Index: third_party/base/numerics/safe_math_impl.h |
diff --git a/third_party/base/numerics/safe_math_impl.h b/third_party/base/numerics/safe_math_impl.h |
index f950f5d517e107248596bc23ca832f4d107803e9..5ad79ce1923dadb69971e407298baab3717dc060 100644 |
--- a/third_party/base/numerics/safe_math_impl.h |
+++ b/third_party/base/numerics/safe_math_impl.h |
@@ -14,7 +14,6 @@ |
#include <limits> |
#include <type_traits> |
-#include "third_party/base/macros.h" |
#include "third_party/base/numerics/safe_conversions.h" |
namespace pdfium { |
@@ -25,355 +24,486 @@ namespace internal { |
// but it may not be fast. This code could be split based on |
// platform/architecture and replaced with potentially faster implementations. |
-// Integer promotion templates used by the portable checked integer arithmetic. |
-template <size_t Size, bool IsSigned> |
-struct IntegerForSizeAndSign; |
-template <> |
-struct IntegerForSizeAndSign<1, true> { |
- typedef int8_t type; |
-}; |
-template <> |
-struct IntegerForSizeAndSign<1, false> { |
- typedef uint8_t type; |
-}; |
-template <> |
-struct IntegerForSizeAndSign<2, true> { |
- typedef int16_t type; |
-}; |
-template <> |
-struct IntegerForSizeAndSign<2, false> { |
- typedef uint16_t type; |
-}; |
-template <> |
-struct IntegerForSizeAndSign<4, true> { |
- typedef int32_t type; |
-}; |
-template <> |
-struct IntegerForSizeAndSign<4, false> { |
- typedef uint32_t type; |
-}; |
-template <> |
-struct IntegerForSizeAndSign<8, true> { |
- typedef int64_t type; |
-}; |
-template <> |
-struct IntegerForSizeAndSign<8, false> { |
- typedef uint64_t type; |
-}; |
- |
-// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to |
-// support 128-bit math, then the ArithmeticPromotion template below will need |
-// to be updated (or more likely replaced with a decltype expression). |
- |
-template <typename Integer> |
-struct UnsignedIntegerForSize { |
- typedef typename std::enable_if< |
- std::numeric_limits<Integer>::is_integer, |
- typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; |
-}; |
- |
-template <typename Integer> |
-struct SignedIntegerForSize { |
- typedef typename std::enable_if< |
- std::numeric_limits<Integer>::is_integer, |
- typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; |
-}; |
- |
-template <typename Integer> |
-struct TwiceWiderInteger { |
- typedef typename std::enable_if< |
- std::numeric_limits<Integer>::is_integer, |
- typename IntegerForSizeAndSign< |
- sizeof(Integer) * 2, |
- std::numeric_limits<Integer>::is_signed>::type>::type type; |
-}; |
- |
-template <typename Integer> |
-struct PositionOfSignBit { |
- static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, |
- size_t>::type value = |
- CHAR_BIT * sizeof(Integer) - 1; |
-}; |
- |
// This is used for UnsignedAbs, where we need to support floating-point |
// template instantiations even though we don't actually support the operations. |
-// However, there is no corresponding implementation of e.g. CheckedUnsignedAbs, |
+// However, there is no corresponding implementation of e.g. SafeUnsignedAbs, |
// so the float versions will not compile. |
template <typename Numeric, |
- bool IsInteger = std::numeric_limits<Numeric>::is_integer, |
- bool IsFloat = std::numeric_limits<Numeric>::is_iec559> |
+ bool IsInteger = std::is_integral<Numeric>::value, |
+ bool IsFloat = std::is_floating_point<Numeric>::value> |
struct UnsignedOrFloatForSize; |
template <typename Numeric> |
struct UnsignedOrFloatForSize<Numeric, true, false> { |
- typedef typename UnsignedIntegerForSize<Numeric>::type type; |
+ using type = typename std::make_unsigned<Numeric>::type; |
}; |
template <typename Numeric> |
struct UnsignedOrFloatForSize<Numeric, false, true> { |
- typedef Numeric type; |
+ using type = Numeric; |
}; |
-// Helper templates for integer manipulations. |
- |
-template <typename T> |
-constexpr bool HasSignBit(T x) { |
- // Cast to unsigned since right shift on signed is undefined. |
- return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> |
- PositionOfSignBit<T>::value); |
-} |
- |
-// This wrapper undoes the standard integer promotions. |
-template <typename T> |
-constexpr T BinaryComplement(T x) { |
- return static_cast<T>(~x); |
-} |
- |
-// Here are the actual portable checked integer math implementations. |
-// TODO(jschuh): Break this code out from the enable_if pattern and find a clean |
-// way to coalesce things into the CheckedNumericState specializations below. |
