OLD | NEW |
1 // Copyright 2016 the V8 project authors. All rights reserved. | 1 // Copyright 2016 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "src/builtins/builtins-utils.h" | 5 #include "src/builtins/builtins-utils.h" |
6 #include "src/builtins/builtins.h" | 6 #include "src/builtins/builtins.h" |
7 #include "src/code-factory.h" | 7 #include "src/code-factory.h" |
8 #include "src/code-stub-assembler.h" | 8 #include "src/code-stub-assembler.h" |
9 | 9 |
10 namespace v8 { | 10 namespace v8 { |
11 namespace internal { | 11 namespace internal { |
12 | 12 |
13 // ----------------------------------------------------------------------------- | 13 // ----------------------------------------------------------------------------- |
14 // ES6 section 20.2.2 Function Properties of the Math Object | 14 // ES6 section 20.2.2 Function Properties of the Math Object |
15 | 15 |
| 16 class MathBuiltinsAssembler : public CodeStubAssembler { |
| 17 public: |
| 18 explicit MathBuiltinsAssembler(compiler::CodeAssemblerState* state) |
| 19 : CodeStubAssembler(state) {} |
| 20 |
| 21 protected: |
| 22 void MathRoundingOperation(Node* (CodeStubAssembler::*float64op)(Node*)); |
| 23 void MathUnaryOperation(Node* (CodeStubAssembler::*float64op)(Node*)); |
| 24 }; |
| 25 |
16 // ES6 section - 20.2.2.1 Math.abs ( x ) | 26 // ES6 section - 20.2.2.1 Math.abs ( x ) |
17 void Builtins::Generate_MathAbs(compiler::CodeAssemblerState* state) { | 27 TF_BUILTIN(MathAbs, CodeStubAssembler) { |
18 typedef CodeStubAssembler::Label Label; | 28 Node* context = Parameter(4); |
19 typedef compiler::Node Node; | |
20 typedef CodeStubAssembler::Variable Variable; | |
21 CodeStubAssembler assembler(state); | |
22 | |
23 Node* context = assembler.Parameter(4); | |
24 | 29 |
25 // We might need to loop once for ToNumber conversion. | 30 // We might need to loop once for ToNumber conversion. |
26 Variable var_x(&assembler, MachineRepresentation::kTagged); | 31 Variable var_x(this, MachineRepresentation::kTagged); |
27 Label loop(&assembler, &var_x); | 32 Label loop(this, &var_x); |
28 var_x.Bind(assembler.Parameter(1)); | 33 var_x.Bind(Parameter(1)); |
29 assembler.Goto(&loop); | 34 Goto(&loop); |
30 assembler.Bind(&loop); | 35 Bind(&loop); |
31 { | 36 { |
32 // Load the current {x} value. | 37 // Load the current {x} value. |
33 Node* x = var_x.value(); | 38 Node* x = var_x.value(); |
34 | 39 |
35 // Check if {x} is a Smi or a HeapObject. | 40 // Check if {x} is a Smi or a HeapObject. |
36 Label if_xissmi(&assembler), if_xisnotsmi(&assembler); | 41 Label if_xissmi(this), if_xisnotsmi(this); |
37 assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | 42 Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
38 | 43 |
39 assembler.Bind(&if_xissmi); | 44 Bind(&if_xissmi); |
40 { | 45 { |
41 // Check if {x} is already positive. | 46 // Check if {x} is already positive. |
42 Label if_xispositive(&assembler), if_xisnotpositive(&assembler); | 47 Label if_xispositive(this), if_xisnotpositive(this); |
43 assembler.BranchIfSmiLessThanOrEqual( | 48 BranchIfSmiLessThanOrEqual(SmiConstant(Smi::FromInt(0)), x, |
44 assembler.SmiConstant(Smi::FromInt(0)), x, &if_xispositive, | 49 &if_xispositive, &if_xisnotpositive); |
45 &if_xisnotpositive); | 50 |
46 | 51 Bind(&if_xispositive); |
47 assembler.Bind(&if_xispositive); | |
48 { | 52 { |
49 // Just return the input {x}. | 53 // Just return the input {x}. |
50 assembler.Return(x); | 54 Return(x); |
51 } | 55 } |
52 | 56 |
53 assembler.Bind(&if_xisnotpositive); | 57 Bind(&if_xisnotpositive); |
54 { | 58 { |
55 // Try to negate the {x} value. | 59 // Try to negate the {x} value. |
56 Node* pair = assembler.IntPtrSubWithOverflow( | 60 Node* pair = |
57 assembler.IntPtrConstant(0), assembler.BitcastTaggedToWord(x)); | 61 IntPtrSubWithOverflow(IntPtrConstant(0), BitcastTaggedToWord(x)); |
58 Node* overflow = assembler.Projection(1, pair); | 62 Node* overflow = Projection(1, pair); |
59 Label if_overflow(&assembler, Label::kDeferred), | 63 Label if_overflow(this, Label::kDeferred), if_notoverflow(this); |
60 if_notoverflow(&assembler); | 64 Branch(overflow, &if_overflow, &if_notoverflow); |
61 assembler.Branch(overflow, &if_overflow, &if_notoverflow); | 65 |
62 | 66 Bind(&if_notoverflow); |
63 assembler.Bind(&if_notoverflow); | |
64 { | 67 { |
65 // There is a Smi representation for negated {x}. | 68 // There is a Smi representation for negated {x}. |
66 Node* result = assembler.Projection(0, pair); | 69 Node* result = Projection(0, pair); |
