| Index: ui/gfx/geometry/r_tree_base.cc
|
| diff --git a/ui/gfx/geometry/r_tree_base.cc b/ui/gfx/geometry/r_tree_base.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..e93e1d5b6b1dc7ee1f9fbf85b0be8a5cb2684dfa
|
| --- /dev/null
|
| +++ b/ui/gfx/geometry/r_tree_base.cc
|
| @@ -0,0 +1,658 @@
|
| +// Copyright 2014 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "ui/gfx/geometry/r_tree_base.h"
|
| +
|
| +#include <algorithm>
|
| +
|
| +#include "base/logging.h"
|
| +
|
| +
|
| +// Helpers --------------------------------------------------------------------
|
| +
|
| +namespace {
|
| +
|
| +// Returns a Vector2d to allow us to do arithmetic on the result such as
|
| +// computing distances between centers.
|
| +gfx::Vector2d CenterOfRect(const gfx::Rect& rect) {
|
| + return rect.OffsetFromOrigin() +
|
| + gfx::Vector2d(rect.width() / 2, rect.height() / 2);
|
| +}
|
| +
|
| +}
|
| +
|
| +namespace gfx {
|
| +
|
| +
|
| +// RTreeBase::NodeBase --------------------------------------------------------
|
| +
|
| +RTreeBase::NodeBase::~NodeBase() {
|
| +}
|
| +
|
| +void RTreeBase::NodeBase::RecomputeBoundsUpToRoot() {
|
| + RecomputeLocalBounds();
|
| + if (parent_)
|
| + parent_->RecomputeBoundsUpToRoot();
|
| +}
|
| +
|
| +RTreeBase::NodeBase::NodeBase(const Rect& rect, NodeBase* parent)
|
| + : rect_(rect),
|
| + parent_(parent) {
|
| +}
|
| +
|
| +void RTreeBase::NodeBase::RecomputeLocalBounds() {
|
| +}
|
| +
|
| +// RTreeBase::RecordBase ------------------------------------------------------
|
| +
|
| +RTreeBase::RecordBase::RecordBase(const Rect& rect) : NodeBase(rect, NULL) {
|
| +}
|
| +
|
| +RTreeBase::RecordBase::~RecordBase() {
|
| +}
|
| +
|
| +void RTreeBase::RecordBase::AppendIntersectingRecords(
|
| + const Rect& query_rect, Records* matches_out) const {
|
| + if (rect().Intersects(query_rect))
|
| + matches_out->push_back(this);
|
| +}
|
| +
|
| +void RTreeBase::RecordBase::AppendAllRecords(Records* matches_out) const {
|
| + matches_out->push_back(this);
|
| +}
|
| +
|
| +scoped_ptr<RTreeBase::NodeBase>
|
| +RTreeBase::RecordBase::RemoveAndReturnLastChild() {
|
| + return scoped_ptr<NodeBase>();
|
| +}
|
| +
|
| +int RTreeBase::RecordBase::Level() const {
|
| + return -1;
|
| +}
|
| +
|
| +
|
| +// RTreeBase::Node ------------------------------------------------------------
|
| +
|
| +RTreeBase::Node::Node() : NodeBase(Rect(), NULL), level_(0) {
|
| +}
|
| +
|
| +RTreeBase::Node::~Node() {
|
| +}
|
| +
|
| +scoped_ptr<RTreeBase::Node> RTreeBase::Node::ConstructParent() {
|
| + DCHECK(!parent());
|
| + scoped_ptr<Node> new_parent(new Node(level_ + 1));
|
| + new_parent->AddChild(scoped_ptr<NodeBase>(this));
|
| + return new_parent.Pass();
|
| +}
|
| +
|
| +void RTreeBase::Node::AppendIntersectingRecords(
|
| + const Rect& query_rect, Records* matches_out) const {
|
| + // Check own bounding box for intersection, can cull all children if no
|
| + // intersection.
|
| + if (!rect().Intersects(query_rect))
|
| + return;
|
| +
|
| + // Conversely if we are completely contained within the query rect we can
|
| + // confidently skip all bounds checks for ourselves and all our children.
|
| + if (query_rect.Contains(rect())) {
|
| + AppendAllRecords(matches_out);
|
| + return;
|
| + }
|
| +
|
| + // We intersect the query rect but we are not are not contained within it.