+// Probe for builtin math overflow support on Clang and version check on GCC. |
+#if defined(__has_builtin) |
+#define USE_OVERFLOW_BUILTINS (__has_builtin(__builtin_add_overflow)) |
+#elif defined(__GNUC__) |
+#define USE_OVERFLOW_BUILTINS (__GNUC__ >= 5) |
+#else |
+#define USE_OVERFLOW_BUILTINS (0) |
+#endif |
template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type |
-CheckedAdd(T x, T y, RangeConstraint* validity) { |
+bool CheckedAddImpl(T x, T y, T* result) { |
+ static_assert(std::is_integral<T>::value, "Type must be integral"); |
// Since the value of x+y is undefined if we have a signed type, we compute |
// it using the unsigned type of the same size. |
- typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; |
+ using UnsignedDst = typename std::make_unsigned<T>::type; |
+ using SignedDst = typename std::make_signed<T>::type; |
UnsignedDst ux = static_cast<UnsignedDst>(x); |
UnsignedDst uy = static_cast<UnsignedDst>(y); |
UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy); |
+ *result = static_cast<T>(uresult); |
// Addition is valid if the sign of (x + y) is equal to either that of x or |
// that of y. |
- if (std::numeric_limits<T>::is_signed) { |
- if (HasSignBit(BinaryComplement( |
- static_cast<UnsignedDst>((uresult ^ ux) & (uresult ^ uy))))) { |
- *validity = RANGE_VALID; |
- } else { // Direction of wrap is inverse of result sign. |
- *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; |
+ return (std::is_signed<T>::value) |
+ ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0 |
+ : uresult >= uy; // Unsigned is either valid or underflow. |
+} |
+ |
+template <typename T, typename U, class Enable = void> |
+struct CheckedAddOp {}; |
+ |
+template <typename T, typename U> |
+struct CheckedAddOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = typename MaxExponentPromotion<T, U>::type; |
+ template <typename V> |
+ static bool Do(T x, U y, V* result) { |
+#if USE_OVERFLOW_BUILTINS |
+ return !__builtin_add_overflow(x, y, result); |
+#else |
+ using Promotion = typename BigEnoughPromotion<T, U>::type; |
+ Promotion presult; |
+ // Fail if either operand is out of range for the promoted type. |
+ // TODO(jschuh): This could be made to work for a broader range of values. |
+ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && |
+ IsValueInRangeForNumericType<Promotion>(y); |
+ |
+ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { |
+ presult = static_cast<Promotion>(x) + static_cast<Promotion>(y); |
+ } else { |
+ is_valid &= CheckedAddImpl(static_cast<Promotion>(x), |
+ static_cast<Promotion>(y), &presult); |
} |
- } else { // Unsigned is either valid or overflow. |
- *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; |
+ *result = static_cast<V>(presult); |
+ return is_valid && IsValueInRangeForNumericType<V>(presult); |
+#endif |
} |
- return static_cast<T>(uresult); |
-} |
+}; |
template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type |
-CheckedSub(T x, T y, RangeConstraint* validity) { |
+bool CheckedSubImpl(T x, T y, T* result) { |
+ static_assert(std::is_integral<T>::value, "Type must be integral"); |
// Since the value of x+y is undefined if we have a signed type, we compute |
// it using the unsigned type of the same size. |
- typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; |
+ using UnsignedDst = typename std::make_unsigned<T>::type; |
+ using SignedDst = typename std::make_signed<T>::type; |
UnsignedDst ux = static_cast<UnsignedDst>(x); |
UnsignedDst uy = static_cast<UnsignedDst>(y); |
UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy); |
+ *result = static_cast<T>(uresult); |
// Subtraction is valid if either x and y have same sign, or (x-y) and x have |
// the same sign. |
- if (std::numeric_limits<T>::is_signed) { |
- if (HasSignBit(BinaryComplement( |
- static_cast<UnsignedDst>((uresult ^ ux) & (ux ^ uy))))) { |
- *validity = RANGE_VALID; |
- } else { // Direction of wrap is inverse of result sign. |
- *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; |
+ return (std::is_signed<T>::value) |
+ ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0 |
+ : x >= y; |
+} |
+ |
+template <typename T, typename U, class Enable = void> |
+struct CheckedSubOp {}; |
+ |
+template <typename T, typename U> |
+struct CheckedSubOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = typename MaxExponentPromotion<T, U>::type; |
+ template <typename V> |
+ static bool Do(T x, U y, V* result) { |
+#if USE_OVERFLOW_BUILTINS |
+ return !__builtin_sub_overflow(x, y, result); |
