| OLD | NEW |
| (Empty) |
| 1 // Copyright 2011 Google Inc. All Rights Reserved. | |
| 2 // | |
| 3 // Use of this source code is governed by a BSD-style license | |
| 4 // that can be found in the COPYING file in the root of the source | |
| 5 // tree. An additional intellectual property rights grant can be found | |
| 6 // in the file PATENTS. All contributing project authors may | |
| 7 // be found in the AUTHORS file in the root of the source tree. | |
| 8 // ----------------------------------------------------------------------------- | |
| 9 // | |
| 10 // Quantization | |
| 11 // | |
| 12 // Author: Skal (pascal.massimino@gmail.com) | |
| 13 | |
| 14 #include <assert.h> | |
| 15 #include <math.h> | |
| 16 #include <stdlib.h> // for abs() | |
| 17 | |
| 18 #include "./vp8enci.h" | |
| 19 #include "./cost.h" | |
| 20 | |
| 21 #define DO_TRELLIS_I4 1 | |
| 22 #define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate. | |
| 23 #define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth. | |
| 24 #define USE_TDISTO 1 | |
| 25 | |
| 26 #define MID_ALPHA 64 // neutral value for susceptibility | |
| 27 #define MIN_ALPHA 30 // lowest usable value for susceptibility | |
| 28 #define MAX_ALPHA 100 // higher meaningful value for susceptibility | |
| 29 | |
| 30 #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP | |
| 31 // power-law modulation. Must be strictly less than 1. | |
| 32 | |
| 33 // number of non-zero coeffs below which we consider the block very flat | |
| 34 // (and apply a penalty to complex predictions) | |
| 35 #define FLATNESS_LIMIT_I16 10 // I16 mode | |
| 36 #define FLATNESS_LIMIT_I4 3 // I4 mode | |
| 37 #define FLATNESS_LIMIT_UV 2 // UV mode | |
| 38 #define FLATNESS_PENALTY 140 // roughly ~1bit per block | |
| 39 | |
| 40 #define MULT_8B(a, b) (((a) * (b) + 128) >> 8) | |
| 41 | |
| 42 #define RD_DISTO_MULT 256 // distortion multiplier (equivalent of lambda) | |
| 43 | |
| 44 // #define DEBUG_BLOCK | |
| 45 | |
| 46 //------------------------------------------------------------------------------ | |
| 47 | |
| 48 #if defined(DEBUG_BLOCK) | |
| 49 | |
| 50 #include <stdio.h> | |
| 51 #include <stdlib.h> | |
| 52 | |
| 53 static void PrintBlockInfo(const VP8EncIterator* const it, | |
| 54 const VP8ModeScore* const rd) { | |
| 55 int i, j; | |
| 56 const int is_i16 = (it->mb_->type_ == 1); | |
| 57 const uint8_t* const y_in = it->yuv_in_ + Y_OFF_ENC; | |
| 58 const uint8_t* const y_out = it->yuv_out_ + Y_OFF_ENC; | |
| 59 const uint8_t* const uv_in = it->yuv_in_ + U_OFF_ENC; | |
| 60 const uint8_t* const uv_out = it->yuv_out_ + U_OFF_ENC; | |
| 61 printf("SOURCE / OUTPUT / ABS DELTA\n"); | |
| 62 for (j = 0; j < 16; ++j) { | |
| 63 for (i = 0; i < 16; ++i) printf("%3d ", y_in[i + j * BPS]); | |
| 64 printf(" "); | |
| 65 for (i = 0; i < 16; ++i) printf("%3d ", y_out[i + j * BPS]); | |
| 66 printf(" "); | |
| 67 for (i = 0; i < 16; ++i) { | |
| 68 printf("%1d ", abs(y_in[i + j * BPS] - y_out[i + j * BPS])); | |
| 69 } | |
| 70 printf("\n"); | |
| 71 } | |
| 72 printf("\n"); // newline before the U/V block | |
| 73 for (j = 0; j < 8; ++j) { | |
| 74 for (i = 0; i < 8; ++i) printf("%3d ", uv_in[i + j * BPS]); | |
| 75 printf(" "); | |
| 76 for (i = 8; i < 16; ++i) printf("%3d ", uv_in[i + j * BPS]); | |
| 77 printf(" "); | |
| 78 for (i = 0; i < 8; ++i) printf("%3d ", uv_out[i + j * BPS]); | |
| 79 printf(" "); | |
| 80 for (i = 8; i < 16; ++i) printf("%3d ", uv_out[i + j * BPS]); | |
| 81 printf(" "); | |
| 82 for (i = 0; i < 8; ++i) { | |
| 83 printf("%1d ", abs(uv_out[i + j * BPS] - uv_in[i + j * BPS])); | |
| 84 } | |
| 85 printf(" "); | |
| 86 for (i = 8; i < 16; ++i) { | |
| 87 printf("%1d ", abs(uv_out[i + j * BPS] - uv_in[i + j * BPS])); | |
| 88 } | |
| 89 printf("\n"); | |
| 90 } | |
| 91 printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n", | |
| 92 (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz, | |
| 93 (int)rd->score); | |
| 94 if (is_i16) { | |
| 95 printf("Mode: %d\n", rd->mode_i16); | |
| 96 printf("y_dc_levels:"); | |
| 97 for (i = 0; i < 16; ++i) printf("%3d ", rd->y_dc_levels[i]); | |
| 98 printf("\n"); | |
| 99 } else { | |
| 100 printf("Modes[16]: "); | |
| 101 for (i = 0; i < 16; ++i) printf("%d ", rd->modes_i4[i]); | |
| 102 printf("\n"); | |
| 103 } | |
| 104 printf("y_ac_levels:\n"); | |
| 105 for (j = 0; j < 16; ++j) { | |
| 106 for (i = is_i16 ? 1 : 0; i < 16; ++i) { | |
| 107 printf("%4d ", rd->y_ac_levels[j][i]); | |
| 108 } | |
| 109 printf("\n"); | |
| 110 } | |
| 111 printf("\n"); | |
| 112 printf("uv_levels (mode=%d):\n", rd->mode_uv); | |
| 113 for (j = 0; j < 8; ++j) { | |
| 114 for (i = 0; i < 16; ++i) { | |
| 115 printf("%4d ", rd->uv_levels[j][i]); | |
| 116 } | |
| 117 printf("\n"); | |
| 118 } | |
| 119 } | |
| 120 | |
| 121 #endif // DEBUG_BLOCK | |
| 122 | |
| 123 //------------------------------------------------------------------------------ | |
| 124 | |
| 125 static WEBP_INLINE int clip(int v, int m, int M) { | |
| 126 return v < m ? m : v > M ? M : v; | |
| 127 } | |
| 128 | |
| 129 static const uint8_t kZigzag[16] = { | |
| 130 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 | |
| 131 }; | |
| 132 | |
| 133 static const uint8_t kDcTable[128] = { | |
| 134 4, 5, 6, 7, 8, 9, 10, 10, | |
| 135 11, 12, 13, 14, 15, 16, 17, 17, | |
| 136 18, 19, 20, 20, 21, 21, 22, 22, | |
| 137 23, 23, 24, 25, 25, 26, 27, 28, | |
| 138 29, 30, 31, 32, 33, 34, 35, 36, | |
| 139 37, 37, 38, 39, 40, 41, 42, 43, | |
| 140 44, 45, 46, 46, 47, 48, 49, 50, | |
| 141 51, 52, 53, 54, 55, 56, 57, 58, | |
| 142 59, 60, 61, 62, 63, 64, 65, 66, | |
| 143 67, 68, 69, 70, 71, 72, 73, 74, | |
| 144 75, 76, 76, 77, 78, 79, 80, 81, | |
| 145 82, 83, 84, 85, 86, 87, 88, 89, | |
| 146 91, 93, 95, 96, 98, 100, 101, 102, | |
| 147 104, 106, 108, 110, 112, 114, 116, 118, | |
| 148 122, 124, 126, 128, 130, 132, 134, 136, | |
| 149 138, 140, 143, 145, 148, 151, 154, 157 | |
| 150 }; | |
| 151 | |
| 152 static const uint16_t kAcTable[128] = { | |
| 153 4, 5, 6, 7, 8, 9, 10, 11, | |
| 154 12, 13, 14, 15, 16, 17, 18, 19, | |
| 155 20, 21, 22, 23, 24, 25, 26, 27, | |
| 156 28, 29, 30, 31, 32, 33, 34, 35, | |
| 157 36, 37, 38, 39, 40, 41, 42, 43, | |
| 158 44, 45, 46, 47, 48, 49, 50, 51, | |
| 159 52, 53, 54, 55, 56, 57, 58, 60, | |
| 160 62, 64, 66, 68, 70, 72, 74, 76, | |
| 161 78, 80, 82, 84, 86, 88, 90, 92, | |
| 162 94, 96, 98, 100, 102, 104, 106, 108, | |
| 163 110, 112, 114, 116, 119, 122, 125, 128, | |
| 164 131, 134, 137, 140, 143, 146, 149, 152, | |
| 165 155, 158, 161, 164, 167, 170, 173, 177, | |
| 166 181, 185, 189, 193, 197, 201, 205, 209, | |