|
| + // We must query each of our children in turn.
|
| + for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
|
| + (*i)->AppendIntersectingRecords(query_rect, matches_out);
|
| +}
|
| +
|
| +void RTreeBase::Node::AppendAllRecords(Records* matches_out) const {
|
| + for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
|
| + (*i)->AppendAllRecords(matches_out);
|
| +}
|
| +
|
| +void RTreeBase::Node::RemoveNodesForReinsert(size_t number_to_remove,
|
| + Nodes* nodes) {
|
| + DCHECK_LE(number_to_remove, children_.size());
|
| +
|
| + std::partial_sort(children_.begin(),
|
| + children_.begin() + number_to_remove,
|
| + children_.end(),
|
| + &RTreeBase::Node::CompareCenterDistanceFromParent);
|
| +
|
| + // Move the lowest-distance nodes to the returned vector.
|
| + nodes->insert(
|
| + nodes->end(), children_.begin(), children_.begin() + number_to_remove);
|
| + children_.weak_erase(children_.begin(), children_.begin() + number_to_remove);
|
| +}
|
| +
|
| +scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveChild(
|
| + NodeBase* child_node, Nodes* orphans) {
|
| + DCHECK_EQ(this, child_node->parent());
|
| +
|
| + scoped_ptr<NodeBase> orphan(child_node->RemoveAndReturnLastChild());
|
| + while (orphan) {
|
| + orphans->push_back(orphan.release());
|
| + orphan = child_node->RemoveAndReturnLastChild();
|
| + }
|
| +
|
| + Nodes::iterator i = std::find(children_.begin(), children_.end(), child_node);
|
| + DCHECK(i != children_.end());
|
| + children_.weak_erase(i);
|
| +
|
| + return scoped_ptr<NodeBase>(child_node);
|
| +}
|
| +
|
| +scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveAndReturnLastChild() {
|
| + if (children_.empty())
|
| + return scoped_ptr<NodeBase>();
|
| +
|
| + scoped_ptr<NodeBase> last_child(children_.back());
|
| + children_.weak_erase(children_.end() - 1);
|
| + last_child->set_parent(NULL);
|
| + return last_child.Pass();
|
| +}
|
| +
|
| +RTreeBase::Node* RTreeBase::Node::ChooseSubtree(NodeBase* node) {
|
| + DCHECK(node);
|
| + // Should never be called on a node at equal or lower level in the tree than
|
| + // the node to insert.
|
| + DCHECK_GT(level_, node->Level());
|
| +
|
| + // If we are a parent of nodes on the provided node level, we are done.
|
| + if (level_ == node->Level() + 1)
|
| + return this;
|
| +
|
| + // Precompute a vector of expanded rects, used by both LeastOverlapIncrease
|
| + // and LeastAreaEnlargement.
|
| + Rects expanded_rects;
|
| + expanded_rects.reserve(children_.size());
|
| + for (Nodes::iterator i = children_.begin(); i != children_.end(); ++i)
|
| + expanded_rects.push_back(UnionRects(node->rect(), (*i)->rect()));
|
| +
|
| + Node* best_candidate = NULL;
|
| + // For parents of leaf nodes, we pick the node that will cause the least
|
| + // increase in overlap by the addition of this new node. This may detect a
|
| + // tie, in which case it will return NULL.
|
| + if (level_ == 1)
|
| + best_candidate = LeastOverlapIncrease(node->rect(), expanded_rects);
|
| +
|
| + // For non-parents of leaf nodes, or for parents of leaf nodes with ties in
|
| + // overlap increase, we choose the subtree with least area enlargement caused
|
| + // by the addition of the new node.
|
| + if (!best_candidate)
|
| + best_candidate = LeastAreaEnlargement(node->rect(), expanded_rects);
|
| +
|
| + DCHECK(best_candidate);
|
| + return best_candidate->ChooseSubtree(node);
|
| +}
|
| +
|
| +size_t RTreeBase::Node::AddChild(scoped_ptr<NodeBase> node) {
|
| + DCHECK(node);
|
| + // Sanity-check that the level of the child being added is one less than ours.
|
| + DCHECK_EQ(level_ - 1, node->Level());
|
| + node->set_parent(this);
|
| + set_rect(UnionRects(rect(), node->rect()));
|
| + children_.push_back(node.release());
|
| + return children_.size();
|
| +}
|
| +
|
| +scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::Split(size_t min_children,
|
| + size_t max_children) {
|
| + // We should have too many children to begin with.
