Index: src/builtins/builtins-math.cc |
diff --git a/src/builtins/builtins-math.cc b/src/builtins/builtins-math.cc |
index 31a13119a8569238d9aebd56f1ed31e9120c8da4..1305e73db01ffb64eb85b5f3d80c2335826e79fc 100644 |
--- a/src/builtins/builtins-math.cc |
+++ b/src/builtins/builtins-math.cc |
@@ -13,341 +13,300 @@ namespace internal { |
// ----------------------------------------------------------------------------- |
// ES6 section 20.2.2 Function Properties of the Math Object |
-// ES6 section - 20.2.2.1 Math.abs ( x ) |
-void Builtins::Generate_MathAbs(compiler::CodeAssemblerState* state) { |
- typedef CodeStubAssembler::Label Label; |
- typedef compiler::Node Node; |
- typedef CodeStubAssembler::Variable Variable; |
- CodeStubAssembler assembler(state); |
+class MathBuiltinsAssembler : public CodeStubAssembler { |
+ public: |
+ explicit MathBuiltinsAssembler(compiler::CodeAssemblerState* state) |
+ : CodeStubAssembler(state) {} |
+ |
+ protected: |
+ void MathRoundingOperation(Node* (CodeStubAssembler::*float64op)(Node*)); |
+ void MathUnaryOperation(Node* (CodeStubAssembler::*float64op)(Node*)); |
+}; |
- Node* context = assembler.Parameter(4); |
+// ES6 section - 20.2.2.1 Math.abs ( x ) |
+TF_BUILTIN(MathAbs, CodeStubAssembler) { |
+ Node* context = Parameter(4); |
// We might need to loop once for ToNumber conversion. |
- Variable var_x(&assembler, MachineRepresentation::kTagged); |
- Label loop(&assembler, &var_x); |
- var_x.Bind(assembler.Parameter(1)); |
- assembler.Goto(&loop); |
- assembler.Bind(&loop); |
+ Variable var_x(this, MachineRepresentation::kTagged); |
+ Label loop(this, &var_x); |
+ var_x.Bind(Parameter(1)); |
+ Goto(&loop); |
+ Bind(&loop); |
{ |
// Load the current {x} value. |
Node* x = var_x.value(); |
// Check if {x} is a Smi or a HeapObject. |
- Label if_xissmi(&assembler), if_xisnotsmi(&assembler); |
- assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
+ Label if_xissmi(this), if_xisnotsmi(this); |
+ Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
- assembler.Bind(&if_xissmi); |
+ Bind(&if_xissmi); |
{ |
// Check if {x} is already positive. |
- Label if_xispositive(&assembler), if_xisnotpositive(&assembler); |
- assembler.BranchIfSmiLessThanOrEqual( |
- assembler.SmiConstant(Smi::FromInt(0)), x, &if_xispositive, |
- &if_xisnotpositive); |
+ Label if_xispositive(this), if_xisnotpositive(this); |
+ BranchIfSmiLessThanOrEqual(SmiConstant(Smi::FromInt(0)), x, |
+ &if_xispositive, &if_xisnotpositive); |
- assembler.Bind(&if_xispositive); |
+ Bind(&if_xispositive); |
{ |
// Just return the input {x}. |
- assembler.Return(x); |
+ Return(x); |
} |
- assembler.Bind(&if_xisnotpositive); |
+ Bind(&if_xisnotpositive); |
{ |
// Try to negate the {x} value. |
- Node* pair = assembler.IntPtrSubWithOverflow( |
- assembler.IntPtrConstant(0), assembler.BitcastTaggedToWord(x)); |
- Node* overflow = assembler.Projection(1, pair); |
- Label if_overflow(&assembler, Label::kDeferred), |
- if_notoverflow(&assembler); |
- assembler.Branch(overflow, &if_overflow, &if_notoverflow); |
- |
- assembler.Bind(&if_notoverflow); |
+ Node* pair = |
+ IntPtrSubWithOverflow(IntPtrConstant(0), BitcastTaggedToWord(x)); |
+ Node* overflow = Projection(1, pair); |
+ Label if_overflow(this, Label::kDeferred), if_notoverflow(this); |
+ Branch(overflow, &if_overflow, &if_notoverflow); |
+ |
+ Bind(&if_notoverflow); |
{ |
// There is a Smi representation for negated {x}. |
- Node* result = assembler.Projection(0, pair); |
- result = assembler.BitcastWordToTagged(result); |
- assembler.Return(result); |
+ Node* result = Projection(0, pair); |
+ Return(BitcastWordToTagged(result)); |