| 167 213, 217, 221, 225, 229, 234, 239, 245, | |
| 168 249, 254, 259, 264, 269, 274, 279, 284 | |
| 169 }; | |
| 170 | |
| 171 static const uint16_t kAcTable2[128] = { | |
| 172 8, 8, 9, 10, 12, 13, 15, 17, | |
| 173 18, 20, 21, 23, 24, 26, 27, 29, | |
| 174 31, 32, 34, 35, 37, 38, 40, 41, | |
| 175 43, 44, 46, 48, 49, 51, 52, 54, | |
| 176 55, 57, 58, 60, 62, 63, 65, 66, | |
| 177 68, 69, 71, 72, 74, 75, 77, 79, | |
| 178 80, 82, 83, 85, 86, 88, 89, 93, | |
| 179 96, 99, 102, 105, 108, 111, 114, 117, | |
| 180 120, 124, 127, 130, 133, 136, 139, 142, | |
| 181 145, 148, 151, 155, 158, 161, 164, 167, | |
| 182 170, 173, 176, 179, 184, 189, 193, 198, | |
| 183 203, 207, 212, 217, 221, 226, 230, 235, | |
| 184 240, 244, 249, 254, 258, 263, 268, 274, | |
| 185 280, 286, 292, 299, 305, 311, 317, 323, | |
| 186 330, 336, 342, 348, 354, 362, 370, 379, | |
| 187 385, 393, 401, 409, 416, 424, 432, 440 | |
| 188 }; | |
| 189 | |
| 190 static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac] | |
| 191 { 96, 110 }, { 96, 108 }, { 110, 115 } | |
| 192 }; | |
| 193 | |
| 194 // Sharpening by (slightly) raising the hi-frequency coeffs. | |
| 195 // Hack-ish but helpful for mid-bitrate range. Use with care. | |
| 196 #define SHARPEN_BITS 11 // number of descaling bits for sharpening bias | |
| 197 static const uint8_t kFreqSharpening[16] = { | |
| 198 0, 30, 60, 90, | |
| 199 30, 60, 90, 90, | |
| 200 60, 90, 90, 90, | |
| 201 90, 90, 90, 90 | |
| 202 }; | |
| 203 | |
| 204 //------------------------------------------------------------------------------ | |
| 205 // Initialize quantization parameters in VP8Matrix | |
| 206 | |
| 207 // Returns the average quantizer | |
| 208 static int ExpandMatrix(VP8Matrix* const m, int type) { | |
| 209 int i, sum; | |
| 210 for (i = 0; i < 2; ++i) { | |
| 211 const int is_ac_coeff = (i > 0); | |
| 212 const int bias = kBiasMatrices[type][is_ac_coeff]; | |
| 213 m->iq_[i] = (1 << QFIX) / m->q_[i]; | |
| 214 m->bias_[i] = BIAS(bias); | |
| 215 // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is: | |
| 216 // * zero if coeff <= zthresh | |
| 217 // * non-zero if coeff > zthresh | |
| 218 m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i]; | |
| 219 } | |
| 220 for (i = 2; i < 16; ++i) { | |
| 221 m->q_[i] = m->q_[1]; | |
| 222 m->iq_[i] = m->iq_[1]; | |
| 223 m->bias_[i] = m->bias_[1]; | |
| 224 m->zthresh_[i] = m->zthresh_[1]; | |
| 225 } | |
| 226 for (sum = 0, i = 0; i < 16; ++i) { | |
| 227 if (type == 0) { // we only use sharpening for AC luma coeffs | |
| 228 m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS; | |
| 229 } else { | |
| 230 m->sharpen_[i] = 0; | |
| 231 } | |
| 232 sum += m->q_[i]; | |
| 233 } | |
| 234 return (sum + 8) >> 4; | |
| 235 } | |
| 236 | |
| 237 static void CheckLambdaValue(int* const v) { if (*v < 1) *v = 1; } | |
| 238 | |
| 239 static void SetupMatrices(VP8Encoder* enc) { | |
| 240 int i; | |
| 241 const int tlambda_scale = | |
| 242 (enc->method_ >= 4) ? enc->config_->sns_strength | |
| 243 : 0; | |
| 244 const int num_segments = enc->segment_hdr_.num_segments_; | |
| 245 for (i = 0; i < num_segments; ++i) { | |
| 246 VP8SegmentInfo* const m = &enc->dqm_[i]; | |
| 247 const int q = m->quant_; | |
| 248 int q_i4, q_i16, q_uv; | |
| 249 m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)]; | |
| 250 m->y1_.q_[1] = kAcTable[clip(q, 0, 127)]; | |
| 251 | |
| 252 m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2; | |
| 253 m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)]; | |
| 254 | |
| 255 m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)]; | |
| 256 m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)]; | |
| 257 | |
| 258 q_i4 = ExpandMatrix(&m->y1_, 0); | |
| 259 q_i16 = ExpandMatrix(&m->y2_, 1); | |
| 260 q_uv = ExpandMatrix(&m->uv_, 2); | |
| 261 | |
| 262 m->lambda_i4_ = (3 * q_i4 * q_i4) >> 7; | |
| 263 m->lambda_i16_ = (3 * q_i16 * q_i16); | |
| 264 m->lambda_uv_ = (3 * q_uv * q_uv) >> 6; | |
| 265 m->lambda_mode_ = (1 * q_i4 * q_i4) >> 7; | |
| 266 m->lambda_trellis_i4_ = (7 * q_i4 * q_i4) >> 3; | |
| 267 m->lambda_trellis_i16_ = (q_i16 * q_i16) >> 2; | |
| 268 m->lambda_trellis_uv_ = (q_uv * q_uv) << 1; | |
| 269 m->tlambda_ = (tlambda_scale * q_i4) >> 5; | |
| 270 | |
| 271 // none of these constants should be < 1 | |
| 272 CheckLambdaValue(&m->lambda_i4_); | |
| 273 CheckLambdaValue(&m->lambda_i16_); | |
| 274 CheckLambdaValue(&m->lambda_uv_); | |
| 275 CheckLambdaValue(&m->lambda_mode_); | |
| 276 CheckLambdaValue(&m->lambda_trellis_i4_); | |
| 277 CheckLambdaValue(&m->lambda_trellis_i16_); | |
| 278 CheckLambdaValue(&m->lambda_trellis_uv_); | |
| 279 CheckLambdaValue(&m->tlambda_); | |
| 280 | |
| 281 m->min_disto_ = 20 * m->y1_.q_[0]; // quantization-aware min disto | |
| 282 m->max_edge_ = 0; | |
| 283 | |
| 284 m->i4_penalty_ = 1000 * q_i4 * q_i4; | |
| 285 } | |
| 286 } | |
| 287 | |
| 288 //------------------------------------------------------------------------------ | |
| 289 // Initialize filtering parameters | |
| 290 | |
| 291 // Very small filter-strength values have close to no visual effect. So we can | |
| 292 // save a little decoding-CPU by turning filtering off for these. | |
| 293 #define FSTRENGTH_CUTOFF 2 | |
| 294 | |
| 295 static void SetupFilterStrength(VP8Encoder* const enc) { | |
| 296 int i; | |
| 297 // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering. | |
| 298 const int level0 = 5 * enc->config_->filter_strength; | |
| 299 for (i = 0; i < NUM_MB_SEGMENTS; ++i) { | |
| 300 VP8SegmentInfo* const m = &enc->dqm_[i]; | |
| 301 // We focus on the quantization of AC coeffs. | |
| 302 const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2; | |
| 303 const int base_strength = | |
| 304 VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep); | |
| 305 // Segments with lower complexity ('beta') will be less filtered. | |
| 306 const int f = base_strength * level0 / (256 + m->beta_); | |
| 307 m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; | |
| 308 } | |
| 309 // We record the initial strength (mainly for the case of 1-segment only). | |
| 310 enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; | |
| 311 enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0); | |
| 312 enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness; | |
| 313 } | |
| 314 | |
| 315 //------------------------------------------------------------------------------ | |
| 316 | |
| 317 // Note: if you change the values below, remember that the max range | |
| 318 // allowed by the syntax for DQ_UV is [-16,16]. | |
