Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(796)

Side by Side Diff: third_party/libwebp/dsp/alpha_processing_sse2.c

Issue 2651883004: libwebp-0.6.0-rc1 (Closed)
Patch Set: Created 3 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/libwebp/dsp/alpha_processing_neon.c ('k') | third_party/libwebp/dsp/common_sse2.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2014 Google Inc. All Rights Reserved. 1 // Copyright 2014 Google Inc. All Rights Reserved.
2 // 2 //
3 // Use of this source code is governed by a BSD-style license 3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source 4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found 5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may 6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree. 7 // be found in the AUTHORS file in the root of the source tree.
8 // ----------------------------------------------------------------------------- 8 // -----------------------------------------------------------------------------
9 // 9 //
10 // Utilities for processing transparent channel. 10 // Utilities for processing transparent channel.
(...skipping 132 matching lines...) Expand 10 before | Expand all | Expand 10 after
143 return (alpha_and == 0xff); 143 return (alpha_and == 0xff);
144 } 144 }
145 145
146 //------------------------------------------------------------------------------ 146 //------------------------------------------------------------------------------
147 // Non-dither premultiplied modes 147 // Non-dither premultiplied modes
148 148
149 #define MULTIPLIER(a) ((a) * 0x8081) 149 #define MULTIPLIER(a) ((a) * 0x8081)
150 #define PREMULTIPLY(x, m) (((x) * (m)) >> 23) 150 #define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
151 151
152 // We can't use a 'const int' for the SHUFFLE value, because it has to be an 152 // We can't use a 'const int' for the SHUFFLE value, because it has to be an
153 // immediate in the _mm_shufflexx_epi16() instruction. We really a macro here. 153 // immediate in the _mm_shufflexx_epi16() instruction. We really need a macro.
154 #define APPLY_ALPHA(RGBX, SHUFFLE, MASK, MULT) do { \ 154 // We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit
155 const __m128i argb0 = _mm_loadl_epi64((__m128i*)&(RGBX)); \ 155 // value.
156 const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero); \ 156 #define APPLY_ALPHA(RGBX, SHUFFLE) do { \
157 const __m128i alpha0 = _mm_and_si128(argb1, MASK); \ 157 const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \
158 const __m128i alpha1 = _mm_shufflelo_epi16(alpha0, SHUFFLE); \ 158 const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \
159 const __m128i alpha2 = _mm_shufflehi_epi16(alpha1, SHUFFLE); \ 159 const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \
160 /* alpha2 = [0 a0 a0 a0][0 a1 a1 a1] */ \ 160 const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \
161 const __m128i scale0 = _mm_mullo_epi16(alpha2, MULT); \ 161 const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \
162 const __m128i scale1 = _mm_mulhi_epu16(alpha2, MULT); \ 162 const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \
163 const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0); \ 163 const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \
164 const __m128i argb3 = _mm_mullo_epi16(argb1, scale1); \ 164 const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \
165 const __m128i argb4 = _mm_adds_epu16(argb2, argb3); \ 165 const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \
166 const __m128i argb5 = _mm_srli_epi16(argb4, 7); \ 166 /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \
167 const __m128i argb6 = _mm_or_si128(argb5, alpha0); \ 167 const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \
168 const __m128i argb7 = _mm_packus_epi16(argb6, zero); \ 168 const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \
169 _mm_storel_epi64((__m128i*)&(RGBX), argb7); \ 169 const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \
170 const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \
171 const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \
172 const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \
173 const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \
174 _mm_storeu_si128((__m128i*)&(RGBX), A3); \
170 } while (0) 175 } while (0)
171 176
172 static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first, 177 static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first,
173 int w, int h, int stride) { 178 int w, int h, int stride) {
174 const __m128i zero = _mm_setzero_si128(); 179 const __m128i zero = _mm_setzero_si128();
175 const int kSpan = 2; 180 const __m128i kMult = _mm_set1_epi16(0x8081u);
176 const int w2 = w & ~(kSpan - 1); 181 const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0);
182 const int kSpan = 4;
177 while (h-- > 0) { 183 while (h-- > 0) {
178 uint32_t* const rgbx = (uint32_t*)rgba; 184 uint32_t* const rgbx = (uint32_t*)rgba;
179 int i; 185 int i;
180 if (!alpha_first) { 186 if (!alpha_first) {
181 const __m128i kMask = _mm_set_epi16(0xff, 0, 0, 0, 0xff, 0, 0, 0); 187 for (i = 0; i + kSpan <= w; i += kSpan) {
182 const __m128i kMult = 188 APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3));
183 _mm_set_epi16(0, 0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081);
184 for (i = 0; i < w2; i += kSpan) {
185 APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 3, 3, 3), kMask, kMult);
186 } 189 }
187 } else { 190 } else {
188 const __m128i kMask = _mm_set_epi16(0, 0, 0, 0xff, 0, 0, 0, 0xff); 191 for (i = 0; i + kSpan <= w; i += kSpan) {
189 const __m128i kMult = 192 APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1));
190 _mm_set_epi16(0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081, 0);
191 for (i = 0; i < w2; i += kSpan) {
192 APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 3), kMask, kMult);
193 } 193 }
194 } 194 }
195 // Finish with left-overs. 195 // Finish with left-overs.
