OLD | NEW |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | 1 // Copyright 2014 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #ifndef PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_ | 5 #ifndef PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_ |
6 #define PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_ | 6 #define PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_ |
7 | 7 |
8 #include <stddef.h> | 8 #include <stddef.h> |
9 #include <stdint.h> | 9 #include <stdint.h> |
10 | 10 |
11 #include <climits> | 11 #include <climits> |
12 #include <cmath> | 12 #include <cmath> |
13 #include <cstdlib> | 13 #include <cstdlib> |
14 #include <limits> | 14 #include <limits> |
15 #include <type_traits> | 15 #include <type_traits> |
16 | 16 |
17 #include "third_party/base/macros.h" | |
18 #include "third_party/base/numerics/safe_conversions.h" | 17 #include "third_party/base/numerics/safe_conversions.h" |
19 | 18 |
20 namespace pdfium { | 19 namespace pdfium { |
21 namespace base { | 20 namespace base { |
22 namespace internal { | 21 namespace internal { |
23 | 22 |
24 // Everything from here up to the floating point operations is portable C++, | 23 // Everything from here up to the floating point operations is portable C++, |
25 // but it may not be fast. This code could be split based on | 24 // but it may not be fast. This code could be split based on |
26 // platform/architecture and replaced with potentially faster implementations. | 25 // platform/architecture and replaced with potentially faster implementations. |
27 | 26 |
28 // Integer promotion templates used by the portable checked integer arithmetic. | |
29 template <size_t Size, bool IsSigned> | |
30 struct IntegerForSizeAndSign; | |
31 template <> | |
32 struct IntegerForSizeAndSign<1, true> { | |
33 typedef int8_t type; | |
34 }; | |
35 template <> | |
36 struct IntegerForSizeAndSign<1, false> { | |
37 typedef uint8_t type; | |
38 }; | |
39 template <> | |
40 struct IntegerForSizeAndSign<2, true> { | |
41 typedef int16_t type; | |
42 }; | |
43 template <> | |
44 struct IntegerForSizeAndSign<2, false> { | |
45 typedef uint16_t type; | |
46 }; | |
47 template <> | |
48 struct IntegerForSizeAndSign<4, true> { | |
49 typedef int32_t type; | |
50 }; | |
51 template <> | |
52 struct IntegerForSizeAndSign<4, false> { | |
53 typedef uint32_t type; | |
54 }; | |
55 template <> | |
56 struct IntegerForSizeAndSign<8, true> { | |
57 typedef int64_t type; | |
58 }; | |
59 template <> | |
60 struct IntegerForSizeAndSign<8, false> { | |
61 typedef uint64_t type; | |
62 }; | |
63 | |
64 // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to | |
65 // support 128-bit math, then the ArithmeticPromotion template below will need | |
66 // to be updated (or more likely replaced with a decltype expression). | |
67 | |
68 template <typename Integer> | |
69 struct UnsignedIntegerForSize { | |
70 typedef typename std::enable_if< | |
71 std::numeric_limits<Integer>::is_integer, | |
72 typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; | |
73 }; | |
74 | |
75 template <typename Integer> | |
76 struct SignedIntegerForSize { | |
77 typedef typename std::enable_if< | |
78 std::numeric_limits<Integer>::is_integer, | |
79 typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; | |
80 }; | |
81 | |
82 template <typename Integer> | |
83 struct TwiceWiderInteger { | |
84 typedef typename std::enable_if< | |
85 std::numeric_limits<Integer>::is_integer, | |
86 typename IntegerForSizeAndSign< | |
87 sizeof(Integer) * 2, | |
88 std::numeric_limits<Integer>::is_signed>::type>::type type; | |
89 }; | |
90 | |
91 template <typename Integer> | |
92 struct PositionOfSignBit { | |
93 static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, | |
94 size_t>::type value = | |
95 CHAR_BIT * sizeof(Integer) - 1; | |
96 }; | |
97 | |
98 // This is used for UnsignedAbs, where we need to support floating-point | 27 // This is used for UnsignedAbs, where we need to support floating-point |
99 // template instantiations even though we don't actually support the operations. | 28 // template instantiations even though we don't actually support the operations. |
100 // However, there is no corresponding implementation of e.g. CheckedUnsignedAbs, | 29 // However, there is no corresponding implementation of e.g. SafeUnsignedAbs, |
101 // so the float versions will not compile. | 30 // so the float versions will not compile. |
102 template <typename Numeric, | 31 template <typename Numeric, |
103 bool IsInteger = std::numeric_limits<Numeric>::is_integer, | 32 bool IsInteger = std::is_integral<Numeric>::value, |
104 bool IsFloat = std::numeric_limits<Numeric>::is_iec559> | 33 bool IsFloat = std::is_floating_point<Numeric>::value> |
105 struct UnsignedOrFloatForSize; | 34 struct UnsignedOrFloatForSize; |
106 | 35 |
107 template <typename Numeric> | 36 template <typename Numeric> |
108 struct UnsignedOrFloatForSize<Numeric, true, false> { | 37 struct UnsignedOrFloatForSize<Numeric, true, false> { |
109 typedef typename UnsignedIntegerForSize<Numeric>::type type; | 38 using type = typename std::make_unsigned<Numeric>::type; |
110 }; | 39 }; |
111 | 40 |
112 template <typename Numeric> | 41 template <typename Numeric> |
113 struct UnsignedOrFloatForSize<Numeric, false, true> { | 42 struct UnsignedOrFloatForSize<Numeric, false, true> { |
114 typedef Numeric type; | 43 using type = Numeric; |
115 }; | 44 }; |
116 | 45 |
117 // Helper templates for integer manipulations. | 46 // Probe for builtin math overflow support on Clang and version check on GCC. |
| 47 #if defined(__has_builtin) |
| 48 #define USE_OVERFLOW_BUILTINS (__has_builtin(__builtin_add_overflow)) |
