| Index: third_party/libwebp/enc/quant.c
|
| diff --git a/third_party/libwebp/enc/quant.c b/third_party/libwebp/enc/quant.c
|
| deleted file mode 100644
|
| index 07ffaf0aebc08303e7b10344a4d66db1f4c39ed3..0000000000000000000000000000000000000000
|
| --- a/third_party/libwebp/enc/quant.c
|
| +++ /dev/null
|
| @@ -1,1284 +0,0 @@
|
| -// Copyright 2011 Google Inc. All Rights Reserved.
|
| -//
|
| -// Use of this source code is governed by a BSD-style license
|
| -// that can be found in the COPYING file in the root of the source
|
| -// tree. An additional intellectual property rights grant can be found
|
| -// in the file PATENTS. All contributing project authors may
|
| -// be found in the AUTHORS file in the root of the source tree.
|
| -// -----------------------------------------------------------------------------
|
| -//
|
| -// Quantization
|
| -//
|
| -// Author: Skal (pascal.massimino@gmail.com)
|
| -
|
| -#include <assert.h>
|
| -#include <math.h>
|
| -#include <stdlib.h> // for abs()
|
| -
|
| -#include "./vp8enci.h"
|
| -#include "./cost.h"
|
| -
|
| -#define DO_TRELLIS_I4 1
|
| -#define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate.
|
| -#define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth.
|
| -#define USE_TDISTO 1
|
| -
|
| -#define MID_ALPHA 64 // neutral value for susceptibility
|
| -#define MIN_ALPHA 30 // lowest usable value for susceptibility
|
| -#define MAX_ALPHA 100 // higher meaningful value for susceptibility
|
| -
|
| -#define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP
|
| - // power-law modulation. Must be strictly less than 1.
|
| -
|
| -// number of non-zero coeffs below which we consider the block very flat
|
| -// (and apply a penalty to complex predictions)
|
| -#define FLATNESS_LIMIT_I16 10 // I16 mode
|
| -#define FLATNESS_LIMIT_I4 3 // I4 mode
|
| -#define FLATNESS_LIMIT_UV 2 // UV mode
|
| -#define FLATNESS_PENALTY 140 // roughly ~1bit per block
|
| -
|
| -#define MULT_8B(a, b) (((a) * (b) + 128) >> 8)
|
| -
|
| -#define RD_DISTO_MULT 256 // distortion multiplier (equivalent of lambda)
|
| -
|
| -// #define DEBUG_BLOCK
|
| -
|
| -//------------------------------------------------------------------------------
|
| -
|
| -#if defined(DEBUG_BLOCK)
|
| -
|
| -#include <stdio.h>
|
| -#include <stdlib.h>
|
| -
|
| -static void PrintBlockInfo(const VP8EncIterator* const it,
|
| - const VP8ModeScore* const rd) {
|
| - int i, j;
|
| - const int is_i16 = (it->mb_->type_ == 1);
|
| - const uint8_t* const y_in = it->yuv_in_ + Y_OFF_ENC;
|
| - const uint8_t* const y_out = it->yuv_out_ + Y_OFF_ENC;
|
| - const uint8_t* const uv_in = it->yuv_in_ + U_OFF_ENC;
|
| - const uint8_t* const uv_out = it->yuv_out_ + U_OFF_ENC;
|
| - printf("SOURCE / OUTPUT / ABS DELTA\n");
|
| - for (j = 0; j < 16; ++j) {
|
| - for (i = 0; i < 16; ++i) printf("%3d ", y_in[i + j * BPS]);
|
| - printf(" ");
|
| - for (i = 0; i < 16; ++i) printf("%3d ", y_out[i + j * BPS]);
|
| - printf(" ");
|
| - for (i = 0; i < 16; ++i) {
|
| - printf("%1d ", abs(y_in[i + j * BPS] - y_out[i + j * BPS]));
|
| - }
|
| - printf("\n");
|
| - }
|
| - printf("\n"); // newline before the U/V block
|
| - for (j = 0; j < 8; ++j) {
|
| - for (i = 0; i < 8; ++i) printf("%3d ", uv_in[i + j * BPS]);
|
| - printf(" ");
|
| - for (i = 8; i < 16; ++i) printf("%3d ", uv_in[i + j * BPS]);
|
| - printf(" ");
|
| - for (i = 0; i < 8; ++i) printf("%3d ", uv_out[i + j * BPS]);
|
| - printf(" ");
|
| - for (i = 8; i < 16; ++i) printf("%3d ", uv_out[i + j * BPS]);
|
| - printf(" ");
|
| - for (i = 0; i < 8; ++i) {
|
| - printf("%1d ", abs(uv_out[i + j * BPS] - uv_in[i + j * BPS]));
|
| - }
|
| - printf(" ");
|
| - for (i = 8; i < 16; ++i) {
|
| - printf("%1d ", abs(uv_out[i + j * BPS] - uv_in[i + j * BPS]));
|
| - }
|
| - printf("\n");
|
| - }
|
| - printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n",
|
| - (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz,
|
| - (int)rd->score);
|
| - if (is_i16) {
|
| - printf("Mode: %d\n", rd->mode_i16);
|
| - printf("y_dc_levels:");
|
| - for (i = 0; i < 16; ++i) printf("%3d ", rd->y_dc_levels[i]);
|
| - printf("\n");
|
| - } else {
|
| - printf("Modes[16]: ");
|
| - for (i = 0; i < 16; ++i) printf("%d ", rd->modes_i4[i]);
|
| - printf("\n");
|
| - }
|
| - printf("y_ac_levels:\n");
|
| - for (j = 0; j < 16; ++j) {
|
| - for (i = is_i16 ? 1 : 0; i < 16; ++i) {
|
| - printf("%4d ", rd->y_ac_levels[j][i]);
|
| - }
|
| - printf("\n");
|
| - }
|
| - printf("\n");
|
| - printf("uv_levels (mode=%d):\n", rd->mode_uv);
|
| - for (j = 0; j < 8; ++j) {
|
| - for (i = 0; i < 16; ++i) {
|
| - printf("%4d ", rd->uv_levels[j][i]);
|
| - }
|
| - printf("\n");
|
| - }
|
| -}
|
| -
|
| -#endif // DEBUG_BLOCK
|
| -
|
| -//------------------------------------------------------------------------------
|
| -
|
| -static WEBP_INLINE int clip(int v, int m, int M) {
|
| - return v < m ? m : v > M ? M : v;
|
| -}
|
| -
|
| -static const uint8_t kZigzag[16] = {
|
| - 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
|
| -};
|
| -
|
| -static const uint8_t kDcTable[128] = {
|
| - 4, 5, 6, 7, 8, 9, 10, 10,
|
| - 11, 12, 13, 14, 15, 16, 17, 17,
|
| - 18, 19, 20, 20, 21, 21, 22, 22,
|
| - 23, 23, 24, 25, 25, 26, 27, 28,
|
| - 29, 30, 31, 32, 33, 34, 35, 36,
|
| - 37, 37, 38, 39, 40, 41, 42, 43,
|
| - 44, 45, 46, 46, 47, 48, 49, 50,
|
| - 51, 52, 53, 54, 55, 56, 57, 58,
|
| - 59, 60, 61, 62, 63, 64, 65, 66,
|
| - 67, 68, 69, 70, 71, 72, 73, 74,