67 result = assembler.BitcastWordToTagged(result); | 70 Return(BitcastWordToTagged(result)); |
68 assembler.Return(result); | |
69 } | 71 } |
70 | 72 |
71 assembler.Bind(&if_overflow); | 73 Bind(&if_overflow); |
72 { | 74 { Return(NumberConstant(0.0 - Smi::kMinValue)); } |
73 Node* result = assembler.NumberConstant(0.0 - Smi::kMinValue); | 75 } |
74 assembler.Return(result); | 76 } |
75 } | 77 |
76 } | 78 Bind(&if_xisnotsmi); |
77 } | |
78 | |
79 assembler.Bind(&if_xisnotsmi); | |
80 { | 79 { |
81 // Check if {x} is a HeapNumber. | 80 // Check if {x} is a HeapNumber. |
82 Label if_xisheapnumber(&assembler), | 81 Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred); |
83 if_xisnotheapnumber(&assembler, Label::kDeferred); | 82 Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber, |
84 assembler.Branch(assembler.IsHeapNumberMap(assembler.LoadMap(x)), | 83 &if_xisnotheapnumber); |
85 &if_xisheapnumber, &if_xisnotheapnumber); | 84 |
86 | 85 Bind(&if_xisheapnumber); |
87 assembler.Bind(&if_xisheapnumber); | 86 { |
88 { | 87 Node* x_value = LoadHeapNumberValue(x); |
89 Node* x_value = assembler.LoadHeapNumberValue(x); | 88 Node* value = Float64Abs(x_value); |
90 Node* value = assembler.Float64Abs(x_value); | 89 Node* result = AllocateHeapNumberWithValue(value); |
91 Node* result = assembler.AllocateHeapNumberWithValue(value); | 90 Return(result); |
92 assembler.Return(result); | 91 } |
93 } | 92 |
94 | 93 Bind(&if_xisnotheapnumber); |
95 assembler.Bind(&if_xisnotheapnumber); | |
96 { | 94 { |
97 // Need to convert {x} to a Number first. | 95 // Need to convert {x} to a Number first. |
98 Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); | 96 Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
99 var_x.Bind(assembler.CallStub(callable, context, x)); | 97 var_x.Bind(CallStub(callable, context, x)); |
100 assembler.Goto(&loop); | 98 Goto(&loop); |
101 } | 99 } |
102 } | 100 } |
103 } | 101 } |
104 } | 102 } |
105 | 103 |
106 namespace { | 104 void MathBuiltinsAssembler::MathRoundingOperation( |
107 | 105 Node* (CodeStubAssembler::*float64op)(Node*)) { |
108 void Generate_MathRoundingOperation( | 106 Node* context = Parameter(4); |
109 CodeStubAssembler* assembler, | |
110 compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { | |
111 typedef CodeStubAssembler::Label Label; | |
112 typedef compiler::Node Node; | |
113 typedef CodeStubAssembler::Variable Variable; | |
114 | |
115 Node* context = assembler->Parameter(4); | |
116 | 107 |
117 // We might need to loop once for ToNumber conversion. | 108 // We might need to loop once for ToNumber conversion. |
118 Variable var_x(assembler, MachineRepresentation::kTagged); | 109 Variable var_x(this, MachineRepresentation::kTagged); |
119 Label loop(assembler, &var_x); | 110 Label loop(this, &var_x); |
120 var_x.Bind(assembler->Parameter(1)); | 111 var_x.Bind(Parameter(1)); |
121 assembler->Goto(&loop); | 112 Goto(&loop); |
122 assembler->Bind(&loop); | 113 Bind(&loop); |
123 { | 114 { |
124 // Load the current {x} value. | 115 // Load the current {x} value. |
125 Node* x = var_x.value(); | 116 Node* x = var_x.value(); |
126 | 117 |
127 // Check if {x} is a Smi or a HeapObject. | 118 // Check if {x} is a Smi or a HeapObject. |
128 Label if_xissmi(assembler), if_xisnotsmi(assembler); | 119 Label if_xissmi(this), if_xisnotsmi(this); |
129 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | 120 Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
130 | 121 |
131 assembler->Bind(&if_xissmi); | 122 Bind(&if_xissmi); |
132 { | 123 { |
133 // Nothing to do when {x} is a Smi. | 124 // Nothing to do when {x} is a Smi. |
134 assembler->Return(x); | 125 Return(x); |
135 } | 126 } |
136 | 127 |
137 assembler->Bind(&if_xisnotsmi); | 128 Bind(&if_xisnotsmi); |
138 { | 129 { |
139 // Check if {x} is a HeapNumber. | 130 // Check if {x} is a HeapNumber. |
140 Label if_xisheapnumber(assembler), | 131 Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred); |
141 if_xisnotheapnumber(assembler, Label::kDeferred); | 132 Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber, |
142 assembler->Branch(assembler->IsHeapNumberMap(assembler->LoadMap(x)), | 133 &if_xisnotheapnumber); |
143 &if_xisheapnumber, &if_xisnotheapnumber); | 134 |
144 | 135 Bind(&if_xisheapnumber); |
145 assembler->Bind(&if_xisheapnumber); | 136 { |
146 { | 137 Node* x_value = LoadHeapNumberValue(x); |
147 Node* x_value = assembler->LoadHeapNumberValue(x); | 138 Node* value = (this->*float64op)(x_value); |