| 49 #elif defined(__GNUC__) |
| 50 #define USE_OVERFLOW_BUILTINS (__GNUC__ >= 5) |
| 51 #else |
| 52 #define USE_OVERFLOW_BUILTINS (0) |
| 53 #endif |
118 | 54 |
119 template <typename T> | 55 template <typename T> |
120 constexpr bool HasSignBit(T x) { | 56 bool CheckedAddImpl(T x, T y, T* result) { |
121 // Cast to unsigned since right shift on signed is undefined. | 57 static_assert(std::is_integral<T>::value, "Type must be integral"); |
122 return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> | |
123 PositionOfSignBit<T>::value); | |
124 } | |
125 | |
126 // This wrapper undoes the standard integer promotions. | |
127 template <typename T> | |
128 constexpr T BinaryComplement(T x) { | |
129 return static_cast<T>(~x); | |
130 } | |
131 | |
132 // Here are the actual portable checked integer math implementations. | |
133 // TODO(jschuh): Break this code out from the enable_if pattern and find a clean | |
134 // way to coalesce things into the CheckedNumericState specializations below. | |
135 | |
136 template <typename T> | |
137 typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type | |
138 CheckedAdd(T x, T y, RangeConstraint* validity) { | |
139 // Since the value of x+y is undefined if we have a signed type, we compute | 58 // Since the value of x+y is undefined if we have a signed type, we compute |
140 // it using the unsigned type of the same size. | 59 // it using the unsigned type of the same size. |
141 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; | 60 using UnsignedDst = typename std::make_unsigned<T>::type; |
| 61 using SignedDst = typename std::make_signed<T>::type; |
142 UnsignedDst ux = static_cast<UnsignedDst>(x); | 62 UnsignedDst ux = static_cast<UnsignedDst>(x); |
143 UnsignedDst uy = static_cast<UnsignedDst>(y); | 63 UnsignedDst uy = static_cast<UnsignedDst>(y); |
144 UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy); | 64 UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy); |
| 65 *result = static_cast<T>(uresult); |
145 // Addition is valid if the sign of (x + y) is equal to either that of x or | 66 // Addition is valid if the sign of (x + y) is equal to either that of x or |
146 // that of y. | 67 // that of y. |
147 if (std::numeric_limits<T>::is_signed) { | 68 return (std::is_signed<T>::value) |
148 if (HasSignBit(BinaryComplement( | 69 ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0 |
149 static_cast<UnsignedDst>((uresult ^ ux) & (uresult ^ uy))))) { | 70 : uresult >= uy; // Unsigned is either valid or underflow. |
150 *validity = RANGE_VALID; | 71 } |
151 } else { // Direction of wrap is inverse of result sign. | 72 |
152 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; | 73 template <typename T, typename U, class Enable = void> |
| 74 struct CheckedAddOp {}; |
| 75 |
| 76 template <typename T, typename U> |
| 77 struct CheckedAddOp<T, |
| 78 U, |
| 79 typename std::enable_if<std::is_integral<T>::value && |
| 80 std::is_integral<U>::value>::type> { |
| 81 using result_type = typename MaxExponentPromotion<T, U>::type; |
| 82 template <typename V> |
| 83 static bool Do(T x, U y, V* result) { |
| 84 #if USE_OVERFLOW_BUILTINS |
| 85 return !__builtin_add_overflow(x, y, result); |
| 86 #else |
| 87 using Promotion = typename BigEnoughPromotion<T, U>::type; |
| 88 Promotion presult; |
| 89 // Fail if either operand is out of range for the promoted type. |
| 90 // TODO(jschuh): This could be made to work for a broader range of values. |
| 91 bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && |
| 92 IsValueInRangeForNumericType<Promotion>(y); |
| 93 |
| 94 if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { |
| 95 presult = static_cast<Promotion>(x) + static_cast<Promotion>(y); |
| 96 } else { |
| 97 is_valid &= CheckedAddImpl(static_cast<Promotion>(x), |
| 98 static_cast<Promotion>(y), &presult); |
153 } | 99 } |
154 } else { // Unsigned is either valid or overflow. | 100 *result = static_cast<V>(presult); |
155 *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; | 101 return is_valid && IsValueInRangeForNumericType<V>(presult); |
156 } | 102 #endif |
157 return static_cast<T>(uresult); | 103 } |
158 } | 104 }; |
159 | 105 |
160 template <typename T> | 106 template <typename T> |
161 typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type | 107 bool CheckedSubImpl(T x, T y, T* result) { |
162 CheckedSub(T x, T y, RangeConstraint* validity) { | 108 static_assert(std::is_integral<T>::value, "Type must be integral"); |
163 // Since the value of x+y is undefined if we have a signed type, we compute | 109 // Since the value of x+y is undefined if we have a signed type, we compute |
164 // it using the unsigned type of the same size. | 110 // it using the unsigned type of the same size. |
165 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; | 111 using UnsignedDst = typename std::make_unsigned<T>::type; |
| 112 using SignedDst = typename std::make_signed<T>::type; |
166 UnsignedDst ux = static_cast<UnsignedDst>(x); | 113 UnsignedDst ux = static_cast<UnsignedDst>(x); |
167 UnsignedDst uy = static_cast<UnsignedDst>(y); | 114 UnsignedDst uy = static_cast<UnsignedDst>(y); |
168 UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy); | 115 UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy); |
| 116 *result = static_cast<T>(uresult); |
169 // Subtraction is valid if either x and y have same sign, or (x-y) and x have | 117 // Subtraction is valid if either x and y have same sign, or (x-y) and x have |
170 // the same sign. | 118 // the same sign. |
171 if (std::numeric_limits<T>::is_signed) { | 119 return (std::is_signed<T>::value) |