+#else |
+ using Promotion = typename BigEnoughPromotion<T, U>::type; |
+ Promotion presult; |
+ // Fail if either operand is out of range for the promoted type. |
+ // TODO(jschuh): This could be made to work for a broader range of values. |
+ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && |
+ IsValueInRangeForNumericType<Promotion>(y); |
+ |
+ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { |
+ presult = static_cast<Promotion>(x) - static_cast<Promotion>(y); |
+ } else { |
+ is_valid &= CheckedSubImpl(static_cast<Promotion>(x), |
+ static_cast<Promotion>(y), &presult); |
} |
- } else { // Unsigned is either valid or underflow. |
- *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; |
+ *result = static_cast<V>(presult); |
+ return is_valid && IsValueInRangeForNumericType<V>(presult); |
+#endif |
} |
- return static_cast<T>(uresult); |
-} |
+}; |
-// Integer multiplication is a bit complicated. In the fast case we just |
-// we just promote to a twice wider type, and range check the result. In the |
-// slow case we need to manually check that the result won't be truncated by |
-// checking with division against the appropriate bound. |
template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- sizeof(T) * 2 <= sizeof(uintmax_t), |
- T>::type |
-CheckedMul(T x, T y, RangeConstraint* validity) { |
- typedef typename TwiceWiderInteger<T>::type IntermediateType; |
- IntermediateType tmp = |
- static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); |
- *validity = DstRangeRelationToSrcRange<T>(tmp); |
- return static_cast<T>(tmp); |
+bool CheckedMulImpl(T x, T y, T* result) { |
+ static_assert(std::is_integral<T>::value, "Type must be integral"); |
+ // Since the value of x*y is potentially undefined if we have a signed type, |
+ // we compute it using the unsigned type of the same size. |
+ using UnsignedDst = typename std::make_unsigned<T>::type; |
+ using SignedDst = typename std::make_signed<T>::type; |
+ const UnsignedDst ux = SafeUnsignedAbs(x); |
+ const UnsignedDst uy = SafeUnsignedAbs(y); |
+ UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy); |
+ const bool is_negative = |
+ std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0; |
+ *result = is_negative ? 0 - uresult : uresult; |
+ // We have a fast out for unsigned identity or zero on the second operand. |
+ // After that it's an unsigned overflow check on the absolute value, with |
+ // a +1 bound for a negative result. |
+ return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) || |
+ ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy; |
} |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- std::numeric_limits<T>::is_signed && |
- (sizeof(T) * 2 > sizeof(uintmax_t)), |
- T>::type |
-CheckedMul(T x, T y, RangeConstraint* validity) { |
- // If either side is zero then the result will be zero. |
- if (!x || !y) { |
- *validity = RANGE_VALID; |
- return static_cast<T>(0); |
- } |
- if (x > 0) { |
- if (y > 0) { |
- *validity = |
- x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; |
+template <typename T, typename U, class Enable = void> |
+struct CheckedMulOp {}; |
+ |
+template <typename T, typename U> |
+struct CheckedMulOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = typename MaxExponentPromotion<T, U>::type; |
+ template <typename V> |
+ static bool Do(T x, U y, V* result) { |
+#if USE_OVERFLOW_BUILTINS |
+#if defined(__clang__) |
+ // TODO(jschuh): Get the Clang runtime library issues sorted out so we can |
+ // support full-width, mixed-sign multiply builtins. |
+ // https://crbug.com/613003 |
+ static const bool kUseMaxInt = |
+ // Narrower type than uintptr_t is always safe. |
+ std::numeric_limits<__typeof__(x * y)>::digits < |
+ std::numeric_limits<intptr_t>::digits || |
+ // Safe for intptr_t and uintptr_t if the sign matches. |
+ (IntegerBitsPlusSign<__typeof__(x * y)>::value == |
+ IntegerBitsPlusSign<intptr_t>::value && |
+ std::is_signed<T>::value == std::is_signed<U>::value); |
+#else |
+ static const bool kUseMaxInt = true; |
+#endif |
+ if (kUseMaxInt) |
+ return !__builtin_mul_overflow(x, y, result); |
+#endif |
+ using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type; |
+ Promotion presult; |
+ // Fail if either operand is out of range for the promoted type. |
+ // TODO(jschuh): This could be made to work for a broader range of values. |
+ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && |
+ IsValueInRangeForNumericType<Promotion>(y); |