} |
- assembler.Bind(&if_overflow); |
- { |
- Node* result = assembler.NumberConstant(0.0 - Smi::kMinValue); |
- assembler.Return(result); |
- } |
+ Bind(&if_overflow); |
+ { Return(NumberConstant(0.0 - Smi::kMinValue)); } |
} |
} |
- assembler.Bind(&if_xisnotsmi); |
+ Bind(&if_xisnotsmi); |
{ |
// Check if {x} is a HeapNumber. |
- Label if_xisheapnumber(&assembler), |
- if_xisnotheapnumber(&assembler, Label::kDeferred); |
- assembler.Branch(assembler.IsHeapNumberMap(assembler.LoadMap(x)), |
- &if_xisheapnumber, &if_xisnotheapnumber); |
+ Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred); |
+ Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber, |
+ &if_xisnotheapnumber); |
- assembler.Bind(&if_xisheapnumber); |
+ Bind(&if_xisheapnumber); |
{ |
- Node* x_value = assembler.LoadHeapNumberValue(x); |
- Node* value = assembler.Float64Abs(x_value); |
- Node* result = assembler.AllocateHeapNumberWithValue(value); |
- assembler.Return(result); |
+ Node* x_value = LoadHeapNumberValue(x); |
+ Node* value = Float64Abs(x_value); |
+ Node* result = AllocateHeapNumberWithValue(value); |
+ Return(result); |
} |
- assembler.Bind(&if_xisnotheapnumber); |
+ Bind(&if_xisnotheapnumber); |
{ |
// Need to convert {x} to a Number first. |
- Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); |
- var_x.Bind(assembler.CallStub(callable, context, x)); |
- assembler.Goto(&loop); |
+ Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
+ var_x.Bind(CallStub(callable, context, x)); |
+ Goto(&loop); |
} |
} |
} |
} |
-namespace { |
- |
-void Generate_MathRoundingOperation( |
- CodeStubAssembler* assembler, |
- compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { |
- typedef CodeStubAssembler::Label Label; |
- typedef compiler::Node Node; |
- typedef CodeStubAssembler::Variable Variable; |
- |
- Node* context = assembler->Parameter(4); |
+void MathBuiltinsAssembler::MathRoundingOperation( |
+ Node* (CodeStubAssembler::*float64op)(Node*)) { |
+ Node* context = Parameter(4); |
// We might need to loop once for ToNumber conversion. |
- Variable var_x(assembler, MachineRepresentation::kTagged); |
- Label loop(assembler, &var_x); |
- var_x.Bind(assembler->Parameter(1)); |
- assembler->Goto(&loop); |
- assembler->Bind(&loop); |
+ Variable var_x(this, MachineRepresentation::kTagged); |
+ Label loop(this, &var_x); |
+ var_x.Bind(Parameter(1)); |
+ Goto(&loop); |
+ Bind(&loop); |
{ |
// Load the current {x} value. |
Node* x = var_x.value(); |
// Check if {x} is a Smi or a HeapObject. |
- Label if_xissmi(assembler), if_xisnotsmi(assembler); |
- assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
+ Label if_xissmi(this), if_xisnotsmi(this); |
+ Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
- assembler->Bind(&if_xissmi); |
+ Bind(&if_xissmi); |
{ |
// Nothing to do when {x} is a Smi. |
- assembler->Return(x); |
+ Return(x); |
} |
- assembler->Bind(&if_xisnotsmi); |
+ Bind(&if_xisnotsmi); |
{ |
// Check if {x} is a HeapNumber. |
- Label if_xisheapnumber(assembler), |
- if_xisnotheapnumber(assembler, Label::kDeferred); |
- assembler->Branch(assembler->IsHeapNumberMap(assembler->LoadMap(x)), |
- &if_xisheapnumber, &if_xisnotheapnumber); |
+ Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred); |
+ Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber, |
+ &if_xisnotheapnumber); |
- assembler->Bind(&if_xisheapnumber); |
+ Bind(&if_xisheapnumber); |
{ |
- Node* x_value = assembler->LoadHeapNumberValue(x); |
- Node* value = (assembler->*float64op)(x_value); |
- Node* result = assembler->ChangeFloat64ToTagged(value); |
- assembler->Return(result); |
+ Node* x_value = LoadHeapNumberValue(x); |