| 319 #define MAX_DQ_UV (6) | |
| 320 #define MIN_DQ_UV (-4) | |
| 321 | |
| 322 // We want to emulate jpeg-like behaviour where the expected "good" quality | |
| 323 // is around q=75. Internally, our "good" middle is around c=50. So we | |
| 324 // map accordingly using linear piece-wise function | |
| 325 static double QualityToCompression(double c) { | |
| 326 const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; | |
| 327 // The file size roughly scales as pow(quantizer, 3.). Actually, the | |
| 328 // exponent is somewhere between 2.8 and 3.2, but we're mostly interested | |
| 329 // in the mid-quant range. So we scale the compressibility inversely to | |
| 330 // this power-law: quant ~= compression ^ 1/3. This law holds well for | |
| 331 // low quant. Finer modeling for high-quant would make use of kAcTable[] | |
| 332 // more explicitly. | |
| 333 const double v = pow(linear_c, 1 / 3.); | |
| 334 return v; | |
| 335 } | |
| 336 | |
| 337 static double QualityToJPEGCompression(double c, double alpha) { | |
| 338 // We map the complexity 'alpha' and quality setting 'c' to a compression | |
| 339 // exponent empirically matched to the compression curve of libjpeg6b. | |
| 340 // On average, the WebP output size will be roughly similar to that of a | |
| 341 // JPEG file compressed with same quality factor. | |
| 342 const double amin = 0.30; | |
| 343 const double amax = 0.85; | |
| 344 const double exp_min = 0.4; | |
| 345 const double exp_max = 0.9; | |
| 346 const double slope = (exp_min - exp_max) / (amax - amin); | |
| 347 // Linearly interpolate 'expn' from exp_min to exp_max | |
| 348 // in the [amin, amax] range. | |
| 349 const double expn = (alpha > amax) ? exp_min | |
| 350 : (alpha < amin) ? exp_max | |
| 351 : exp_max + slope * (alpha - amin); | |
| 352 const double v = pow(c, expn); | |
| 353 return v; | |
| 354 } | |
| 355 | |
| 356 static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1, | |
| 357 const VP8SegmentInfo* const S2) { | |
| 358 return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_); | |
| 359 } | |
| 360 | |
| 361 static void SimplifySegments(VP8Encoder* const enc) { | |
| 362 int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 }; | |
| 363 // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an | |
| 364 // explicit check is needed to avoid a spurious warning about 'i' exceeding | |
| 365 // array bounds of 'dqm_' with some compilers (noticed with gcc-4.9). | |
| 366 const int num_segments = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) | |
| 367 ? enc->segment_hdr_.num_segments_ | |
| 368 : NUM_MB_SEGMENTS; | |
| 369 int num_final_segments = 1; | |
| 370 int s1, s2; | |
| 371 for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments | |
| 372 const VP8SegmentInfo* const S1 = &enc->dqm_[s1]; | |
| 373 int found = 0; | |
| 374 // check if we already have similar segment | |
| 375 for (s2 = 0; s2 < num_final_segments; ++s2) { | |
| 376 const VP8SegmentInfo* const S2 = &enc->dqm_[s2]; | |
| 377 if (SegmentsAreEquivalent(S1, S2)) { | |
| 378 found = 1; | |
| 379 break; | |
| 380 } | |
| 381 } | |
| 382 map[s1] = s2; | |
| 383 if (!found) { | |
| 384 if (num_final_segments != s1) { | |
| 385 enc->dqm_[num_final_segments] = enc->dqm_[s1]; | |
| 386 } | |
| 387 ++num_final_segments; | |
| 388 } | |
| 389 } | |
| 390 if (num_final_segments < num_segments) { // Remap | |
| 391 int i = enc->mb_w_ * enc->mb_h_; | |
| 392 while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_]; | |
| 393 enc->segment_hdr_.num_segments_ = num_final_segments; | |
| 394 // Replicate the trailing segment infos (it's mostly cosmetics) | |
| 395 for (i = num_final_segments; i < num_segments; ++i) { | |
| 396 enc->dqm_[i] = enc->dqm_[num_final_segments - 1]; | |
| 397 } | |
| 398 } | |
| 399 } | |
| 400 | |
| 401 void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { | |
| 402 int i; | |
| 403 int dq_uv_ac, dq_uv_dc; | |
| 404 const int num_segments = enc->segment_hdr_.num_segments_; | |
| 405 const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; | |
| 406 const double Q = quality / 100.; | |
| 407 const double c_base = enc->config_->emulate_jpeg_size ? | |
| 408 QualityToJPEGCompression(Q, enc->alpha_ / 255.) : | |
| 409 QualityToCompression(Q); | |
| 410 for (i = 0; i < num_segments; ++i) { | |
| 411 // We modulate the base coefficient to accommodate for the quantization | |
| 412 // susceptibility and allow denser segments to be quantized more. | |
| 413 const double expn = 1. - amp * enc->dqm_[i].alpha_; | |
| 414 const double c = pow(c_base, expn); | |
| 415 const int q = (int)(127. * (1. - c)); | |
| 416 assert(expn > 0.); | |
| 417 enc->dqm_[i].quant_ = clip(q, 0, 127); | |
| 418 } | |
| 419 | |
| 420 // purely indicative in the bitstream (except for the 1-segment case) | |
| 421 enc->base_quant_ = enc->dqm_[0].quant_; | |
| 422 | |
| 423 // fill-in values for the unused segments (required by the syntax) | |
| 424 for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) { | |
| 425 enc->dqm_[i].quant_ = enc->base_quant_; | |
| 426 } | |
| 427 | |
| 428 // uv_alpha_ is normally spread around ~60. The useful range is | |
| 429 // typically ~30 (quite bad) to ~100 (ok to decimate UV more). | |
| 430 // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv. | |
| 431 dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV) | |
| 432 / (MAX_ALPHA - MIN_ALPHA); | |
| 433 // we rescale by the user-defined strength of adaptation | |
| 434 dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100; | |
| 435 // and make it safe. | |
| 436 dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV); | |
| 437 // We also boost the dc-uv-quant a little, based on sns-strength, since | |
| 438 // U/V channels are quite more reactive to high quants (flat DC-blocks | |
| 439 // tend to appear, and are unpleasant). | |
| 440 dq_uv_dc = -4 * enc->config_->sns_strength / 100; | |
| 441 dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed | |
| 442 | |
| 443 enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum | |
| 444 enc->dq_y2_dc_ = 0; | |
| 445 enc->dq_y2_ac_ = 0; | |
| 446 enc->dq_uv_dc_ = dq_uv_dc; | |
| 447 enc->dq_uv_ac_ = dq_uv_ac; | |
| 448 | |
| 449 SetupFilterStrength(enc); // initialize segments' filtering, eventually | |
| 450 | |
| 451 if (num_segments > 1) SimplifySegments(enc); | |
| 452 | |
| 453 SetupMatrices(enc); // finalize quantization matrices | |
| 454 } | |
| 455 | |
| 456 //------------------------------------------------------------------------------ | |
| 457 // Form the predictions in cache | |
| 458 | |