+ |
+ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { |
+ presult = static_cast<Promotion>(x) * static_cast<Promotion>(y); |
} else { |
- *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID |
- : RANGE_UNDERFLOW; |
- } |
- } else { |
- if (y > 0) { |
- *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID |
- : RANGE_UNDERFLOW; |
- } else { |
- *validity = |
- y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; |
+ is_valid &= CheckedMulImpl(static_cast<Promotion>(x), |
+ static_cast<Promotion>(y), &presult); |
} |
+ *result = static_cast<V>(presult); |
+ return is_valid && IsValueInRangeForNumericType<V>(presult); |
} |
- return static_cast<T>(*validity == RANGE_VALID ? x * y : 0); |
-} |
+}; |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- !std::numeric_limits<T>::is_signed && |
- (sizeof(T) * 2 > sizeof(uintmax_t)), |
- T>::type |
-CheckedMul(T x, T y, RangeConstraint* validity) { |
- *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) |
- ? RANGE_VALID |
- : RANGE_OVERFLOW; |
- return static_cast<T>(*validity == RANGE_VALID ? x * y : 0); |
-} |
+// Avoid poluting the namespace once we're done with the macro. |
+#undef USE_OVERFLOW_BUILTINS |
// Division just requires a check for a zero denominator or an invalid negation |
// on signed min/-1. |
template <typename T> |
-T CheckedDiv(T x, |
- T y, |
- RangeConstraint* validity, |
- typename std::enable_if<std::numeric_limits<T>::is_integer, |
- int>::type = 0) { |
- if (y == 0) { |
- *validity = RANGE_INVALID; |
- return static_cast<T>(0); |
- } |
- if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && |
- y == static_cast<T>(-1)) { |
- *validity = RANGE_OVERFLOW; |
- return std::numeric_limits<T>::min(); |
+bool CheckedDivImpl(T x, T y, T* result) { |
+ static_assert(std::is_integral<T>::value, "Type must be integral"); |
+ if (y && (!std::is_signed<T>::value || |
+ x != std::numeric_limits<T>::lowest() || y != static_cast<T>(-1))) { |
+ *result = x / y; |
+ return true; |
} |
- |
- *validity = RANGE_VALID; |
- return static_cast<T>(x / y); |
+ return false; |
} |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- std::numeric_limits<T>::is_signed, |
- T>::type |
-CheckedMod(T x, T y, RangeConstraint* validity) { |
- *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; |
- return static_cast<T>(*validity == RANGE_VALID ? x % y : 0); |
-} |
+template <typename T, typename U, class Enable = void> |
+struct CheckedDivOp {}; |
+ |
+template <typename T, typename U> |
+struct CheckedDivOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = typename MaxExponentPromotion<T, U>::type; |
+ template <typename V> |
+ static bool Do(T x, U y, V* result) { |
+ using Promotion = typename BigEnoughPromotion<T, U>::type; |
+ Promotion presult; |
+ // Fail if either operand is out of range for the promoted type. |
+ // TODO(jschuh): This could be made to work for a broader range of values. |
+ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && |
+ IsValueInRangeForNumericType<Promotion>(y); |
+ is_valid &= CheckedDivImpl(static_cast<Promotion>(x), |
+ static_cast<Promotion>(y), &presult); |
+ *result = static_cast<V>(presult); |
+ return is_valid && IsValueInRangeForNumericType<V>(presult); |
+ } |
+}; |
template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- !std::numeric_limits<T>::is_signed, |
- T>::type |
-CheckedMod(T x, T y, RangeConstraint* validity) { |
- *validity = y != 0 ? RANGE_VALID : RANGE_INVALID; |
- return static_cast<T>(*validity == RANGE_VALID ? x % y : 0); |
+bool CheckedModImpl(T x, T y, T* result) { |
+ static_assert(std::is_integral<T>::value, "Type must be integral"); |
+ if (y > 0) { |
+ *result = static_cast<T>(x % y); |
+ return true; |
+ } |
+ return false; |
} |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- std::numeric_limits<T>::is_signed, |
- T>::type |
-CheckedNeg(T value, RangeConstraint* validity) { |
- *validity = |
- value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; |
- // The negation of signed min is min, so catch that one. |
- return static_cast<T>(*validity == RANGE_VALID ? -value : 0); |
-} |
+template <typename T, typename U, class Enable = void> |
+struct CheckedModOp {}; |
+ |
+template <typename T, typename U> |
+struct CheckedModOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = typename MaxExponentPromotion<T, U>::type; |
+ template <typename V> |
+ static bool Do(T x, U y, V* result) { |
+ using Promotion = typename BigEnoughPromotion<T, U>::type; |