148 Node* value = (assembler->*float64op)(x_value); | 139 Node* result = ChangeFloat64ToTagged(value); |
149 Node* result = assembler->ChangeFloat64ToTagged(value); | 140 Return(result); |
150 assembler->Return(result); | 141 } |
151 } | 142 |
152 | 143 Bind(&if_xisnotheapnumber); |
153 assembler->Bind(&if_xisnotheapnumber); | |
154 { | 144 { |
155 // Need to convert {x} to a Number first. | 145 // Need to convert {x} to a Number first. |
156 Callable callable = | 146 Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
157 CodeFactory::NonNumberToNumber(assembler->isolate()); | 147 var_x.Bind(CallStub(callable, context, x)); |
158 var_x.Bind(assembler->CallStub(callable, context, x)); | 148 Goto(&loop); |
159 assembler->Goto(&loop); | |
160 } | 149 } |
161 } | 150 } |
162 } | 151 } |
163 } | 152 } |
164 | 153 |
165 void Generate_MathUnaryOperation( | 154 void MathBuiltinsAssembler::MathUnaryOperation( |
166 CodeStubAssembler* assembler, | 155 Node* (CodeStubAssembler::*float64op)(Node*)) { |
167 compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { | 156 Node* x = Parameter(1); |
168 typedef compiler::Node Node; | 157 Node* context = Parameter(4); |
169 | 158 Node* x_value = TruncateTaggedToFloat64(context, x); |
170 Node* x = assembler->Parameter(1); | 159 Node* value = (this->*float64op)(x_value); |
171 Node* context = assembler->Parameter(4); | 160 Node* result = AllocateHeapNumberWithValue(value); |
172 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | 161 Return(result); |
173 Node* value = (assembler->*float64op)(x_value); | 162 } |
174 Node* result = assembler->AllocateHeapNumberWithValue(value); | |
175 assembler->Return(result); | |
176 } | |
177 | |
178 } // namespace | |
179 | 163 |
180 // ES6 section 20.2.2.2 Math.acos ( x ) | 164 // ES6 section 20.2.2.2 Math.acos ( x ) |
181 void Builtins::Generate_MathAcos(compiler::CodeAssemblerState* state) { | 165 TF_BUILTIN(MathAcos, MathBuiltinsAssembler) { |
182 CodeStubAssembler assembler(state); | 166 MathUnaryOperation(&CodeStubAssembler::Float64Acos); |
183 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acos); | |
184 } | 167 } |
185 | 168 |
186 // ES6 section 20.2.2.3 Math.acosh ( x ) | 169 // ES6 section 20.2.2.3 Math.acosh ( x ) |
187 void Builtins::Generate_MathAcosh(compiler::CodeAssemblerState* state) { | 170 TF_BUILTIN(MathAcosh, MathBuiltinsAssembler) { |
188 CodeStubAssembler assembler(state); | 171 MathUnaryOperation(&CodeStubAssembler::Float64Acosh); |
189 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acosh); | |
190 } | 172 } |
191 | 173 |
192 // ES6 section 20.2.2.4 Math.asin ( x ) | 174 // ES6 section 20.2.2.4 Math.asin ( x ) |
193 void Builtins::Generate_MathAsin(compiler::CodeAssemblerState* state) { | 175 TF_BUILTIN(MathAsin, MathBuiltinsAssembler) { |
194 CodeStubAssembler assembler(state); | 176 MathUnaryOperation(&CodeStubAssembler::Float64Asin); |
195 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asin); | |
196 } | 177 } |
197 | 178 |
198 // ES6 section 20.2.2.5 Math.asinh ( x ) | 179 // ES6 section 20.2.2.5 Math.asinh ( x ) |
199 void Builtins::Generate_MathAsinh(compiler::CodeAssemblerState* state) { | 180 TF_BUILTIN(MathAsinh, MathBuiltinsAssembler) { |
200 CodeStubAssembler assembler(state); | 181 MathUnaryOperation(&CodeStubAssembler::Float64Asinh); |
201 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asinh); | 182 } |
202 } | |
203 | |
204 // ES6 section 20.2.2.6 Math.atan ( x ) | 183 // ES6 section 20.2.2.6 Math.atan ( x ) |
205 void Builtins::Generate_MathAtan(compiler::CodeAssemblerState* state) { | 184 TF_BUILTIN(MathAtan, MathBuiltinsAssembler) { |
206 CodeStubAssembler assembler(state); | 185 MathUnaryOperation(&CodeStubAssembler::Float64Atan); |
207 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atan); | |
208 } | 186 } |
209 | 187 |
210 // ES6 section 20.2.2.7 Math.atanh ( x ) | 188 // ES6 section 20.2.2.7 Math.atanh ( x ) |
211 void Builtins::Generate_MathAtanh(compiler::CodeAssemblerState* state) { | 189 TF_BUILTIN(MathAtanh, MathBuiltinsAssembler) { |
212 CodeStubAssembler assembler(state); | 190 MathUnaryOperation(&CodeStubAssembler::Float64Atanh); |
213 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atanh); | |
214 } | 191 } |
215 | 192 |
216 // ES6 section 20.2.2.8 Math.atan2 ( y, x ) | 193 // ES6 section 20.2.2.8 Math.atan2 ( y, x ) |
217 void Builtins::Generate_MathAtan2(compiler::CodeAssemblerState* state) { | 194 TF_BUILTIN(MathAtan2, CodeStubAssembler) { |