|
| - 75, 76, 76, 77, 78, 79, 80, 81,
|
| - 82, 83, 84, 85, 86, 87, 88, 89,
|
| - 91, 93, 95, 96, 98, 100, 101, 102,
|
| - 104, 106, 108, 110, 112, 114, 116, 118,
|
| - 122, 124, 126, 128, 130, 132, 134, 136,
|
| - 138, 140, 143, 145, 148, 151, 154, 157
|
| -};
|
| -
|
| -static const uint16_t kAcTable[128] = {
|
| - 4, 5, 6, 7, 8, 9, 10, 11,
|
| - 12, 13, 14, 15, 16, 17, 18, 19,
|
| - 20, 21, 22, 23, 24, 25, 26, 27,
|
| - 28, 29, 30, 31, 32, 33, 34, 35,
|
| - 36, 37, 38, 39, 40, 41, 42, 43,
|
| - 44, 45, 46, 47, 48, 49, 50, 51,
|
| - 52, 53, 54, 55, 56, 57, 58, 60,
|
| - 62, 64, 66, 68, 70, 72, 74, 76,
|
| - 78, 80, 82, 84, 86, 88, 90, 92,
|
| - 94, 96, 98, 100, 102, 104, 106, 108,
|
| - 110, 112, 114, 116, 119, 122, 125, 128,
|
| - 131, 134, 137, 140, 143, 146, 149, 152,
|
| - 155, 158, 161, 164, 167, 170, 173, 177,
|
| - 181, 185, 189, 193, 197, 201, 205, 209,
|
| - 213, 217, 221, 225, 229, 234, 239, 245,
|
| - 249, 254, 259, 264, 269, 274, 279, 284
|
| -};
|
| -
|
| -static const uint16_t kAcTable2[128] = {
|
| - 8, 8, 9, 10, 12, 13, 15, 17,
|
| - 18, 20, 21, 23, 24, 26, 27, 29,
|
| - 31, 32, 34, 35, 37, 38, 40, 41,
|
| - 43, 44, 46, 48, 49, 51, 52, 54,
|
| - 55, 57, 58, 60, 62, 63, 65, 66,
|
| - 68, 69, 71, 72, 74, 75, 77, 79,
|
| - 80, 82, 83, 85, 86, 88, 89, 93,
|
| - 96, 99, 102, 105, 108, 111, 114, 117,
|
| - 120, 124, 127, 130, 133, 136, 139, 142,
|
| - 145, 148, 151, 155, 158, 161, 164, 167,
|
| - 170, 173, 176, 179, 184, 189, 193, 198,
|
| - 203, 207, 212, 217, 221, 226, 230, 235,
|
| - 240, 244, 249, 254, 258, 263, 268, 274,
|
| - 280, 286, 292, 299, 305, 311, 317, 323,
|
| - 330, 336, 342, 348, 354, 362, 370, 379,
|
| - 385, 393, 401, 409, 416, 424, 432, 440
|
| -};
|
| -
|
| -static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac]
|
| - { 96, 110 }, { 96, 108 }, { 110, 115 }
|
| -};
|
| -
|
| -// Sharpening by (slightly) raising the hi-frequency coeffs.
|
| -// Hack-ish but helpful for mid-bitrate range. Use with care.
|
| -#define SHARPEN_BITS 11 // number of descaling bits for sharpening bias
|
| -static const uint8_t kFreqSharpening[16] = {
|
| - 0, 30, 60, 90,
|
| - 30, 60, 90, 90,
|
| - 60, 90, 90, 90,
|
| - 90, 90, 90, 90
|
| -};
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Initialize quantization parameters in VP8Matrix
|
| -
|
| -// Returns the average quantizer
|
| -static int ExpandMatrix(VP8Matrix* const m, int type) {
|
| - int i, sum;
|
| - for (i = 0; i < 2; ++i) {
|
| - const int is_ac_coeff = (i > 0);
|
| - const int bias = kBiasMatrices[type][is_ac_coeff];
|
| - m->iq_[i] = (1 << QFIX) / m->q_[i];
|
| - m->bias_[i] = BIAS(bias);
|
| - // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is:
|
| - // * zero if coeff <= zthresh
|
| - // * non-zero if coeff > zthresh
|
| - m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i];
|
| - }
|
| - for (i = 2; i < 16; ++i) {
|
| - m->q_[i] = m->q_[1];
|
| - m->iq_[i] = m->iq_[1];
|
| - m->bias_[i] = m->bias_[1];
|
| - m->zthresh_[i] = m->zthresh_[1];
|
| - }
|
| - for (sum = 0, i = 0; i < 16; ++i) {
|
| - if (type == 0) { // we only use sharpening for AC luma coeffs
|
| - m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS;
|
| - } else {
|
| - m->sharpen_[i] = 0;
|
| - }
|
| - sum += m->q_[i];
|
| - }
|
| - return (sum + 8) >> 4;
|
| -}
|
| -
|
| -static void CheckLambdaValue(int* const v) { if (*v < 1) *v = 1; }
|
| -
|
| -static void SetupMatrices(VP8Encoder* enc) {
|
| - int i;
|
| - const int tlambda_scale =
|
| - (enc->method_ >= 4) ? enc->config_->sns_strength
|
| - : 0;
|
| - const int num_segments = enc->segment_hdr_.num_segments_;
|
| - for (i = 0; i < num_segments; ++i) {
|
| - VP8SegmentInfo* const m = &enc->dqm_[i];
|
| - const int q = m->quant_;
|
| - int q_i4, q_i16, q_uv;
|
| - m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)];
|
| - m->y1_.q_[1] = kAcTable[clip(q, 0, 127)];
|
| -
|
| - m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2;
|
| - m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)];
|
| -
|
| - m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)];
|
| - m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)];
|
| -
|
| - q_i4 = ExpandMatrix(&m->y1_, 0);
|
| - q_i16 = ExpandMatrix(&m->y2_, 1);
|
| - q_uv = ExpandMatrix(&m->uv_, 2);
|
| -
|
| - m->lambda_i4_ = (3 * q_i4 * q_i4) >> 7;
|
| - m->lambda_i16_ = (3 * q_i16 * q_i16);
|
| - m->lambda_uv_ = (3 * q_uv * q_uv) >> 6;
|
| - m->lambda_mode_ = (1 * q_i4 * q_i4) >> 7;
|
| - m->lambda_trellis_i4_ = (7 * q_i4 * q_i4) >> 3;
|
| - m->lambda_trellis_i16_ = (q_i16 * q_i16) >> 2;
|
| - m->lambda_trellis_uv_ = (q_uv * q_uv) << 1;
|
| - m->tlambda_ = (tlambda_scale * q_i4) >> 5;
|
| -
|
| - // none of these constants should be < 1
|
| - CheckLambdaValue(&m->lambda_i4_);
|
| - CheckLambdaValue(&m->lambda_i16_);
|
| - CheckLambdaValue(&m->lambda_uv_);
|
| - CheckLambdaValue(&m->lambda_mode_);
|
| - CheckLambdaValue(&m->lambda_trellis_i4_);
|
| - CheckLambdaValue(&m->lambda_trellis_i16_);
|
| - CheckLambdaValue(&m->lambda_trellis_uv_);
|
| - CheckLambdaValue(&m->tlambda_);
|
| -
|
| - m->min_disto_ = 20 * m->y1_.q_[0]; // quantization-aware min disto
|
| - m->max_edge_ = 0;
|
| -
|
| - m->i4_penalty_ = 1000 * q_i4 * q_i4;
|
| - }
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Initialize filtering parameters
|
| -
|
| -// Very small filter-strength values have close to no visual effect. So we can
|
| -// save a little decoding-CPU by turning filtering off for these.
