4908 pCol = &pAggInfo->aCol[k]; |
| 4909 pCol->pTab = pExpr->pTab; |
| 4910 pCol->iTable = pExpr->iTable; |
| 4911 pCol->iColumn = pExpr->iColumn; |
| 4912 pCol->iMem = ++pParse->nMem; |
| 4913 pCol->iSorterColumn = -1; |
| 4914 pCol->pExpr = pExpr; |
| 4915 if( pAggInfo->pGroupBy ){ |
| 4916 int j, n; |
| 4917 ExprList *pGB = pAggInfo->pGroupBy; |
| 4918 struct ExprList_item *pTerm = pGB->a; |
| 4919 n = pGB->nExpr; |
| 4920 for(j=0; j<n; j++, pTerm++){ |
| 4921 Expr *pE = pTerm->pExpr; |
| 4922 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && |
| 4923 pE->iColumn==pExpr->iColumn ){ |
| 4924 pCol->iSorterColumn = j; |
| 4925 break; |
| 4926 } |
| 4927 } |
| 4928 } |
| 4929 if( pCol->iSorterColumn<0 ){ |
| 4930 pCol->iSorterColumn = pAggInfo->nSortingColumn++; |
| 4931 } |
| 4932 } |
| 4933 /* There is now an entry for pExpr in pAggInfo->aCol[] (either |
| 4934 ** because it was there before or because we just created it). |
| 4935 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that |
| 4936 ** pAggInfo->aCol[] entry. |
| 4937 */ |
| 4938 ExprSetVVAProperty(pExpr, EP_NoReduce); |
| 4939 pExpr->pAggInfo = pAggInfo; |
| 4940 pExpr->op = TK_AGG_COLUMN; |
| 4941 pExpr->iAgg = (i16)k; |
| 4942 break; |
| 4943 } /* endif pExpr->iTable==pItem->iCursor */ |
| 4944 } /* end loop over pSrcList */ |
| 4945 } |
| 4946 return WRC_Prune; |
| 4947 } |
| 4948 case TK_AGG_FUNCTION: { |
| 4949 if( (pNC->ncFlags & NC_InAggFunc)==0 |
| 4950 && pWalker->walkerDepth==pExpr->op2 |
| 4951 ){ |
| 4952 /* Check to see if pExpr is a duplicate of another aggregate |
| 4953 ** function that is already in the pAggInfo structure |
| 4954 */ |
| 4955 struct AggInfo_func *pItem = pAggInfo->aFunc; |
| 4956 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ |
| 4957 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ |
| 4958 break; |
| 4959 } |
| 4960 } |
| 4961 if( i>=pAggInfo->nFunc ){ |
| 4962 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] |
| 4963 */ |
| 4964 u8 enc = ENC(pParse->db); |
| 4965 i = addAggInfoFunc(pParse->db, pAggInfo); |
| 4966 if( i>=0 ){ |
| 4967 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
| 4968 pItem = &pAggInfo->aFunc[i]; |
| 4969 pItem->pExpr = pExpr; |
| 4970 pItem->iMem = ++pParse->nMem; |
| 4971 assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| 4972 pItem->pFunc = sqlite3FindFunction(pParse->db, |
| 4973 pExpr->u.zToken, |
| 4974 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); |
| 4975 if( pExpr->flags & EP_Distinct ){ |
| 4976 pItem->iDistinct = pParse->nTab++; |
| 4977 }else{ |
| 4978 pItem->iDistinct = -1; |
| 4979 } |
| 4980 } |
| 4981 } |
| 4982 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry |
| 4983 */ |
| 4984 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
| 4985 ExprSetVVAProperty(pExpr, EP_NoReduce); |
| 4986 pExpr->iAgg = (i16)i; |
| 4987 pExpr->pAggInfo = pAggInfo; |
| 4988 return WRC_Prune; |
| 4989 }else{ |
| 4990 return WRC_Continue; |
| 4991 } |
| 4992 } |
| 4993 } |
| 4994 return WRC_Continue; |
| 4995 } |
| 4996 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ |
| 4997 UNUSED_PARAMETER(pWalker); |
| 4998 UNUSED_PARAMETER(pSelect); |
| 4999 return WRC_Continue; |
| 5000 } |
| 5001 |
| 5002 /* |
| 5003 ** Analyze the pExpr expression looking for aggregate functions and |
| 5004 ** for variables that need to be added to AggInfo object that pNC->pAggInfo |
| 5005 ** points to. Additional entries are made on the AggInfo object as |
| 5006 ** necessary. |
| 5007 ** |
| 5008 ** This routine should only be called after the expression has been |
| 5009 ** analyzed by sqlite3ResolveExprNames(). |
| 5010 */ |
| 5011 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ |
| 5012 Walker w; |
| 5013 memset(&w, 0, sizeof(w)); |
| 5014 w.xExprCallback = analyzeAggregate; |
| 5015 w.xSelectCallback = analyzeAggregatesInSelect; |
| 5016 w.u.pNC = pNC; |
| 5017 assert( pNC->pSrcList!=0 ); |
| 5018 sqlite3WalkExpr(&w, pExpr); |
| 5019 } |
| 5020 |
| 5021 /* |
| 5022 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an |
| 5023 ** expression list. Return the number of errors. |
| 5024 ** |
| 5025 ** If an error is found, the analysis is cut short. |
| 5026 */ |
| 5027 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ |
| 5028 struct ExprList_item *pItem; |
| 5029 int i; |
| 5030 if( pList ){ |
| 5031 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
| 5032 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); |
| 5033 } |
| 5034 } |
| 5035 } |
| 5036 |
| 5037 /* |
| 5038 ** Allocate a single new register for use to hold some intermediate result. |
| 5039 */ |
| 5040 int sqlite3GetTempReg(Parse *pParse){ |
| 5041 if( pParse->nTempReg==0 ){ |
| 5042 return ++pParse->nMem; |
| 5043 } |
| 5044 return pParse->aTempReg[--pParse->nTempReg]; |
| 5045 } |
| 5046 |
| 5047 /* |
| 5048 ** Deallocate a register, making available for reuse for some other |
| 5049 ** purpose. |
| 5050 ** |
| 5051 ** If a register is currently being used by the column cache, then |
| 5052 ** the deallocation is deferred until the column cache line that uses |
| 5053 ** the register becomes stale. |
| 5054 */ |
| 5055 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ |
| 5056 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
| 5057 int i; |
| 5058 struct yColCache *p; |
| 5059 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ |
| 5060 if( p->iReg==iReg ){ |
| 5061 p->tempReg = 1; |
| 5062 return; |
| 5063 } |
| 5064 } |
| 5065 pParse->aTempReg[pParse->nTempReg++] = iReg; |
| 5066 } |
| 5067 } |
| 5068 |
| 5069 /* |
| 5070 ** Allocate or deallocate a block of nReg consecutive registers. |
| 5071 */ |
| 5072 int sqlite3GetTempRange(Parse *pParse, int nReg){ |
| 5073 int i, n; |
| 5074 if( nReg==1 ) return sqlite3GetTempReg(pParse); |
| 5075 i = pParse->iRangeReg; |
| 5076 n = pParse->nRangeReg; |
| 5077 if( nReg<=n ){ |
| 5078 assert( !usedAsColumnCache(pParse, i, i+n-1) ); |
| 5079 pParse->iRangeReg += nReg; |
| 5080 pParse->nRangeReg -= nReg; |
| 5081 }else{ |
| 5082 i = pParse->nMem+1; |
| 5083 pParse->nMem += nReg; |
| 5084 } |
| 5085 return i; |
| 5086 } |
| 5087 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ |
| 5088 if( nReg==1 ){ |
| 5089 sqlite3ReleaseTempReg(pParse, iReg); |
| 5090 return; |
| 5091 } |
| 5092 sqlite3ExprCacheRemove(pParse, iReg, nReg); |
| 5093 if( nReg>pParse->nRangeReg ){ |
| 5094 pParse->nRangeReg = nReg; |
| 5095 pParse->iRangeReg = iReg; |
| 5096 } |
| 5097 } |
| 5098 |
| 5099 /* |
| 5100 ** Mark all temporary registers as being unavailable for reuse. |
| 5101 */ |
| 5102 void sqlite3ClearTempRegCache(Parse *pParse){ |
| 5103 pParse->nTempReg = 0; |
| 5104 pParse->nRangeReg = 0; |
| 5105 } |
| 5106 |
| 5107 /* |
| 5108 ** Validate that no temporary register falls within the range of |
| 5109 ** iFirst..iLast, inclusive. This routine is only call from within assert() |
| 5110 ** statements. |
| 5111 */ |
| 5112 #ifdef SQLITE_DEBUG |
| 5113 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ |
| 5114 int i; |
| 5115 if( pParse->nRangeReg>0 |
| 5116 && pParse->iRangeReg+pParse->nRangeReg<iLast |
| 5117 && pParse->iRangeReg>=iFirst |
| 5118 ){ |
| 5119 return 0; |
| 5120 } |
| 5121 for(i=0; i<pParse->nTempReg; i++){ |
| 5122 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ |
| 5123 return 0; |
| 5124 } |
| 5125 } |
| 5126 return 1; |
| 5127 } |
| 5128 #endif /* SQLITE_DEBUG */ |
OLD | NEW |