| Index: third_party/google-endpoints/Crypto/Random/Fortuna/FortunaGenerator.py
|
| diff --git a/third_party/google-endpoints/Crypto/Random/Fortuna/FortunaGenerator.py b/third_party/google-endpoints/Crypto/Random/Fortuna/FortunaGenerator.py
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..723fa63065489afeff5778848a1fd69632da45bd
|
| --- /dev/null
|
| +++ b/third_party/google-endpoints/Crypto/Random/Fortuna/FortunaGenerator.py
|
| @@ -0,0 +1,132 @@
|
| +# -*- coding: ascii -*-
|
| +#
|
| +# FortunaGenerator.py : Fortuna's internal PRNG
|
| +#
|
| +# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
|
| +#
|
| +# ===================================================================
|
| +# The contents of this file are dedicated to the public domain. To
|
| +# the extent that dedication to the public domain is not available,
|
| +# everyone is granted a worldwide, perpetual, royalty-free,
|
| +# non-exclusive license to exercise all rights associated with the
|
| +# contents of this file for any purpose whatsoever.
|
| +# No rights are reserved.
|
| +#
|
| +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
| +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
| +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
| +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
| +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
| +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
| +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| +# SOFTWARE.
|
| +# ===================================================================
|
| +
|
| +__revision__ = "$Id$"
|
| +
|
| +import sys
|
| +if sys.version_info[0] is 2 and sys.version_info[1] is 1:
|
| + from Crypto.Util.py21compat import *
|
| +from Crypto.Util.py3compat import *
|
| +
|
| +import struct
|
| +
|
| +from Crypto.Util.number import ceil_shift, exact_log2, exact_div
|
| +from Crypto.Util import Counter
|
| +from Crypto.Cipher import AES
|
| +
|
| +import SHAd256
|
| +
|
| +class AESGenerator(object):
|
| + """The Fortuna "generator"
|
| +
|
| + This is used internally by the Fortuna PRNG to generate arbitrary amounts
|
| + of pseudorandom data from a smaller amount of seed data.
|
| +
|
| + The output is generated by running AES-256 in counter mode and re-keying
|
| + after every mebibyte (2**16 blocks) of output.
|
| + """
|
| +
|
| + block_size = AES.block_size # output block size in octets (128 bits)
|
| + key_size = 32 # key size in octets (256 bits)
|
| +
|
| + # Because of the birthday paradox, we expect to find approximately one
|
| + # collision for every 2**64 blocks of output from a real random source.
|
| + # However, this code generates pseudorandom data by running AES in
|
| + # counter mode, so there will be no collisions until the counter
|
| + # (theoretically) wraps around at 2**128 blocks. Thus, in order to prevent
|
| + # Fortuna's pseudorandom output from deviating perceptibly from a true
|
| + # random source, Ferguson and Schneier specify a limit of 2**16 blocks
|
| + # without rekeying.
|
| + max_blocks_per_request = 2**16 # Allow no more than this number of blocks per _pseudo_random_data request
|
| +
|
| + _four_kiblocks_of_zeros = b("\0") * block_size * 4096
|
| +
|
| + def __init__(self):
|
| + self.counter = Counter.new(nbits=self.block_size*8, initial_value=0, little_endian=True)
|
| + self.key = None
|
| +
|
| + # Set some helper constants
|
| + self.block_size_shift = exact_log2(self.block_size)
|
| + assert (1 << self.block_size_shift) == self.block_size
|
| +
|
| + self.blocks_per_key = exact_div(self.key_size, self.block_size)
|
| + assert self.key_size == self.blocks_per_key * self.block_size
|
| +
|
| + self.max_bytes_per_request = self.max_blocks_per_request * self.block_size
|
| +
|
| + def reseed(self, seed):
|
| + if self.key is None:
|
| + self.key = b("\0") * self.key_size
|
| +
|
| + self._set_key(SHAd256.new(self.key + seed).digest())
|
| + self.counter() # increment counter
|
| + assert len(self.key) == self.key_size
|
| +
|
| + def pseudo_random_data(self, bytes):
|
| + assert bytes >= 0
|
| +
|
| + num_full_blocks = bytes >> 20
|
| + remainder = bytes & ((1<<20)-1)
|
| +
|
| + retval = []
|
| + for i in xrange(num_full_blocks):
|
| + retval.append(self._pseudo_random_data(1<<20))
|
| + retval.append(self._pseudo_random_data(remainder))
|
| +
|
| + return b("").join(retval)
|
| +
|
| + def _set_key(self, key):
|
| + self.key = key
|
| + self._cipher = AES.new(key, AES.MODE_CTR, counter=self.counter)
|
| +
|
| + def _pseudo_random_data(self, bytes):
|
| + if not (0 <= bytes <= self.max_bytes_per_request):
|
| + raise AssertionError("You cannot ask for more than 1 MiB of data per request")
|
| +
|
| + num_blocks = ceil_shift(bytes, self.block_size_shift) # num_blocks = ceil(bytes / self.block_size)
|
| +
|
| + # Compute the output
|
| + retval = self._generate_blocks(num_blocks)[:bytes]
|
| +
|
| + # Switch to a new key to avoid later compromises of this output (i.e.
|
| + # state compromise extension attacks)
|
| + self._set_key(self._generate_blocks(self.blocks_per_key))
|
| +
|
| + assert len(retval) == bytes
|
| + assert len(self.key) == self.key_size
|
| +
|
| + return retval
|
| +
|
| + def _generate_blocks(self, num_blocks):
|
| + if self.key is None:
|
| + raise AssertionError("generator must be seeded before use")
|
| + assert 0 <= num_blocks <= self.max_blocks_per_request
|
| + retval = []
|
| + for i in xrange(num_blocks >> 12): # xrange(num_blocks / 4096)
|
| + retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros))
|
| + remaining_bytes = (num_blocks & 4095) << self.block_size_shift # (num_blocks % 4095) * self.block_size
|
| + retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros[:remaining_bytes]))
|
| + return b("").join(retval)
|
| +
|
| +# vim:set ts=4 sw=4 sts=4 expandtab:
|
|
|