|
| -#define FSTRENGTH_CUTOFF 2
|
| -
|
| -static void SetupFilterStrength(VP8Encoder* const enc) {
|
| - int i;
|
| - // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering.
|
| - const int level0 = 5 * enc->config_->filter_strength;
|
| - for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
|
| - VP8SegmentInfo* const m = &enc->dqm_[i];
|
| - // We focus on the quantization of AC coeffs.
|
| - const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2;
|
| - const int base_strength =
|
| - VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep);
|
| - // Segments with lower complexity ('beta') will be less filtered.
|
| - const int f = base_strength * level0 / (256 + m->beta_);
|
| - m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f;
|
| - }
|
| - // We record the initial strength (mainly for the case of 1-segment only).
|
| - enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_;
|
| - enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0);
|
| - enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness;
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -
|
| -// Note: if you change the values below, remember that the max range
|
| -// allowed by the syntax for DQ_UV is [-16,16].
|
| -#define MAX_DQ_UV (6)
|
| -#define MIN_DQ_UV (-4)
|
| -
|
| -// We want to emulate jpeg-like behaviour where the expected "good" quality
|
| -// is around q=75. Internally, our "good" middle is around c=50. So we
|
| -// map accordingly using linear piece-wise function
|
| -static double QualityToCompression(double c) {
|
| - const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.;
|
| - // The file size roughly scales as pow(quantizer, 3.). Actually, the
|
| - // exponent is somewhere between 2.8 and 3.2, but we're mostly interested
|
| - // in the mid-quant range. So we scale the compressibility inversely to
|
| - // this power-law: quant ~= compression ^ 1/3. This law holds well for
|
| - // low quant. Finer modeling for high-quant would make use of kAcTable[]
|
| - // more explicitly.
|
| - const double v = pow(linear_c, 1 / 3.);
|
| - return v;
|
| -}
|
| -
|
| -static double QualityToJPEGCompression(double c, double alpha) {
|
| - // We map the complexity 'alpha' and quality setting 'c' to a compression
|
| - // exponent empirically matched to the compression curve of libjpeg6b.
|
| - // On average, the WebP output size will be roughly similar to that of a
|
| - // JPEG file compressed with same quality factor.
|
| - const double amin = 0.30;
|
| - const double amax = 0.85;
|
| - const double exp_min = 0.4;
|
| - const double exp_max = 0.9;
|
| - const double slope = (exp_min - exp_max) / (amax - amin);
|
| - // Linearly interpolate 'expn' from exp_min to exp_max
|
| - // in the [amin, amax] range.
|
| - const double expn = (alpha > amax) ? exp_min
|
| - : (alpha < amin) ? exp_max
|
| - : exp_max + slope * (alpha - amin);
|
| - const double v = pow(c, expn);
|
| - return v;
|
| -}
|
| -
|
| -static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1,
|
| - const VP8SegmentInfo* const S2) {
|
| - return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_);
|
| -}
|
| -
|
| -static void SimplifySegments(VP8Encoder* const enc) {
|
| - int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 };
|
| - // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
|
| - // explicit check is needed to avoid a spurious warning about 'i' exceeding
|
| - // array bounds of 'dqm_' with some compilers (noticed with gcc-4.9).
|
| - const int num_segments = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS)
|
| - ? enc->segment_hdr_.num_segments_
|
| - : NUM_MB_SEGMENTS;
|
| - int num_final_segments = 1;
|
| - int s1, s2;
|
| - for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments
|
| - const VP8SegmentInfo* const S1 = &enc->dqm_[s1];
|
| - int found = 0;
|
| - // check if we already have similar segment
|
| - for (s2 = 0; s2 < num_final_segments; ++s2) {
|
| - const VP8SegmentInfo* const S2 = &enc->dqm_[s2];
|
| - if (SegmentsAreEquivalent(S1, S2)) {
|
| - found = 1;
|
| - break;
|
| - }
|
| - }
|
| - map[s1] = s2;
|
| - if (!found) {
|
| - if (num_final_segments != s1) {
|
| - enc->dqm_[num_final_segments] = enc->dqm_[s1];
|
| - }
|
| - ++num_final_segments;
|
| - }
|
| - }
|
| - if (num_final_segments < num_segments) { // Remap
|
| - int i = enc->mb_w_ * enc->mb_h_;
|
| - while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_];
|
| - enc->segment_hdr_.num_segments_ = num_final_segments;
|
| - // Replicate the trailing segment infos (it's mostly cosmetics)
|
| - for (i = num_final_segments; i < num_segments; ++i) {
|
| - enc->dqm_[i] = enc->dqm_[num_final_segments - 1];
|
| - }
|
| - }
|
| -}
|
| -
|
| -void VP8SetSegmentParams(VP8Encoder* const enc, float quality) {
|
| - int i;
|
| - int dq_uv_ac, dq_uv_dc;
|
| - const int num_segments = enc->segment_hdr_.num_segments_;
|
| - const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.;
|
| - const double Q = quality / 100.;
|
| - const double c_base = enc->config_->emulate_jpeg_size ?
|
| - QualityToJPEGCompression(Q, enc->alpha_ / 255.) :
|
| - QualityToCompression(Q);
|
| - for (i = 0; i < num_segments; ++i) {
|
| - // We modulate the base coefficient to accommodate for the quantization
|
| - // susceptibility and allow denser segments to be quantized more.