172 if (HasSignBit(BinaryComplement( | 120 ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0 |
173 static_cast<UnsignedDst>((uresult ^ ux) & (ux ^ uy))))) { | 121 : x >= y; |
174 *validity = RANGE_VALID; | 122 } |
175 } else { // Direction of wrap is inverse of result sign. | 123 |
176 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; | 124 template <typename T, typename U, class Enable = void> |
| 125 struct CheckedSubOp {}; |
| 126 |
| 127 template <typename T, typename U> |
| 128 struct CheckedSubOp<T, |
| 129 U, |
| 130 typename std::enable_if<std::is_integral<T>::value && |
| 131 std::is_integral<U>::value>::type> { |
| 132 using result_type = typename MaxExponentPromotion<T, U>::type; |
| 133 template <typename V> |
| 134 static bool Do(T x, U y, V* result) { |
| 135 #if USE_OVERFLOW_BUILTINS |
| 136 return !__builtin_sub_overflow(x, y, result); |
| 137 #else |
| 138 using Promotion = typename BigEnoughPromotion<T, U>::type; |
| 139 Promotion presult; |
| 140 // Fail if either operand is out of range for the promoted type. |
| 141 // TODO(jschuh): This could be made to work for a broader range of values. |
| 142 bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && |
| 143 IsValueInRangeForNumericType<Promotion>(y); |
| 144 |
| 145 if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { |
| 146 presult = static_cast<Promotion>(x) - static_cast<Promotion>(y); |
| 147 } else { |
| 148 is_valid &= CheckedSubImpl(static_cast<Promotion>(x), |
| 149 static_cast<Promotion>(y), &presult); |
177 } | 150 } |
178 } else { // Unsigned is either valid or underflow. | 151 *result = static_cast<V>(presult); |
179 *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; | 152 return is_valid && IsValueInRangeForNumericType<V>(presult); |
180 } | 153 #endif |
181 return static_cast<T>(uresult); | 154 } |
182 } | 155 }; |
183 | 156 |
184 // Integer multiplication is a bit complicated. In the fast case we just | |
185 // we just promote to a twice wider type, and range check the result. In the | |
186 // slow case we need to manually check that the result won't be truncated by | |
187 // checking with division against the appropriate bound. | |
188 template <typename T> | 157 template <typename T> |
189 typename std::enable_if<std::numeric_limits<T>::is_integer && | 158 bool CheckedMulImpl(T x, T y, T* result) { |
190 sizeof(T) * 2 <= sizeof(uintmax_t), | 159 static_assert(std::is_integral<T>::value, "Type must be integral"); |
191 T>::type | 160 // Since the value of x*y is potentially undefined if we have a signed type, |
192 CheckedMul(T x, T y, RangeConstraint* validity) { | 161 // we compute it using the unsigned type of the same size. |
193 typedef typename TwiceWiderInteger<T>::type IntermediateType; | 162 using UnsignedDst = typename std::make_unsigned<T>::type; |
194 IntermediateType tmp = | 163 using SignedDst = typename std::make_signed<T>::type; |
195 static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); | 164 const UnsignedDst ux = SafeUnsignedAbs(x); |
196 *validity = DstRangeRelationToSrcRange<T>(tmp); | 165 const UnsignedDst uy = SafeUnsignedAbs(y); |
197 return static_cast<T>(tmp); | 166 UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy); |
198 } | 167 const bool is_negative = |
199 | 168 std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0; |
200 template <typename T> | 169 *result = is_negative ? 0 - uresult : uresult; |
201 typename std::enable_if<std::numeric_limits<T>::is_integer && | 170 // We have a fast out for unsigned identity or zero on the second operand. |
202 std::numeric_limits<T>::is_signed && | 171 // After that it's an unsigned overflow check on the absolute value, with |
203 (sizeof(T) * 2 > sizeof(uintmax_t)), | 172 // a +1 bound for a negative result. |
204 T>::type | 173 return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) || |
205 CheckedMul(T x, T y, RangeConstraint* validity) { | 174 ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy; |
206 // If either side is zero then the result will be zero. | 175 } |
207 if (!x || !y) { | 176 |
208 *validity = RANGE_VALID; | 177 template <typename T, typename U, class Enable = void> |
209 return static_cast<T>(0); | 178 struct CheckedMulOp {}; |
210 } | 179 |
211 if (x > 0) { | 180 template <typename T, typename U> |
212 if (y > 0) { | 181 struct CheckedMulOp<T, |
213 *validity = | 182 U, |
214 x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; | 183 typename std::enable_if<std::is_integral<T>::value && |
| 184 std::is_integral<U>::value>::type> { |
| 185 using result_type = typename MaxExponentPromotion<T, U>::type; |
| 186 template <typename V> |
| 187 static bool Do(T x, U y, V* result) { |
| 188 #if USE_OVERFLOW_BUILTINS |
| 189 #if defined(__clang__) |
| 190 // TODO(jschuh): Get the Clang runtime library issues sorted out so we can |
| 191 // support full-width, mixed-sign multiply builtins. |
| 192 // https://crbug.com/613003 |
| 193 static const bool kUseMaxInt = |
| 194 // Narrower type than uintptr_t is always safe. |
| 195 std::numeric_limits<__typeof__(x * y)>::digits < |
| 196 std::numeric_limits<intptr_t>::digits || |
| 197 // Safe for intptr_t and uintptr_t if the sign matches. |
| 198 (IntegerBitsPlusSign<__typeof__(x * y)>::value == |
| 199 IntegerBitsPlusSign<intptr_t>::value && |
| 200 std::is_signed<T>::value == std::is_signed<U>::value); |
| 201 #else |
| 202 static const bool kUseMaxInt = true; |
| 203 #endif |
| 204 if (kUseMaxInt) |
| 205 return !__builtin_mul_overflow(x, y, result); |
| 206 #endif |
| 207 using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type; |
| 208 Promotion presult; |