| 459 // Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index | |
| 460 const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 }; | |
| 461 const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 }; | |
| 462 | |
| 463 // Must be indexed using {B_DC_PRED -> B_HU_PRED} as index | |
| 464 const int VP8I4ModeOffsets[NUM_BMODES] = { | |
| 465 I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4 | |
| 466 }; | |
| 467 | |
| 468 void VP8MakeLuma16Preds(const VP8EncIterator* const it) { | |
| 469 const uint8_t* const left = it->x_ ? it->y_left_ : NULL; | |
| 470 const uint8_t* const top = it->y_ ? it->y_top_ : NULL; | |
| 471 VP8EncPredLuma16(it->yuv_p_, left, top); | |
| 472 } | |
| 473 | |
| 474 void VP8MakeChroma8Preds(const VP8EncIterator* const it) { | |
| 475 const uint8_t* const left = it->x_ ? it->u_left_ : NULL; | |
| 476 const uint8_t* const top = it->y_ ? it->uv_top_ : NULL; | |
| 477 VP8EncPredChroma8(it->yuv_p_, left, top); | |
| 478 } | |
| 479 | |
| 480 void VP8MakeIntra4Preds(const VP8EncIterator* const it) { | |
| 481 VP8EncPredLuma4(it->yuv_p_, it->i4_top_); | |
| 482 } | |
| 483 | |
| 484 //------------------------------------------------------------------------------ | |
| 485 // Quantize | |
| 486 | |
| 487 // Layout: | |
| 488 // +----+----+ | |
| 489 // |YYYY|UUVV| 0 | |
| 490 // |YYYY|UUVV| 4 | |
| 491 // |YYYY|....| 8 | |
| 492 // |YYYY|....| 12 | |
| 493 // +----+----+ | |
| 494 | |
| 495 const int VP8Scan[16] = { // Luma | |
| 496 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, | |
| 497 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, | |
| 498 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, | |
| 499 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, | |
| 500 }; | |
| 501 | |
| 502 static const int VP8ScanUV[4 + 4] = { | |
| 503 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U | |
| 504 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V | |
| 505 }; | |
| 506 | |
| 507 //------------------------------------------------------------------------------ | |
| 508 // Distortion measurement | |
| 509 | |
| 510 static const uint16_t kWeightY[16] = { | |
| 511 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2 | |
| 512 }; | |
| 513 | |
| 514 static const uint16_t kWeightTrellis[16] = { | |
| 515 #if USE_TDISTO == 0 | |
| 516 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 | |
| 517 #else | |
| 518 30, 27, 19, 11, | |
| 519 27, 24, 17, 10, | |
| 520 19, 17, 12, 8, | |
| 521 11, 10, 8, 6 | |
| 522 #endif | |
| 523 }; | |
| 524 | |
| 525 // Init/Copy the common fields in score. | |
| 526 static void InitScore(VP8ModeScore* const rd) { | |
| 527 rd->D = 0; | |
| 528 rd->SD = 0; | |
| 529 rd->R = 0; | |
| 530 rd->H = 0; | |
| 531 rd->nz = 0; | |
| 532 rd->score = MAX_COST; | |
| 533 } | |
| 534 | |
| 535 static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { | |
| 536 dst->D = src->D; | |
| 537 dst->SD = src->SD; | |
| 538 dst->R = src->R; | |
| 539 dst->H = src->H; | |
| 540 dst->nz = src->nz; // note that nz is not accumulated, but just copied. | |
| 541 dst->score = src->score; | |
| 542 } | |
| 543 | |
| 544 static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { | |
| 545 dst->D += src->D; | |
| 546 dst->SD += src->SD; | |
| 547 dst->R += src->R; | |
| 548 dst->H += src->H; | |
| 549 dst->nz |= src->nz; // here, new nz bits are accumulated. | |
| 550 dst->score += src->score; | |
| 551 } | |
| 552 | |
| 553 //------------------------------------------------------------------------------ | |
| 554 // Performs trellis-optimized quantization. | |
| 555 | |
| 556 // Trellis node | |
| 557 typedef struct { | |
| 558 int8_t prev; // best previous node | |
| 559 int8_t sign; // sign of coeff_i | |
| 560 int16_t level; // level | |
| 561 } Node; | |
| 562 | |
| 563 // Score state | |
| 564 typedef struct { | |
| 565 score_t score; // partial RD score | |
| 566 const uint16_t* costs; // shortcut to cost tables | |
| 567 } ScoreState; | |
| 568 | |
| 569 // If a coefficient was quantized to a value Q (using a neutral bias), | |
| 570 // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA] | |
| 571 // We don't test negative values though. | |
| 572 #define MIN_DELTA 0 // how much lower level to try | |
| 573 #define MAX_DELTA 1 // how much higher | |
| 574 #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA) | |
| 575 #define NODE(n, l) (nodes[(n)][(l) + MIN_DELTA]) | |
| 576 #define SCORE_STATE(n, l) (score_states[n][(l) + MIN_DELTA]) | |
| 577 | |
| 578 static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) { | |
| 579 rd->score = (rd->R + rd->H) * lambda + RD_DISTO_MULT * (rd->D + rd->SD); | |
| 580 } | |
| 581 | |
| 582 static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, | |
| 583 score_t distortion) { | |
| 584 return rate * lambda + RD_DISTO_MULT * distortion; | |
| 585 } | |
| 586 | |
| 587 static int TrellisQuantizeBlock(const VP8Encoder* const enc, | |
| 588 int16_t in[16], int16_t out[16], | |
| 589 int ctx0, int coeff_type, | |
| 590 const VP8Matrix* const mtx, | |
| 591 int lambda) { | |
| 592 const ProbaArray* const probas = enc->proba_.coeffs_[coeff_type]; | |
| 593 CostArrayPtr const costs = | |
| 594 (CostArrayPtr)enc->proba_.remapped_costs_[coeff_type]; | |
| 595 const int first = (coeff_type == 0) ? 1 : 0; | |
| 596 Node nodes[16][NUM_NODES]; | |
| 597 ScoreState score_states[2][NUM_NODES]; | |
| 598 ScoreState* ss_cur = &SCORE_STATE(0, MIN_DELTA); | |
| 599 ScoreState* ss_prev = &SCORE_STATE(1, MIN_DELTA); | |
| 600 int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous | |
| 601 score_t best_score; | |
| 602 int n, m, p, last; | |
| 603 | |
| 604 { | |
| 605 score_t cost; | |
| 606 const int thresh = mtx->q_[1] * mtx->q_[1] / 4; | |
| 607 const int last_proba = probas[VP8EncBands[first]][ctx0][0]; | |
| 608 | |
| 609 // compute the position of the last interesting coefficient | |
| 610 last = first - 1; | |
| 611 for (n = 15; n >= first; --n) { | |
| 612 const int j = kZigzag[n]; | |
| 613 const int err = in[j] * in[j]; | |
| 614 if (err > thresh) { | |
| 615 last = n; | |
| 616 break; | |
| 617 } | |
| 618 } | |
| 619 // we don't need to go inspect up to n = 16 coeffs. We can just go up | |
| 620 // to last + 1 (inclusive) without losing much. | |
| 621 if (last < 15) ++last; | |
| 622 | |
| 623 // compute 'skip' score. This is the max score one can do. | |
| 624 cost = VP8BitCost(0, last_proba); | |
| 625 best_score = RDScoreTrellis(lambda, cost, 0); | |
| 626 | |
| 627 // initialize source node. | |
| 628 for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { | |
| 629 const score_t rate = (ctx0 == 0) ? VP8BitCost(1, last_proba) : 0; | |
| 630 ss_cur[m].score = RDScoreTrellis(lambda, rate, 0); | |
| 631 ss_cur[m].costs = costs[first][ctx0]; | |
| 632 } | |
| 633 } | |
| 634 | |
| 635 // traverse trellis. | |
| 636 for (n = first; n <= last; ++n) { | |
| 637 const int j = kZigzag[n]; | |
| 638 const uint32_t Q = mtx->q_[j]; | |
| 639 const uint32_t iQ = mtx->iq_[j]; | |
| 640 const uint32_t B = BIAS(0x00); // neutral bias | |
| 641 // note: it's important to take sign of the _original_ coeff, | |
| 642 // so we don't have to consider level < 0 afterward. | |
| 643 const int sign = (in[j] < 0); | |
| 644 const uint32_t coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; | |
| 645 int level0 = QUANTDIV(coeff0, iQ, B); | |
| 646 if (level0 > MAX_LEVEL) level0 = MAX_LEVEL; | |
| 647 | |
| 648 { // Swap current and previous score states | |
| 649 ScoreState* const tmp = ss_cur; | |
| 650 ss_cur = ss_prev; | |
| 651 ss_prev = tmp; | |
| 652 } | |
| 653 | |
| 654 // test all alternate level values around level0. | |
| 655 for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { | |
| 656 Node* const cur = &NODE(n, m); | |
| 657 int level = level0 + m; | |
| 658 const int ctx = (level > 2) ? 2 : level; | |
| 659 const int band = VP8EncBands[n + 1]; | |
| 660 score_t base_score, last_pos_score; | |
| 661 score_t best_cur_score = MAX_COST; | |
| 662 int best_prev = 0; // default, in case | |
| 663 | |
| 664 ss_cur[m].score = MAX_COST; | |
| 665 ss_cur[m].costs = costs[n + 1][ctx]; | |
| 666 if (level > MAX_LEVEL || level < 0) { // node is dead? | |
| 667 continue; | |
| 668 } | |
| 669 | |
| 670 // Compute extra rate cost if last coeff's position is < 15 | |
| 671 { | |
| 672 const score_t last_pos_cost = | |
| 673 (n < 15) ? VP8BitCost(0, probas[band][ctx][0]) : 0; | |
| 674 last_pos_score = RDScoreTrellis(lambda, last_pos_cost, 0); | |
| 675 } | |
| 676 | |
| 677 { | |
| 678 // Compute delta_error = how much coding this level will | |
| 679 // subtract to max_error as distortion. | |
| 680 // Here, distortion = sum of (|coeff_i| - level_i * Q_i)^2 | |
| 681 const int new_error = coeff0 - level * Q; | |
| 682 const int delta_error = | |
| 683 kWeightTrellis[j] * (new_error * new_error - coeff0 * coeff0); | |
| 684 base_score = RDScoreTrellis(lambda, 0, delta_error); | |
| 685 } | |
| 686 | |
| 687 // Inspect all possible non-dead predecessors. Retain only the best one. | |
| 688 for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) { | |
| 689 // Dead nodes (with ss_prev[p].score >= MAX_COST) are automatically | |
| 690 // eliminated since their score can't be better than the current best. | |
| 691 const score_t cost = VP8LevelCost(ss_prev[p].costs, level); | |
| 692 // Examine node assuming it's a non-terminal one. | |
| 693 const score_t score = | |
| 694 base_score + ss_prev[p].score + RDScoreTrellis(lambda, cost, 0); | |
| 695 if (score < best_cur_score) { | |
| 696 best_cur_score = score; | |
| 697 best_prev = p; | |
| 698 } | |
| 699 } | |
| 700 // Store best finding in current node. | |
| 701 cur->sign = sign; | |
| 702 cur->level = level; | |
| 703 cur->prev = best_prev; | |
| 704 ss_cur[m].score = best_cur_score; | |
| 705 | |
| 706 // Now, record best terminal node (and thus best entry in the graph). | |
| 707 if (level != 0) { | |
| 708 const score_t score = best_cur_score + last_pos_score; | |
| 709 if (score < best_score) { | |
| 710 best_score = score; | |
| 711 best_path[0] = n; // best eob position | |
| 712 best_path[1] = m; // best node index | |
| 713 best_path[2] = best_prev; // best predecessor | |
| 714 } | |
| 715 } | |
| 716 } | |
| 717 } | |
| 718 | |
| 719 // Fresh start | |
| 720 memset(in + first, 0, (16 - first) * sizeof(*in)); | |
| 721 memset(out + first, 0, (16 - first) * sizeof(*out)); | |
| 722 if (best_path[0] == -1) { | |
| 723 return 0; // skip! | |
| 724 } | |
| 725 | |
| 726 { | |
| 727 // Unwind the best path. | |
| 728 // Note: best-prev on terminal node is not necessarily equal to the | |
| 729 // best_prev for non-terminal. So we patch best_path[2] in. | |
| 730 int nz = 0; | |
| 731 int best_node = best_path[1]; | |
| 732 n = best_path[0]; | |
| 733 NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal | |
| 734 | |
| 735 for (; n >= first; --n) { | |
| 736 const Node* const node = &NODE(n, best_node); | |
| 737 const int j = kZigzag[n]; | |
| 738 out[n] = node->sign ? -node->level : node->level; | |
| 739 nz |= node->level; | |
| 740 in[j] = out[n] * mtx->q_[j]; | |
| 741 best_node = node->prev; | |
| 742 } | |
| 743 return (nz != 0); | |
| 744 } | |
| 745 } | |
| 746 | |
| 747 #undef NODE | |
| 748 | |
| 749 //------------------------------------------------------------------------------ | |
| 750 // Performs: difference, transform, quantize, back-transform, add | |
| 751 // all at once. Output is the reconstructed block in *yuv_out, and the | |
| 752 // quantized levels in *levels. | |
| 753 | |
| 754 static int ReconstructIntra16(VP8EncIterator* const it, | |
| 755 VP8ModeScore* const rd, | |
| 756 uint8_t* const yuv_out, | |
| 757 int mode) { | |
| 758 const VP8Encoder* const enc = it->enc_; | |
| 759 const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; | |
| 760 const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; | |
| 761 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; | |
| 762 int nz = 0; | |
| 763 int n; | |
| 764 int16_t tmp[16][16], dc_tmp[16]; | |
| 765 | |
| 766 for (n = 0; n < 16; n += 2) { | |
| 767 VP8FTransform2(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); | |
| 768 } | |
| 769 VP8FTransformWHT(tmp[0], dc_tmp); | |
| 770 nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24; | |
| 771 | |
| 772 if (DO_TRELLIS_I16 && it->do_trellis_) { | |
| 773 int x, y; | |
| 774 VP8IteratorNzToBytes(it); | |
| 775 for (y = 0, n = 0; y < 4; ++y) { | |
| 776 for (x = 0; x < 4; ++x, ++n) { | |
| 777 const int ctx = it->top_nz_[x] + it->left_nz_[y]; | |
| 778 const int non_zero = | |
| 779 TrellisQuantizeBlock(enc, tmp[n], rd->y_ac_levels[n], ctx, 0, | |
| 780 &dqm->y1_, dqm->lambda_trellis_i16_); | |
| 781 it->top_nz_[x] = it->left_nz_[y] = non_zero; | |
| 782 rd->y_ac_levels[n][0] = 0; | |
| 783 nz |= non_zero << n; | |
| 784 } | |
| 785 } | |
| 786 } else { | |
| 787 for (n = 0; n < 16; n += 2) { | |
| 788 // Zero-out the first coeff, so that: a) nz is correct below, and | |
| 789 // b) finding 'last' non-zero coeffs in SetResidualCoeffs() is simplified. | |
| 790 tmp[n][0] = tmp[n + 1][0] = 0; | |
| 791 nz |= VP8EncQuantize2Blocks(tmp[n], rd->y_ac_levels[n], &dqm->y1_) << n; | |