+ Node* value = (this->*float64op)(x_value); |
+ Node* result = ChangeFloat64ToTagged(value); |
+ Return(result); |
} |
- assembler->Bind(&if_xisnotheapnumber); |
+ Bind(&if_xisnotheapnumber); |
{ |
// Need to convert {x} to a Number first. |
- Callable callable = |
- CodeFactory::NonNumberToNumber(assembler->isolate()); |
- var_x.Bind(assembler->CallStub(callable, context, x)); |
- assembler->Goto(&loop); |
+ Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
+ var_x.Bind(CallStub(callable, context, x)); |
+ Goto(&loop); |
} |
} |
} |
} |
-void Generate_MathUnaryOperation( |
- CodeStubAssembler* assembler, |
- compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { |
- typedef compiler::Node Node; |
- |
- Node* x = assembler->Parameter(1); |
- Node* context = assembler->Parameter(4); |
- Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
- Node* value = (assembler->*float64op)(x_value); |
- Node* result = assembler->AllocateHeapNumberWithValue(value); |
- assembler->Return(result); |
+void MathBuiltinsAssembler::MathUnaryOperation( |
+ Node* (CodeStubAssembler::*float64op)(Node*)) { |
+ Node* x = Parameter(1); |
+ Node* context = Parameter(4); |
+ Node* x_value = TruncateTaggedToFloat64(context, x); |
+ Node* value = (this->*float64op)(x_value); |
+ Node* result = AllocateHeapNumberWithValue(value); |
+ Return(result); |
} |
-} // namespace |
- |
// ES6 section 20.2.2.2 Math.acos ( x ) |
-void Builtins::Generate_MathAcos(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acos); |
+TF_BUILTIN(MathAcos, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Acos); |
} |
// ES6 section 20.2.2.3 Math.acosh ( x ) |
-void Builtins::Generate_MathAcosh(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acosh); |
+TF_BUILTIN(MathAcosh, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Acosh); |
} |
// ES6 section 20.2.2.4 Math.asin ( x ) |
-void Builtins::Generate_MathAsin(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asin); |
+TF_BUILTIN(MathAsin, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Asin); |
} |
// ES6 section 20.2.2.5 Math.asinh ( x ) |
-void Builtins::Generate_MathAsinh(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asinh); |
+TF_BUILTIN(MathAsinh, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Asinh); |
} |
- |
// ES6 section 20.2.2.6 Math.atan ( x ) |
-void Builtins::Generate_MathAtan(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atan); |
+TF_BUILTIN(MathAtan, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Atan); |
} |
// ES6 section 20.2.2.7 Math.atanh ( x ) |
-void Builtins::Generate_MathAtanh(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atanh); |
+TF_BUILTIN(MathAtanh, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Atanh); |
} |
// ES6 section 20.2.2.8 Math.atan2 ( y, x ) |
-void Builtins::Generate_MathAtan2(compiler::CodeAssemblerState* state) { |
- using compiler::Node; |
- CodeStubAssembler assembler(state); |
+TF_BUILTIN(MathAtan2, CodeStubAssembler) { |
+ Node* y = Parameter(1); |
+ Node* x = Parameter(2); |
+ Node* context = Parameter(5); |
- Node* y = assembler.Parameter(1); |
- Node* x = assembler.Parameter(2); |
- Node* context = assembler.Parameter(5); |
- Node* y_value = assembler.TruncateTaggedToFloat64(context, y); |
- Node* x_value = assembler.TruncateTaggedToFloat64(context, x); |
- Node* value = assembler.Float64Atan2(y_value, x_value); |
- Node* result = assembler.AllocateHeapNumberWithValue(value); |
- assembler.Return(result); |
+ Node* y_value = TruncateTaggedToFloat64(context, y); |
+ Node* x_value = TruncateTaggedToFloat64(context, x); |
+ Node* value = Float64Atan2(y_value, x_value); |