+ Promotion presult; |
+ bool is_valid = CheckedModImpl(static_cast<Promotion>(x), |
+ static_cast<Promotion>(y), &presult); |
+ *result = static_cast<V>(presult); |
+ return is_valid && IsValueInRangeForNumericType<V>(presult); |
+ } |
+}; |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- !std::numeric_limits<T>::is_signed, |
- T>::type |
-CheckedNeg(T value, RangeConstraint* validity) { |
- // The only legal unsigned negation is zero. |
- *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; |
- return static_cast<T>( |
- *validity == RANGE_VALID |
- ? -static_cast<typename SignedIntegerForSize<T>::type>(value) |
- : 0); |
-} |
+template <typename T, typename U, class Enable = void> |
+struct CheckedLshOp {}; |
+ |
+// Left shift. Shifts less than 0 or greater than or equal to the number |
+// of bits in the promoted type are undefined. Shifts of negative values |
+// are undefined. Otherwise it is defined when the result fits. |
+template <typename T, typename U> |
+struct CheckedLshOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = T; |
+ template <typename V> |
+ static bool Do(T x, U shift, V* result) { |
+ using ShiftType = typename std::make_unsigned<T>::type; |
+ static const ShiftType kBitWidth = IntegerBitsPlusSign<T>::value; |
+ const ShiftType real_shift = static_cast<ShiftType>(shift); |
+ // Signed shift is not legal on negative values. |
+ if (!IsValueNegative(x) && real_shift < kBitWidth) { |
+ // Just use a multiplication because it's easy. |
+ // TODO(jschuh): This could probably be made more efficient. |
+ if (!std::is_signed<T>::value || real_shift != kBitWidth - 1) |
+ return CheckedMulOp<T, T>::Do(x, static_cast<T>(1) << shift, result); |
+ return !x; // Special case zero for a full width signed shift. |
+ } |
+ return false; |
+ } |
+}; |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- std::numeric_limits<T>::is_signed, |
- T>::type |
-CheckedAbs(T value, RangeConstraint* validity) { |
- *validity = |
- value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; |
- return static_cast<T>(*validity == RANGE_VALID ? std::abs(value) : 0); |
-} |
+template <typename T, typename U, class Enable = void> |
+struct CheckedRshOp {}; |
+ |
+// Right shift. Shifts less than 0 or greater than or equal to the number |
+// of bits in the promoted type are undefined. Otherwise, it is always defined, |
+// but a right shift of a negative value is implementation-dependent. |
+template <typename T, typename U> |
+struct CheckedRshOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = T; |
+ template <typename V = result_type> |
+ static bool Do(T x, U shift, V* result) { |
+ // Use the type conversion push negative values out of range. |
+ using ShiftType = typename std::make_unsigned<T>::type; |
+ if (static_cast<ShiftType>(shift) < IntegerBitsPlusSign<T>::value) { |
+ T tmp = x >> shift; |
+ *result = static_cast<V>(tmp); |
+ return IsValueInRangeForNumericType<V>(tmp); |
+ } |
+ return false; |
+ } |
+}; |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- !std::numeric_limits<T>::is_signed, |
- T>::type |
-CheckedAbs(T value, RangeConstraint* validity) { |
- // T is unsigned, so |value| must already be positive. |
- *validity = RANGE_VALID; |
- return value; |
-} |
+template <typename T, typename U, class Enable = void> |
+struct CheckedAndOp {}; |
+ |
+// For simplicity we support only unsigned integer results. |
+template <typename T, typename U> |
+struct CheckedAndOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = typename std::make_unsigned< |
+ typename MaxExponentPromotion<T, U>::type>::type; |
+ template <typename V = result_type> |
+ static bool Do(T x, U y, V* result) { |
+ result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y); |
+ *result = static_cast<V>(tmp); |
+ return IsValueInRangeForNumericType<V>(tmp); |
+ } |
+}; |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- std::numeric_limits<T>::is_signed, |
- typename UnsignedIntegerForSize<T>::type>::type |
-CheckedUnsignedAbs(T value) { |
- typedef typename UnsignedIntegerForSize<T>::type UnsignedT; |
- return value == std::numeric_limits<T>::min() |
- ? static_cast<UnsignedT>(std::numeric_limits<T>::max()) + 1 |
- : static_cast<UnsignedT>(std::abs(value)); |
-} |
+template <typename T, typename U, class Enable = void> |
+struct CheckedOrOp {}; |
+ |
+// For simplicity we support only unsigned integers. |
+template <typename T, typename U> |
+struct CheckedOrOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = typename std::make_unsigned< |