218 using compiler::Node; | 195 Node* y = Parameter(1); |
219 CodeStubAssembler assembler(state); | 196 Node* x = Parameter(2); |
220 | 197 Node* context = Parameter(5); |
221 Node* y = assembler.Parameter(1); | 198 |
222 Node* x = assembler.Parameter(2); | 199 Node* y_value = TruncateTaggedToFloat64(context, y); |
223 Node* context = assembler.Parameter(5); | 200 Node* x_value = TruncateTaggedToFloat64(context, x); |
224 Node* y_value = assembler.TruncateTaggedToFloat64(context, y); | 201 Node* value = Float64Atan2(y_value, x_value); |
225 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 202 Node* result = AllocateHeapNumberWithValue(value); |
226 Node* value = assembler.Float64Atan2(y_value, x_value); | 203 Return(result); |
227 Node* result = assembler.AllocateHeapNumberWithValue(value); | |
228 assembler.Return(result); | |
229 } | 204 } |
230 | 205 |
231 // ES6 section 20.2.2.10 Math.ceil ( x ) | 206 // ES6 section 20.2.2.10 Math.ceil ( x ) |
232 void Builtins::Generate_MathCeil(compiler::CodeAssemblerState* state) { | 207 TF_BUILTIN(MathCeil, MathBuiltinsAssembler) { |
233 CodeStubAssembler assembler(state); | 208 MathRoundingOperation(&CodeStubAssembler::Float64Ceil); |
234 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Ceil); | |
235 } | 209 } |
236 | 210 |
237 // ES6 section 20.2.2.9 Math.cbrt ( x ) | 211 // ES6 section 20.2.2.9 Math.cbrt ( x ) |
238 void Builtins::Generate_MathCbrt(compiler::CodeAssemblerState* state) { | 212 TF_BUILTIN(MathCbrt, MathBuiltinsAssembler) { |
239 CodeStubAssembler assembler(state); | 213 MathUnaryOperation(&CodeStubAssembler::Float64Cbrt); |
240 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cbrt); | |
241 } | 214 } |
242 | 215 |
243 // ES6 section 20.2.2.11 Math.clz32 ( x ) | 216 // ES6 section 20.2.2.11 Math.clz32 ( x ) |
244 void Builtins::Generate_MathClz32(compiler::CodeAssemblerState* state) { | 217 TF_BUILTIN(MathClz32, CodeStubAssembler) { |
245 typedef CodeStubAssembler::Label Label; | 218 Node* context = Parameter(4); |
246 typedef compiler::Node Node; | |
247 typedef CodeStubAssembler::Variable Variable; | |
248 CodeStubAssembler assembler(state); | |
249 | |
250 Node* context = assembler.Parameter(4); | |
251 | 219 |
252 // Shared entry point for the clz32 operation. | 220 // Shared entry point for the clz32 operation. |
253 Variable var_clz32_x(&assembler, MachineRepresentation::kWord32); | 221 Variable var_clz32_x(this, MachineRepresentation::kWord32); |
254 Label do_clz32(&assembler); | 222 Label do_clz32(this); |
255 | 223 |
256 // We might need to loop once for ToNumber conversion. | 224 // We might need to loop once for ToNumber conversion. |
257 Variable var_x(&assembler, MachineRepresentation::kTagged); | 225 Variable var_x(this, MachineRepresentation::kTagged); |
258 Label loop(&assembler, &var_x); | 226 Label loop(this, &var_x); |
259 var_x.Bind(assembler.Parameter(1)); | 227 var_x.Bind(Parameter(1)); |
260 assembler.Goto(&loop); | 228 Goto(&loop); |
261 assembler.Bind(&loop); | 229 Bind(&loop); |
262 { | 230 { |
263 // Load the current {x} value. | 231 // Load the current {x} value. |
264 Node* x = var_x.value(); | 232 Node* x = var_x.value(); |
265 | 233 |
266 // Check if {x} is a Smi or a HeapObject. | 234 // Check if {x} is a Smi or a HeapObject. |
267 Label if_xissmi(&assembler), if_xisnotsmi(&assembler); | 235 Label if_xissmi(this), if_xisnotsmi(this); |
268 assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | 236 Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
269 | 237 |
270 assembler.Bind(&if_xissmi); | 238 Bind(&if_xissmi); |
271 { | 239 { |
272 var_clz32_x.Bind(assembler.SmiToWord32(x)); | 240 var_clz32_x.Bind(SmiToWord32(x)); |
273 assembler.Goto(&do_clz32); | 241 Goto(&do_clz32); |
274 } | 242 } |
275 | 243 |
276 assembler.Bind(&if_xisnotsmi); | 244 Bind(&if_xisnotsmi); |
277 { | 245 { |
278 // Check if {x} is a HeapNumber. | 246 // Check if {x} is a HeapNumber. |
279 Label if_xisheapnumber(&assembler), | 247 Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred); |
280 if_xisnotheapnumber(&assembler, Label::kDeferred); | 248 Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber, |
281 assembler.Branch(assembler.IsHeapNumberMap(assembler.LoadMap(x)), | 249 &if_xisnotheapnumber); |
282 &if_xisheapnumber, &if_xisnotheapnumber); | 250 |
283 | 251 Bind(&if_xisheapnumber); |
284 assembler.Bind(&if_xisheapnumber); | 252 { |