+ Node* result = AllocateHeapNumberWithValue(value); |
+ Return(result); |
} |
// ES6 section 20.2.2.10 Math.ceil ( x ) |
-void Builtins::Generate_MathCeil(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Ceil); |
+TF_BUILTIN(MathCeil, MathBuiltinsAssembler) { |
+ MathRoundingOperation(&CodeStubAssembler::Float64Ceil); |
} |
// ES6 section 20.2.2.9 Math.cbrt ( x ) |
-void Builtins::Generate_MathCbrt(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cbrt); |
+TF_BUILTIN(MathCbrt, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Cbrt); |
} |
// ES6 section 20.2.2.11 Math.clz32 ( x ) |
-void Builtins::Generate_MathClz32(compiler::CodeAssemblerState* state) { |
- typedef CodeStubAssembler::Label Label; |
- typedef compiler::Node Node; |
- typedef CodeStubAssembler::Variable Variable; |
- CodeStubAssembler assembler(state); |
- |
- Node* context = assembler.Parameter(4); |
+TF_BUILTIN(MathClz32, CodeStubAssembler) { |
+ Node* context = Parameter(4); |
// Shared entry point for the clz32 operation. |
- Variable var_clz32_x(&assembler, MachineRepresentation::kWord32); |
- Label do_clz32(&assembler); |
+ Variable var_clz32_x(this, MachineRepresentation::kWord32); |
+ Label do_clz32(this); |
// We might need to loop once for ToNumber conversion. |
- Variable var_x(&assembler, MachineRepresentation::kTagged); |
- Label loop(&assembler, &var_x); |
- var_x.Bind(assembler.Parameter(1)); |
- assembler.Goto(&loop); |
- assembler.Bind(&loop); |
+ Variable var_x(this, MachineRepresentation::kTagged); |
+ Label loop(this, &var_x); |
+ var_x.Bind(Parameter(1)); |
+ Goto(&loop); |
+ Bind(&loop); |
{ |
// Load the current {x} value. |
Node* x = var_x.value(); |
// Check if {x} is a Smi or a HeapObject. |
- Label if_xissmi(&assembler), if_xisnotsmi(&assembler); |
- assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
+ Label if_xissmi(this), if_xisnotsmi(this); |
+ Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
- assembler.Bind(&if_xissmi); |
+ Bind(&if_xissmi); |
{ |
- var_clz32_x.Bind(assembler.SmiToWord32(x)); |
- assembler.Goto(&do_clz32); |
+ var_clz32_x.Bind(SmiToWord32(x)); |
+ Goto(&do_clz32); |
} |
- assembler.Bind(&if_xisnotsmi); |
+ Bind(&if_xisnotsmi); |
{ |
// Check if {x} is a HeapNumber. |
- Label if_xisheapnumber(&assembler), |
- if_xisnotheapnumber(&assembler, Label::kDeferred); |
- assembler.Branch(assembler.IsHeapNumberMap(assembler.LoadMap(x)), |
- &if_xisheapnumber, &if_xisnotheapnumber); |
+ Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred); |
+ Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber, |
+ &if_xisnotheapnumber); |
- assembler.Bind(&if_xisheapnumber); |
+ Bind(&if_xisheapnumber); |
{ |
- var_clz32_x.Bind(assembler.TruncateHeapNumberValueToWord32(x)); |
- assembler.Goto(&do_clz32); |
+ var_clz32_x.Bind(TruncateHeapNumberValueToWord32(x)); |
+ Goto(&do_clz32); |
} |
- assembler.Bind(&if_xisnotheapnumber); |
+ Bind(&if_xisnotheapnumber); |
{ |
// Need to convert {x} to a Number first. |
- Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); |
- var_x.Bind(assembler.CallStub(callable, context, x)); |
- assembler.Goto(&loop); |
+ Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
+ var_x.Bind(CallStub(callable, context, x)); |
+ Goto(&loop); |
} |
} |
} |
- assembler.Bind(&do_clz32); |
+ Bind(&do_clz32); |
{ |
Node* x_value = var_clz32_x.value(); |
- Node* value = assembler.Word32Clz(x_value); |
- Node* result = assembler.ChangeInt32ToTagged(value); |
- assembler.Return(result); |
+ Node* value = Word32Clz(x_value); |
+ Node* result = ChangeInt32ToTagged(value); |
+ Return(result); |
} |
} |
// ES6 section 20.2.2.12 Math.cos ( x ) |