|
| + DCHECK_EQ(max_children + 1, children_.size());
|
| +
|
| + // Determine if we should split along the horizontal or vertical axis.
|
| + std::vector<NodeBase*> vertical_sort(children_.get());
|
| + std::vector<NodeBase*> horizontal_sort(children_.get());
|
| + std::sort(vertical_sort.begin(),
|
| + vertical_sort.end(),
|
| + &RTreeBase::Node::CompareVertical);
|
| + std::sort(horizontal_sort.begin(),
|
| + horizontal_sort.end(),
|
| + &RTreeBase::Node::CompareHorizontal);
|
| +
|
| + Rects low_vertical_bounds;
|
| + Rects low_horizontal_bounds;
|
| + BuildLowBounds(vertical_sort,
|
| + horizontal_sort,
|
| + &low_vertical_bounds,
|
| + &low_horizontal_bounds);
|
| +
|
| + Rects high_vertical_bounds;
|
| + Rects high_horizontal_bounds;
|
| + BuildHighBounds(vertical_sort,
|
| + horizontal_sort,
|
| + &high_vertical_bounds,
|
| + &high_horizontal_bounds);
|
| +
|
| + // Choose |end_index| such that both Nodes after the split will have
|
| + // min_children <= children_.size() <= max_children.
|
| + size_t end_index = std::min(max_children, children_.size() - min_children);
|
| + bool is_vertical_split =
|
| + SmallestMarginSum(min_children,
|
| + end_index,
|
| + low_horizontal_bounds,
|
| + high_horizontal_bounds) <
|
| + SmallestMarginSum(min_children,
|
| + end_index,
|
| + low_vertical_bounds,
|
| + high_vertical_bounds);
|
| +
|
| + // Choose split index along chosen axis and perform the split.
|
| + const Rects& low_bounds(
|
| + is_vertical_split ? low_vertical_bounds : low_horizontal_bounds);
|
| + const Rects& high_bounds(
|
| + is_vertical_split ? high_vertical_bounds : high_horizontal_bounds);
|
| + size_t split_index =
|
| + ChooseSplitIndex(min_children, end_index, low_bounds, high_bounds);
|
| +
|
| + const std::vector<NodeBase*>& sort(
|
| + is_vertical_split ? vertical_sort : horizontal_sort);
|
| + return DivideChildren(low_bounds, high_bounds, sort, split_index);
|
| +}
|
| +
|
| +int RTreeBase::Node::Level() const {
|
| + return level_;
|
| +}
|
| +
|
| +RTreeBase::Node::Node(int level) : NodeBase(Rect(), NULL), level_(level) {
|
| +}
|
| +
|
| +// static
|
| +bool RTreeBase::Node::CompareVertical(const NodeBase* a, const NodeBase* b) {
|
| + const Rect& a_rect = a->rect();
|
| + const Rect& b_rect = b->rect();
|
| + return (a_rect.y() < b_rect.y()) ||
|
| + ((a_rect.y() == b_rect.y()) && (a_rect.height() < b_rect.height()));
|
| +}
|
| +
|
| +// static
|
| +bool RTreeBase::Node::CompareHorizontal(const NodeBase* a, const NodeBase* b) {
|
| + const Rect& a_rect = a->rect();
|
| + const Rect& b_rect = b->rect();
|
| + return (a_rect.x() < b_rect.x()) ||
|
| + ((a_rect.x() == b_rect.x()) && (a_rect.width() < b_rect.width()));
|
| +}
|
| +
|
| +// static
|
| +bool RTreeBase::Node::CompareCenterDistanceFromParent(const NodeBase* a,
|
| + const NodeBase* b) {
|
| + const NodeBase* p = a->parent();
|
| +
|
| + DCHECK(p);
|
| + DCHECK_EQ(p, b->parent());
|
| +
|
| + Vector2d p_center = CenterOfRect(p->rect());
|
| + Vector2d a_center = CenterOfRect(a->rect());
|
| + Vector2d b_center = CenterOfRect(b->rect());
|
| +
|
| + // We don't bother with square roots because we are only comparing the two
|
| + // values for sorting purposes.
