OLD | NEW |
| (Empty) |
1 /* -*- Mode: C; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ | |
2 /* ***** BEGIN LICENSE BLOCK ***** | |
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 | |
4 * | |
5 * The contents of this file are subject to the Mozilla Public License Version | |
6 * 1.1 (the "License"); you may not use this file except in compliance with | |
7 * the License. You may obtain a copy of the License at | |
8 * http://www.mozilla.org/MPL/ | |
9 * | |
10 * Software distributed under the License is distributed on an "AS IS" basis, | |
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License | |
12 * for the specific language governing rights and limitations under the | |
13 * License. | |
14 * | |
15 * The Original Code is mozilla.org code. | |
16 * | |
17 * The Initial Developer of the Original Code is | |
18 * Netscape Communications Corporation. | |
19 * Portions created by the Initial Developer are Copyright (C) 1998 | |
20 * the Initial Developer. All Rights Reserved. | |
21 * | |
22 * Contributor(s): | |
23 * Chris Saari <saari@netscape.com> | |
24 * Apple Computer | |
25 * | |
26 * Alternatively, the contents of this file may be used under the terms of | |
27 * either the GNU General Public License Version 2 or later (the "GPL"), or | |
28 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), | |
29 * in which case the provisions of the GPL or the LGPL are applicable instead | |
30 * of those above. If you wish to allow use of your version of this file only | |
31 * under the terms of either the GPL or the LGPL, and not to allow others to | |
32 * use your version of this file under the terms of the MPL, indicate your | |
33 * decision by deleting the provisions above and replace them with the notice | |
34 * and other provisions required by the GPL or the LGPL. If you do not delete | |
35 * the provisions above, a recipient may use your version of this file under | |
36 * the terms of any one of the MPL, the GPL or the LGPL. | |
37 * | |
38 * ***** END LICENSE BLOCK ***** */ | |
39 | |
40 /* | |
41 The Graphics Interchange Format(c) is the copyright property of CompuServe | |
42 Incorporated. Only CompuServe Incorporated is authorized to define, redefine, | |
43 enhance, alter, modify or change in any way the definition of the format. | |
44 | |
45 CompuServe Incorporated hereby grants a limited, non-exclusive, royalty-free | |
46 license for the use of the Graphics Interchange Format(sm) in computer | |
47 software; computer software utilizing GIF(sm) must acknowledge ownership of the | |
48 Graphics Interchange Format and its Service Mark by CompuServe Incorporated, in | |
49 User and Technical Documentation. Computer software utilizing GIF, which is | |
50 distributed or may be distributed without User or Technical Documentation must | |
51 display to the screen or printer a message acknowledging ownership of the | |
52 Graphics Interchange Format and the Service Mark by CompuServe Incorporated; in | |
53 this case, the acknowledgement may be displayed in an opening screen or leading | |
54 banner, or a closing screen or trailing banner. A message such as the following | |
55 may be used: | |
56 | |
57 "The Graphics Interchange Format(c) is the Copyright property of | |
58 CompuServe Incorporated. GIF(sm) is a Service Mark property of | |
59 CompuServe Incorporated." | |
60 | |
61 For further information, please contact : | |
62 | |
63 CompuServe Incorporated | |
64 Graphics Technology Department | |
65 5000 Arlington Center Boulevard | |