196 for (; i < w; ++i) { 196 for (; i < w; ++i) {
197 uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); 197 uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
198 const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); 198 const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
199 const uint32_t a = alpha[4 * i]; 199 const uint32_t a = alpha[4 * i];
200 if (a != 0xff) { 200 if (a != 0xff) {
201 const uint32_t mult = MULTIPLIER(a); 201 const uint32_t mult = MULTIPLIER(a);
202 rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); 202 rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
203 rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); 203 rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
204 rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); 204 rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
205 } 205 }
206 } 206 }
207 rgba += stride; 207 rgba += stride;
208 } 208 }
209 } 209 }
210 #undef MULTIPLIER 210 #undef MULTIPLIER
211 #undef PREMULTIPLY 211 #undef PREMULTIPLY
212 212
213 // ----------------------------------------------------------------------------- 213 // -----------------------------------------------------------------------------
214 // Apply alpha value to rows 214 // Apply alpha value to rows
215 215
216 // We use: kINV255 = (1 << 24) / 255 = 0x010101 216 static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) {
217 // So: a * kINV255 = (a << 16) | [(a << 8) | a]
218 // -> _mm_mulhi_epu16() takes care of the (a<<16) part,
219 // and _mm_mullo_epu16(a * 0x0101,...) takes care of the "(a << 8) | a" one.
220
221 static void MultARGBRow(uint32_t* const ptr, int width, int inverse) {
222 int x = 0; 217 int x = 0;
223 if (!inverse) { 218 if (!inverse) {
224 const int kSpan = 2; 219 const int kSpan = 2;
225 const __m128i zero = _mm_setzero_si128(); 220 const __m128i zero = _mm_setzero_si128();
226 const __m128i kRound = 221 const __m128i k128 = _mm_set1_epi16(128);
227 _mm_set_epi16(0, 1 << 7, 1 << 7, 1 << 7, 0, 1 << 7, 1 << 7, 1 << 7); 222 const __m128i kMult = _mm_set1_epi16(0x0101);
228 const __m128i kMult = 223 const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0);
229 _mm_set_epi16(0, 0x0101, 0x0101, 0x0101, 0, 0x0101, 0x0101, 0x0101); 224 for (x = 0; x + kSpan <= width; x += kSpan) {
230 const __m128i kOne64 = _mm_set_epi16(1u << 8, 0, 0, 0, 1u << 8, 0, 0, 0); 225 // To compute 'result = (int)(a * x / 255. + .5)', we use:
231 const int w2 = width & ~(kSpan - 1); 226 // tmp = a * v + 128, result = (tmp * 0x0101u) >> 16
232 for (x = 0; x < w2; x += kSpan) { 227 const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]);
233 const __m128i argb0 = _mm_loadl_epi64((__m128i*)&ptr[x]); 228 const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
234 const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero); 229 const __m128i A2 = _mm_or_si128(A1, kMask);
235 const __m128i tmp0 = _mm_shufflelo_epi16(argb1, _MM_SHUFFLE(3, 3, 3, 3)); 230 const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3));
236 const __m128i tmp1 = _mm_shufflehi_epi16(tmp0, _MM_SHUFFLE(3, 3, 3, 3)); 231 const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3));
237 const __m128i tmp2 = _mm_srli_epi64(tmp1, 16); 232 // here, A4 = [ff a0 a0 a0][ff a1 a1 a1]
238 const __m128i scale0 = _mm_mullo_epi16(tmp1, kMult); 233 const __m128i A5 = _mm_mullo_epi16(A4, A1);
239 const __m128i scale1 = _mm_or_si128(tmp2, kOne64); 234 const __m128i A6 = _mm_add_epi16(A5, k128);
240 const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0); 235 const __m128i A7 = _mm_mulhi_epu16(A6, kMult);
241 const __m128i argb3 = _mm_mullo_epi16(argb1, scale1); 236 const __m128i A10 = _mm_packus_epi16(A7, zero);
242 const __m128i argb4 = _mm_adds_epu16(argb2, argb3); 237 _mm_storel_epi64((__m128i*)&ptr[x], A10);