-void Builtins::Generate_MathCos(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cos); |
+TF_BUILTIN(MathCos, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Cos); |
} |
// ES6 section 20.2.2.13 Math.cosh ( x ) |
-void Builtins::Generate_MathCosh(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cosh); |
+TF_BUILTIN(MathCosh, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Cosh); |
} |
// ES6 section 20.2.2.14 Math.exp ( x ) |
-void Builtins::Generate_MathExp(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Exp); |
+TF_BUILTIN(MathExp, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Exp); |
} |
// ES6 section 20.2.2.15 Math.expm1 ( x ) |
-void Builtins::Generate_MathExpm1(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Expm1); |
+TF_BUILTIN(MathExpm1, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Expm1); |
} |
// ES6 section 20.2.2.16 Math.floor ( x ) |
-void Builtins::Generate_MathFloor(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Floor); |
+TF_BUILTIN(MathFloor, MathBuiltinsAssembler) { |
+ MathRoundingOperation(&CodeStubAssembler::Float64Floor); |
} |
// ES6 section 20.2.2.17 Math.fround ( x ) |
-void Builtins::Generate_MathFround(compiler::CodeAssemblerState* state) { |
- using compiler::Node; |
- CodeStubAssembler assembler(state); |
- |
- Node* x = assembler.Parameter(1); |
- Node* context = assembler.Parameter(4); |
- Node* x_value = assembler.TruncateTaggedToFloat64(context, x); |
- Node* value32 = assembler.TruncateFloat64ToFloat32(x_value); |
- Node* value = assembler.ChangeFloat32ToFloat64(value32); |
- Node* result = assembler.AllocateHeapNumberWithValue(value); |
- assembler.Return(result); |
+TF_BUILTIN(MathFround, CodeStubAssembler) { |
+ Node* x = Parameter(1); |
+ Node* context = Parameter(4); |
+ Node* x_value = TruncateTaggedToFloat64(context, x); |
+ Node* value32 = TruncateFloat64ToFloat32(x_value); |
+ Node* value = ChangeFloat32ToFloat64(value32); |
+ Node* result = AllocateHeapNumberWithValue(value); |
+ Return(result); |
} |
// ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) |
@@ -403,168 +362,134 @@ BUILTIN(MathHypot) { |
} |
// ES6 section 20.2.2.19 Math.imul ( x, y ) |
-void Builtins::Generate_MathImul(compiler::CodeAssemblerState* state) { |
- using compiler::Node; |
- CodeStubAssembler assembler(state); |
- |
- Node* x = assembler.Parameter(1); |
- Node* y = assembler.Parameter(2); |
- Node* context = assembler.Parameter(5); |
- Node* x_value = assembler.TruncateTaggedToWord32(context, x); |
- Node* y_value = assembler.TruncateTaggedToWord32(context, y); |
- Node* value = assembler.Int32Mul(x_value, y_value); |
- Node* result = assembler.ChangeInt32ToTagged(value); |
- assembler.Return(result); |
+TF_BUILTIN(MathImul, CodeStubAssembler) { |
+ Node* x = Parameter(1); |
+ Node* y = Parameter(2); |
+ Node* context = Parameter(5); |
+ Node* x_value = TruncateTaggedToWord32(context, x); |
+ Node* y_value = TruncateTaggedToWord32(context, y); |
+ Node* value = Int32Mul(x_value, y_value); |
+ Node* result = ChangeInt32ToTagged(value); |
+ Return(result); |
} |
// ES6 section 20.2.2.20 Math.log ( x ) |
-void Builtins::Generate_MathLog(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log); |
+TF_BUILTIN(MathLog, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Log); |
} |
// ES6 section 20.2.2.21 Math.log1p ( x ) |
-void Builtins::Generate_MathLog1p(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log1p); |
+TF_BUILTIN(MathLog1p, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Log1p); |
} |
// ES6 section 20.2.2.22 Math.log10 ( x ) |