| 792 assert(rd->y_ac_levels[n + 0][0] == 0); | |
| 793 assert(rd->y_ac_levels[n + 1][0] == 0); | |
| 794 } | |
| 795 } | |
| 796 | |
| 797 // Transform back | |
| 798 VP8TransformWHT(dc_tmp, tmp[0]); | |
| 799 for (n = 0; n < 16; n += 2) { | |
| 800 VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1); | |
| 801 } | |
| 802 | |
| 803 return nz; | |
| 804 } | |
| 805 | |
| 806 static int ReconstructIntra4(VP8EncIterator* const it, | |
| 807 int16_t levels[16], | |
| 808 const uint8_t* const src, | |
| 809 uint8_t* const yuv_out, | |
| 810 int mode) { | |
| 811 const VP8Encoder* const enc = it->enc_; | |
| 812 const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; | |
| 813 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; | |
| 814 int nz = 0; | |
| 815 int16_t tmp[16]; | |
| 816 | |
| 817 VP8FTransform(src, ref, tmp); | |
| 818 if (DO_TRELLIS_I4 && it->do_trellis_) { | |
| 819 const int x = it->i4_ & 3, y = it->i4_ >> 2; | |
| 820 const int ctx = it->top_nz_[x] + it->left_nz_[y]; | |
| 821 nz = TrellisQuantizeBlock(enc, tmp, levels, ctx, 3, &dqm->y1_, | |
| 822 dqm->lambda_trellis_i4_); | |
| 823 } else { | |
| 824 nz = VP8EncQuantizeBlock(tmp, levels, &dqm->y1_); | |
| 825 } | |
| 826 VP8ITransform(ref, tmp, yuv_out, 0); | |
| 827 return nz; | |
| 828 } | |
| 829 | |
| 830 static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, | |
| 831 uint8_t* const yuv_out, int mode) { | |
| 832 const VP8Encoder* const enc = it->enc_; | |
| 833 const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; | |
| 834 const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; | |
| 835 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; | |
| 836 int nz = 0; | |
| 837 int n; | |
| 838 int16_t tmp[8][16]; | |
| 839 | |
| 840 for (n = 0; n < 8; n += 2) { | |
| 841 VP8FTransform2(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]); | |
| 842 } | |
| 843 if (DO_TRELLIS_UV && it->do_trellis_) { | |
| 844 int ch, x, y; | |
| 845 for (ch = 0, n = 0; ch <= 2; ch += 2) { | |
| 846 for (y = 0; y < 2; ++y) { | |
| 847 for (x = 0; x < 2; ++x, ++n) { | |
| 848 const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; | |
| 849 const int non_zero = | |
| 850 TrellisQuantizeBlock(enc, tmp[n], rd->uv_levels[n], ctx, 2, | |
| 851 &dqm->uv_, dqm->lambda_trellis_uv_); | |
| 852 it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero; | |
| 853 nz |= non_zero << n; | |
| 854 } | |
| 855 } | |
| 856 } | |
| 857 } else { | |
| 858 for (n = 0; n < 8; n += 2) { | |
| 859 nz |= VP8EncQuantize2Blocks(tmp[n], rd->uv_levels[n], &dqm->uv_) << n; | |
| 860 } | |
| 861 } | |
| 862 | |
| 863 for (n = 0; n < 8; n += 2) { | |
| 864 VP8ITransform(ref + VP8ScanUV[n], tmp[n], yuv_out + VP8ScanUV[n], 1); | |
| 865 } | |
| 866 return (nz << 16); | |
| 867 } | |
| 868 | |
| 869 //------------------------------------------------------------------------------ | |
| 870 // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. | |
| 871 // Pick the mode is lower RD-cost = Rate + lambda * Distortion. | |
| 872 | |
| 873 static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) { | |
| 874 // We look at the first three AC coefficients to determine what is the average | |
| 875 // delta between each sub-4x4 block. | |
| 876 const int v0 = abs(DCs[1]); | |
| 877 const int v1 = abs(DCs[2]); | |
| 878 const int v2 = abs(DCs[4]); | |
| 879 int max_v = (v1 > v0) ? v1 : v0; | |
| 880 max_v = (v2 > max_v) ? v2 : max_v; | |
| 881 if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v; | |
| 882 } | |
| 883 | |
| 884 static void SwapModeScore(VP8ModeScore** a, VP8ModeScore** b) { | |
| 885 VP8ModeScore* const tmp = *a; | |
| 886 *a = *b; | |
| 887 *b = tmp; | |
| 888 } | |
| 889 | |
| 890 static void SwapPtr(uint8_t** a, uint8_t** b) { | |
| 891 uint8_t* const tmp = *a; | |
| 892 *a = *b; | |
| 893 *b = tmp; | |
| 894 } | |
| 895 | |
| 896 static void SwapOut(VP8EncIterator* const it) { | |
| 897 SwapPtr(&it->yuv_out_, &it->yuv_out2_); | |
| 898 } | |
| 899 | |
| 900 static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) { | |
| 901 score_t score = 0; | |
| 902 while (num_blocks-- > 0) { // TODO(skal): refine positional scoring? | |
| 903 int i; | |
| 904 for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC | |
| 905 score += (levels[i] != 0); | |
| 906 if (score > thresh) return 0; | |
| 907 } | |
| 908 levels += 16; | |
| 909 } | |
| 910 return 1; | |
| 911 } | |
| 912 | |
| 913 static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* rd) { | |
| 914 const int kNumBlocks = 16; | |
| 915 VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; | |
| 916 const int lambda = dqm->lambda_i16_; | |
| 917 const int tlambda = dqm->tlambda_; | |
| 918 const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; | |
| 919 VP8ModeScore rd_tmp; | |
| 920 VP8ModeScore* rd_cur = &rd_tmp; | |
| 921 VP8ModeScore* rd_best = rd; | |
| 922 int mode; | |
| 923 | |
| 924 rd->mode_i16 = -1; | |
| 925 for (mode = 0; mode < NUM_PRED_MODES; ++mode) { | |
| 926 uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC; // scratch buffer | |
| 927 rd_cur->mode_i16 = mode; | |
| 928 | |
| 929 // Reconstruct | |
| 930 rd_cur->nz = ReconstructIntra16(it, rd_cur, tmp_dst, mode); | |
| 931 | |
| 932 // Measure RD-score | |
| 933 rd_cur->D = VP8SSE16x16(src, tmp_dst); | |
| 934 rd_cur->SD = | |
| 935 tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) : 0; | |
| 936 rd_cur->H = VP8FixedCostsI16[mode]; | |
| 937 rd_cur->R = VP8GetCostLuma16(it, rd_cur); | |
| 938 if (mode > 0 && | |
| 939 IsFlat(rd_cur->y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) { | |
| 940 // penalty to avoid flat area to be mispredicted by complex mode | |
| 941 rd_cur->R += FLATNESS_PENALTY * kNumBlocks; | |
| 942 } | |
| 943 | |
| 944 // Since we always examine Intra16 first, we can overwrite *rd directly. | |
| 945 SetRDScore(lambda, rd_cur); | |
| 946 if (mode == 0 || rd_cur->score < rd_best->score) { | |
| 947 SwapModeScore(&rd_cur, &rd_best); | |
| 948 SwapOut(it); | |
| 949 } | |
| 950 } | |
| 951 if (rd_best != rd) { | |
| 952 memcpy(rd, rd_best, sizeof(*rd)); | |
| 953 } | |
| 954 SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. | |
| 955 VP8SetIntra16Mode(it, rd->mode_i16); | |
| 956 | |
| 957 // we have a blocky macroblock (only DCs are non-zero) with fairly high | |
| 958 // distortion, record max delta so we can later adjust the minimal filtering | |
| 959 // strength needed to smooth these blocks out. | |
| 960 if ((rd->nz & 0x100ffff) == 0x1000000 && rd->D > dqm->min_disto_) { | |