285 { | 253 var_clz32_x.Bind(TruncateHeapNumberValueToWord32(x)); |
286 var_clz32_x.Bind(assembler.TruncateHeapNumberValueToWord32(x)); | 254 Goto(&do_clz32); |
287 assembler.Goto(&do_clz32); | 255 } |
288 } | 256 |
289 | 257 Bind(&if_xisnotheapnumber); |
290 assembler.Bind(&if_xisnotheapnumber); | |
291 { | 258 { |
292 // Need to convert {x} to a Number first. | 259 // Need to convert {x} to a Number first. |
293 Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); | 260 Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
294 var_x.Bind(assembler.CallStub(callable, context, x)); | 261 var_x.Bind(CallStub(callable, context, x)); |
295 assembler.Goto(&loop); | 262 Goto(&loop); |
296 } | 263 } |
297 } | 264 } |
298 } | 265 } |
299 | 266 |
300 assembler.Bind(&do_clz32); | 267 Bind(&do_clz32); |
301 { | 268 { |
302 Node* x_value = var_clz32_x.value(); | 269 Node* x_value = var_clz32_x.value(); |
303 Node* value = assembler.Word32Clz(x_value); | 270 Node* value = Word32Clz(x_value); |
304 Node* result = assembler.ChangeInt32ToTagged(value); | 271 Node* result = ChangeInt32ToTagged(value); |
305 assembler.Return(result); | 272 Return(result); |
306 } | 273 } |
307 } | 274 } |
308 | 275 |
309 // ES6 section 20.2.2.12 Math.cos ( x ) | 276 // ES6 section 20.2.2.12 Math.cos ( x ) |
310 void Builtins::Generate_MathCos(compiler::CodeAssemblerState* state) { | 277 TF_BUILTIN(MathCos, MathBuiltinsAssembler) { |
311 CodeStubAssembler assembler(state); | 278 MathUnaryOperation(&CodeStubAssembler::Float64Cos); |
312 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cos); | |
313 } | 279 } |
314 | 280 |
315 // ES6 section 20.2.2.13 Math.cosh ( x ) | 281 // ES6 section 20.2.2.13 Math.cosh ( x ) |
316 void Builtins::Generate_MathCosh(compiler::CodeAssemblerState* state) { | 282 TF_BUILTIN(MathCosh, MathBuiltinsAssembler) { |
317 CodeStubAssembler assembler(state); | 283 MathUnaryOperation(&CodeStubAssembler::Float64Cosh); |
318 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cosh); | |
319 } | 284 } |
320 | 285 |
321 // ES6 section 20.2.2.14 Math.exp ( x ) | 286 // ES6 section 20.2.2.14 Math.exp ( x ) |
322 void Builtins::Generate_MathExp(compiler::CodeAssemblerState* state) { | 287 TF_BUILTIN(MathExp, MathBuiltinsAssembler) { |
323 CodeStubAssembler assembler(state); | 288 MathUnaryOperation(&CodeStubAssembler::Float64Exp); |
324 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Exp); | |
325 } | 289 } |
326 | 290 |
327 // ES6 section 20.2.2.15 Math.expm1 ( x ) | 291 // ES6 section 20.2.2.15 Math.expm1 ( x ) |
328 void Builtins::Generate_MathExpm1(compiler::CodeAssemblerState* state) { | 292 TF_BUILTIN(MathExpm1, MathBuiltinsAssembler) { |
329 CodeStubAssembler assembler(state); | 293 MathUnaryOperation(&CodeStubAssembler::Float64Expm1); |
330 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Expm1); | |
331 } | 294 } |
332 | 295 |
333 // ES6 section 20.2.2.16 Math.floor ( x ) | 296 // ES6 section 20.2.2.16 Math.floor ( x ) |
334 void Builtins::Generate_MathFloor(compiler::CodeAssemblerState* state) { | 297 TF_BUILTIN(MathFloor, MathBuiltinsAssembler) { |
335 CodeStubAssembler assembler(state); | 298 MathRoundingOperation(&CodeStubAssembler::Float64Floor); |
336 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Floor); | |
337 } | 299 } |
338 | 300 |
339 // ES6 section 20.2.2.17 Math.fround ( x ) | 301 // ES6 section 20.2.2.17 Math.fround ( x ) |
340 void Builtins::Generate_MathFround(compiler::CodeAssemblerState* state) { | 302 TF_BUILTIN(MathFround, CodeStubAssembler) { |
341 using compiler::Node; | 303 Node* x = Parameter(1); |
342 CodeStubAssembler assembler(state); | 304 Node* context = Parameter(4); |
343 | 305 Node* x_value = TruncateTaggedToFloat64(context, x); |
344 Node* x = assembler.Parameter(1); | 306 Node* value32 = TruncateFloat64ToFloat32(x_value); |
345 Node* context = assembler.Parameter(4); | 307 Node* value = ChangeFloat32ToFloat64(value32); |
346 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 308 Node* result = AllocateHeapNumberWithValue(value); |
347 Node* value32 = assembler.TruncateFloat64ToFloat32(x_value); | 309 Return(result); |
348 Node* value = assembler.ChangeFloat32ToFloat64(value32); | |
349 Node* result = assembler.AllocateHeapNumberWithValue(value); | |
350 assembler.Return(result); | |
351 } | 310 } |
352 | 311 |
353 // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) | 312 // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) |
354 BUILTIN(MathHypot) { | 313 BUILTIN(MathHypot) { |