| 209 // Fail if either operand is out of range for the promoted type. |
| 210 // TODO(jschuh): This could be made to work for a broader range of values. |
| 211 bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && |
| 212 IsValueInRangeForNumericType<Promotion>(y); |
| 213 |
| 214 if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { |
| 215 presult = static_cast<Promotion>(x) * static_cast<Promotion>(y); |
215 } else { | 216 } else { |
216 *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID | 217 is_valid &= CheckedMulImpl(static_cast<Promotion>(x), |
217 : RANGE_UNDERFLOW; | 218 static_cast<Promotion>(y), &presult); |
218 } | 219 } |
219 } else { | 220 *result = static_cast<V>(presult); |
220 if (y > 0) { | 221 return is_valid && IsValueInRangeForNumericType<V>(presult); |
221 *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID | 222 } |
222 : RANGE_UNDERFLOW; | 223 }; |
223 } else { | 224 |
224 *validity = | 225 // Avoid poluting the namespace once we're done with the macro. |
225 y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; | 226 #undef USE_OVERFLOW_BUILTINS |
226 } | |
227 } | |
228 return static_cast<T>(*validity == RANGE_VALID ? x * y : 0); | |
229 } | |
230 | |
231 template <typename T> | |
232 typename std::enable_if<std::numeric_limits<T>::is_integer && | |
233 !std::numeric_limits<T>::is_signed && | |
234 (sizeof(T) * 2 > sizeof(uintmax_t)), | |
235 T>::type | |
236 CheckedMul(T x, T y, RangeConstraint* validity) { | |
237 *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) | |
238 ? RANGE_VALID | |
239 : RANGE_OVERFLOW; | |
240 return static_cast<T>(*validity == RANGE_VALID ? x * y : 0); | |
241 } | |
242 | 227 |
243 // Division just requires a check for a zero denominator or an invalid negation | 228 // Division just requires a check for a zero denominator or an invalid negation |
244 // on signed min/-1. | 229 // on signed min/-1. |
245 template <typename T> | 230 template <typename T> |
246 T CheckedDiv(T x, | 231 bool CheckedDivImpl(T x, T y, T* result) { |
247 T y, | 232 static_assert(std::is_integral<T>::value, "Type must be integral"); |
248 RangeConstraint* validity, | 233 if (y && (!std::is_signed<T>::value || |
249 typename std::enable_if<std::numeric_limits<T>::is_integer, | 234 x != std::numeric_limits<T>::lowest() || y != static_cast<T>(-1))) { |
250 int>::type = 0) { | 235 *result = x / y; |
251 if (y == 0) { | 236 return true; |
252 *validity = RANGE_INVALID; | 237 } |
253 return static_cast<T>(0); | 238 return false; |
254 } | 239 } |
255 if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && | 240 |
256 y == static_cast<T>(-1)) { | 241 template <typename T, typename U, class Enable = void> |
257 *validity = RANGE_OVERFLOW; | 242 struct CheckedDivOp {}; |
258 return std::numeric_limits<T>::min(); | 243 |
259 } | 244 template <typename T, typename U> |
260 | 245 struct CheckedDivOp<T, |
261 *validity = RANGE_VALID; | 246 U, |
262 return static_cast<T>(x / y); | 247 typename std::enable_if<std::is_integral<T>::value && |
263 } | 248 std::is_integral<U>::value>::type> { |
| 249 using result_type = typename MaxExponentPromotion<T, U>::type; |
| 250 template <typename V> |
| 251 static bool Do(T x, U y, V* result) { |
| 252 using Promotion = typename BigEnoughPromotion<T, U>::type; |
| 253 Promotion presult; |
| 254 // Fail if either operand is out of range for the promoted type. |
| 255 // TODO(jschuh): This could be made to work for a broader range of values. |
| 256 bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && |
| 257 IsValueInRangeForNumericType<Promotion>(y); |
| 258 is_valid &= CheckedDivImpl(static_cast<Promotion>(x), |
| 259 static_cast<Promotion>(y), &presult); |
| 260 *result = static_cast<V>(presult); |
| 261 return is_valid && IsValueInRangeForNumericType<V>(presult); |
| 262 } |
| 263 }; |
264 | 264 |
265 template <typename T> | 265 template <typename T> |
266 typename std::enable_if<std::numeric_limits<T>::is_integer && | 266 bool CheckedModImpl(T x, T y, T* result) { |
267 std::numeric_limits<T>::is_signed, | 267 static_assert(std::is_integral<T>::value, "Type must be integral"); |
268 T>::type | 268 if (y > 0) { |
269 CheckedMod(T x, T y, RangeConstraint* validity) { | 269 *result = static_cast<T>(x % y); |
270 *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; | 270 return true; |
271 return static_cast<T>(*validity == RANGE_VALID ? x % y : 0); | 271 } |
272 } | 272 return false; |
273 | 273 } |
274 template <typename T> | 274 |
275 typename std::enable_if<std::numeric_limits<T>::is_integer && | 275 template <typename T, typename U, class Enable = void> |
276 !std::numeric_limits<T>::is_signed, | 276 struct CheckedModOp {}; |
277 T>::type | 277 |
278 CheckedMod(T x, T y, RangeConstraint* validity) { | 278 template <typename T, typename U> |
279 *validity = y != 0 ? RANGE_VALID : RANGE_INVALID; | 279 struct CheckedModOp<T, |
280 return static_cast<T>(*validity == RANGE_VALID ? x % y : 0); | 280 U, |
281 } | 281 typename std::enable_if<std::is_integral<T>::value && |
282 | 282 std::is_integral<U>::value>::type> { |
283 template <typename T> | 283 using result_type = typename MaxExponentPromotion<T, U>::type; |
284 typename std::enable_if<std::numeric_limits<T>::is_integer && | 284 template <typename V> |
285 std::numeric_limits<T>::is_signed, | 285 static bool Do(T x, U y, V* result) { |
286 T>::type | 286 using Promotion = typename BigEnoughPromotion<T, U>::type; |
287 CheckedNeg(T value, RangeConstraint* validity) { | 287 Promotion presult; |
288 *validity = | 288 bool is_valid = CheckedModImpl(static_cast<Promotion>(x), |
289 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; | 289 static_cast<Promotion>(y), &presult); |