|
| - const double expn = 1. - amp * enc->dqm_[i].alpha_;
|
| - const double c = pow(c_base, expn);
|
| - const int q = (int)(127. * (1. - c));
|
| - assert(expn > 0.);
|
| - enc->dqm_[i].quant_ = clip(q, 0, 127);
|
| - }
|
| -
|
| - // purely indicative in the bitstream (except for the 1-segment case)
|
| - enc->base_quant_ = enc->dqm_[0].quant_;
|
| -
|
| - // fill-in values for the unused segments (required by the syntax)
|
| - for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) {
|
| - enc->dqm_[i].quant_ = enc->base_quant_;
|
| - }
|
| -
|
| - // uv_alpha_ is normally spread around ~60. The useful range is
|
| - // typically ~30 (quite bad) to ~100 (ok to decimate UV more).
|
| - // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv.
|
| - dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV)
|
| - / (MAX_ALPHA - MIN_ALPHA);
|
| - // we rescale by the user-defined strength of adaptation
|
| - dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100;
|
| - // and make it safe.
|
| - dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV);
|
| - // We also boost the dc-uv-quant a little, based on sns-strength, since
|
| - // U/V channels are quite more reactive to high quants (flat DC-blocks
|
| - // tend to appear, and are unpleasant).
|
| - dq_uv_dc = -4 * enc->config_->sns_strength / 100;
|
| - dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed
|
| -
|
| - enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum
|
| - enc->dq_y2_dc_ = 0;
|
| - enc->dq_y2_ac_ = 0;
|
| - enc->dq_uv_dc_ = dq_uv_dc;
|
| - enc->dq_uv_ac_ = dq_uv_ac;
|
| -
|
| - SetupFilterStrength(enc); // initialize segments' filtering, eventually
|
| -
|
| - if (num_segments > 1) SimplifySegments(enc);
|
| -
|
| - SetupMatrices(enc); // finalize quantization matrices
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Form the predictions in cache
|
| -
|
| -// Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index
|
| -const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 };
|
| -const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 };
|
| -
|
| -// Must be indexed using {B_DC_PRED -> B_HU_PRED} as index
|
| -const int VP8I4ModeOffsets[NUM_BMODES] = {
|
| - I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4
|
| -};
|
| -
|
| -void VP8MakeLuma16Preds(const VP8EncIterator* const it) {
|
| - const uint8_t* const left = it->x_ ? it->y_left_ : NULL;
|
| - const uint8_t* const top = it->y_ ? it->y_top_ : NULL;
|
| - VP8EncPredLuma16(it->yuv_p_, left, top);
|
| -}
|
| -
|
| -void VP8MakeChroma8Preds(const VP8EncIterator* const it) {
|
| - const uint8_t* const left = it->x_ ? it->u_left_ : NULL;
|
| - const uint8_t* const top = it->y_ ? it->uv_top_ : NULL;
|
| - VP8EncPredChroma8(it->yuv_p_, left, top);
|
| -}
|
| -
|
| -void VP8MakeIntra4Preds(const VP8EncIterator* const it) {
|
| - VP8EncPredLuma4(it->yuv_p_, it->i4_top_);
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Quantize
|
| -
|
| -// Layout:
|
| -// +----+----+
|
| -// |YYYY|UUVV| 0
|
| -// |YYYY|UUVV| 4
|
| -// |YYYY|....| 8
|
| -// |YYYY|....| 12
|
| -// +----+----+
|
| -
|
| -const int VP8Scan[16] = { // Luma
|
| - 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
|
| - 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
|
| - 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
|
| - 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
|
| -};
|
| -
|
| -static const int VP8ScanUV[4 + 4] = {
|
| - 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
|
| - 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
|
| -};
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Distortion measurement
|
| -
|
| -static const uint16_t kWeightY[16] = {
|
| - 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2
|
| -};
|
| -
|
| -static const uint16_t kWeightTrellis[16] = {
|
| -#if USE_TDISTO == 0
|
| - 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
|
| -#else
|
| - 30, 27, 19, 11,
|
| - 27, 24, 17, 10,
|
| - 19, 17, 12, 8,
|
| - 11, 10, 8, 6
|
| -#endif
|
| -};
|
| -
|
| -// Init/Copy the common fields in score.
|
| -static void InitScore(VP8ModeScore* const rd) {
|
| - rd->D = 0;
|
| - rd->SD = 0;
|
| - rd->R = 0;
|
| - rd->H = 0;
|
| - rd->nz = 0;
|
| - rd->score = MAX_COST;
|
| -}
|
| -
|
| -static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
|
| - dst->D = src->D;
|
| - dst->SD = src->SD;
|
| - dst->R = src->R;
|
| - dst->H = src->H;
|
| - dst->nz = src->nz; // note that nz is not accumulated, but just copied.
|
| - dst->score = src->score;
|
| -}
|
| -
|
| -static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
|
| - dst->D += src->D;
|
| - dst->SD += src->SD;
|
| - dst->R += src->R;
|
| - dst->H += src->H;
|
| - dst->nz |= src->nz; // here, new nz bits are accumulated.
|
| - dst->score += src->score;
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Performs trellis-optimized quantization.
|
| -
|
| -// Trellis node
|
| -typedef struct {
|
| - int8_t prev; // best previous node
|
| - int8_t sign; // sign of coeff_i
|
| - int16_t level; // level
|
| -} Node;
|
| -
|
| -// Score state
|
| -typedef struct {
|
| - score_t score; // partial RD score
|
| - const uint16_t* costs; // shortcut to cost tables
|
| -} ScoreState;
|
| -
|
| -// If a coefficient was quantized to a value Q (using a neutral bias),
|
| -// we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA]
|
| -// We don't test negative values though.
|
| -#define MIN_DELTA 0 // how much lower level to try
|
| -#define MAX_DELTA 1 // how much higher
|
| -#define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA)
|
| -#define NODE(n, l) (nodes[(n)][(l) + MIN_DELTA])
|
| -#define SCORE_STATE(n, l) (score_states[n][(l) + MIN_DELTA])
|
| -
|
| -static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) {
|
| - rd->score = (rd->R + rd->H) * lambda + RD_DISTO_MULT * (rd->D + rd->SD);
|
| -}
|
| -
|
| -static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate,
|
| - score_t distortion) {
|
| - return rate * lambda + RD_DISTO_MULT * distortion;
|
| -}
|
| -
|
| -static int TrellisQuantizeBlock(const VP8Encoder* const enc,
|
| - int16_t in[16], int16_t out[16],
|
| - int ctx0, int coeff_type,
|
| - const VP8Matrix* const mtx,
|
| - int lambda) {
|
| - const ProbaArray* const probas = enc->proba_.coeffs_[coeff_type];
|
| - CostArrayPtr const costs =
|
| - (CostArrayPtr)enc->proba_.remapped_costs_[coeff_type];
|
| - const int first = (coeff_type == 0) ? 1 : 0;
|
| - Node nodes[16][NUM_NODES];
|
| - ScoreState score_states[2][NUM_NODES];
|
| - ScoreState* ss_cur = &SCORE_STATE(0, MIN_DELTA);
|
| - ScoreState* ss_prev = &SCORE_STATE(1, MIN_DELTA);
|
| - int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous
|
| - score_t best_score;
|
| - int n, m, p, last;
|
| -
|
| - {
|
| - score_t cost;
|
| - const int thresh = mtx->q_[1] * mtx->q_[1] / 4;
|
| - const int last_proba = probas[VP8EncBands[first]][ctx0][0];
|
| -
|
| - // compute the position of the last interesting coefficient
|
| - last = first - 1;
|
| - for (n = 15; n >= first; --n) {
|
| - const int j = kZigzag[n];
|
| - const int err = in[j] * in[j];
|
| - if (err > thresh) {
|
| - last = n;
|
| - break;
|
| - }
|
| - }
|
| - // we don't need to go inspect up to n = 16 coeffs. We can just go up
|
| - // to last + 1 (inclusive) without losing much.