355 HandleScope scope(isolate); | 314 HandleScope scope(isolate); |
356 int const length = args.length() - 1; | 315 int const length = args.length() - 1; |
357 if (length == 0) return Smi::kZero; | 316 if (length == 0) return Smi::kZero; |
358 DCHECK_LT(0, length); | 317 DCHECK_LT(0, length); |
359 double max = 0; | 318 double max = 0; |
360 bool one_arg_is_nan = false; | 319 bool one_arg_is_nan = false; |
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
396 double summand = n * n - compensation; | 355 double summand = n * n - compensation; |
397 double preliminary = sum + summand; | 356 double preliminary = sum + summand; |
398 compensation = (preliminary - sum) - summand; | 357 compensation = (preliminary - sum) - summand; |
399 sum = preliminary; | 358 sum = preliminary; |
400 } | 359 } |
401 | 360 |
402 return *isolate->factory()->NewNumber(std::sqrt(sum) * max); | 361 return *isolate->factory()->NewNumber(std::sqrt(sum) * max); |
403 } | 362 } |
404 | 363 |
405 // ES6 section 20.2.2.19 Math.imul ( x, y ) | 364 // ES6 section 20.2.2.19 Math.imul ( x, y ) |
406 void Builtins::Generate_MathImul(compiler::CodeAssemblerState* state) { | 365 TF_BUILTIN(MathImul, CodeStubAssembler) { |
407 using compiler::Node; | 366 Node* x = Parameter(1); |
408 CodeStubAssembler assembler(state); | 367 Node* y = Parameter(2); |
409 | 368 Node* context = Parameter(5); |
410 Node* x = assembler.Parameter(1); | 369 Node* x_value = TruncateTaggedToWord32(context, x); |
411 Node* y = assembler.Parameter(2); | 370 Node* y_value = TruncateTaggedToWord32(context, y); |
412 Node* context = assembler.Parameter(5); | 371 Node* value = Int32Mul(x_value, y_value); |
413 Node* x_value = assembler.TruncateTaggedToWord32(context, x); | 372 Node* result = ChangeInt32ToTagged(value); |
414 Node* y_value = assembler.TruncateTaggedToWord32(context, y); | 373 Return(result); |
415 Node* value = assembler.Int32Mul(x_value, y_value); | |
416 Node* result = assembler.ChangeInt32ToTagged(value); | |
417 assembler.Return(result); | |
418 } | 374 } |
419 | 375 |
420 // ES6 section 20.2.2.20 Math.log ( x ) | 376 // ES6 section 20.2.2.20 Math.log ( x ) |
421 void Builtins::Generate_MathLog(compiler::CodeAssemblerState* state) { | 377 TF_BUILTIN(MathLog, MathBuiltinsAssembler) { |
422 CodeStubAssembler assembler(state); | 378 MathUnaryOperation(&CodeStubAssembler::Float64Log); |
423 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log); | |
424 } | 379 } |
425 | 380 |
426 // ES6 section 20.2.2.21 Math.log1p ( x ) | 381 // ES6 section 20.2.2.21 Math.log1p ( x ) |
427 void Builtins::Generate_MathLog1p(compiler::CodeAssemblerState* state) { | 382 TF_BUILTIN(MathLog1p, MathBuiltinsAssembler) { |
428 CodeStubAssembler assembler(state); | 383 MathUnaryOperation(&CodeStubAssembler::Float64Log1p); |
429 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log1p); | |
430 } | 384 } |
431 | 385 |
432 // ES6 section 20.2.2.22 Math.log10 ( x ) | 386 // ES6 section 20.2.2.22 Math.log10 ( x ) |
433 void Builtins::Generate_MathLog10(compiler::CodeAssemblerState* state) { | 387 TF_BUILTIN(MathLog10, MathBuiltinsAssembler) { |
434 CodeStubAssembler assembler(state); | 388 MathUnaryOperation(&CodeStubAssembler::Float64Log10); |
435 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log10); | |
436 } | 389 } |
437 | 390 |
438 // ES6 section 20.2.2.23 Math.log2 ( x ) | 391 // ES6 section 20.2.2.23 Math.log2 ( x ) |
439 void Builtins::Generate_MathLog2(compiler::CodeAssemblerState* state) { | 392 TF_BUILTIN(MathLog2, MathBuiltinsAssembler) { |
440 CodeStubAssembler assembler(state); | 393 MathUnaryOperation(&CodeStubAssembler::Float64Log2); |
441 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log2); | |
442 } | 394 } |
443 | 395 |
444 // ES6 section 20.2.2.26 Math.pow ( x, y ) | 396 // ES6 section 20.2.2.26 Math.pow ( x, y ) |
445 void Builtins::Generate_MathPow(compiler::CodeAssemblerState* state) { | 397 TF_BUILTIN(MathPow, CodeStubAssembler) { |
446 using compiler::Node; | 398 Node* x = Parameter(1); |
447 CodeStubAssembler assembler(state); | 399 Node* y = Parameter(2); |
448 | 400 Node* context = Parameter(5); |
449 Node* x = assembler.Parameter(1); | 401 Node* x_value = TruncateTaggedToFloat64(context, x); |
450 Node* y = assembler.Parameter(2); | 402 Node* y_value = TruncateTaggedToFloat64(context, y); |
451 Node* context = assembler.Parameter(5); | 403 Node* value = Float64Pow(x_value, y_value); |
