OLD | NEW |
(Empty) | |
| 1 # -*- coding: ascii -*- |
| 2 # |
| 3 # FortunaGenerator.py : Fortuna's internal PRNG |
| 4 # |
| 5 # Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net> |
| 6 # |
| 7 # =================================================================== |
| 8 # The contents of this file are dedicated to the public domain. To |
| 9 # the extent that dedication to the public domain is not available, |
| 10 # everyone is granted a worldwide, perpetual, royalty-free, |
| 11 # non-exclusive license to exercise all rights associated with the |
| 12 # contents of this file for any purpose whatsoever. |
| 13 # No rights are reserved. |
| 14 # |
| 15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 16 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 17 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 18 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 19 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 20 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 21 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 # SOFTWARE. |
| 23 # =================================================================== |
| 24 |
| 25 __revision__ = "$Id$" |
| 26 |
| 27 import sys |
| 28 if sys.version_info[0] is 2 and sys.version_info[1] is 1: |
| 29 from Crypto.Util.py21compat import * |
| 30 from Crypto.Util.py3compat import * |
| 31 |
| 32 import struct |
| 33 |
| 34 from Crypto.Util.number import ceil_shift, exact_log2, exact_div |
| 35 from Crypto.Util import Counter |
| 36 from Crypto.Cipher import AES |
| 37 |
| 38 import SHAd256 |
| 39 |
| 40 class AESGenerator(object): |
| 41 """The Fortuna "generator" |
| 42 |
| 43 This is used internally by the Fortuna PRNG to generate arbitrary amounts |
| 44 of pseudorandom data from a smaller amount of seed data. |
| 45 |
| 46 The output is generated by running AES-256 in counter mode and re-keying |
| 47 after every mebibyte (2**16 blocks) of output. |
| 48 """ |
| 49 |
| 50 block_size = AES.block_size # output block size in octets (128 bits) |
| 51 key_size = 32 # key size in octets (256 bits) |
| 52 |
| 53 # Because of the birthday paradox, we expect to find approximately one |
| 54 # collision for every 2**64 blocks of output from a real random source. |
| 55 # However, this code generates pseudorandom data by running AES in |
| 56 # counter mode, so there will be no collisions until the counter |
| 57 # (theoretically) wraps around at 2**128 blocks. Thus, in order to prevent |
| 58 # Fortuna's pseudorandom output from deviating perceptibly from a true |
| 59 # random source, Ferguson and Schneier specify a limit of 2**16 blocks |
| 60 # without rekeying. |
| 61 max_blocks_per_request = 2**16 # Allow no more than this number of blocks p
er _pseudo_random_data request |
| 62 |
| 63 _four_kiblocks_of_zeros = b("\0") * block_size * 4096 |
| 64 |
| 65 def __init__(self): |
| 66 self.counter = Counter.new(nbits=self.block_size*8, initial_value=0, lit
tle_endian=True) |
| 67 self.key = None |
| 68 |
| 69 # Set some helper constants |
| 70 self.block_size_shift = exact_log2(self.block_size) |
| 71 assert (1 << self.block_size_shift) == self.block_size |
| 72 |
| 73 self.blocks_per_key = exact_div(self.key_size, self.block_size) |
| 74 assert self.key_size == self.blocks_per_key * self.block_size |
| 75 |
| 76 self.max_bytes_per_request = self.max_blocks_per_request * self.block_si
ze |
| 77 |
| 78 def reseed(self, seed): |
| 79 if self.key is None: |
| 80 self.key = b("\0") * self.key_size |
| 81 |
| 82 self._set_key(SHAd256.new(self.key + seed).digest()) |
| 83 self.counter() # increment counter |
| 84 assert len(self.key) == self.key_size |
| 85 |
| 86 def pseudo_random_data(self, bytes): |
| 87 assert bytes >= 0 |
| 88 |
| 89 num_full_blocks = bytes >> 20 |
| 90 remainder = bytes & ((1<<20)-1) |
| 91 |
| 92 retval = [] |
| 93 for i in xrange(num_full_blocks): |
| 94 retval.append(self._pseudo_random_data(1<<20)) |
| 95 retval.append(self._pseudo_random_data(remainder)) |
| 96 |
| 97 return b("").join(retval) |
| 98 |
| 99 def _set_key(self, key): |
| 100 self.key = key |
| 101 self._cipher = AES.new(key, AES.MODE_CTR, counter=self.counter) |
| 102 |
| 103 def _pseudo_random_data(self, bytes): |
| 104 if not (0 <= bytes <= self.max_bytes_per_request): |
| 105 raise AssertionError("You cannot ask for more than 1 MiB of data per
request") |
| 106 |
| 107 num_blocks = ceil_shift(bytes, self.block_size_shift) # num_blocks = c
eil(bytes / self.block_size) |
| 108 |
| 109 # Compute the output |
| 110 retval = self._generate_blocks(num_blocks)[:bytes] |
| 111 |
| 112 # Switch to a new key to avoid later compromises of this output (i.e. |
| 113 # state compromise extension attacks) |
| 114 self._set_key(self._generate_blocks(self.blocks_per_key)) |
| 115 |
| 116 assert len(retval) == bytes |
| 117 assert len(self.key) == self.key_size |
| 118 |
| 119 return retval |
| 120 |
| 121 def _generate_blocks(self, num_blocks): |
| 122 if self.key is None: |
| 123 raise AssertionError("generator must be seeded before use") |
| 124 assert 0 <= num_blocks <= self.max_blocks_per_request |
| 125 retval = [] |
| 126 for i in xrange(num_blocks >> 12): # xrange(num_blocks / 4096) |
| 127 retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros)) |
| 128 remaining_bytes = (num_blocks & 4095) << self.block_size_shift # (num_b
locks % 4095) * self.block_size |
| 129 retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros[:remaini
ng_bytes])) |
| 130 return b("").join(retval) |
| 131 |
| 132 # vim:set ts=4 sw=4 sts=4 expandtab: |
OLD | NEW |