|
| - if (last < 15) ++last;
|
| -
|
| - // compute 'skip' score. This is the max score one can do.
|
| - cost = VP8BitCost(0, last_proba);
|
| - best_score = RDScoreTrellis(lambda, cost, 0);
|
| -
|
| - // initialize source node.
|
| - for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
|
| - const score_t rate = (ctx0 == 0) ? VP8BitCost(1, last_proba) : 0;
|
| - ss_cur[m].score = RDScoreTrellis(lambda, rate, 0);
|
| - ss_cur[m].costs = costs[first][ctx0];
|
| - }
|
| - }
|
| -
|
| - // traverse trellis.
|
| - for (n = first; n <= last; ++n) {
|
| - const int j = kZigzag[n];
|
| - const uint32_t Q = mtx->q_[j];
|
| - const uint32_t iQ = mtx->iq_[j];
|
| - const uint32_t B = BIAS(0x00); // neutral bias
|
| - // note: it's important to take sign of the _original_ coeff,
|
| - // so we don't have to consider level < 0 afterward.
|
| - const int sign = (in[j] < 0);
|
| - const uint32_t coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
|
| - int level0 = QUANTDIV(coeff0, iQ, B);
|
| - if (level0 > MAX_LEVEL) level0 = MAX_LEVEL;
|
| -
|
| - { // Swap current and previous score states
|
| - ScoreState* const tmp = ss_cur;
|
| - ss_cur = ss_prev;
|
| - ss_prev = tmp;
|
| - }
|
| -
|
| - // test all alternate level values around level0.
|
| - for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
|
| - Node* const cur = &NODE(n, m);
|
| - int level = level0 + m;
|
| - const int ctx = (level > 2) ? 2 : level;
|
| - const int band = VP8EncBands[n + 1];
|
| - score_t base_score, last_pos_score;
|
| - score_t best_cur_score = MAX_COST;
|
| - int best_prev = 0; // default, in case
|
| -
|
| - ss_cur[m].score = MAX_COST;
|
| - ss_cur[m].costs = costs[n + 1][ctx];
|
| - if (level > MAX_LEVEL || level < 0) { // node is dead?
|
| - continue;
|
| - }
|
| -
|
| - // Compute extra rate cost if last coeff's position is < 15
|
| - {
|
| - const score_t last_pos_cost =
|
| - (n < 15) ? VP8BitCost(0, probas[band][ctx][0]) : 0;
|
| - last_pos_score = RDScoreTrellis(lambda, last_pos_cost, 0);
|
| - }
|
| -
|
| - {
|
| - // Compute delta_error = how much coding this level will
|
| - // subtract to max_error as distortion.
|
| - // Here, distortion = sum of (|coeff_i| - level_i * Q_i)^2
|
| - const int new_error = coeff0 - level * Q;
|
| - const int delta_error =
|
| - kWeightTrellis[j] * (new_error * new_error - coeff0 * coeff0);
|
| - base_score = RDScoreTrellis(lambda, 0, delta_error);
|
| - }
|
| -
|
| - // Inspect all possible non-dead predecessors. Retain only the best one.
|
| - for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) {
|
| - // Dead nodes (with ss_prev[p].score >= MAX_COST) are automatically
|
| - // eliminated since their score can't be better than the current best.
|
| - const score_t cost = VP8LevelCost(ss_prev[p].costs, level);
|
| - // Examine node assuming it's a non-terminal one.
|
| - const score_t score =
|
| - base_score + ss_prev[p].score + RDScoreTrellis(lambda, cost, 0);
|
| - if (score < best_cur_score) {
|
| - best_cur_score = score;
|
| - best_prev = p;
|
| - }
|
| - }
|
| - // Store best finding in current node.
|
| - cur->sign = sign;
|
| - cur->level = level;
|
| - cur->prev = best_prev;
|
| - ss_cur[m].score = best_cur_score;
|
| -
|
| - // Now, record best terminal node (and thus best entry in the graph).
|
| - if (level != 0) {
|
| - const score_t score = best_cur_score + last_pos_score;
|
| - if (score < best_score) {
|
| - best_score = score;
|
| - best_path[0] = n; // best eob position
|
| - best_path[1] = m; // best node index
|
| - best_path[2] = best_prev; // best predecessor
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Fresh start
|
| - memset(in + first, 0, (16 - first) * sizeof(*in));
|
| - memset(out + first, 0, (16 - first) * sizeof(*out));
|
| - if (best_path[0] == -1) {
|
| - return 0; // skip!
|
| - }
|
| -
|
| - {
|
| - // Unwind the best path.
|
| - // Note: best-prev on terminal node is not necessarily equal to the
|
| - // best_prev for non-terminal. So we patch best_path[2] in.
|
| - int nz = 0;
|
| - int best_node = best_path[1];
|
| - n = best_path[0];
|
| - NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal
|
| -
|
| - for (; n >= first; --n) {
|
| - const Node* const node = &NODE(n, best_node);
|
| - const int j = kZigzag[n];
|
| - out[n] = node->sign ? -node->level : node->level;
|
| - nz |= node->level;
|
| - in[j] = out[n] * mtx->q_[j];
|
| - best_node = node->prev;
|
| - }
|
| - return (nz != 0);
|
| - }
|
| -}
|
| -
|
| -#undef NODE
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Performs: difference, transform, quantize, back-transform, add
|
| -// all at once. Output is the reconstructed block in *yuv_out, and the
|
| -// quantized levels in *levels.
|
| -
|
| -static int ReconstructIntra16(VP8EncIterator* const it,
|
| - VP8ModeScore* const rd,
|
| - uint8_t* const yuv_out,
|
| - int mode) {
|
| - const VP8Encoder* const enc = it->enc_;
|
| - const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
|
| - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC;
|
| - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
| - int nz = 0;
|
| - int n;
|
| - int16_t tmp[16][16], dc_tmp[16];
|
| -
|
| - for (n = 0; n < 16; n += 2) {
|
| - VP8FTransform2(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]);
|
| - }
|
| - VP8FTransformWHT(tmp[0], dc_tmp);
|
| - nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24;
|
| -
|
| - if (DO_TRELLIS_I16 && it->do_trellis_) {
|
| - int x, y;
|
| - VP8IteratorNzToBytes(it);
|
| - for (y = 0, n = 0; y < 4; ++y) {
|
| - for (x = 0; x < 4; ++x, ++n) {
|
| - const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
| - const int non_zero =
|
| - TrellisQuantizeBlock(enc, tmp[n], rd->y_ac_levels[n], ctx, 0,
|
| - &dqm->y1_, dqm->lambda_trellis_i16_);
|
| - it->top_nz_[x] = it->left_nz_[y] = non_zero;
|
| - rd->y_ac_levels[n][0] = 0;
|
| - nz |= non_zero << n;
|
| - }
|
| - }
|
| - } else {
|
| - for (n = 0; n < 16; n += 2) {
|
| - // Zero-out the first coeff, so that: a) nz is correct below, and
|
| - // b) finding 'last' non-zero coeffs in SetResidualCoeffs() is simplified.