|
| + return (a_center - p_center).LengthSquared() <
|
| + (b_center - p_center).LengthSquared();
|
| +}
|
| +
|
| +// static
|
| +void RTreeBase::Node::BuildLowBounds(
|
| + const std::vector<NodeBase*>& vertical_sort,
|
| + const std::vector<NodeBase*>& horizontal_sort,
|
| + Rects* vertical_bounds,
|
| + Rects* horizontal_bounds) {
|
| + Rect vertical_bounds_rect;
|
| + vertical_bounds->reserve(vertical_sort.size());
|
| + for (std::vector<NodeBase*>::const_iterator i = vertical_sort.begin();
|
| + i != vertical_sort.end();
|
| + ++i) {
|
| + vertical_bounds_rect.Union((*i)->rect());
|
| + vertical_bounds->push_back(vertical_bounds_rect);
|
| + }
|
| +
|
| + Rect horizontal_bounds_rect;
|
| + horizontal_bounds->reserve(horizontal_sort.size());
|
| + for (std::vector<NodeBase*>::const_iterator i = horizontal_sort.begin();
|
| + i != horizontal_sort.end();
|
| + ++i) {
|
| + horizontal_bounds_rect.Union((*i)->rect());
|
| + horizontal_bounds->push_back(horizontal_bounds_rect);
|
| + }
|
| +}
|
| +
|
| +// static
|
| +void RTreeBase::Node::BuildHighBounds(
|
| + const std::vector<NodeBase*>& vertical_sort,
|
| + const std::vector<NodeBase*>& horizontal_sort,
|
| + Rects* vertical_bounds,
|
| + Rects* horizontal_bounds) {
|
| + Rect vertical_bounds_rect;
|
| + vertical_bounds->reserve(vertical_sort.size());
|
| + for (std::vector<NodeBase*>::const_reverse_iterator i =
|
| + vertical_sort.rbegin();
|
| + i != vertical_sort.rend();
|
| + ++i) {
|
| + vertical_bounds_rect.Union((*i)->rect());
|
| + vertical_bounds->push_back(vertical_bounds_rect);
|
| + }
|
| + std::reverse(vertical_bounds->begin(), vertical_bounds->end());
|
| +
|
| + Rect horizontal_bounds_rect;
|
| + horizontal_bounds->reserve(horizontal_sort.size());
|
| + for (std::vector<NodeBase*>::const_reverse_iterator i =
|
| + horizontal_sort.rbegin();
|
| + i != horizontal_sort.rend();
|
| + ++i) {
|
| + horizontal_bounds_rect.Union((*i)->rect());
|
| + horizontal_bounds->push_back(horizontal_bounds_rect);
|
| + }
|
| + std::reverse(horizontal_bounds->begin(), horizontal_bounds->end());
|
| +}
|
| +
|
| +size_t RTreeBase::Node::ChooseSplitIndex(size_t start_index,
|
| + size_t end_index,
|
| + const Rects& low_bounds,
|
| + const Rects& high_bounds) {
|
| + DCHECK_EQ(low_bounds.size(), high_bounds.size());
|
| +
|
| + int smallest_overlap_area = UnionRects(
|
| + low_bounds[start_index], high_bounds[start_index]).size().GetArea();
|
| + int smallest_combined_area = low_bounds[start_index].size().GetArea() +
|
| + high_bounds[start_index].size().GetArea();
|
| + size_t optimal_split_index = start_index;
|
| + for (size_t p = start_index + 1; p < end_index; ++p) {
|
| + const int overlap_area =
|
| + UnionRects(low_bounds[p], high_bounds[p]).size().GetArea();
|
| + const int combined_area =
|
| + low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea();
|
| + if ((overlap_area < smallest_overlap_area) ||
|
| + ((overlap_area == smallest_overlap_area) &&
|
| + (combined_area < smallest_combined_area))) {
|
| + smallest_overlap_area = overlap_area;
|
| + smallest_combined_area = combined_area;
|
| + optimal_split_index = p;
|
| + }
|
| + }
|
| +
|
| + // optimal_split_index currently points at the last element in the first set,
|
| + // so advance it by 1 to point at the first element in the second set.