290 // The negation of signed min is min, so catch that one. | 290 *result = static_cast<V>(presult); |
291 return static_cast<T>(*validity == RANGE_VALID ? -value : 0); | 291 return is_valid && IsValueInRangeForNumericType<V>(presult); |
292 } | 292 } |
293 | 293 }; |
294 template <typename T> | 294 |
295 typename std::enable_if<std::numeric_limits<T>::is_integer && | 295 template <typename T, typename U, class Enable = void> |
296 !std::numeric_limits<T>::is_signed, | 296 struct CheckedLshOp {}; |
297 T>::type | 297 |
298 CheckedNeg(T value, RangeConstraint* validity) { | 298 // Left shift. Shifts less than 0 or greater than or equal to the number |
299 // The only legal unsigned negation is zero. | 299 // of bits in the promoted type are undefined. Shifts of negative values |
300 *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; | 300 // are undefined. Otherwise it is defined when the result fits. |
301 return static_cast<T>( | 301 template <typename T, typename U> |
302 *validity == RANGE_VALID | 302 struct CheckedLshOp<T, |
303 ? -static_cast<typename SignedIntegerForSize<T>::type>(value) | 303 U, |
304 : 0); | 304 typename std::enable_if<std::is_integral<T>::value && |
305 } | 305 std::is_integral<U>::value>::type> { |
306 | 306 using result_type = T; |
307 template <typename T> | 307 template <typename V> |
308 typename std::enable_if<std::numeric_limits<T>::is_integer && | 308 static bool Do(T x, U shift, V* result) { |
309 std::numeric_limits<T>::is_signed, | 309 using ShiftType = typename std::make_unsigned<T>::type; |
310 T>::type | 310 static const ShiftType kBitWidth = IntegerBitsPlusSign<T>::value; |
311 CheckedAbs(T value, RangeConstraint* validity) { | 311 const ShiftType real_shift = static_cast<ShiftType>(shift); |
312 *validity = | 312 // Signed shift is not legal on negative values. |
313 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; | 313 if (!IsValueNegative(x) && real_shift < kBitWidth) { |
314 return static_cast<T>(*validity == RANGE_VALID ? std::abs(value) : 0); | 314 // Just use a multiplication because it's easy. |
315 } | 315 // TODO(jschuh): This could probably be made more efficient. |
316 | 316 if (!std::is_signed<T>::value || real_shift != kBitWidth - 1) |
317 template <typename T> | 317 return CheckedMulOp<T, T>::Do(x, static_cast<T>(1) << shift, result); |
318 typename std::enable_if<std::numeric_limits<T>::is_integer && | 318 return !x; // Special case zero for a full width signed shift. |
319 !std::numeric_limits<T>::is_signed, | 319 } |
320 T>::type | 320 return false; |
321 CheckedAbs(T value, RangeConstraint* validity) { | 321 } |
322 // T is unsigned, so |value| must already be positive. | 322 }; |
323 *validity = RANGE_VALID; | 323 |
324 return value; | 324 template <typename T, typename U, class Enable = void> |
325 } | 325 struct CheckedRshOp {}; |
326 | 326 |
327 template <typename T> | 327 // Right shift. Shifts less than 0 or greater than or equal to the number |
328 typename std::enable_if<std::numeric_limits<T>::is_integer && | 328 // of bits in the promoted type are undefined. Otherwise, it is always defined, |
329 std::numeric_limits<T>::is_signed, | 329 // but a right shift of a negative value is implementation-dependent. |
330 typename UnsignedIntegerForSize<T>::type>::type | 330 template <typename T, typename U> |
331 CheckedUnsignedAbs(T value) { | 331 struct CheckedRshOp<T, |
332 typedef typename UnsignedIntegerForSize<T>::type UnsignedT; | 332 U, |
333 return value == std::numeric_limits<T>::min() | 333 typename std::enable_if<std::is_integral<T>::value && |
334 ? static_cast<UnsignedT>(std::numeric_limits<T>::max()) + 1 | 334 std::is_integral<U>::value>::type> { |
335 : static_cast<UnsignedT>(std::abs(value)); | 335 using result_type = T; |
336 } | 336 template <typename V = result_type> |
337 | 337 static bool Do(T x, U shift, V* result) { |
338 template <typename T> | 338 // Use the type conversion push negative values out of range. |
339 typename std::enable_if<std::numeric_limits<T>::is_integer && | 339 using ShiftType = typename std::make_unsigned<T>::type; |
340 !std::numeric_limits<T>::is_signed, | 340 if (static_cast<ShiftType>(shift) < IntegerBitsPlusSign<T>::value) { |
341 T>::type | 341 T tmp = x >> shift; |
342 CheckedUnsignedAbs(T value) { | 342 *result = static_cast<V>(tmp); |
343 // T is unsigned, so |value| must already be positive. | 343 return IsValueInRangeForNumericType<V>(tmp); |
344 return static_cast<T>(value); | 344 } |
345 } | 345 return false; |
346 | 346 } |
347 // These are the floating point stubs that the compiler needs to see. Only the | 347 }; |
348 // negation operation is ever called. | 348 |
349 #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ | 349 template <typename T, typename U, class Enable = void> |
350 template <typename T> \ | 350 struct CheckedAndOp {}; |
351 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type \ | 351 |
352 Checked##NAME(T, T, RangeConstraint*) { \ | 352 // For simplicity we support only unsigned integer results. |
353 NOTREACHED(); \ | 353 template <typename T, typename U> |
354 return static_cast<T>(0); \ | 354 struct CheckedAndOp<T, |
355 } | 355 U, |
356 | 356 typename std::enable_if<std::is_integral<T>::value && |
357 BASE_FLOAT_ARITHMETIC_STUBS(Add) | 357 std::is_integral<U>::value>::type> { |
358 BASE_FLOAT_ARITHMETIC_STUBS(Sub) | 358 using result_type = typename std::make_unsigned< |
359 BASE_FLOAT_ARITHMETIC_STUBS(Mul) | 359 typename MaxExponentPromotion<T, U>::type>::type; |
360 BASE_FLOAT_ARITHMETIC_STUBS(Div) | 360 template <typename V = result_type> |