|
| - tmp[n][0] = tmp[n + 1][0] = 0;
|
| - nz |= VP8EncQuantize2Blocks(tmp[n], rd->y_ac_levels[n], &dqm->y1_) << n;
|
| - assert(rd->y_ac_levels[n + 0][0] == 0);
|
| - assert(rd->y_ac_levels[n + 1][0] == 0);
|
| - }
|
| - }
|
| -
|
| - // Transform back
|
| - VP8TransformWHT(dc_tmp, tmp[0]);
|
| - for (n = 0; n < 16; n += 2) {
|
| - VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1);
|
| - }
|
| -
|
| - return nz;
|
| -}
|
| -
|
| -static int ReconstructIntra4(VP8EncIterator* const it,
|
| - int16_t levels[16],
|
| - const uint8_t* const src,
|
| - uint8_t* const yuv_out,
|
| - int mode) {
|
| - const VP8Encoder* const enc = it->enc_;
|
| - const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
|
| - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
| - int nz = 0;
|
| - int16_t tmp[16];
|
| -
|
| - VP8FTransform(src, ref, tmp);
|
| - if (DO_TRELLIS_I4 && it->do_trellis_) {
|
| - const int x = it->i4_ & 3, y = it->i4_ >> 2;
|
| - const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
| - nz = TrellisQuantizeBlock(enc, tmp, levels, ctx, 3, &dqm->y1_,
|
| - dqm->lambda_trellis_i4_);
|
| - } else {
|
| - nz = VP8EncQuantizeBlock(tmp, levels, &dqm->y1_);
|
| - }
|
| - VP8ITransform(ref, tmp, yuv_out, 0);
|
| - return nz;
|
| -}
|
| -
|
| -static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
|
| - uint8_t* const yuv_out, int mode) {
|
| - const VP8Encoder* const enc = it->enc_;
|
| - const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
|
| - const uint8_t* const src = it->yuv_in_ + U_OFF_ENC;
|
| - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
| - int nz = 0;
|
| - int n;
|
| - int16_t tmp[8][16];
|
| -
|
| - for (n = 0; n < 8; n += 2) {
|
| - VP8FTransform2(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]);
|
| - }
|
| - if (DO_TRELLIS_UV && it->do_trellis_) {
|
| - int ch, x, y;
|
| - for (ch = 0, n = 0; ch <= 2; ch += 2) {
|
| - for (y = 0; y < 2; ++y) {
|
| - for (x = 0; x < 2; ++x, ++n) {
|
| - const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
| - const int non_zero =
|
| - TrellisQuantizeBlock(enc, tmp[n], rd->uv_levels[n], ctx, 2,
|
| - &dqm->uv_, dqm->lambda_trellis_uv_);
|
| - it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero;
|
| - nz |= non_zero << n;
|
| - }
|
| - }
|
| - }
|
| - } else {
|
| - for (n = 0; n < 8; n += 2) {
|
| - nz |= VP8EncQuantize2Blocks(tmp[n], rd->uv_levels[n], &dqm->uv_) << n;
|
| - }
|
| - }
|
| -
|
| - for (n = 0; n < 8; n += 2) {
|
| - VP8ITransform(ref + VP8ScanUV[n], tmp[n], yuv_out + VP8ScanUV[n], 1);
|
| - }
|
| - return (nz << 16);
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
|
| -// Pick the mode is lower RD-cost = Rate + lambda * Distortion.
|
| -
|
| -static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) {
|
| - // We look at the first three AC coefficients to determine what is the average
|
| - // delta between each sub-4x4 block.
|
| - const int v0 = abs(DCs[1]);
|
| - const int v1 = abs(DCs[2]);
|
| - const int v2 = abs(DCs[4]);
|
| - int max_v = (v1 > v0) ? v1 : v0;
|
| - max_v = (v2 > max_v) ? v2 : max_v;
|
| - if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v;
|
| -}
|
| -
|
| -static void SwapModeScore(VP8ModeScore** a, VP8ModeScore** b) {
|
| - VP8ModeScore* const tmp = *a;
|
| - *a = *b;
|
| - *b = tmp;
|
| -}
|
| -
|
| -static void SwapPtr(uint8_t** a, uint8_t** b) {
|
| - uint8_t* const tmp = *a;
|
| - *a = *b;
|
| - *b = tmp;
|
| -}
|
| -
|
| -static void SwapOut(VP8EncIterator* const it) {
|
| - SwapPtr(&it->yuv_out_, &it->yuv_out2_);
|
| -}
|
| -
|
| -static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) {
|
| - score_t score = 0;
|
| - while (num_blocks-- > 0) { // TODO(skal): refine positional scoring?
|
| - int i;
|
| - for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC
|
| - score += (levels[i] != 0);
|
| - if (score > thresh) return 0;
|
| - }
|
| - levels += 16;
|
| - }
|
| - return 1;
|
| -}
|
| -
|
| -static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* rd) {
|
| - const int kNumBlocks = 16;
|
| - VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_];
|
| - const int lambda = dqm->lambda_i16_;
|
| - const int tlambda = dqm->tlambda_;
|
| - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC;
|
| - VP8ModeScore rd_tmp;
|
| - VP8ModeScore* rd_cur = &rd_tmp;
|
| - VP8ModeScore* rd_best = rd;
|
| - int mode;
|
| -
|
| - rd->mode_i16 = -1;
|
| - for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
|
| - uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC; // scratch buffer
|
| - rd_cur->mode_i16 = mode;
|
| -
|
| - // Reconstruct
|
| - rd_cur->nz = ReconstructIntra16(it, rd_cur, tmp_dst, mode);
|
| -
|
| - // Measure RD-score
|
| - rd_cur->D = VP8SSE16x16(src, tmp_dst);
|
| - rd_cur->SD =
|
| - tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) : 0;
|
| - rd_cur->H = VP8FixedCostsI16[mode];
|
| - rd_cur->R = VP8GetCostLuma16(it, rd_cur);
|
| - if (mode > 0 &&
|
| - IsFlat(rd_cur->y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) {
|
| - // penalty to avoid flat area to be mispredicted by complex mode
|
| - rd_cur->R += FLATNESS_PENALTY * kNumBlocks;
|
| - }
|
| -
|
| - // Since we always examine Intra16 first, we can overwrite *rd directly.