|
| + return optimal_split_index + 1;
|
| +}
|
| +
|
| +// static
|
| +int RTreeBase::Node::SmallestMarginSum(size_t start_index,
|
| + size_t end_index,
|
| + const Rects& low_bounds,
|
| + const Rects& high_bounds) {
|
| + DCHECK_EQ(low_bounds.size(), high_bounds.size());
|
| + DCHECK_LT(start_index, low_bounds.size());
|
| + DCHECK_LE(start_index, end_index);
|
| + DCHECK_LE(end_index, low_bounds.size());
|
| + Rects::const_iterator i(low_bounds.begin() + start_index);
|
| + Rects::const_iterator j(high_bounds.begin() + start_index);
|
| + int smallest_sum = i->width() + i->height() + j->width() + j->height();
|
| + for (; i != (low_bounds.begin() + end_index); ++i, ++j) {
|
| + smallest_sum = std::min(
|
| + smallest_sum, i->width() + i->height() + j->width() + j->height());
|
| + }
|
| +
|
| + return smallest_sum;
|
| +}
|
| +
|
| +void RTreeBase::Node::RecomputeLocalBounds() {
|
| + Rect bounds;
|
| + for (size_t i = 0; i < children_.size(); ++i)
|
| + bounds.Union(children_[i]->rect());
|
| +
|
| + set_rect(bounds);
|
| +}
|
| +
|
| +int RTreeBase::Node::OverlapIncreaseToAdd(const Rect& rect,
|
| + const NodeBase* candidate_node,
|
| + const Rect& expanded_rect) const {
|
| + DCHECK(candidate_node);
|
| +
|
| + // Early-out when |rect| is contained completely within |candidate|.
|
| + if (candidate_node->rect().Contains(rect))
|
| + return 0;
|
| +
|
| + int total_original_overlap = 0;
|
| + int total_expanded_overlap = 0;
|
| +
|
| + // Now calculate overlap with all other rects in this node.
|
| + for (Nodes::const_iterator it = children_.begin();
|
| + it != children_.end(); ++it) {
|
| + // Skip calculating overlap with the candidate rect.
|
| + if ((*it) == candidate_node)
|
| + continue;
|
| + NodeBase* overlap_node = (*it);
|
| + total_original_overlap += IntersectRects(
|
| + candidate_node->rect(), overlap_node->rect()).size().GetArea();
|
| + Rect expanded_overlap_rect = expanded_rect;
|
| + expanded_overlap_rect.Intersect(overlap_node->rect());
|
| + total_expanded_overlap += expanded_overlap_rect.size().GetArea();
|
| + }
|
| +
|
| + return total_expanded_overlap - total_original_overlap;
|
| +}
|
| +
|
| +scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::DivideChildren(
|
| + const Rects& low_bounds,
|
| + const Rects& high_bounds,
|
| + const std::vector<NodeBase*>& sorted_children,
|
| + size_t split_index) {
|
| + DCHECK_EQ(low_bounds.size(), high_bounds.size());
|
| + DCHECK_EQ(low_bounds.size(), sorted_children.size());
|
| + DCHECK_LT(split_index, low_bounds.size());
|
| + DCHECK_GT(split_index, 0U);
|
| +
|
| + scoped_ptr<Node> sibling(new Node(level_));
|
| + sibling->set_parent(parent());
|
| + set_rect(low_bounds[split_index - 1]);
|
| + sibling->set_rect(high_bounds[split_index]);
|
| +
|
| + // Our own children_ vector is unsorted, so we wipe it out and divide the
|
| + // sorted bounds rects between ourselves and our sibling.
|
| + children_.weak_clear();
|
| + children_.insert(children_.end(),
|
| + sorted_children.begin(),
|
| + sorted_children.begin() + split_index);
|
| + sibling->children_.insert(sibling->children_.end(),
|
| + sorted_children.begin() + split_index,
|
| + sorted_children.end());
|
| +
|
| + for (size_t i = 0; i < sibling->children_.size(); ++i)
|
| + sibling->children_[i]->set_parent(sibling.get());
|
| +
|
| + return sibling.PassAs<NodeBase>();
|
| +}
|
| +
|
| +RTreeBase::Node* RTreeBase::Node::LeastOverlapIncrease(
|
| + const Rect& node_rect,
|
| + const Rects& expanded_rects) {
|
| + NodeBase* best_node = children_.front();
|
| + int least_overlap_increase =
|
| + OverlapIncreaseToAdd(node_rect, children_[0], expanded_rects[0]);
|
| + for (size_t i = 1; i < children_.size(); ++i) {
|
| + int overlap_increase =
|
| + OverlapIncreaseToAdd(node_rect, children_[i], expanded_rects[i]);
|
| + if (overlap_increase < least_overlap_increase) {
|
| + least_overlap_increase = overlap_increase;
|
| + best_node = children_[i];
|
| + } else if (overlap_increase == least_overlap_increase) {
|
| + // If we are tied at zero there is no possible better overlap increase,
|
| + // so we can report a tie early.
