| Index: third_party/libwebp/dsp/alpha_processing_sse2.c
|
| diff --git a/third_party/libwebp/dsp/alpha_processing_sse2.c b/third_party/libwebp/dsp/alpha_processing_sse2.c
|
| index 5acb481dcddbb7d71c0008d45f56d3cafbd8bb6d..83dc559fac4c0e048bd4285a4f56e0a91ae34516 100644
|
| --- a/third_party/libwebp/dsp/alpha_processing_sse2.c
|
| +++ b/third_party/libwebp/dsp/alpha_processing_sse2.c
|
| @@ -150,46 +150,46 @@ static int ExtractAlpha(const uint8_t* argb, int argb_stride,
|
| #define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
|
|
|
| // We can't use a 'const int' for the SHUFFLE value, because it has to be an
|
| -// immediate in the _mm_shufflexx_epi16() instruction. We really a macro here.
|
| -#define APPLY_ALPHA(RGBX, SHUFFLE, MASK, MULT) do { \
|
| - const __m128i argb0 = _mm_loadl_epi64((__m128i*)&(RGBX)); \
|
| - const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero); \
|
| - const __m128i alpha0 = _mm_and_si128(argb1, MASK); \
|
| - const __m128i alpha1 = _mm_shufflelo_epi16(alpha0, SHUFFLE); \
|
| - const __m128i alpha2 = _mm_shufflehi_epi16(alpha1, SHUFFLE); \
|
| - /* alpha2 = [0 a0 a0 a0][0 a1 a1 a1] */ \
|
| - const __m128i scale0 = _mm_mullo_epi16(alpha2, MULT); \
|
| - const __m128i scale1 = _mm_mulhi_epu16(alpha2, MULT); \
|
| - const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0); \
|
| - const __m128i argb3 = _mm_mullo_epi16(argb1, scale1); \
|
| - const __m128i argb4 = _mm_adds_epu16(argb2, argb3); \
|
| - const __m128i argb5 = _mm_srli_epi16(argb4, 7); \
|
| - const __m128i argb6 = _mm_or_si128(argb5, alpha0); \
|
| - const __m128i argb7 = _mm_packus_epi16(argb6, zero); \
|
| - _mm_storel_epi64((__m128i*)&(RGBX), argb7); \
|
| +// immediate in the _mm_shufflexx_epi16() instruction. We really need a macro.
|
| +// We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit
|
| +// value.
|
| +#define APPLY_ALPHA(RGBX, SHUFFLE) do { \
|
| + const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \
|
| + const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \
|
| + const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \
|
| + const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \
|
| + const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \
|
| + const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \
|
| + const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \
|
| + const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \
|
| + const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \
|
| + /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \
|
| + const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \
|
| + const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \
|
| + const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \
|
| + const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \
|
| + const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \
|
| + const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \
|
| + const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \
|
| + _mm_storeu_si128((__m128i*)&(RGBX), A3); \
|
| } while (0)
|
|
|
| -static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
|
| - int w, int h, int stride) {
|
| +static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first,
|
| + int w, int h, int stride) {
|
| const __m128i zero = _mm_setzero_si128();
|
| - const int kSpan = 2;
|
| - const int w2 = w & ~(kSpan - 1);
|
| + const __m128i kMult = _mm_set1_epi16(0x8081u);
|
| + const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0);
|
| + const int kSpan = 4;
|
| while (h-- > 0) {
|
| uint32_t* const rgbx = (uint32_t*)rgba;
|
| int i;
|
| if (!alpha_first) {
|
| - const __m128i kMask = _mm_set_epi16(0xff, 0, 0, 0, 0xff, 0, 0, 0);
|
| - const __m128i kMult =
|
| - _mm_set_epi16(0, 0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081);
|
| - for (i = 0; i < w2; i += kSpan) {
|
| - APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 3, 3, 3), kMask, kMult);
|
| + for (i = 0; i + kSpan <= w; i += kSpan) {
|
| + APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3));
|
| }
|
| } else {
|
| - const __m128i kMask = _mm_set_epi16(0, 0, 0, 0xff, 0, 0, 0, 0xff);
|
| - const __m128i kMult =
|
| - _mm_set_epi16(0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081, 0);
|
| - for (i = 0; i < w2; i += kSpan) {
|
| - APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 3), kMask, kMult);
|
| + for (i = 0; i + kSpan <= w; i += kSpan) {
|
| + APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1));
|
| }
|
| }
|
| // Finish with left-overs.
|
| @@ -213,64 +213,51 @@ static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
|
| // -----------------------------------------------------------------------------
|
| // Apply alpha value to rows
|
|
|
| -// We use: kINV255 = (1 << 24) / 255 = 0x010101
|
| -// So: a * kINV255 = (a << 16) | [(a << 8) | a]
|
| -// -> _mm_mulhi_epu16() takes care of the (a<<16) part,
|
| -// and _mm_mullo_epu16(a * 0x0101,...) takes care of the "(a << 8) | a" one.