361 BASE_FLOAT_ARITHMETIC_STUBS(Mod) | 361 static bool Do(T x, U y, V* result) { |
362 | 362 result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y); |
363 #undef BASE_FLOAT_ARITHMETIC_STUBS | 363 *result = static_cast<V>(tmp); |
364 | 364 return IsValueInRangeForNumericType<V>(tmp); |
365 template <typename T> | 365 } |
366 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg( | 366 }; |
367 T value, | 367 |
368 RangeConstraint*) { | 368 template <typename T, typename U, class Enable = void> |
369 return static_cast<T>(-value); | 369 struct CheckedOrOp {}; |
370 } | 370 |
371 | 371 // For simplicity we support only unsigned integers. |
372 template <typename T> | 372 template <typename T, typename U> |
373 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs( | 373 struct CheckedOrOp<T, |
374 T value, | 374 U, |
375 RangeConstraint*) { | 375 typename std::enable_if<std::is_integral<T>::value && |
376 return static_cast<T>(std::abs(value)); | 376 std::is_integral<U>::value>::type> { |
| 377 using result_type = typename std::make_unsigned< |
| 378 typename MaxExponentPromotion<T, U>::type>::type; |
| 379 template <typename V = result_type> |
| 380 static bool Do(T x, U y, V* result) { |
| 381 result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y); |
| 382 *result = static_cast<V>(tmp); |
| 383 return IsValueInRangeForNumericType<V>(tmp); |
| 384 } |
| 385 }; |
| 386 |
| 387 template <typename T, typename U, class Enable = void> |
| 388 struct CheckedXorOp {}; |
| 389 |
| 390 // For simplicity we support only unsigned integers. |
| 391 template <typename T, typename U> |
| 392 struct CheckedXorOp<T, |
| 393 U, |
| 394 typename std::enable_if<std::is_integral<T>::value && |
| 395 std::is_integral<U>::value>::type> { |
| 396 using result_type = typename std::make_unsigned< |
| 397 typename MaxExponentPromotion<T, U>::type>::type; |
| 398 template <typename V = result_type> |
| 399 static bool Do(T x, U y, V* result) { |
| 400 result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y); |
| 401 *result = static_cast<V>(tmp); |
| 402 return IsValueInRangeForNumericType<V>(tmp); |
| 403 } |
| 404 }; |
| 405 |
| 406 // Max doesn't really need to be implemented this way because it can't fail, |
| 407 // but it makes the code much cleaner to use the MathOp wrappers. |
| 408 template <typename T, typename U, class Enable = void> |
| 409 struct CheckedMaxOp {}; |
| 410 |
| 411 template <typename T, typename U> |
| 412 struct CheckedMaxOp< |
| 413 T, |
| 414 U, |
| 415 typename std::enable_if<std::is_arithmetic<T>::value && |
| 416 std::is_arithmetic<U>::value>::type> { |
| 417 using result_type = typename MaxExponentPromotion<T, U>::type; |
| 418 template <typename V = result_type> |
| 419 static bool Do(T x, U y, V* result) { |
| 420 *result = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x) |
| 421 : static_cast<result_type>(y); |
| 422 return true; |
| 423 } |
| 424 }; |
| 425 |
| 426 // Min doesn't really need to be implemented this way because it can't fail, |
| 427 // but it makes the code much cleaner to use the MathOp wrappers. |
| 428 template <typename T, typename U, class Enable = void> |
| 429 struct CheckedMinOp {}; |
| 430 |
| 431 template <typename T, typename U> |
| 432 struct CheckedMinOp< |
| 433 T, |
| 434 U, |
| 435 typename std::enable_if<std::is_arithmetic<T>::value && |
| 436 std::is_arithmetic<U>::value>::type> { |
| 437 using result_type = typename LowestValuePromotion<T, U>::type; |
| 438 template <typename V = result_type> |
| 439 static bool Do(T x, U y, V* result) { |
| 440 *result = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x) |
| 441 : static_cast<result_type>(y); |
| 442 return true; |
| 443 } |
| 444 }; |
| 445 |
| 446 // This is just boilerplate that wraps the standard floating point arithmetic. |
| 447 // A macro isn't the nicest solution, but it beats rewriting these repeatedly. |
| 448 #define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \ |
| 449 template <typename T, typename U> \ |
| 450 struct Checked##NAME##Op< \ |
| 451 T, U, typename std::enable_if<std::is_floating_point<T>::value || \ |
| 452 std::is_floating_point<U>::value>::type> { \ |
| 453 using result_type = typename MaxExponentPromotion<T, U>::type; \ |
| 454 template <typename V> \ |
| 455 static bool Do(T x, U y, V* result) { \ |
| 456 using Promotion = typename MaxExponentPromotion<T, U>::type; \ |
| 457 Promotion presult = x OP y; \ |
| 458 *result = static_cast<V>(presult); \ |
| 459 return IsValueInRangeForNumericType<V>(presult); \ |
| 460 } \ |
| 461 }; |
| 462 |
| 463 BASE_FLOAT_ARITHMETIC_OPS(Add, +) |
| 464 BASE_FLOAT_ARITHMETIC_OPS(Sub, -) |
| 465 BASE_FLOAT_ARITHMETIC_OPS(Mul, *) |
| 466 BASE_FLOAT_ARITHMETIC_OPS(Div, /) |
| 467 |
| 468 #undef BASE_FLOAT_ARITHMETIC_OPS |
| 469 |
| 470 // Wrap the unary operations to allow SFINAE when instantiating integrals versus |
| 471 // floating points. These don't perform any overflow checking. Rather, they |
| 472 // exhibit well-defined overflow semantics and rely on the caller to detect |
| 473 // if an overflow occured. |
| 474 |
| 475 template <typename T, |
| 476 typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> |
| 477 constexpr T NegateWrapper(T value) { |
| 478 using UnsignedT = typename std::make_unsigned<T>::type; |
| 479 // This will compile to a NEG on Intel, and is normal negation on ARM. |
| 480 return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value)); |
| 481 } |
| 482 |
| 483 template < |
| 484 typename T, |
| 485 typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> |
| 486 constexpr T NegateWrapper(T value) { |
| 487 return -value; |
| 488 } |
| 489 |