|
| + if (overlap_increase == 0)
|
| + return NULL;
|
| +
|
| + best_node = NULL;
|
| + }
|
| + }
|
| +
|
| + // Ensure that our children are always Nodes and not Records.
|
| + DCHECK_GE(level_, 1);
|
| + return static_cast<Node*>(best_node);
|
| +}
|
| +
|
| +RTreeBase::Node* RTreeBase::Node::LeastAreaEnlargement(
|
| + const Rect& node_rect,
|
| + const Rects& expanded_rects) {
|
| + DCHECK(!children_.empty());
|
| + DCHECK_EQ(children_.size(), expanded_rects.size());
|
| +
|
| + NodeBase* best_node = children_.front();
|
| + int least_area_enlargement =
|
| + expanded_rects[0].size().GetArea() - best_node->rect().size().GetArea();
|
| + for (size_t i = 1; i < children_.size(); ++i) {
|
| + NodeBase* candidate_node = children_[i];
|
| + int area_change = expanded_rects[i].size().GetArea() -
|
| + candidate_node->rect().size().GetArea();
|
| + DCHECK_GE(area_change, 0);
|
| + if (area_change < least_area_enlargement) {
|
| + best_node = candidate_node;
|
| + least_area_enlargement = area_change;
|
| + } else if (area_change == least_area_enlargement &&
|
| + candidate_node->rect().size().GetArea() <
|
| + best_node->rect().size().GetArea()) {
|
| + // Ties are broken by choosing the entry with the least area.
|
| + best_node = candidate_node;
|
| + }
|
| + }
|
| +
|
| + // Ensure that our children are always Nodes and not Records.
|
| + DCHECK_GE(level_, 1);
|
| + return static_cast<Node*>(best_node);
|
| +}
|
| +
|
| +
|
| +// RTreeBase ------------------------------------------------------------------
|
| +
|
| +RTreeBase::RTreeBase(size_t min_children, size_t max_children)
|
| + : root_(new Node()),
|
| + min_children_(min_children),
|
| + max_children_(max_children) {
|
| + DCHECK_GE(min_children_, 2U);
|
| + DCHECK_LE(min_children_, max_children_ / 2U);
|
| +}
|
| +
|
| +RTreeBase::~RTreeBase() {
|
| +}
|
| +
|
| +void RTreeBase::InsertNode(
|
| + scoped_ptr<NodeBase> node, int* highest_reinsert_level) {
|
| + // Find the most appropriate parent to insert node into.
|
| + Node* parent = root_->ChooseSubtree(node.get());
|
| + DCHECK(parent);
|
| + // Verify ChooseSubtree returned a Node at the correct level.
|
| + DCHECK_EQ(parent->Level(), node->Level() + 1);
|
| + Node* insert_parent = static_cast<Node*>(parent);
|
| + NodeBase* needs_bounds_recomputed = insert_parent->parent();
|
| + Nodes reinserts;
|
| + // Attempt to insert the Node, if this overflows the Node we must handle it.
|
| + while (insert_parent &&
|
| + insert_parent->AddChild(node.Pass()) > max_children_) {
|
| + // If we have yet to re-insert nodes at this level during this data insert,
|
| + // and we're not at the root, R*-Tree calls for re-insertion of some of the
|
| + // nodes, resulting in a better balance on the tree.
|
| + if (insert_parent->parent() &&
|
| + insert_parent->Level() > *highest_reinsert_level) {
|
| + insert_parent->RemoveNodesForReinsert(max_children_ / 3, &reinserts);
|
| + // Adjust highest_reinsert_level to this level.
|
| + *highest_reinsert_level = insert_parent->Level();
|
| + // RemoveNodesForReinsert() does not recompute bounds, so mark it.