-void Builtins::Generate_MathLog10(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log10); |
+TF_BUILTIN(MathLog10, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Log10); |
} |
// ES6 section 20.2.2.23 Math.log2 ( x ) |
-void Builtins::Generate_MathLog2(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log2); |
+TF_BUILTIN(MathLog2, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Log2); |
} |
// ES6 section 20.2.2.26 Math.pow ( x, y ) |
-void Builtins::Generate_MathPow(compiler::CodeAssemblerState* state) { |
- using compiler::Node; |
- CodeStubAssembler assembler(state); |
- |
- Node* x = assembler.Parameter(1); |
- Node* y = assembler.Parameter(2); |
- Node* context = assembler.Parameter(5); |
- Node* x_value = assembler.TruncateTaggedToFloat64(context, x); |
- Node* y_value = assembler.TruncateTaggedToFloat64(context, y); |
- Node* value = assembler.Float64Pow(x_value, y_value); |
- Node* result = assembler.ChangeFloat64ToTagged(value); |
- assembler.Return(result); |
+TF_BUILTIN(MathPow, CodeStubAssembler) { |
+ Node* x = Parameter(1); |
+ Node* y = Parameter(2); |
+ Node* context = Parameter(5); |
+ Node* x_value = TruncateTaggedToFloat64(context, x); |
+ Node* y_value = TruncateTaggedToFloat64(context, y); |
+ Node* value = Float64Pow(x_value, y_value); |
+ Node* result = ChangeFloat64ToTagged(value); |
+ Return(result); |
} |
// ES6 section 20.2.2.27 Math.random ( ) |
-void Builtins::Generate_MathRandom(compiler::CodeAssemblerState* state) { |
- using compiler::Node; |
- CodeStubAssembler assembler(state); |
- |
- Node* context = assembler.Parameter(3); |
- Node* native_context = assembler.LoadNativeContext(context); |
+TF_BUILTIN(MathRandom, CodeStubAssembler) { |
+ Node* context = Parameter(3); |
+ Node* native_context = LoadNativeContext(context); |
// Load cache index. |
- CodeStubAssembler::Variable smi_index(&assembler, |
- MachineRepresentation::kTagged); |
- smi_index.Bind(assembler.LoadContextElement( |
- native_context, Context::MATH_RANDOM_INDEX_INDEX)); |
+ Variable smi_index(this, MachineRepresentation::kTagged); |
+ smi_index.Bind( |
+ LoadContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX)); |
// Cached random numbers are exhausted if index is 0. Go to slow path. |
- CodeStubAssembler::Label if_cached(&assembler); |
- assembler.GotoIf( |
- assembler.SmiAbove(smi_index.value(), assembler.SmiConstant(Smi::kZero)), |
- &if_cached); |
+ Label if_cached(this); |
+ GotoIf(SmiAbove(smi_index.value(), SmiConstant(Smi::kZero)), &if_cached); |
// Cache exhausted, populate the cache. Return value is the new index. |
- smi_index.Bind( |
- assembler.CallRuntime(Runtime::kGenerateRandomNumbers, context)); |
- assembler.Goto(&if_cached); |
+ smi_index.Bind(CallRuntime(Runtime::kGenerateRandomNumbers, context)); |
+ Goto(&if_cached); |
// Compute next index by decrement. |
- assembler.Bind(&if_cached); |
- Node* new_smi_index = assembler.SmiSub( |
- smi_index.value(), assembler.SmiConstant(Smi::FromInt(1))); |
- assembler.StoreContextElement( |
- native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index); |
+ Bind(&if_cached); |
+ Node* new_smi_index = SmiSub(smi_index.value(), SmiConstant(Smi::FromInt(1))); |
+ StoreContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX, |
+ new_smi_index); |
// Load and return next cached random number. |
- Node* array = assembler.LoadContextElement(native_context, |
- Context::MATH_RANDOM_CACHE_INDEX); |
- Node* random = assembler.LoadFixedDoubleArrayElement( |
- array, new_smi_index, MachineType::Float64(), 0, |
- CodeStubAssembler::SMI_PARAMETERS); |
- assembler.Return(assembler.AllocateHeapNumberWithValue(random)); |
+ Node* array = |