+ typename MaxExponentPromotion<T, U>::type>::type; |
+ template <typename V = result_type> |
+ static bool Do(T x, U y, V* result) { |
+ result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y); |
+ *result = static_cast<V>(tmp); |
+ return IsValueInRangeForNumericType<V>(tmp); |
+ } |
+}; |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_integer && |
- !std::numeric_limits<T>::is_signed, |
- T>::type |
-CheckedUnsignedAbs(T value) { |
- // T is unsigned, so |value| must already be positive. |
- return static_cast<T>(value); |
-} |
+template <typename T, typename U, class Enable = void> |
+struct CheckedXorOp {}; |
+ |
+// For simplicity we support only unsigned integers. |
+template <typename T, typename U> |
+struct CheckedXorOp<T, |
+ U, |
+ typename std::enable_if<std::is_integral<T>::value && |
+ std::is_integral<U>::value>::type> { |
+ using result_type = typename std::make_unsigned< |
+ typename MaxExponentPromotion<T, U>::type>::type; |
+ template <typename V = result_type> |
+ static bool Do(T x, U y, V* result) { |
+ result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y); |
+ *result = static_cast<V>(tmp); |
+ return IsValueInRangeForNumericType<V>(tmp); |
+ } |
+}; |
-// These are the floating point stubs that the compiler needs to see. Only the |
-// negation operation is ever called. |
-#define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ |
- template <typename T> \ |
- typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type \ |
- Checked##NAME(T, T, RangeConstraint*) { \ |
- NOTREACHED(); \ |
- return static_cast<T>(0); \ |
+// Max doesn't really need to be implemented this way because it can't fail, |
+// but it makes the code much cleaner to use the MathOp wrappers. |
+template <typename T, typename U, class Enable = void> |
+struct CheckedMaxOp {}; |
+ |
+template <typename T, typename U> |
+struct CheckedMaxOp< |
+ T, |
+ U, |
+ typename std::enable_if<std::is_arithmetic<T>::value && |
+ std::is_arithmetic<U>::value>::type> { |
+ using result_type = typename MaxExponentPromotion<T, U>::type; |
+ template <typename V = result_type> |
+ static bool Do(T x, U y, V* result) { |
+ *result = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x) |
+ : static_cast<result_type>(y); |
+ return true; |
} |
+}; |
-BASE_FLOAT_ARITHMETIC_STUBS(Add) |
-BASE_FLOAT_ARITHMETIC_STUBS(Sub) |
-BASE_FLOAT_ARITHMETIC_STUBS(Mul) |
-BASE_FLOAT_ARITHMETIC_STUBS(Div) |
-BASE_FLOAT_ARITHMETIC_STUBS(Mod) |
+// Min doesn't really need to be implemented this way because it can't fail, |
+// but it makes the code much cleaner to use the MathOp wrappers. |
+template <typename T, typename U, class Enable = void> |
+struct CheckedMinOp {}; |
+ |
+template <typename T, typename U> |
+struct CheckedMinOp< |
+ T, |
+ U, |
+ typename std::enable_if<std::is_arithmetic<T>::value && |
+ std::is_arithmetic<U>::value>::type> { |
+ using result_type = typename LowestValuePromotion<T, U>::type; |
+ template <typename V = result_type> |
+ static bool Do(T x, U y, V* result) { |
+ *result = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x) |
+ : static_cast<result_type>(y); |
+ return true; |
+ } |
+}; |
-#undef BASE_FLOAT_ARITHMETIC_STUBS |
+// This is just boilerplate that wraps the standard floating point arithmetic. |
+// A macro isn't the nicest solution, but it beats rewriting these repeatedly. |
+#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \ |
+ template <typename T, typename U> \ |
+ struct Checked##NAME##Op< \ |
+ T, U, typename std::enable_if<std::is_floating_point<T>::value || \ |
+ std::is_floating_point<U>::value>::type> { \ |
+ using result_type = typename MaxExponentPromotion<T, U>::type; \ |
+ template <typename V> \ |
+ static bool Do(T x, U y, V* result) { \ |
+ using Promotion = typename MaxExponentPromotion<T, U>::type; \ |
+ Promotion presult = x OP y; \ |
+ *result = static_cast<V>(presult); \ |
+ return IsValueInRangeForNumericType<V>(presult); \ |
+ } \ |
+ }; |
+ |
+BASE_FLOAT_ARITHMETIC_OPS(Add, +) |
+BASE_FLOAT_ARITHMETIC_OPS(Sub, -) |
+BASE_FLOAT_ARITHMETIC_OPS(Mul, *) |
+BASE_FLOAT_ARITHMETIC_OPS(Div, /) |
+ |
+#undef BASE_FLOAT_ARITHMETIC_OPS |
+ |
+// Wrap the unary operations to allow SFINAE when instantiating integrals versus |
+// floating points. These don't perform any overflow checking. Rather, they |
+// exhibit well-defined overflow semantics and rely on the caller to detect |
+// if an overflow occured. |
+ |