243 const __m128i argb5 = _mm_adds_epu16(argb4, kRound);
244 const __m128i argb6 = _mm_srli_epi16(argb5, 8);
245 const __m128i argb7 = _mm_packus_epi16(argb6, zero);
246 _mm_storel_epi64((__m128i*)&ptr[x], argb7);
247 } 238 }
248 } 239 }
249 width -= x; 240 width -= x;
250 if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse); 241 if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse);
251 } 242 }
252 243
253 static void MultRow(uint8_t* const ptr, const uint8_t* const alpha, 244 static void MultRow_SSE2(uint8_t* const ptr, const uint8_t* const alpha,
254 int width, int inverse) { 245 int width, int inverse) {
255 int x = 0; 246 int x = 0;
256 if (!inverse) { 247 if (!inverse) {
257 const int kSpan = 8;
258 const __m128i zero = _mm_setzero_si128(); 248 const __m128i zero = _mm_setzero_si128();
259 const __m128i kRound = _mm_set1_epi16(1 << 7); 249 const __m128i k128 = _mm_set1_epi16(128);
260 const int w2 = width & ~(kSpan - 1); 250 const __m128i kMult = _mm_set1_epi16(0x0101);
261 for (x = 0; x < w2; x += kSpan) { 251 for (x = 0; x + 8 <= width; x += 8) {
262 const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]); 252 const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
253 const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
263 const __m128i v1 = _mm_unpacklo_epi8(v0, zero); 254 const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
264 const __m128i alpha0 = _mm_loadl_epi64((const __m128i*)&alpha[x]); 255 const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
265 const __m128i alpha1 = _mm_unpacklo_epi8(alpha0, zero); 256 const __m128i v2 = _mm_mullo_epi16(v1, a1);
266 const __m128i alpha2 = _mm_unpacklo_epi8(alpha0, alpha0); 257 const __m128i v3 = _mm_add_epi16(v2, k128);
267 const __m128i v2 = _mm_mulhi_epu16(v1, alpha2); 258 const __m128i v4 = _mm_mulhi_epu16(v3, kMult);
268 const __m128i v3 = _mm_mullo_epi16(v1, alpha1); 259 const __m128i v5 = _mm_packus_epi16(v4, zero);
269 const __m128i v4 = _mm_adds_epu16(v2, v3); 260 _mm_storel_epi64((__m128i*)&ptr[x], v5);
270 const __m128i v5 = _mm_adds_epu16(v4, kRound);
271 const __m128i v6 = _mm_srli_epi16(v5, 8);
272 const __m128i v7 = _mm_packus_epi16(v6, zero);
273 _mm_storel_epi64((__m128i*)&ptr[x], v7);
274 } 261 }
275 } 262 }
276 width -= x; 263 width -= x;
277 if (width > 0) WebPMultRowC(ptr + x, alpha + x, width, inverse); 264 if (width > 0) WebPMultRowC(ptr + x, alpha + x, width, inverse);
278 } 265 }
279 266
280 //------------------------------------------------------------------------------ 267 //------------------------------------------------------------------------------
281 // Entry point 268 // Entry point
282 269
283 extern void WebPInitAlphaProcessingSSE2(void); 270 extern void WebPInitAlphaProcessingSSE2(void);
284 271
285 WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) { 272 WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
286 WebPMultARGBRow = MultARGBRow; 273 WebPMultARGBRow = MultARGBRow_SSE2;
287 WebPMultRow = MultRow; 274 WebPMultRow = MultRow_SSE2;
288 WebPApplyAlphaMultiply = ApplyAlphaMultiply; 275 WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2;
289 WebPDispatchAlpha = DispatchAlpha; 276 WebPDispatchAlpha = DispatchAlpha;
290 WebPDispatchAlphaToGreen = DispatchAlphaToGreen; 277 WebPDispatchAlphaToGreen = DispatchAlphaToGreen;
291 WebPExtractAlpha = ExtractAlpha; 278 WebPExtractAlpha = ExtractAlpha;
292 } 279 }
293 280
294 #else // !WEBP_USE_SSE2 281 #else // !WEBP_USE_SSE2
295 282
296 WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2) 283 WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2)
297 284
298 #endif // WEBP_USE_SSE2 285 #endif // WEBP_USE_SSE2
OLDNEW
« no previous file with comments | « third_party/libwebp/dsp/alpha_processing_neon.c ('k') | third_party/libwebp/dsp/common_sse2.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698