+ LoadContextElement(native_context, Context::MATH_RANDOM_CACHE_INDEX); |
+ Node* random = LoadFixedDoubleArrayElement( |
+ array, new_smi_index, MachineType::Float64(), 0, SMI_PARAMETERS); |
+ Return(AllocateHeapNumberWithValue(random)); |
} |
// ES6 section 20.2.2.28 Math.round ( x ) |
-void Builtins::Generate_MathRound(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Round); |
+TF_BUILTIN(MathRound, MathBuiltinsAssembler) { |
+ MathRoundingOperation(&CodeStubAssembler::Float64Round); |
} |
// ES6 section 20.2.2.29 Math.sign ( x ) |
-void Builtins::Generate_MathSign(compiler::CodeAssemblerState* state) { |
- typedef CodeStubAssembler::Label Label; |
- using compiler::Node; |
- CodeStubAssembler assembler(state); |
- |
+TF_BUILTIN(MathSign, CodeStubAssembler) { |
// Convert the {x} value to a Number. |
- Node* x = assembler.Parameter(1); |
- Node* context = assembler.Parameter(4); |
- Node* x_value = assembler.TruncateTaggedToFloat64(context, x); |
+ Node* x = Parameter(1); |
+ Node* context = Parameter(4); |
+ Node* x_value = TruncateTaggedToFloat64(context, x); |
// Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. |
- Label if_xisnegative(&assembler), if_xispositive(&assembler); |
- assembler.GotoIf( |
- assembler.Float64LessThan(x_value, assembler.Float64Constant(0.0)), |
- &if_xisnegative); |
- assembler.GotoIf( |
- assembler.Float64LessThan(assembler.Float64Constant(0.0), x_value), |
- &if_xispositive); |
- assembler.Return(assembler.ChangeFloat64ToTagged(x_value)); |
+ Label if_xisnegative(this), if_xispositive(this); |
+ GotoIf(Float64LessThan(x_value, Float64Constant(0.0)), &if_xisnegative); |
+ GotoIf(Float64LessThan(Float64Constant(0.0), x_value), &if_xispositive); |
+ Return(ChangeFloat64ToTagged(x_value)); |
- assembler.Bind(&if_xisnegative); |
- assembler.Return(assembler.SmiConstant(Smi::FromInt(-1))); |
+ Bind(&if_xisnegative); |
+ Return(SmiConstant(Smi::FromInt(-1))); |
- assembler.Bind(&if_xispositive); |
- assembler.Return(assembler.SmiConstant(Smi::FromInt(1))); |
+ Bind(&if_xispositive); |
+ Return(SmiConstant(Smi::FromInt(1))); |
} |
// ES6 section 20.2.2.30 Math.sin ( x ) |
-void Builtins::Generate_MathSin(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sin); |
+TF_BUILTIN(MathSin, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Sin); |
} |
// ES6 section 20.2.2.31 Math.sinh ( x ) |
-void Builtins::Generate_MathSinh(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sinh); |
+TF_BUILTIN(MathSinh, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Sinh); |
} |
// ES6 section 20.2.2.32 Math.sqrt ( x ) |
-void Builtins::Generate_MathSqrt(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sqrt); |
+TF_BUILTIN(MathSqrt, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Sqrt); |
} |
// ES6 section 20.2.2.33 Math.tan ( x ) |
-void Builtins::Generate_MathTan(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tan); |
+TF_BUILTIN(MathTan, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Tan); |
} |
// ES6 section 20.2.2.34 Math.tanh ( x ) |
-void Builtins::Generate_MathTanh(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tanh); |
+TF_BUILTIN(MathTanh, MathBuiltinsAssembler) { |
+ MathUnaryOperation(&CodeStubAssembler::Float64Tanh); |
} |
// ES6 section 20.2.2.35 Math.trunc ( x ) |
-void Builtins::Generate_MathTrunc(compiler::CodeAssemblerState* state) { |
- CodeStubAssembler assembler(state); |
- Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Trunc); |
+TF_BUILTIN(MathTrunc, MathBuiltinsAssembler) { |
+ MathRoundingOperation(&CodeStubAssembler::Float64Trunc); |
} |
void Builtins::Generate_MathMax(MacroAssembler* masm) { |