66 Columbus, Ohio 43220 | |
67 U. S. A. | |
68 | |
69 CompuServe Incorporated maintains a mailing list with all those individuals and | |
70 organizations who wish to receive copies of this document when it is corrected | |
71 or revised. This service is offered free of charge; please provide us with your | |
72 mailing address. | |
73 */ | |
74 | |
75 #include "platform/image-decoders/gif/GIFImageReader.h" | |
76 | |
77 #include <string.h> | |
78 #include "platform/wtf/PtrUtil.h" | |
79 | |
80 using blink::GIFImageDecoder; | |
81 | |
82 // GETN(n, s) requests at least 'n' bytes available from 'q', at start of state | |
83 // 's'. | |
84 // | |
85 // Note: the hold will never need to be bigger than 256 bytes, as each GIF block | |
86 // (except colormaps) can never be bigger than 256 bytes. Colormaps are directly | |
87 // copied in the resp. global_colormap or dynamically allocated local_colormap, | |
88 // so a fixed buffer in GIFImageReader is good enough. This buffer is only | |
89 // needed to copy left-over data from one GifWrite call to the next. | |
90 #define GETN(n, s) \ | |
91 do { \ | |
92 m_bytesToConsume = (n); \ | |
93 m_state = (s); \ | |
94 } while (0) | |
95 | |
96 // Get a 16-bit value stored in little-endian format. | |
97 #define GETINT16(p) ((p)[1] << 8 | (p)[0]) | |
98 | |
99 // Send the data to the display front-end. | |
100 bool GIFLZWContext::outputRow(GIFRow::const_iterator rowBegin) { | |
101 int drowStart = irow; | |
102 int drowEnd = irow; | |
103 | |
104 // Haeberli-inspired hack for interlaced GIFs: Replicate lines while | |
105 // displaying to diminish the "venetian-blind" effect as the image is | |
106 // loaded. Adjust pixel vertical positions to avoid the appearance of the | |
107 // image crawling up the screen as successive passes are drawn. | |
108 if (m_frameContext->progressiveDisplay() && m_frameContext->interlaced() && | |
109 ipass < 4) { | |
110 unsigned rowDup = 0; | |
111 unsigned rowShift = 0; | |
112 | |
113 switch (ipass) { | |
114 case 1: | |
115 rowDup = 7; | |
116 rowShift = 3; | |
117 break; | |
118 case 2: | |
119 rowDup = 3; | |
120 rowShift = 1; | |
121 break; | |
122 case 3: | |
123 rowDup = 1; | |
124 rowShift = 0; | |
125 break; | |
126 default: | |
127 break; | |
128 } | |
129 | |
130 drowStart -= rowShift; | |
131 drowEnd = drowStart + rowDup; | |
132 | |
133 // Extend if bottom edge isn't covered because of the shift upward. | |
134 if (((m_frameContext->height() - 1) - drowEnd) <= rowShift) | |
135 drowEnd = m_frameContext->height() - 1; | |
136 | |
137 // Clamp first and last rows to upper and lower edge of image. | |
138 if (drowStart < 0) | |
139 drowStart = 0; | |
140 | |
141 if ((unsigned)drowEnd >= m_frameContext->height()) | |
142 drowEnd = m_frameContext->height() - 1; | |
143 } | |
144 | |
145 // Protect against too much image data. | |
146 if ((unsigned)drowStart >= m_frameContext->height()) | |
147 return true; | |
148 | |
149 // CALLBACK: Let the client know we have decoded a row. | |
150 if (!m_client->HaveDecodedRow(m_frameContext->frameId(), rowBegin, | |
151 m_frameContext->width(), drowStart, | |
152 drowEnd - drowStart + 1, | |
153 m_frameContext->progressiveDisplay() && | |
154 m_frameContext->interlaced() && ipass > 1)) | |
155 return false; | |
156 | |
157 if (!m_frameContext->interlaced()) | |
158 irow++; | |
159 else { | |
160 do { | |
161 switch (ipass) { | |
162 case 1: | |
163 irow += 8; | |
164 if (irow >= m_frameContext->height()) { | |
165 ipass++; | |
166 irow = 4; | |
167 } | |
168 break; | |
169 | |