|
| -
|
| -static void MultARGBRow(uint32_t* const ptr, int width, int inverse) {
|
| +static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) {
|
| int x = 0;
|
| if (!inverse) {
|
| const int kSpan = 2;
|
| const __m128i zero = _mm_setzero_si128();
|
| - const __m128i kRound =
|
| - _mm_set_epi16(0, 1 << 7, 1 << 7, 1 << 7, 0, 1 << 7, 1 << 7, 1 << 7);
|
| - const __m128i kMult =
|
| - _mm_set_epi16(0, 0x0101, 0x0101, 0x0101, 0, 0x0101, 0x0101, 0x0101);
|
| - const __m128i kOne64 = _mm_set_epi16(1u << 8, 0, 0, 0, 1u << 8, 0, 0, 0);
|
| - const int w2 = width & ~(kSpan - 1);
|
| - for (x = 0; x < w2; x += kSpan) {
|
| - const __m128i argb0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
|
| - const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero);
|
| - const __m128i tmp0 = _mm_shufflelo_epi16(argb1, _MM_SHUFFLE(3, 3, 3, 3));
|
| - const __m128i tmp1 = _mm_shufflehi_epi16(tmp0, _MM_SHUFFLE(3, 3, 3, 3));
|
| - const __m128i tmp2 = _mm_srli_epi64(tmp1, 16);
|
| - const __m128i scale0 = _mm_mullo_epi16(tmp1, kMult);
|
| - const __m128i scale1 = _mm_or_si128(tmp2, kOne64);
|
| - const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0);
|
| - const __m128i argb3 = _mm_mullo_epi16(argb1, scale1);
|
| - const __m128i argb4 = _mm_adds_epu16(argb2, argb3);
|
| - const __m128i argb5 = _mm_adds_epu16(argb4, kRound);
|
| - const __m128i argb6 = _mm_srli_epi16(argb5, 8);
|
| - const __m128i argb7 = _mm_packus_epi16(argb6, zero);
|
| - _mm_storel_epi64((__m128i*)&ptr[x], argb7);
|
| + const __m128i k128 = _mm_set1_epi16(128);
|
| + const __m128i kMult = _mm_set1_epi16(0x0101);
|
| + const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0);
|
| + for (x = 0; x + kSpan <= width; x += kSpan) {
|
| + // To compute 'result = (int)(a * x / 255. + .5)', we use:
|
| + // tmp = a * v + 128, result = (tmp * 0x0101u) >> 16
|
| + const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]);
|
| + const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
|
| + const __m128i A2 = _mm_or_si128(A1, kMask);
|
| + const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3));
|
| + const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3));
|
| + // here, A4 = [ff a0 a0 a0][ff a1 a1 a1]
|
| + const __m128i A5 = _mm_mullo_epi16(A4, A1);
|
| + const __m128i A6 = _mm_add_epi16(A5, k128);
|
| + const __m128i A7 = _mm_mulhi_epu16(A6, kMult);
|
| + const __m128i A10 = _mm_packus_epi16(A7, zero);
|
| + _mm_storel_epi64((__m128i*)&ptr[x], A10);
|
| }
|
| }
|
| width -= x;
|
| if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse);
|
| }
|
|
|
| -static void MultRow(uint8_t* const ptr, const uint8_t* const alpha,
|
| - int width, int inverse) {
|
| +static void MultRow_SSE2(uint8_t* const ptr, const uint8_t* const alpha,
|
| + int width, int inverse) {
|
| int x = 0;
|
| if (!inverse) {
|
| - const int kSpan = 8;
|
| const __m128i zero = _mm_setzero_si128();
|
| - const __m128i kRound = _mm_set1_epi16(1 << 7);
|
| - const int w2 = width & ~(kSpan - 1);
|
| - for (x = 0; x < w2; x += kSpan) {
|
| + const __m128i k128 = _mm_set1_epi16(128);
|
| + const __m128i kMult = _mm_set1_epi16(0x0101);
|
| + for (x = 0; x + 8 <= width; x += 8) {
|
| const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
|
| + const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
|
| const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
|
| - const __m128i alpha0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
|
| - const __m128i alpha1 = _mm_unpacklo_epi8(alpha0, zero);
|
| - const __m128i alpha2 = _mm_unpacklo_epi8(alpha0, alpha0);
|
| - const __m128i v2 = _mm_mulhi_epu16(v1, alpha2);
|
| - const __m128i v3 = _mm_mullo_epi16(v1, alpha1);
|
| - const __m128i v4 = _mm_adds_epu16(v2, v3);
|
| - const __m128i v5 = _mm_adds_epu16(v4, kRound);
|
| - const __m128i v6 = _mm_srli_epi16(v5, 8);
|
| - const __m128i v7 = _mm_packus_epi16(v6, zero);
|
| - _mm_storel_epi64((__m128i*)&ptr[x], v7);
|
| + const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
|
| + const __m128i v2 = _mm_mullo_epi16(v1, a1);
|
| + const __m128i v3 = _mm_add_epi16(v2, k128);
|
| + const __m128i v4 = _mm_mulhi_epu16(v3, kMult);
|
| + const __m128i v5 = _mm_packus_epi16(v4, zero);
|
| + _mm_storel_epi64((__m128i*)&ptr[x], v5);
|
| }
|
| }
|
| width -= x;
|
| @@ -283,9 +270,9 @@ static void MultRow(uint8_t* const ptr, const uint8_t* const alpha,
|
| extern void WebPInitAlphaProcessingSSE2(void);
|
|
|
| WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
|
| - WebPMultARGBRow = MultARGBRow;
|
| - WebPMultRow = MultRow;
|
| - WebPApplyAlphaMultiply = ApplyAlphaMultiply;
|
| + WebPMultARGBRow = MultARGBRow_SSE2;
|
| + WebPMultRow = MultRow_SSE2;
|
| + WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2;
|
| WebPDispatchAlpha = DispatchAlpha;
|
| WebPDispatchAlphaToGreen = DispatchAlphaToGreen;
|
| WebPExtractAlpha = ExtractAlpha;
|
|
|