|
| - SetRDScore(lambda, rd_cur);
|
| - if (mode == 0 || rd_cur->score < rd_best->score) {
|
| - SwapModeScore(&rd_cur, &rd_best);
|
| - SwapOut(it);
|
| - }
|
| - }
|
| - if (rd_best != rd) {
|
| - memcpy(rd, rd_best, sizeof(*rd));
|
| - }
|
| - SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision.
|
| - VP8SetIntra16Mode(it, rd->mode_i16);
|
| -
|
| - // we have a blocky macroblock (only DCs are non-zero) with fairly high
|
| - // distortion, record max delta so we can later adjust the minimal filtering
|
| - // strength needed to smooth these blocks out.
|
| - if ((rd->nz & 0x100ffff) == 0x1000000 && rd->D > dqm->min_disto_) {
|
| - StoreMaxDelta(dqm, rd->y_dc_levels);
|
| - }
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -
|
| -// return the cost array corresponding to the surrounding prediction modes.
|
| -static const uint16_t* GetCostModeI4(VP8EncIterator* const it,
|
| - const uint8_t modes[16]) {
|
| - const int preds_w = it->enc_->preds_w_;
|
| - const int x = (it->i4_ & 3), y = it->i4_ >> 2;
|
| - const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1];
|
| - const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4];
|
| - return VP8FixedCostsI4[top][left];
|
| -}
|
| -
|
| -static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
| - const VP8Encoder* const enc = it->enc_;
|
| - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
| - const int lambda = dqm->lambda_i4_;
|
| - const int tlambda = dqm->tlambda_;
|
| - const uint8_t* const src0 = it->yuv_in_ + Y_OFF_ENC;
|
| - uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF_ENC;
|
| - int total_header_bits = 0;
|
| - VP8ModeScore rd_best;
|
| -
|
| - if (enc->max_i4_header_bits_ == 0) {
|
| - return 0;
|
| - }
|
| -
|
| - InitScore(&rd_best);
|
| - rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145)
|
| - SetRDScore(dqm->lambda_mode_, &rd_best);
|
| - VP8IteratorStartI4(it);
|
| - do {
|
| - const int kNumBlocks = 1;
|
| - VP8ModeScore rd_i4;
|
| - int mode;
|
| - int best_mode = -1;
|
| - const uint8_t* const src = src0 + VP8Scan[it->i4_];
|
| - const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
|
| - uint8_t* best_block = best_blocks + VP8Scan[it->i4_];
|
| - uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer.
|
| -
|
| - InitScore(&rd_i4);
|
| - VP8MakeIntra4Preds(it);
|
| - for (mode = 0; mode < NUM_BMODES; ++mode) {
|
| - VP8ModeScore rd_tmp;
|
| - int16_t tmp_levels[16];
|
| -
|
| - // Reconstruct
|
| - rd_tmp.nz =
|
| - ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_;
|
| -
|
| - // Compute RD-score
|
| - rd_tmp.D = VP8SSE4x4(src, tmp_dst);
|
| - rd_tmp.SD =
|
| - tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY))
|
| - : 0;
|
| - rd_tmp.H = mode_costs[mode];
|
| -
|
| - // Add flatness penalty
|
| - if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) {
|
| - rd_tmp.R = FLATNESS_PENALTY * kNumBlocks;
|
| - } else {
|
| - rd_tmp.R = 0;
|
| - }
|
| -
|
| - // early-out check
|
| - SetRDScore(lambda, &rd_tmp);
|
| - if (best_mode >= 0 && rd_tmp.score >= rd_i4.score) continue;
|
| -
|
| - // finish computing score
|
| - rd_tmp.R += VP8GetCostLuma4(it, tmp_levels);
|
| - SetRDScore(lambda, &rd_tmp);
|
| -
|
| - if (best_mode < 0 || rd_tmp.score < rd_i4.score) {
|
| - CopyScore(&rd_i4, &rd_tmp);
|
| - best_mode = mode;
|
| - SwapPtr(&tmp_dst, &best_block);
|
| - memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels,
|
| - sizeof(rd_best.y_ac_levels[it->i4_]));
|
| - }
|
| - }
|
| - SetRDScore(dqm->lambda_mode_, &rd_i4);
|
| - AddScore(&rd_best, &rd_i4);
|
| - if (rd_best.score >= rd->score) {
|
| - return 0;
|
| - }
|
| - total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode];
|
| - if (total_header_bits > enc->max_i4_header_bits_) {
|
| - return 0;
|
| - }
|
| - // Copy selected samples if not in the right place already.
|
| - if (best_block != best_blocks + VP8Scan[it->i4_]) {
|
| - VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]);
|
| - }
|
| - rd->modes_i4[it->i4_] = best_mode;
|
| - it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0);
|
| - } while (VP8IteratorRotateI4(it, best_blocks));
|
| -
|
| - // finalize state
|
| - CopyScore(rd, &rd_best);
|
| - VP8SetIntra4Mode(it, rd->modes_i4);
|
| - SwapOut(it);
|
| - memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels));
|
| - return 1; // select intra4x4 over intra16x16
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -
|
| -static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
| - const int kNumBlocks = 8;
|
| - const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_];
|
| - const int lambda = dqm->lambda_uv_;
|
| - const uint8_t* const src = it->yuv_in_ + U_OFF_ENC;
|
| - uint8_t* tmp_dst = it->yuv_out2_ + U_OFF_ENC; // scratch buffer
|
| - uint8_t* dst0 = it->yuv_out_ + U_OFF_ENC;
|
| - uint8_t* dst = dst0;
|
| - VP8ModeScore rd_best;
|
| - int mode;
|
| -
|
| - rd->mode_uv = -1;
|
| - InitScore(&rd_best);
|
| - for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
|
| - VP8ModeScore rd_uv;
|
| -
|
| - // Reconstruct
|
| - rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode);
|
| -
|
| - // Compute RD-score
|
| - rd_uv.D = VP8SSE16x8(src, tmp_dst);
|
| - rd_uv.SD = 0; // not calling TDisto here: it tends to flatten areas.
|
| - rd_uv.H = VP8FixedCostsUV[mode];
|
| - rd_uv.R = VP8GetCostUV(it, &rd_uv);
|
| - if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) {
|
| - rd_uv.R += FLATNESS_PENALTY * kNumBlocks;
|
| - }
|
| -
|
| - SetRDScore(lambda, &rd_uv);
|
| - if (mode == 0 || rd_uv.score < rd_best.score) {
|
| - CopyScore(&rd_best, &rd_uv);
|
| - rd->mode_uv = mode;
|
| - memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
|
| - SwapPtr(&dst, &tmp_dst);
|
| - }
|
| - }
|
| - VP8SetIntraUVMode(it, rd->mode_uv);
|
| - AddScore(rd, &rd_best);
|
| - if (dst != dst0) { // copy 16x8 block if needed
|
| - VP8Copy16x8(dst, dst0);
|
| - }
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Final reconstruction and quantization.