+template <typename T, |
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> |
+constexpr T NegateWrapper(T value) { |
+ using UnsignedT = typename std::make_unsigned<T>::type; |
+ // This will compile to a NEG on Intel, and is normal negation on ARM. |
+ return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value)); |
+} |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg( |
- T value, |
- RangeConstraint*) { |
- return static_cast<T>(-value); |
+template < |
+ typename T, |
+ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> |
+constexpr T NegateWrapper(T value) { |
+ return -value; |
} |
-template <typename T> |
-typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs( |
- T value, |
- RangeConstraint*) { |
- return static_cast<T>(std::abs(value)); |
+template <typename T, |
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> |
+constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) { |
+ return ~value; |
+} |
+ |
+template <typename T, |
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> |
+constexpr T AbsWrapper(T value) { |
+ return static_cast<T>(SafeUnsignedAbs(value)); |
+} |
+ |
+template < |
+ typename T, |
+ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> |
+constexpr T AbsWrapper(T value) { |
+ return value < 0 ? -value : value; |
} |
// Floats carry around their validity state with them, but integers do not. So, |
@@ -388,10 +518,10 @@ enum NumericRepresentation { |
template <typename NumericType> |
struct GetNumericRepresentation { |
static const NumericRepresentation value = |
- std::numeric_limits<NumericType>::is_integer |
+ std::is_integral<NumericType>::value |
? NUMERIC_INTEGER |
- : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING |
- : NUMERIC_UNKNOWN); |
+ : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING |
+ : NUMERIC_UNKNOWN); |
}; |
template <typename T, NumericRepresentation type = |
@@ -402,41 +532,48 @@ class CheckedNumericState {}; |
template <typename T> |
class CheckedNumericState<T, NUMERIC_INTEGER> { |
private: |
+ // is_valid_ precedes value_ because member intializers in the constructors |
+ // are evaluated in field order, and is_valid_ must be read when initializing |
+ // value_. |
+ bool is_valid_; |
T value_; |
- RangeConstraint validity_ : CHAR_BIT; // Actually requires only two bits. |
+ |
+ // Ensures that a type conversion does not trigger undefined behavior. |
+ template <typename Src> |
+ static constexpr T WellDefinedConversionOrZero(const Src value, |
+ const bool is_valid) { |
+ using SrcType = typename internal::UnderlyingType<Src>::type; |
+ return (std::is_integral<SrcType>::value || is_valid) |
+ ? static_cast<T>(value) |
+ : static_cast<T>(0); |
+ } |
public: |
template <typename Src, NumericRepresentation type> |
friend class CheckedNumericState; |
- CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} |
+ constexpr CheckedNumericState() : is_valid_(true), value_(0) {} |
template <typename Src> |
- CheckedNumericState(Src value, RangeConstraint validity) |
- : value_(static_cast<T>(value)), |
- validity_(GetRangeConstraint(validity | |
- DstRangeRelationToSrcRange<T>(value))) { |
- static_assert(std::numeric_limits<Src>::is_specialized, |
- "Argument must be numeric."); |
+ constexpr CheckedNumericState(Src value, bool is_valid) |
+ : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)), |
+ value_(WellDefinedConversionOrZero(value, is_valid_)) { |
+ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric."); |
} |
// Copy constructor. |
template <typename Src> |
- CheckedNumericState(const CheckedNumericState<Src>& rhs) |
- : value_(static_cast<T>(rhs.value())), |
- validity_(GetRangeConstraint( |
- rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {} |
+ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) |
+ : is_valid_(rhs.IsValid()), |
+ value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {} |
template <typename Src> |
- explicit CheckedNumericState( |
- Src value, |
- typename std::enable_if<std::numeric_limits<Src>::is_specialized, |
- int>::type = 0) |
- : value_(static_cast<T>(value)), |
- validity_(DstRangeRelationToSrcRange<T>(value)) {} |
- |
- RangeConstraint validity() const { return validity_; } |
- T value() const { return value_; } |
+ constexpr explicit CheckedNumericState(Src value) |
+ : is_valid_(IsValueInRangeForNumericType<T>(value)), |
+ value_(WellDefinedConversionOrZero(value, is_valid_)) {} |
+ |
+ constexpr bool is_valid() const { return is_valid_; } |