170 case 2: | |
171 irow += 8; | |
172 if (irow >= m_frameContext->height()) { | |
173 ipass++; | |
174 irow = 2; | |
175 } | |
176 break; | |
177 | |
178 case 3: | |
179 irow += 4; | |
180 if (irow >= m_frameContext->height()) { | |
181 ipass++; | |
182 irow = 1; | |
183 } | |
184 break; | |
185 | |
186 case 4: | |
187 irow += 2; | |
188 if (irow >= m_frameContext->height()) { | |
189 ipass++; | |
190 irow = 0; | |
191 } | |
192 break; | |
193 | |
194 default: | |
195 break; | |
196 } | |
197 } while (irow > (m_frameContext->height() - 1)); | |
198 } | |
199 return true; | |
200 } | |
201 | |
202 // Performs Lempel-Ziv-Welch decoding. Returns whether decoding was successful. | |
203 // If successful, the block will have been completely consumed and/or | |
204 // rowsRemaining will be 0. | |
205 bool GIFLZWContext::doLZW(const unsigned char* block, size_t bytesInBlock) { | |
206 const size_t width = m_frameContext->width(); | |
207 | |
208 if (rowIter == rowBuffer.end()) | |
209 return true; | |
210 | |
211 for (const unsigned char* ch = block; bytesInBlock-- > 0; ch++) { | |
212 // Feed the next byte into the decoder's 32-bit input buffer. | |
213 datum += ((int)*ch) << bits; | |
214 bits += 8; | |
215 | |
216 // Check for underflow of decoder's 32-bit input buffer. | |
217 while (bits >= codesize) { | |
218 // Get the leading variable-length symbol from the data stream. | |
219 int code = datum & codemask; | |
220 datum >>= codesize; | |
221 bits -= codesize; | |
222 | |
223 // Reset the dictionary to its original state, if requested. | |
224 if (code == clearCode) { | |
225 codesize = m_frameContext->dataSize() + 1; | |
226 codemask = (1 << codesize) - 1; | |
227 avail = clearCode + 2; | |
228 oldcode = -1; | |
229 continue; | |
230 } | |
231 | |
232 // Check for explicit end-of-stream code. | |
233 if (code == (clearCode + 1)) { | |
234 // end-of-stream should only appear after all image data. | |
235 if (!rowsRemaining) | |
236 return true; | |
237 return false; | |
238 } | |
239 | |
240 const int tempCode = code; | |
241 unsigned short codeLength = 0; | |
242 if (code < avail) { | |
243 // This is a pre-existing code, so we already know what it | |
244 // encodes. | |
245 codeLength = suffixLength[code]; | |
246 rowIter += codeLength; | |
247 } else if (code == avail && oldcode != -1) { | |
248 // This is a new code just being added to the dictionary. | |
249 // It must encode the contents of the previous code, plus | |
250 // the first character of the previous code again. | |
251 codeLength = suffixLength[oldcode] + 1; | |
252 rowIter += codeLength; | |
253 *--rowIter = firstchar; | |
254 code = oldcode; | |
255 } else { | |
256 // This is an invalid code. The dictionary is just initialized | |
257 // and the code is incomplete. We don't know how to handle | |
258 // this case. | |
259 return false; | |
260 } | |
261 | |
262 while (code >= clearCode) { | |
263 *--rowIter = suffix[code]; | |
264 code = prefix[code]; | |
265 } | |
266 | |
267 *--rowIter = firstchar = suffix[code]; | |
268 | |
269 // Define a new codeword in the dictionary as long as we've read | |
270 // more than one value from the stream. | |
271 if (avail < MAX_DICTIONARY_ENTRIES && oldcode != -1) { | |
272 prefix[avail] = oldcode; | |
273 suffix[avail] = firstchar; | |
274 suffixLength[avail] = suffixLength[oldcode] + 1; | |
275 ++avail; | |
276 | |
277 // If we've used up all the codewords of a given length | |
278 // increase the length of codewords by one bit, but don't | |
279 // exceed the specified maximum codeword size. | |