|
| + needs_bounds_recomputed = insert_parent;
|
| + break;
|
| + }
|
| +
|
| + // Split() will create a sibling to insert_parent both of which will have
|
| + // valid bounds, but this invalidates their parent's bounds.
|
| + node = insert_parent->Split(min_children_, max_children_);
|
| + insert_parent = static_cast<Node*>(insert_parent->parent());
|
| + needs_bounds_recomputed = insert_parent;
|
| + }
|
| +
|
| + // If we have a Node to insert, and we hit the root of the current tree,
|
| + // we create a new root which is the parent of the current root and the
|
| + // insert_node. Note that we must release() the |root_| since
|
| + // ConstructParent() will take ownership of it.
|
| + if (!insert_parent && node) {
|
| + root_ = root_.release()->ConstructParent();
|
| + root_->AddChild(node.Pass());
|
| + }
|
| +
|
| + // Recompute bounds along insertion path.
|
| + if (needs_bounds_recomputed)
|
| + needs_bounds_recomputed->RecomputeBoundsUpToRoot();
|
| +
|
| + // Complete re-inserts, if any. The algorithm only allows for one invocation
|
| + // of RemoveNodesForReinsert() per level of the tree in an overall call to
|
| + // Insert().
|
| + while (!reinserts.empty()) {
|
| + Nodes::iterator last_element = reinserts.end() - 1;
|
| + NodeBase* temp_ptr(*last_element);
|
| + reinserts.weak_erase(last_element);
|
| + InsertNode(make_scoped_ptr(temp_ptr), highest_reinsert_level);
|
| + }
|
| +}
|
| +
|
| +scoped_ptr<RTreeBase::NodeBase> RTreeBase::RemoveNode(NodeBase* node) {
|
| + // We need to remove this node from its parent.
|
| + Node* parent = static_cast<Node*>(node->parent());
|
| + // Record nodes are never allowed as the root, so we should always have a
|
| + // parent.
|
| + DCHECK(parent);
|
| + // Should always be a leaf that had the record.
|
| + DCHECK_EQ(0, parent->Level());
|
| +
|
| + Nodes orphans;
|
| + scoped_ptr<NodeBase> removed_node(parent->RemoveChild(node, &orphans));
|
| +
|
| + // It's possible that by removing |node| from |parent| we have made |parent|
|
| + // have less than the minimum number of children, in which case we will need
|
| + // to remove and delete |parent| while reinserting any other children that it
|
| + // had. We traverse up the tree doing this until we remove a child from a
|
| + // parent that still has greater than or equal to the minimum number of Nodes.
|
| + while (parent->count() < min_children_) {
|
| + NodeBase* child = parent;
|
| + parent = static_cast<Node*>(parent->parent());
|
| +
|
| + // If we've hit the root, stop.
|
| + if (!parent)
|
| + break;
|
| +
|
| + parent->RemoveChild(child, &orphans);
|
| + }
|
| +
|
| + // If we stopped deleting nodes up the tree before encountering the root,
|
| + // we'll need to fix up the bounds from the first parent we didn't delete
|
| + // up to the root.
|
| + if (parent)
|
| + parent->RecomputeBoundsUpToRoot();
|
| + else
|
| + root_->RecomputeBoundsUpToRoot();
|
| +
|
| + while (!orphans.empty()) {
|
| + Nodes::iterator last_element = orphans.end() - 1;
|
| + NodeBase* temp_ptr(*last_element);
|
| + orphans.weak_erase(last_element);
|
| + int starting_level = -1;
|
| + InsertNode(make_scoped_ptr(temp_ptr), &starting_level);
|
| + }
|
| +
|
| + return removed_node.Pass();
|
| +}
|
| +
|
| +void RTreeBase::PruneRootIfNecessary() {
|
| + if (root()->count() == 1 && root()->Level() > 0) {
|
| + // Awkward reset(cast(release)) pattern here because there's no better way
|
| + // to downcast the scoped_ptr from RemoveAndReturnLastChild() from NodeBase
|
| + // to Node.
|
| + root_.reset(
|
| + static_cast<Node*>(root_->RemoveAndReturnLastChild().release()));
|
| + }
|
| +}
|
| +
|
| +void RTreeBase::ResetRoot() {
|
| + root_.reset(new Node());
|
| +}
|
| +
|
| +} // namespace gfx
|
|
|