| 961 StoreMaxDelta(dqm, rd->y_dc_levels); | |
| 962 } | |
| 963 } | |
| 964 | |
| 965 //------------------------------------------------------------------------------ | |
| 966 | |
| 967 // return the cost array corresponding to the surrounding prediction modes. | |
| 968 static const uint16_t* GetCostModeI4(VP8EncIterator* const it, | |
| 969 const uint8_t modes[16]) { | |
| 970 const int preds_w = it->enc_->preds_w_; | |
| 971 const int x = (it->i4_ & 3), y = it->i4_ >> 2; | |
| 972 const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1]; | |
| 973 const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4]; | |
| 974 return VP8FixedCostsI4[top][left]; | |
| 975 } | |
| 976 | |
| 977 static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { | |
| 978 const VP8Encoder* const enc = it->enc_; | |
| 979 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; | |
| 980 const int lambda = dqm->lambda_i4_; | |
| 981 const int tlambda = dqm->tlambda_; | |
| 982 const uint8_t* const src0 = it->yuv_in_ + Y_OFF_ENC; | |
| 983 uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF_ENC; | |
| 984 int total_header_bits = 0; | |
| 985 VP8ModeScore rd_best; | |
| 986 | |
| 987 if (enc->max_i4_header_bits_ == 0) { | |
| 988 return 0; | |
| 989 } | |
| 990 | |
| 991 InitScore(&rd_best); | |
| 992 rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145) | |
| 993 SetRDScore(dqm->lambda_mode_, &rd_best); | |
| 994 VP8IteratorStartI4(it); | |
| 995 do { | |
| 996 const int kNumBlocks = 1; | |
| 997 VP8ModeScore rd_i4; | |
| 998 int mode; | |
| 999 int best_mode = -1; | |
| 1000 const uint8_t* const src = src0 + VP8Scan[it->i4_]; | |
| 1001 const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); | |
| 1002 uint8_t* best_block = best_blocks + VP8Scan[it->i4_]; | |
| 1003 uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer. | |
| 1004 | |
| 1005 InitScore(&rd_i4); | |
| 1006 VP8MakeIntra4Preds(it); | |
| 1007 for (mode = 0; mode < NUM_BMODES; ++mode) { | |
| 1008 VP8ModeScore rd_tmp; | |
| 1009 int16_t tmp_levels[16]; | |
| 1010 | |
| 1011 // Reconstruct | |
| 1012 rd_tmp.nz = | |
| 1013 ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_; | |
| 1014 | |
| 1015 // Compute RD-score | |
| 1016 rd_tmp.D = VP8SSE4x4(src, tmp_dst); | |
| 1017 rd_tmp.SD = | |
| 1018 tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) | |
| 1019 : 0; | |
| 1020 rd_tmp.H = mode_costs[mode]; | |
| 1021 | |
| 1022 // Add flatness penalty | |
| 1023 if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) { | |
| 1024 rd_tmp.R = FLATNESS_PENALTY * kNumBlocks; | |
| 1025 } else { | |
| 1026 rd_tmp.R = 0; | |
| 1027 } | |
| 1028 | |
| 1029 // early-out check | |
| 1030 SetRDScore(lambda, &rd_tmp); | |
| 1031 if (best_mode >= 0 && rd_tmp.score >= rd_i4.score) continue; | |
| 1032 | |
| 1033 // finish computing score | |
| 1034 rd_tmp.R += VP8GetCostLuma4(it, tmp_levels); | |
| 1035 SetRDScore(lambda, &rd_tmp); | |
| 1036 | |
| 1037 if (best_mode < 0 || rd_tmp.score < rd_i4.score) { | |
| 1038 CopyScore(&rd_i4, &rd_tmp); | |
| 1039 best_mode = mode; | |
| 1040 SwapPtr(&tmp_dst, &best_block); | |
| 1041 memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, | |
| 1042 sizeof(rd_best.y_ac_levels[it->i4_])); | |
| 1043 } | |
| 1044 } | |
| 1045 SetRDScore(dqm->lambda_mode_, &rd_i4); | |
| 1046 AddScore(&rd_best, &rd_i4); | |
| 1047 if (rd_best.score >= rd->score) { | |
| 1048 return 0; | |
| 1049 } | |
| 1050 total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode]; | |
| 1051 if (total_header_bits > enc->max_i4_header_bits_) { | |
| 1052 return 0; | |
| 1053 } | |
| 1054 // Copy selected samples if not in the right place already. | |
| 1055 if (best_block != best_blocks + VP8Scan[it->i4_]) { | |
| 1056 VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); | |
| 1057 } | |
| 1058 rd->modes_i4[it->i4_] = best_mode; | |
| 1059 it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); | |
| 1060 } while (VP8IteratorRotateI4(it, best_blocks)); | |
| 1061 | |
| 1062 // finalize state | |
| 1063 CopyScore(rd, &rd_best); | |
| 1064 VP8SetIntra4Mode(it, rd->modes_i4); | |
| 1065 SwapOut(it); | |
| 1066 memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels)); | |
| 1067 return 1; // select intra4x4 over intra16x16 | |
| 1068 } | |
| 1069 | |
| 1070 //------------------------------------------------------------------------------ | |
| 1071 | |
| 1072 static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { | |
| 1073 const int kNumBlocks = 8; | |
| 1074 const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; | |
| 1075 const int lambda = dqm->lambda_uv_; | |
| 1076 const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; | |
| 1077 uint8_t* tmp_dst = it->yuv_out2_ + U_OFF_ENC; // scratch buffer | |
| 1078 uint8_t* dst0 = it->yuv_out_ + U_OFF_ENC; | |
| 1079 uint8_t* dst = dst0; | |
| 1080 VP8ModeScore rd_best; | |
| 1081 int mode; | |
| 1082 | |
| 1083 rd->mode_uv = -1; | |
| 1084 InitScore(&rd_best); | |
| 1085 for (mode = 0; mode < NUM_PRED_MODES; ++mode) { | |
| 1086 VP8ModeScore rd_uv; | |
| 1087 | |
| 1088 // Reconstruct | |
| 1089 rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode); | |
| 1090 | |
| 1091 // Compute RD-score | |
| 1092 rd_uv.D = VP8SSE16x8(src, tmp_dst); | |
| 1093 rd_uv.SD = 0; // not calling TDisto here: it tends to flatten areas. | |
| 1094 rd_uv.H = VP8FixedCostsUV[mode]; | |
| 1095 rd_uv.R = VP8GetCostUV(it, &rd_uv); | |
| 1096 if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) { | |
| 1097 rd_uv.R += FLATNESS_PENALTY * kNumBlocks; | |
| 1098 } | |
| 1099 | |
| 1100 SetRDScore(lambda, &rd_uv); | |
| 1101 if (mode == 0 || rd_uv.score < rd_best.score) { | |
| 1102 CopyScore(&rd_best, &rd_uv); | |
| 1103 rd->mode_uv = mode; | |
| 1104 memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels)); | |
| 1105 SwapPtr(&dst, &tmp_dst); | |
| 1106 } | |
| 1107 } | |
| 1108 VP8SetIntraUVMode(it, rd->mode_uv); | |
| 1109 AddScore(rd, &rd_best); | |
| 1110 if (dst != dst0) { // copy 16x8 block if needed | |
| 1111 VP8Copy16x8(dst, dst0); | |
| 1112 } | |
| 1113 } | |
| 1114 | |
| 1115 //------------------------------------------------------------------------------ | |
| 1116 // Final reconstruction and quantization. | |
| 1117 | |
| 1118 static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { | |
| 1119 const VP8Encoder* const enc = it->enc_; | |
| 1120 const int is_i16 = (it->mb_->type_ == 1); | |
| 1121 int nz = 0; | |
| 1122 | |
| 1123 if (is_i16) { | |
| 1124 nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]); | |
| 1125 } else { | |
| 1126 VP8IteratorStartI4(it); | |