280 if (!(avail & codemask) && avail < MAX_DICTIONARY_ENTRIES) { | |
281 ++codesize; | |
282 codemask += avail; | |
283 } | |
284 } | |
285 oldcode = tempCode; | |
286 rowIter += codeLength; | |
287 | |
288 // Output as many rows as possible. | |
289 GIFRow::iterator rowBegin = rowBuffer.begin(); | |
290 for (; rowBegin + width <= rowIter; rowBegin += width) { | |
291 if (!outputRow(rowBegin)) | |
292 return false; | |
293 rowsRemaining--; | |
294 if (!rowsRemaining) | |
295 return true; | |
296 } | |
297 | |
298 if (rowBegin != rowBuffer.begin()) { | |
299 // Move the remaining bytes to the beginning of the buffer. | |
300 const size_t bytesToCopy = rowIter - rowBegin; | |
301 memcpy(rowBuffer.begin(), rowBegin, bytesToCopy); | |
302 rowIter = rowBuffer.begin() + bytesToCopy; | |
303 } | |
304 } | |
305 } | |
306 return true; | |
307 } | |
308 | |
309 void GIFColorMap::buildTable(blink::FastSharedBufferReader* reader) { | |
310 if (!m_isDefined || !m_table.IsEmpty()) | |
311 return; | |
312 | |
313 CHECK_LE(m_position + m_colors * BYTES_PER_COLORMAP_ENTRY, reader->size()); | |
314 DCHECK_LE(m_colors, MAX_COLORS); | |
315 char buffer[MAX_COLORS * BYTES_PER_COLORMAP_ENTRY]; | |
316 const unsigned char* srcColormap = | |
317 reinterpret_cast<const unsigned char*>(reader->GetConsecutiveData( | |
318 m_position, m_colors * BYTES_PER_COLORMAP_ENTRY, buffer)); | |
319 m_table.resize(m_colors); | |
320 for (Table::iterator iter = m_table.begin(); iter != m_table.end(); ++iter) { | |
321 *iter = SkPackARGB32NoCheck(255, srcColormap[0], srcColormap[1], | |
322 srcColormap[2]); | |
323 srcColormap += BYTES_PER_COLORMAP_ENTRY; | |
324 } | |
325 } | |
326 | |
327 // Decodes this frame. |frameDecoded| will be set to true if the entire frame is | |
328 // decoded. Returns true if decoding progressed further than before without | |
329 // error, or there is insufficient new data to decode further. Otherwise, a | |
330 // decoding error occurred; returns false in this case. | |
331 bool GIFFrameContext::decode(blink::FastSharedBufferReader* reader, | |
332 blink::GIFImageDecoder* client, | |
333 bool* frameDecoded) { | |
334 m_localColorMap.buildTable(reader); | |
335 | |
336 *frameDecoded = false; | |
337 if (!m_lzwContext) { | |
338 // Wait for more data to properly initialize GIFLZWContext. | |
339 if (!isDataSizeDefined() || !isHeaderDefined()) | |
340 return true; | |
341 | |
342 m_lzwContext = WTF::MakeUnique<GIFLZWContext>(client, this); | |
343 if (!m_lzwContext->prepareToDecode()) { | |
344 m_lzwContext.reset(); | |
345 return false; | |
346 } | |
347 | |
348 m_currentLzwBlock = 0; | |
349 } | |
350 | |
351 // Some bad GIFs have extra blocks beyond the last row, which we don't want to | |
352 // decode. | |
353 while (m_currentLzwBlock < m_lzwBlocks.size() && | |
354 m_lzwContext->hasRemainingRows()) { | |
355 size_t blockPosition = m_lzwBlocks[m_currentLzwBlock].blockPosition; | |
356 size_t blockSize = m_lzwBlocks[m_currentLzwBlock].blockSize; | |
357 if (blockPosition + blockSize > reader->size()) | |
358 return false; | |
359 | |
360 while (blockSize) { | |
361 const char* segment = 0; | |
362 size_t segmentLength = reader->GetSomeData(segment, blockPosition); | |
363 size_t decodeSize = std::min(segmentLength, blockSize); | |
364 if (!m_lzwContext->doLZW(reinterpret_cast<const unsigned char*>(segment), | |
365 decodeSize)) | |
366 return false; | |
367 blockPosition += decodeSize; | |
368 blockSize -= decodeSize; | |
369 } | |
370 ++m_currentLzwBlock; | |
371 } | |