452 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 404 Node* result = ChangeFloat64ToTagged(value); |
453 Node* y_value = assembler.TruncateTaggedToFloat64(context, y); | 405 Return(result); |
454 Node* value = assembler.Float64Pow(x_value, y_value); | |
455 Node* result = assembler.ChangeFloat64ToTagged(value); | |
456 assembler.Return(result); | |
457 } | 406 } |
458 | 407 |
459 // ES6 section 20.2.2.27 Math.random ( ) | 408 // ES6 section 20.2.2.27 Math.random ( ) |
460 void Builtins::Generate_MathRandom(compiler::CodeAssemblerState* state) { | 409 TF_BUILTIN(MathRandom, CodeStubAssembler) { |
461 using compiler::Node; | 410 Node* context = Parameter(3); |
462 CodeStubAssembler assembler(state); | 411 Node* native_context = LoadNativeContext(context); |
463 | |
464 Node* context = assembler.Parameter(3); | |
465 Node* native_context = assembler.LoadNativeContext(context); | |
466 | 412 |
467 // Load cache index. | 413 // Load cache index. |
468 CodeStubAssembler::Variable smi_index(&assembler, | 414 Variable smi_index(this, MachineRepresentation::kTagged); |
469 MachineRepresentation::kTagged); | 415 smi_index.Bind( |
470 smi_index.Bind(assembler.LoadContextElement( | 416 LoadContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX)); |
471 native_context, Context::MATH_RANDOM_INDEX_INDEX)); | |
472 | 417 |
473 // Cached random numbers are exhausted if index is 0. Go to slow path. | 418 // Cached random numbers are exhausted if index is 0. Go to slow path. |
474 CodeStubAssembler::Label if_cached(&assembler); | 419 Label if_cached(this); |
475 assembler.GotoIf( | 420 GotoIf(SmiAbove(smi_index.value(), SmiConstant(Smi::kZero)), &if_cached); |
476 assembler.SmiAbove(smi_index.value(), assembler.SmiConstant(Smi::kZero)), | |
477 &if_cached); | |
478 | 421 |
479 // Cache exhausted, populate the cache. Return value is the new index. | 422 // Cache exhausted, populate the cache. Return value is the new index. |
480 smi_index.Bind( | 423 smi_index.Bind(CallRuntime(Runtime::kGenerateRandomNumbers, context)); |
481 assembler.CallRuntime(Runtime::kGenerateRandomNumbers, context)); | 424 Goto(&if_cached); |
482 assembler.Goto(&if_cached); | |
483 | 425 |
484 // Compute next index by decrement. | 426 // Compute next index by decrement. |
485 assembler.Bind(&if_cached); | 427 Bind(&if_cached); |
486 Node* new_smi_index = assembler.SmiSub( | 428 Node* new_smi_index = SmiSub(smi_index.value(), SmiConstant(Smi::FromInt(1))); |
487 smi_index.value(), assembler.SmiConstant(Smi::FromInt(1))); | 429 StoreContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX, |
488 assembler.StoreContextElement( | 430 new_smi_index); |
489 native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index); | |
490 | 431 |
491 // Load and return next cached random number. | 432 // Load and return next cached random number. |
492 Node* array = assembler.LoadContextElement(native_context, | 433 Node* array = |
493 Context::MATH_RANDOM_CACHE_INDEX); | 434 LoadContextElement(native_context, Context::MATH_RANDOM_CACHE_INDEX); |
494 Node* random = assembler.LoadFixedDoubleArrayElement( | 435 Node* random = LoadFixedDoubleArrayElement( |
495 array, new_smi_index, MachineType::Float64(), 0, | 436 array, new_smi_index, MachineType::Float64(), 0, SMI_PARAMETERS); |
496 CodeStubAssembler::SMI_PARAMETERS); | 437 Return(AllocateHeapNumberWithValue(random)); |
497 assembler.Return(assembler.AllocateHeapNumberWithValue(random)); | |
498 } | 438 } |
499 | 439 |
500 // ES6 section 20.2.2.28 Math.round ( x ) | 440 // ES6 section 20.2.2.28 Math.round ( x ) |
501 void Builtins::Generate_MathRound(compiler::CodeAssemblerState* state) { | 441 TF_BUILTIN(MathRound, MathBuiltinsAssembler) { |
502 CodeStubAssembler assembler(state); | 442 MathRoundingOperation(&CodeStubAssembler::Float64Round); |
503 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Round); | |
504 } | 443 } |
505 | 444 |
506 // ES6 section 20.2.2.29 Math.sign ( x ) | 445 // ES6 section 20.2.2.29 Math.sign ( x ) |
507 void Builtins::Generate_MathSign(compiler::CodeAssemblerState* state) { | 446 TF_BUILTIN(MathSign, CodeStubAssembler) { |
508 typedef CodeStubAssembler::Label Label; | |
509 using compiler::Node; | |
510 CodeStubAssembler assembler(state); | |
511 | |
512 // Convert the {x} value to a Number. | 447 // Convert the {x} value to a Number. |
513 Node* x = assembler.Parameter(1); | 448 Node* x = Parameter(1); |
514 Node* context = assembler.Parameter(4); | 449 Node* context = Parameter(4); |