|
| -
|
| -static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
| - const VP8Encoder* const enc = it->enc_;
|
| - const int is_i16 = (it->mb_->type_ == 1);
|
| - int nz = 0;
|
| -
|
| - if (is_i16) {
|
| - nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]);
|
| - } else {
|
| - VP8IteratorStartI4(it);
|
| - do {
|
| - const int mode =
|
| - it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_];
|
| - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_];
|
| - uint8_t* const dst = it->yuv_out_ + Y_OFF_ENC + VP8Scan[it->i4_];
|
| - VP8MakeIntra4Preds(it);
|
| - nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
|
| - src, dst, mode) << it->i4_;
|
| - } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF_ENC));
|
| - }
|
| -
|
| - nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_);
|
| - rd->nz = nz;
|
| -}
|
| -
|
| -// Refine intra16/intra4 sub-modes based on distortion only (not rate).
|
| -static void RefineUsingDistortion(VP8EncIterator* const it,
|
| - int try_both_modes, int refine_uv_mode,
|
| - VP8ModeScore* const rd) {
|
| - score_t best_score = MAX_COST;
|
| - int nz = 0;
|
| - int mode;
|
| - int is_i16 = try_both_modes || (it->mb_->type_ == 1);
|
| -
|
| - const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_];
|
| - // Some empiric constants, of approximate order of magnitude.
|
| - const int lambda_d_i16 = 106;
|
| - const int lambda_d_i4 = 11;
|
| - const int lambda_d_uv = 120;
|
| - score_t score_i4 = dqm->i4_penalty_;
|
| - score_t i4_bit_sum = 0;
|
| - const score_t bit_limit = try_both_modes ? it->enc_->mb_header_limit_
|
| - : MAX_COST; // no early-out allowed
|
| -
|
| - if (is_i16) { // First, evaluate Intra16 distortion
|
| - int best_mode = -1;
|
| - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC;
|
| - for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
|
| - const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
|
| - const score_t score = VP8SSE16x16(src, ref) * RD_DISTO_MULT
|
| - + VP8FixedCostsI16[mode] * lambda_d_i16;
|
| - if (mode > 0 && VP8FixedCostsI16[mode] > bit_limit) {
|
| - continue;
|
| - }
|
| - if (score < best_score) {
|
| - best_mode = mode;
|
| - best_score = score;
|
| - }
|
| - }
|
| - VP8SetIntra16Mode(it, best_mode);
|
| - // we'll reconstruct later, if i16 mode actually gets selected
|
| - }
|
| -
|
| - // Next, evaluate Intra4
|
| - if (try_both_modes || !is_i16) {
|
| - // We don't evaluate the rate here, but just account for it through a
|
| - // constant penalty (i4 mode usually needs more bits compared to i16).
|
| - is_i16 = 0;
|
| - VP8IteratorStartI4(it);
|
| - do {
|
| - int best_i4_mode = -1;
|
| - score_t best_i4_score = MAX_COST;
|
| - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_];
|
| - const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
|
| -
|
| - VP8MakeIntra4Preds(it);
|
| - for (mode = 0; mode < NUM_BMODES; ++mode) {
|
| - const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
|
| - const score_t score = VP8SSE4x4(src, ref) * RD_DISTO_MULT
|
| - + mode_costs[mode] * lambda_d_i4;
|
| - if (score < best_i4_score) {
|
| - best_i4_mode = mode;
|
| - best_i4_score = score;
|
| - }
|
| - }
|
| - i4_bit_sum += mode_costs[best_i4_mode];
|
| - rd->modes_i4[it->i4_] = best_i4_mode;
|
| - score_i4 += best_i4_score;
|
| - if (score_i4 >= best_score || i4_bit_sum > bit_limit) {
|
| - // Intra4 won't be better than Intra16. Bail out and pick Intra16.
|
| - is_i16 = 1;
|
| - break;
|
| - } else { // reconstruct partial block inside yuv_out2_ buffer
|
| - uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC + VP8Scan[it->i4_];
|
| - nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
|
| - src, tmp_dst, best_i4_mode) << it->i4_;
|
| - }
|
| - } while (VP8IteratorRotateI4(it, it->yuv_out2_ + Y_OFF_ENC));
|
| - }
|
| -
|
| - // Final reconstruction, depending on which mode is selected.
|
| - if (!is_i16) {
|
| - VP8SetIntra4Mode(it, rd->modes_i4);
|
| - SwapOut(it);
|
| - best_score = score_i4;
|
| - } else {
|
| - nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]);
|
| - }
|
| -
|
| - // ... and UV!
|
| - if (refine_uv_mode) {
|
| - int best_mode = -1;
|
| - score_t best_uv_score = MAX_COST;
|
| - const uint8_t* const src = it->yuv_in_ + U_OFF_ENC;
|
| - for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
|
| - const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
|
| - const score_t score = VP8SSE16x8(src, ref) * RD_DISTO_MULT
|
| - + VP8FixedCostsUV[mode] * lambda_d_uv;
|
| - if (score < best_uv_score) {
|
| - best_mode = mode;
|
| - best_uv_score = score;
|
| - }
|
| - }
|
| - VP8SetIntraUVMode(it, best_mode);
|
| - }
|
| - nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_);
|
| -
|
| - rd->nz = nz;
|
| - rd->score = best_score;
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Entry point
|
| -
|
| -int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd,
|
| - VP8RDLevel rd_opt) {
|
| - int is_skipped;
|
| - const int method = it->enc_->method_;
|
| -
|
| - InitScore(rd);
|
| -
|
| - // We can perform predictions for Luma16x16 and Chroma8x8 already.
|
| - // Luma4x4 predictions needs to be done as-we-go.
|
| - VP8MakeLuma16Preds(it);
|
| - VP8MakeChroma8Preds(it);
|
| -
|
| - if (rd_opt > RD_OPT_NONE) {
|
| - it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL);
|
| - PickBestIntra16(it, rd);
|
| - if (method >= 2) {
|
| - PickBestIntra4(it, rd);
|
| - }
|
| - PickBestUV(it, rd);
|
| - if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now
|
| - it->do_trellis_ = 1;
|
| - SimpleQuantize(it, rd);
|
| - }
|
| - } else {
|
| - // At this point we have heuristically decided intra16 / intra4.
|
| - // For method >= 2, pick the best intra4/intra16 based on SSE (~tad slower).
|
| - // For method <= 1, we don't re-examine the decision but just go ahead with
|
| - // quantization/reconstruction.
|
| - RefineUsingDistortion(it, (method >= 2), (method >= 1), rd);
|
| - }
|
| - is_skipped = (rd->nz == 0);
|
| - VP8SetSkip(it, is_skipped);
|
| - return is_skipped;
|
| -}
|
|
|