372 | |
373 // If this frame is data complete then the previous loop must have completely | |
374 // decoded all LZW blocks. | |
375 // There will be no more decoding for this frame so it's time to cleanup. | |
376 if (isComplete()) { | |
377 *frameDecoded = true; | |
378 m_lzwContext.reset(); | |
379 } | |
380 return true; | |
381 } | |
382 | |
383 // Decodes a frame using GIFFrameContext:decode(). Returns true if decoding has | |
384 // progressed, or false if an error has occurred. | |
385 bool GIFImageReader::decode(size_t frameIndex) { | |
386 blink::FastSharedBufferReader reader(m_data); | |
387 m_globalColorMap.buildTable(&reader); | |
388 | |
389 bool frameDecoded = false; | |
390 GIFFrameContext* currentFrame = m_frames[frameIndex].get(); | |
391 | |
392 return currentFrame->decode(&reader, m_client, &frameDecoded) && | |
393 (!frameDecoded || m_client->FrameComplete(frameIndex)); | |
394 } | |
395 | |
396 bool GIFImageReader::parse(GIFImageDecoder::GIFParseQuery query) { | |
397 if (m_bytesRead >= m_data->size()) { | |
398 // This data has already been parsed. For example, in deferred | |
399 // decoding, a DecodingImageGenerator with more data may have already | |
400 // used this same ImageDecoder to decode. This can happen if two | |
401 // SkImages created by a DeferredImageDecoder are drawn/prerolled | |
402 // out of order (with respect to how much data they had at creation | |
403 // time). | |
404 return !m_client->Failed(); | |
405 } | |
406 | |
407 return parseData(m_bytesRead, m_data->size() - m_bytesRead, query); | |
408 } | |
409 | |
410 // Parse incoming GIF data stream into internal data structures. | |
411 // Return true if parsing has progressed or there is not enough data. | |
412 // Return false if a fatal error is encountered. | |
413 bool GIFImageReader::parseData(size_t dataPosition, | |
414 size_t len, | |
415 GIFImageDecoder::GIFParseQuery query) { | |
416 if (!len) { | |
417 // No new data has come in since the last call, just ignore this call. | |
418 return true; | |
419 } | |
420 | |
421 if (len < m_bytesToConsume) | |
422 return true; | |
423 | |
424 blink::FastSharedBufferReader reader(m_data); | |
425 | |
426 // A read buffer of 16 bytes is enough to accomodate all possible reads for | |
427 // parsing. | |
428 char readBuffer[16]; | |
429 | |
430 // Read as many components from |m_data| as possible. At the beginning of each | |
431 // iteration, |dataPosition| is advanced by m_bytesToConsume to point to the | |
432 // next component. |len| is decremented accordingly. | |
433 while (len >= m_bytesToConsume) { | |
434 const size_t currentComponentPosition = dataPosition; | |
435 | |
436 // Mark the current component as consumed. Note that currentComponent will | |
437 // remain pointed at this component until the next loop iteration. | |
438 dataPosition += m_bytesToConsume; | |
439 len -= m_bytesToConsume; | |
440 | |
441 switch (m_state) { | |
442 case GIFLZW: | |
443 DCHECK(!m_frames.IsEmpty()); | |
444 // m_bytesToConsume is the current component size because it hasn't been | |
445 // updated. | |
446 m_frames.back()->addLzwBlock(currentComponentPosition, | |
447 m_bytesToConsume); | |
448 GETN(1, GIFSubBlock); | |
449 break; | |
450 | |
451 case GIFLZWStart: { | |
452 DCHECK(!m_frames.IsEmpty()); | |
453 m_frames.back()->setDataSize(static_cast<unsigned char>( | |
454 reader.GetOneByte(currentComponentPosition))); | |
455 GETN(1, GIFSubBlock); | |
456 break; | |
457 } | |
458 | |
459 case GIFType: { | |
460 const char* currentComponent = | |