+ constexpr T value() const { return value_; } |
}; |
// Floating points maintain their own validity, but need translation wrappers. |
@@ -445,94 +582,58 @@ class CheckedNumericState<T, NUMERIC_FLOATING> { |
private: |
T value_; |
+ // Ensures that a type conversion does not trigger undefined behavior. |
+ template <typename Src> |
+ static constexpr T WellDefinedConversionOrNaN(const Src value, |
+ const bool is_valid) { |
+ using SrcType = typename internal::UnderlyingType<Src>::type; |
+ return (StaticDstRangeRelationToSrcRange<T, SrcType>::value == |
+ NUMERIC_RANGE_CONTAINED || |
+ is_valid) |
+ ? static_cast<T>(value) |
+ : std::numeric_limits<T>::quiet_NaN(); |
+ } |
+ |
public: |
template <typename Src, NumericRepresentation type> |
friend class CheckedNumericState; |
- CheckedNumericState() : value_(0.0) {} |
+ constexpr CheckedNumericState() : value_(0.0) {} |
template <typename Src> |
- CheckedNumericState( |
- Src value, |
- RangeConstraint validity, |
- typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = |
- 0) { |
- switch (DstRangeRelationToSrcRange<T>(value)) { |
- case RANGE_VALID: |
- value_ = static_cast<T>(value); |
- break; |
- |
- case RANGE_UNDERFLOW: |
- value_ = -std::numeric_limits<T>::infinity(); |
- break; |
- |
- case RANGE_OVERFLOW: |
- value_ = std::numeric_limits<T>::infinity(); |
- break; |
- |
- case RANGE_INVALID: |
- value_ = std::numeric_limits<T>::quiet_NaN(); |
- break; |
- |
- default: |
- NOTREACHED(); |
- } |
- } |
+ constexpr CheckedNumericState(Src value, bool is_valid) |
+ : value_(WellDefinedConversionOrNaN(value, is_valid)) {} |
template <typename Src> |
- explicit CheckedNumericState( |
- Src value, |
- typename std::enable_if<std::numeric_limits<Src>::is_specialized, |
- int>::type = 0) |
- : value_(static_cast<T>(value)) {} |
+ constexpr explicit CheckedNumericState(Src value) |
+ : value_(WellDefinedConversionOrNaN( |
+ value, |
+ IsValueInRangeForNumericType<T>(value))) {} |
// Copy constructor. |
template <typename Src> |
- CheckedNumericState(const CheckedNumericState<Src>& rhs) |
- : value_(static_cast<T>(rhs.value())) {} |
- |
- RangeConstraint validity() const { |
- return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), |
- value_ >= -std::numeric_limits<T>::max()); |
+ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) |
+ : value_(WellDefinedConversionOrNaN( |
+ rhs.value(), |
+ rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {} |
+ |
+ constexpr bool is_valid() const { |
+ // Written this way because std::isfinite is not reliably constexpr. |
+ // TODO(jschuh): Fix this if the libraries ever get fixed. |
+ return value_ <= std::numeric_limits<T>::max() && |
+ value_ >= std::numeric_limits<T>::lowest(); |
} |
- T value() const { return value_; } |
-}; |
- |
-// For integers less than 128-bit and floats 32-bit or larger, we have the type |
-// with the larger maximum exponent take precedence. |
-enum ArithmeticPromotionCategory { LEFT_PROMOTION, RIGHT_PROMOTION }; |
- |
-template <typename Lhs, |
- typename Rhs = Lhs, |
- ArithmeticPromotionCategory Promotion = |
- (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) |
- ? LEFT_PROMOTION |
- : RIGHT_PROMOTION> |
-struct ArithmeticPromotion; |
- |
-template <typename Lhs, typename Rhs> |
-struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { |
- typedef Lhs type; |
-}; |
- |
-template <typename Lhs, typename Rhs> |
-struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { |
- typedef Rhs type; |
+ constexpr T value() const { return value_; } |
}; |
-// We can statically check if operations on the provided types can wrap, so we |
-// can skip the checked operations if they're not needed. So, for an integer we |
-// care if the destination type preserves the sign and is twice the width of |
-// the source. |
-template <typename T, typename Lhs, typename Rhs> |
-struct IsIntegerArithmeticSafe { |
- static const bool value = !std::numeric_limits<T>::is_iec559 && |
- StaticDstRangeRelationToSrcRange<T, Lhs>::value == |
- NUMERIC_RANGE_CONTAINED && |
- sizeof(T) >= (2 * sizeof(Lhs)) && |
- StaticDstRangeRelationToSrcRange<T, Rhs>::value != |
- NUMERIC_RANGE_CONTAINED && |
- sizeof(T) >= (2 * sizeof(Rhs)); |
+template <template <typename, typename, typename> class M, |
+ typename L, |
+ typename R> |
+struct MathWrapper { |
+ using math = M<typename UnderlyingType<L>::type, |
+ typename UnderlyingType<R>::type, |
+ void>; |
+ using type = typename math::result_type; |
}; |
} // namespace internal |