515 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 450 Node* x_value = TruncateTaggedToFloat64(context, x); |
516 | 451 |
517 // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. | 452 // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. |
518 Label if_xisnegative(&assembler), if_xispositive(&assembler); | 453 Label if_xisnegative(this), if_xispositive(this); |
519 assembler.GotoIf( | 454 GotoIf(Float64LessThan(x_value, Float64Constant(0.0)), &if_xisnegative); |
520 assembler.Float64LessThan(x_value, assembler.Float64Constant(0.0)), | 455 GotoIf(Float64LessThan(Float64Constant(0.0), x_value), &if_xispositive); |
521 &if_xisnegative); | 456 Return(ChangeFloat64ToTagged(x_value)); |
522 assembler.GotoIf( | |
523 assembler.Float64LessThan(assembler.Float64Constant(0.0), x_value), | |
524 &if_xispositive); | |
525 assembler.Return(assembler.ChangeFloat64ToTagged(x_value)); | |
526 | 457 |
527 assembler.Bind(&if_xisnegative); | 458 Bind(&if_xisnegative); |
528 assembler.Return(assembler.SmiConstant(Smi::FromInt(-1))); | 459 Return(SmiConstant(Smi::FromInt(-1))); |
529 | 460 |
530 assembler.Bind(&if_xispositive); | 461 Bind(&if_xispositive); |
531 assembler.Return(assembler.SmiConstant(Smi::FromInt(1))); | 462 Return(SmiConstant(Smi::FromInt(1))); |
532 } | 463 } |
533 | 464 |
534 // ES6 section 20.2.2.30 Math.sin ( x ) | 465 // ES6 section 20.2.2.30 Math.sin ( x ) |
535 void Builtins::Generate_MathSin(compiler::CodeAssemblerState* state) { | 466 TF_BUILTIN(MathSin, MathBuiltinsAssembler) { |
536 CodeStubAssembler assembler(state); | 467 MathUnaryOperation(&CodeStubAssembler::Float64Sin); |
537 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sin); | |
538 } | 468 } |
539 | 469 |
540 // ES6 section 20.2.2.31 Math.sinh ( x ) | 470 // ES6 section 20.2.2.31 Math.sinh ( x ) |
541 void Builtins::Generate_MathSinh(compiler::CodeAssemblerState* state) { | 471 TF_BUILTIN(MathSinh, MathBuiltinsAssembler) { |
542 CodeStubAssembler assembler(state); | 472 MathUnaryOperation(&CodeStubAssembler::Float64Sinh); |
543 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sinh); | |
544 } | 473 } |
545 | 474 |
546 // ES6 section 20.2.2.32 Math.sqrt ( x ) | 475 // ES6 section 20.2.2.32 Math.sqrt ( x ) |
547 void Builtins::Generate_MathSqrt(compiler::CodeAssemblerState* state) { | 476 TF_BUILTIN(MathSqrt, MathBuiltinsAssembler) { |
548 CodeStubAssembler assembler(state); | 477 MathUnaryOperation(&CodeStubAssembler::Float64Sqrt); |
549 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sqrt); | |
550 } | 478 } |
551 | 479 |
552 // ES6 section 20.2.2.33 Math.tan ( x ) | 480 // ES6 section 20.2.2.33 Math.tan ( x ) |
553 void Builtins::Generate_MathTan(compiler::CodeAssemblerState* state) { | 481 TF_BUILTIN(MathTan, MathBuiltinsAssembler) { |
554 CodeStubAssembler assembler(state); | 482 MathUnaryOperation(&CodeStubAssembler::Float64Tan); |
555 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tan); | |
556 } | 483 } |
557 | 484 |
558 // ES6 section 20.2.2.34 Math.tanh ( x ) | 485 // ES6 section 20.2.2.34 Math.tanh ( x ) |
559 void Builtins::Generate_MathTanh(compiler::CodeAssemblerState* state) { | 486 TF_BUILTIN(MathTanh, MathBuiltinsAssembler) { |
560 CodeStubAssembler assembler(state); | 487 MathUnaryOperation(&CodeStubAssembler::Float64Tanh); |
561 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tanh); | |
562 } | 488 } |
563 | 489 |
564 // ES6 section 20.2.2.35 Math.trunc ( x ) | 490 // ES6 section 20.2.2.35 Math.trunc ( x ) |
565 void Builtins::Generate_MathTrunc(compiler::CodeAssemblerState* state) { | 491 TF_BUILTIN(MathTrunc, MathBuiltinsAssembler) { |
566 CodeStubAssembler assembler(state); | 492 MathRoundingOperation(&CodeStubAssembler::Float64Trunc); |
567 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Trunc); | |
568 } | 493 } |
569 | 494 |
570 void Builtins::Generate_MathMax(MacroAssembler* masm) { | 495 void Builtins::Generate_MathMax(MacroAssembler* masm) { |
571 Generate_MathMaxMin(masm, MathMaxMinKind::kMax); | 496 Generate_MathMaxMin(masm, MathMaxMinKind::kMax); |
572 } | 497 } |
573 | 498 |
574 void Builtins::Generate_MathMin(MacroAssembler* masm) { | 499 void Builtins::Generate_MathMin(MacroAssembler* masm) { |
575 Generate_MathMaxMin(masm, MathMaxMinKind::kMin); | 500 Generate_MathMaxMin(masm, MathMaxMinKind::kMin); |
576 } | 501 } |
577 | 502 |
578 } // namespace internal | 503 } // namespace internal |
579 } // namespace v8 | 504 } // namespace v8 |
OLD | NEW |