461 reader.GetConsecutiveData(currentComponentPosition, 6, readBuffer); | |
462 | |
463 // All GIF files begin with "GIF87a" or "GIF89a". | |
464 if (!memcmp(currentComponent, "GIF89a", 6)) | |
465 m_version = 89; | |
466 else if (!memcmp(currentComponent, "GIF87a", 6)) | |
467 m_version = 87; | |
468 else | |
469 return false; | |
470 GETN(7, GIFGlobalHeader); | |
471 break; | |
472 } | |
473 | |
474 case GIFGlobalHeader: { | |
475 const unsigned char* currentComponent = | |
476 reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData( | |
477 currentComponentPosition, 5, readBuffer)); | |
478 | |
479 // This is the height and width of the "screen" or frame into which | |
480 // images are rendered. The individual images can be smaller than | |
481 // the screen size and located with an origin anywhere within the | |
482 // screen. | |
483 // Note that we don't inform the client of the size yet, as it might | |
484 // change after we read the first frame's image header. | |
485 m_screenWidth = GETINT16(currentComponent); | |
486 m_screenHeight = GETINT16(currentComponent + 2); | |
487 | |
488 const size_t globalColorMapColors = 2 << (currentComponent[4] & 0x07); | |
489 | |
490 if ((currentComponent[4] & 0x80) && | |
491 globalColorMapColors > 0) { /* global map */ | |
492 m_globalColorMap.setTablePositionAndSize(dataPosition, | |
493 globalColorMapColors); | |
494 GETN(BYTES_PER_COLORMAP_ENTRY * globalColorMapColors, | |
495 GIFGlobalColormap); | |
496 break; | |
497 } | |
498 | |
499 GETN(1, GIFImageStart); | |
500 break; | |
501 } | |
502 | |
503 case GIFGlobalColormap: { | |
504 m_globalColorMap.setDefined(); | |
505 GETN(1, GIFImageStart); | |
506 break; | |
507 } | |
508 | |
509 case GIFImageStart: { | |
510 const char currentComponent = | |
511 reader.GetOneByte(currentComponentPosition); | |
512 | |
513 if (currentComponent == '!') { // extension. | |
514 GETN(2, GIFExtension); | |
515 break; | |
516 } | |
517 | |
518 if (currentComponent == ',') { // image separator. | |
519 GETN(9, GIFImageHeader); | |
520 break; | |
521 } | |
522 | |
523 // If we get anything other than ',' (image separator), '!' | |
524 // (extension), or ';' (trailer), there is extraneous data | |
525 // between blocks. The GIF87a spec tells us to keep reading | |
526 // until we find an image separator, but GIF89a says such | |
527 // a file is corrupt. We follow Mozilla's implementation and | |
528 // proceed as if the file were correctly terminated, so the | |
529 // GIF will display. | |
530 GETN(0, GIFDone); | |
531 break; | |
532 } | |
533 | |
534 case GIFExtension: { | |
535 const unsigned char* currentComponent = | |
536 reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData( | |
537 currentComponentPosition, 2, readBuffer)); | |
538 | |
539 size_t bytesInBlock = currentComponent[1]; | |
540 GIFState exceptionState = GIFSkipBlock; | |
541 | |
542 switch (*currentComponent) { | |
543 case 0xf9: | |
544 exceptionState = GIFControlExtension; | |
545 // The GIF spec mandates that the GIFControlExtension header block | |
546 // length is 4 bytes, and the parser for this block reads 4 bytes, | |
547 // so we must enforce that the buffer contains at least this many | |
548 // bytes. If the GIF specifies a different length, we allow that, so | |
549 // long as it's larger; the additional data will simply be ignored. | |
550 bytesInBlock = std::max(bytesInBlock, static_cast<size_t>(4)); | |
551 break; | |
552 | |
553 // The GIF spec also specifies the lengths of the following two | |