| 490 template <typename T, |
| 491 typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> |
| 492 constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) { |
| 493 return ~value; |
| 494 } |
| 495 |
| 496 template <typename T, |
| 497 typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> |
| 498 constexpr T AbsWrapper(T value) { |
| 499 return static_cast<T>(SafeUnsignedAbs(value)); |
| 500 } |
| 501 |
| 502 template < |
| 503 typename T, |
| 504 typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> |
| 505 constexpr T AbsWrapper(T value) { |
| 506 return value < 0 ? -value : value; |
377 } | 507 } |
378 | 508 |
379 // Floats carry around their validity state with them, but integers do not. So, | 509 // Floats carry around their validity state with them, but integers do not. So, |
380 // we wrap the underlying value in a specialization in order to hide that detail | 510 // we wrap the underlying value in a specialization in order to hide that detail |
381 // and expose an interface via accessors. | 511 // and expose an interface via accessors. |
382 enum NumericRepresentation { | 512 enum NumericRepresentation { |
383 NUMERIC_INTEGER, | 513 NUMERIC_INTEGER, |
384 NUMERIC_FLOATING, | 514 NUMERIC_FLOATING, |
385 NUMERIC_UNKNOWN | 515 NUMERIC_UNKNOWN |
386 }; | 516 }; |
387 | 517 |
388 template <typename NumericType> | 518 template <typename NumericType> |
389 struct GetNumericRepresentation { | 519 struct GetNumericRepresentation { |
390 static const NumericRepresentation value = | 520 static const NumericRepresentation value = |
391 std::numeric_limits<NumericType>::is_integer | 521 std::is_integral<NumericType>::value |
392 ? NUMERIC_INTEGER | 522 ? NUMERIC_INTEGER |
393 : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING | 523 : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING |
394 : NUMERIC_UNKNOWN); | 524 : NUMERIC_UNKNOWN); |
395 }; | 525 }; |
396 | 526 |
397 template <typename T, NumericRepresentation type = | 527 template <typename T, NumericRepresentation type = |
398 GetNumericRepresentation<T>::value> | 528 GetNumericRepresentation<T>::value> |
399 class CheckedNumericState {}; | 529 class CheckedNumericState {}; |
400 | 530 |
401 // Integrals require quite a bit of additional housekeeping to manage state. | 531 // Integrals require quite a bit of additional housekeeping to manage state. |
402 template <typename T> | 532 template <typename T> |
403 class CheckedNumericState<T, NUMERIC_INTEGER> { | 533 class CheckedNumericState<T, NUMERIC_INTEGER> { |
404 private: | 534 private: |
| 535 // is_valid_ precedes value_ because member intializers in the constructors |
| 536 // are evaluated in field order, and is_valid_ must be read when initializing |
| 537 // value_. |
| 538 bool is_valid_; |
405 T value_; | 539 T value_; |
406 RangeConstraint validity_ : CHAR_BIT; // Actually requires only two bits. | 540 |
| 541 // Ensures that a type conversion does not trigger undefined behavior. |
| 542 template <typename Src> |
| 543 static constexpr T WellDefinedConversionOrZero(const Src value, |
| 544 const bool is_valid) { |
| 545 using SrcType = typename internal::UnderlyingType<Src>::type; |
| 546 return (std::is_integral<SrcType>::value || is_valid) |
| 547 ? static_cast<T>(value) |
| 548 : static_cast<T>(0); |
| 549 } |
407 | 550 |
408 public: | 551 public: |
409 template <typename Src, NumericRepresentation type> | 552 template <typename Src, NumericRepresentation type> |
410 friend class CheckedNumericState; | 553 friend class CheckedNumericState; |
411 | 554 |
412 CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} | 555 constexpr CheckedNumericState() : is_valid_(true), value_(0) {} |
413 | 556 |
414 template <typename Src> | 557 template <typename Src> |
415 CheckedNumericState(Src value, RangeConstraint validity) | 558 constexpr CheckedNumericState(Src value, bool is_valid) |
416 : value_(static_cast<T>(value)), | 559 : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)), |
417 validity_(GetRangeConstraint(validity | | 560 value_(WellDefinedConversionOrZero(value, is_valid_)) { |
418 DstRangeRelationToSrcRange<T>(value))) { | 561 static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric."); |
419 static_assert(std::numeric_limits<Src>::is_specialized, | |
420 "Argument must be numeric."); | |
421 } | 562 } |
422 | 563 |
423 // Copy constructor. | 564 // Copy constructor. |
424 template <typename Src> | 565 template <typename Src> |
425 CheckedNumericState(const CheckedNumericState<Src>& rhs) | 566 constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) |
426 : value_(static_cast<T>(rhs.value())), | 567 : is_valid_(rhs.IsValid()), |
427 validity_(GetRangeConstraint( | 568 value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {} |
428 rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {} | |
429 | 569 |
430 template <typename Src> | 570 template <typename Src> |
431 explicit CheckedNumericState( | 571 constexpr explicit CheckedNumericState(Src value) |
432 Src value, | 572 : is_valid_(IsValueInRangeForNumericType<T>(value)), |
433 typename std::enable_if<std::numeric_limits<Src>::is_specialized, | 573 value_(WellDefinedConversionOrZero(value, is_valid_)) {} |
434 int>::type = 0) | |
435 : value_(static_cast<T>(value)), | |
436 validity_(DstRangeRelationToSrcRange<T>(value)) {} | |
437 | 574 |
438 RangeConstraint validity() const { return validity_; } | 575 constexpr bool is_valid() const { return is_valid_; } |
439 T value() const { return value_; } | 576 constexpr T value() const { return value_; } |
440 }; | 577 }; |
441 | 578 |
442 // Floating points maintain their own validity, but need translation wrappers. | 579 // Floating points maintain their own validity, but need translation wrappers. |