| 1127 do { | |
| 1128 const int mode = | |
| 1129 it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_]; | |
| 1130 const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; | |
| 1131 uint8_t* const dst = it->yuv_out_ + Y_OFF_ENC + VP8Scan[it->i4_]; | |
| 1132 VP8MakeIntra4Preds(it); | |
| 1133 nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], | |
| 1134 src, dst, mode) << it->i4_; | |
| 1135 } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF_ENC)); | |
| 1136 } | |
| 1137 | |
| 1138 nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_); | |
| 1139 rd->nz = nz; | |
| 1140 } | |
| 1141 | |
| 1142 // Refine intra16/intra4 sub-modes based on distortion only (not rate). | |
| 1143 static void RefineUsingDistortion(VP8EncIterator* const it, | |
| 1144 int try_both_modes, int refine_uv_mode, | |
| 1145 VP8ModeScore* const rd) { | |
| 1146 score_t best_score = MAX_COST; | |
| 1147 int nz = 0; | |
| 1148 int mode; | |
| 1149 int is_i16 = try_both_modes || (it->mb_->type_ == 1); | |
| 1150 | |
| 1151 const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; | |
| 1152 // Some empiric constants, of approximate order of magnitude. | |
| 1153 const int lambda_d_i16 = 106; | |
| 1154 const int lambda_d_i4 = 11; | |
| 1155 const int lambda_d_uv = 120; | |
| 1156 score_t score_i4 = dqm->i4_penalty_; | |
| 1157 score_t i4_bit_sum = 0; | |
| 1158 const score_t bit_limit = try_both_modes ? it->enc_->mb_header_limit_ | |
| 1159 : MAX_COST; // no early-out allowed | |
| 1160 | |
| 1161 if (is_i16) { // First, evaluate Intra16 distortion | |
| 1162 int best_mode = -1; | |
| 1163 const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; | |
| 1164 for (mode = 0; mode < NUM_PRED_MODES; ++mode) { | |
| 1165 const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; | |
| 1166 const score_t score = VP8SSE16x16(src, ref) * RD_DISTO_MULT | |
| 1167 + VP8FixedCostsI16[mode] * lambda_d_i16; | |
| 1168 if (mode > 0 && VP8FixedCostsI16[mode] > bit_limit) { | |
| 1169 continue; | |
| 1170 } | |
| 1171 if (score < best_score) { | |
| 1172 best_mode = mode; | |
| 1173 best_score = score; | |
| 1174 } | |
| 1175 } | |
| 1176 VP8SetIntra16Mode(it, best_mode); | |
| 1177 // we'll reconstruct later, if i16 mode actually gets selected | |
| 1178 } | |
| 1179 | |
| 1180 // Next, evaluate Intra4 | |
| 1181 if (try_both_modes || !is_i16) { | |
| 1182 // We don't evaluate the rate here, but just account for it through a | |
| 1183 // constant penalty (i4 mode usually needs more bits compared to i16). | |
| 1184 is_i16 = 0; | |
| 1185 VP8IteratorStartI4(it); | |
| 1186 do { | |
| 1187 int best_i4_mode = -1; | |
| 1188 score_t best_i4_score = MAX_COST; | |
| 1189 const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; | |
| 1190 const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); | |
| 1191 | |
| 1192 VP8MakeIntra4Preds(it); | |
| 1193 for (mode = 0; mode < NUM_BMODES; ++mode) { | |
| 1194 const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; | |
| 1195 const score_t score = VP8SSE4x4(src, ref) * RD_DISTO_MULT | |
| 1196 + mode_costs[mode] * lambda_d_i4; | |
| 1197 if (score < best_i4_score) { | |
| 1198 best_i4_mode = mode; | |
| 1199 best_i4_score = score; | |
| 1200 } | |
| 1201 } | |
| 1202 i4_bit_sum += mode_costs[best_i4_mode]; | |
| 1203 rd->modes_i4[it->i4_] = best_i4_mode; | |
| 1204 score_i4 += best_i4_score; | |
| 1205 if (score_i4 >= best_score || i4_bit_sum > bit_limit) { | |
| 1206 // Intra4 won't be better than Intra16. Bail out and pick Intra16. | |
| 1207 is_i16 = 1; | |
| 1208 break; | |
| 1209 } else { // reconstruct partial block inside yuv_out2_ buffer | |
| 1210 uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC + VP8Scan[it->i4_]; | |
| 1211 nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], | |
| 1212 src, tmp_dst, best_i4_mode) << it->i4_; | |
| 1213 } | |
| 1214 } while (VP8IteratorRotateI4(it, it->yuv_out2_ + Y_OFF_ENC)); | |
| 1215 } | |
| 1216 | |
| 1217 // Final reconstruction, depending on which mode is selected. | |
| 1218 if (!is_i16) { | |
| 1219 VP8SetIntra4Mode(it, rd->modes_i4); | |
| 1220 SwapOut(it); | |
| 1221 best_score = score_i4; | |
| 1222 } else { | |
| 1223 nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]); | |
| 1224 } | |
| 1225 | |
| 1226 // ... and UV! | |
| 1227 if (refine_uv_mode) { | |
| 1228 int best_mode = -1; | |
| 1229 score_t best_uv_score = MAX_COST; | |
| 1230 const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; | |
| 1231 for (mode = 0; mode < NUM_PRED_MODES; ++mode) { | |
| 1232 const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; | |
| 1233 const score_t score = VP8SSE16x8(src, ref) * RD_DISTO_MULT | |
| 1234 + VP8FixedCostsUV[mode] * lambda_d_uv; | |
| 1235 if (score < best_uv_score) { | |
| 1236 best_mode = mode; | |
| 1237 best_uv_score = score; | |
| 1238 } | |
| 1239 } | |
| 1240 VP8SetIntraUVMode(it, best_mode); | |
| 1241 } | |
| 1242 nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_); | |
| 1243 | |
| 1244 rd->nz = nz; | |
| 1245 rd->score = best_score; | |
| 1246 } | |
| 1247 | |
| 1248 //------------------------------------------------------------------------------ | |
| 1249 // Entry point | |
| 1250 | |
| 1251 int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, | |
| 1252 VP8RDLevel rd_opt) { | |
| 1253 int is_skipped; | |
| 1254 const int method = it->enc_->method_; | |
| 1255 | |
| 1256 InitScore(rd); | |
| 1257 | |
| 1258 // We can perform predictions for Luma16x16 and Chroma8x8 already. | |
| 1259 // Luma4x4 predictions needs to be done as-we-go. | |
| 1260 VP8MakeLuma16Preds(it); | |
| 1261 VP8MakeChroma8Preds(it); | |
| 1262 | |
| 1263 if (rd_opt > RD_OPT_NONE) { | |
| 1264 it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL); | |
| 1265 PickBestIntra16(it, rd); | |
| 1266 if (method >= 2) { | |
| 1267 PickBestIntra4(it, rd); | |
| 1268 } | |
| 1269 PickBestUV(it, rd); | |
| 1270 if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now | |
| 1271 it->do_trellis_ = 1; | |
| 1272 SimpleQuantize(it, rd); | |
| 1273 } | |
| 1274 } else { | |
| 1275 // At this point we have heuristically decided intra16 / intra4. | |
| 1276 // For method >= 2, pick the best intra4/intra16 based on SSE (~tad slower). | |
| 1277 // For method <= 1, we don't re-examine the decision but just go ahead with | |
| 1278 // quantization/reconstruction. | |
| 1279 RefineUsingDistortion(it, (method >= 2), (method >= 1), rd); | |
| 1280 } | |
| 1281 is_skipped = (rd->nz == 0); | |
| 1282 VP8SetSkip(it, is_skipped); | |
| 1283 return is_skipped; | |
| 1284 } | |
| OLD | NEW |