554 // extensions' headers (as 12 and 11 bytes, respectively). Because we | |
555 // ignore the plain text extension entirely and sanity-check the | |
556 // actual length of the application extension header before reading | |
557 // it, we allow GIFs to deviate from these values in either direction. | |
558 // This is important for real-world compatibility, as GIFs in the wild | |
559 // exist with application extension headers that are both shorter and | |
560 // longer than 11 bytes. | |
561 case 0x01: | |
562 // ignoring plain text extension | |
563 break; | |
564 | |
565 case 0xff: | |
566 exceptionState = GIFApplicationExtension; | |
567 break; | |
568 | |
569 case 0xfe: | |
570 exceptionState = GIFConsumeComment; | |
571 break; | |
572 } | |
573 | |
574 if (bytesInBlock) | |
575 GETN(bytesInBlock, exceptionState); | |
576 else | |
577 GETN(1, GIFImageStart); | |
578 break; | |
579 } | |
580 | |
581 case GIFConsumeBlock: { | |
582 const unsigned char currentComponent = static_cast<unsigned char>( | |
583 reader.GetOneByte(currentComponentPosition)); | |
584 if (!currentComponent) | |
585 GETN(1, GIFImageStart); | |
586 else | |
587 GETN(currentComponent, GIFSkipBlock); | |
588 break; | |
589 } | |
590 | |
591 case GIFSkipBlock: { | |
592 GETN(1, GIFConsumeBlock); | |
593 break; | |
594 } | |
595 | |
596 case GIFControlExtension: { | |
597 const unsigned char* currentComponent = | |
598 reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData( | |
599 currentComponentPosition, 4, readBuffer)); | |
600 | |
601 addFrameIfNecessary(); | |
602 GIFFrameContext* currentFrame = m_frames.back().get(); | |
603 if (*currentComponent & 0x1) | |
604 currentFrame->setTransparentPixel(currentComponent[3]); | |
605 | |
606 // We ignore the "user input" bit. | |
607 | |
608 // NOTE: This relies on the values in the FrameDisposalMethod enum | |
609 // matching those in the GIF spec! | |
610 int disposalMethod = ((*currentComponent) >> 2) & 0x7; | |
611 if (disposalMethod < 4) { | |
612 currentFrame->setDisposalMethod( | |
613 static_cast<blink::ImageFrame::DisposalMethod>(disposalMethod)); | |
614 } else if (disposalMethod == 4) { | |
615 // Some specs say that disposal method 3 is "overwrite previous", | |
616 // others that setting the third bit of the field (i.e. method 4) is. | |
617 // We map both to the same value. | |
618 currentFrame->setDisposalMethod( | |
619 blink::ImageFrame::kDisposeOverwritePrevious); | |
620 } | |
621 currentFrame->setDelayTime(GETINT16(currentComponent + 1) * 10); | |
622 GETN(1, GIFConsumeBlock); | |
623 break; | |
624 } | |
625 | |
626 case GIFCommentExtension: { | |
627 const unsigned char currentComponent = static_cast<unsigned char>( | |
628 reader.GetOneByte(currentComponentPosition)); | |
629 if (currentComponent) | |
630 GETN(currentComponent, GIFConsumeComment); | |
631 else | |
632 GETN(1, GIFImageStart); | |
633 break; | |
634 } | |
635 | |
636 case GIFConsumeComment: { | |
637 GETN(1, GIFCommentExtension); | |
638 break; | |
639 } | |
640 | |
641 case GIFApplicationExtension: { | |
642 // Check for netscape application extension. | |
643 if (m_bytesToConsume == 11) { | |
644 const unsigned char* currentComponent = | |
645 reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData( | |
646 currentComponentPosition, 11, readBuffer)); | |
647 | |
648 if (!memcmp(currentComponent, "NETSCAPE2.0", 11) || | |
649 !memcmp(currentComponent, "ANIMEXTS1.0", 11)) | |
650 GETN(1, GIFNetscapeExtensionBlock); | |
651 } | |
652 | |
653 if (m_state != GIFNetscapeExtensionBlock) | |