443 template <typename T> | 580 template <typename T> |
444 class CheckedNumericState<T, NUMERIC_FLOATING> { | 581 class CheckedNumericState<T, NUMERIC_FLOATING> { |
445 private: | 582 private: |
446 T value_; | 583 T value_; |
447 | 584 |
| 585 // Ensures that a type conversion does not trigger undefined behavior. |
| 586 template <typename Src> |
| 587 static constexpr T WellDefinedConversionOrNaN(const Src value, |
| 588 const bool is_valid) { |
| 589 using SrcType = typename internal::UnderlyingType<Src>::type; |
| 590 return (StaticDstRangeRelationToSrcRange<T, SrcType>::value == |
| 591 NUMERIC_RANGE_CONTAINED || |
| 592 is_valid) |
| 593 ? static_cast<T>(value) |
| 594 : std::numeric_limits<T>::quiet_NaN(); |
| 595 } |
| 596 |
448 public: | 597 public: |
449 template <typename Src, NumericRepresentation type> | 598 template <typename Src, NumericRepresentation type> |
450 friend class CheckedNumericState; | 599 friend class CheckedNumericState; |
451 | 600 |
452 CheckedNumericState() : value_(0.0) {} | 601 constexpr CheckedNumericState() : value_(0.0) {} |
453 | 602 |
454 template <typename Src> | 603 template <typename Src> |
455 CheckedNumericState( | 604 constexpr CheckedNumericState(Src value, bool is_valid) |
456 Src value, | 605 : value_(WellDefinedConversionOrNaN(value, is_valid)) {} |
457 RangeConstraint validity, | |
458 typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = | |
459 0) { | |
460 switch (DstRangeRelationToSrcRange<T>(value)) { | |
461 case RANGE_VALID: | |
462 value_ = static_cast<T>(value); | |
463 break; | |
464 | |
465 case RANGE_UNDERFLOW: | |
466 value_ = -std::numeric_limits<T>::infinity(); | |
467 break; | |
468 | |
469 case RANGE_OVERFLOW: | |
470 value_ = std::numeric_limits<T>::infinity(); | |
471 break; | |
472 | |
473 case RANGE_INVALID: | |
474 value_ = std::numeric_limits<T>::quiet_NaN(); | |
475 break; | |
476 | |
477 default: | |
478 NOTREACHED(); | |
479 } | |
480 } | |
481 | 606 |
482 template <typename Src> | 607 template <typename Src> |
483 explicit CheckedNumericState( | 608 constexpr explicit CheckedNumericState(Src value) |
484 Src value, | 609 : value_(WellDefinedConversionOrNaN( |
485 typename std::enable_if<std::numeric_limits<Src>::is_specialized, | 610 value, |
486 int>::type = 0) | 611 IsValueInRangeForNumericType<T>(value))) {} |
487 : value_(static_cast<T>(value)) {} | |
488 | 612 |
489 // Copy constructor. | 613 // Copy constructor. |
490 template <typename Src> | 614 template <typename Src> |
491 CheckedNumericState(const CheckedNumericState<Src>& rhs) | 615 constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) |
492 : value_(static_cast<T>(rhs.value())) {} | 616 : value_(WellDefinedConversionOrNaN( |
| 617 rhs.value(), |
| 618 rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {} |
493 | 619 |
494 RangeConstraint validity() const { | 620 constexpr bool is_valid() const { |
495 return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), | 621 // Written this way because std::isfinite is not reliably constexpr. |
496 value_ >= -std::numeric_limits<T>::max()); | 622 // TODO(jschuh): Fix this if the libraries ever get fixed. |
| 623 return value_ <= std::numeric_limits<T>::max() && |
| 624 value_ >= std::numeric_limits<T>::lowest(); |
497 } | 625 } |
498 T value() const { return value_; } | 626 constexpr T value() const { return value_; } |
499 }; | 627 }; |
500 | 628 |
501 // For integers less than 128-bit and floats 32-bit or larger, we have the type | 629 template <template <typename, typename, typename> class M, |
502 // with the larger maximum exponent take precedence. | 630 typename L, |
503 enum ArithmeticPromotionCategory { LEFT_PROMOTION, RIGHT_PROMOTION }; | 631 typename R> |
504 | 632 struct MathWrapper { |
505 template <typename Lhs, | 633 using math = M<typename UnderlyingType<L>::type, |
506 typename Rhs = Lhs, | 634 typename UnderlyingType<R>::type, |
507 ArithmeticPromotionCategory Promotion = | 635 void>; |
508 (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) | 636 using type = typename math::result_type; |
509 ? LEFT_PROMOTION | |
510 : RIGHT_PROMOTION> | |
511 struct ArithmeticPromotion; | |
512 | |
513 template <typename Lhs, typename Rhs> | |
514 struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { | |
515 typedef Lhs type; | |
516 }; | |
517 | |
518 template <typename Lhs, typename Rhs> | |
519 struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { | |
520 typedef Rhs type; | |
521 }; | |
522 | |
523 // We can statically check if operations on the provided types can wrap, so we | |
524 // can skip the checked operations if they're not needed. So, for an integer we | |
525 // care if the destination type preserves the sign and is twice the width of | |
526 // the source. | |
527 template <typename T, typename Lhs, typename Rhs> | |
528 struct IsIntegerArithmeticSafe { | |
529 static const bool value = !std::numeric_limits<T>::is_iec559 && | |
530 StaticDstRangeRelationToSrcRange<T, Lhs>::value == | |
531 NUMERIC_RANGE_CONTAINED && | |
532 sizeof(T) >= (2 * sizeof(Lhs)) && | |
533 StaticDstRangeRelationToSrcRange<T, Rhs>::value != | |
534 NUMERIC_RANGE_CONTAINED && | |
535 sizeof(T) >= (2 * sizeof(Rhs)); | |
536 }; | 637 }; |
537 | 638 |
538 } // namespace internal | 639 } // namespace internal |
539 } // namespace base | 640 } // namespace base |
540 } // namespace pdfium | 641 } // namespace pdfium |
541 | 642 |
542 #endif // PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_ | 643 #endif // PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_ |
OLD | NEW |