654 GETN(1, GIFConsumeBlock); | |
655 break; | |
656 } | |
657 | |
658 // Netscape-specific GIF extension: animation looping. | |
659 case GIFNetscapeExtensionBlock: { | |
660 const int currentComponent = static_cast<unsigned char>( | |
661 reader.GetOneByte(currentComponentPosition)); | |
662 // GIFConsumeNetscapeExtension always reads 3 bytes from the stream; we | |
663 // should at least wait for this amount. | |
664 if (currentComponent) | |
665 GETN(std::max(3, currentComponent), GIFConsumeNetscapeExtension); | |
666 else | |
667 GETN(1, GIFImageStart); | |
668 break; | |
669 } | |
670 | |
671 // Parse netscape-specific application extensions | |
672 case GIFConsumeNetscapeExtension: { | |
673 const unsigned char* currentComponent = | |
674 reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData( | |
675 currentComponentPosition, 3, readBuffer)); | |
676 | |
677 int netscapeExtension = currentComponent[0] & 7; | |
678 | |
679 // Loop entire animation specified # of times. Only read the loop count | |
680 // during the first iteration. | |
681 if (netscapeExtension == 1) { | |
682 m_loopCount = GETINT16(currentComponent + 1); | |
683 | |
684 // Zero loop count is infinite animation loop request. | |
685 if (!m_loopCount) | |
686 m_loopCount = blink::kCAnimationLoopInfinite; | |
687 | |
688 GETN(1, GIFNetscapeExtensionBlock); | |
689 } else if (netscapeExtension == 2) { | |
690 // Wait for specified # of bytes to enter buffer. | |
691 | |
692 // Don't do this, this extension doesn't exist (isn't used at all) | |
693 // and doesn't do anything, as our streaming/buffering takes care of | |
694 // it all. See http://semmix.pl/color/exgraf/eeg24.htm . | |
695 GETN(1, GIFNetscapeExtensionBlock); | |
696 } else { | |
697 // 0,3-7 are yet to be defined netscape extension codes | |
698 return false; | |
699 } | |
700 break; | |
701 } | |
702 | |
703 case GIFImageHeader: { | |
704 unsigned height, width, xOffset, yOffset; | |
705 const unsigned char* currentComponent = | |
706 reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData( | |
707 currentComponentPosition, 9, readBuffer)); | |
708 | |
709 /* Get image offsets, with respect to the screen origin */ | |
710 xOffset = GETINT16(currentComponent); | |
711 yOffset = GETINT16(currentComponent + 2); | |
712 | |
713 /* Get image width and height. */ | |
714 width = GETINT16(currentComponent + 4); | |
715 height = GETINT16(currentComponent + 6); | |
716 | |
717 // Some GIF files have frames that don't fit in the specified | |
718 // overall image size. For the first frame, we can simply enlarge | |
719 // the image size to allow the frame to be visible. We can't do | |
720 // this on subsequent frames because the rest of the decoding | |
721 // infrastructure assumes the image size won't change as we | |
722 // continue decoding, so any subsequent frames that are even | |
723 // larger will be cropped. | |
724 // Luckily, handling just the first frame is sufficient to deal | |
725 // with most cases, e.g. ones where the image size is erroneously | |
726 // set to zero, since usually the first frame completely fills | |
727 // the image. | |
728 if (currentFrameIsFirstFrame()) { | |
729 m_screenHeight = std::max(m_screenHeight, yOffset + height); | |
730 m_screenWidth = std::max(m_screenWidth, xOffset + width); | |
731 } | |
732 | |
733 // Inform the client of the final size. | |
734 if (!m_sentSizeToClient && m_client && | |
735 !m_client->SetSize(m_screenWidth, m_screenHeight)) | |
736 return false; | |
737 m_sentSizeToClient = true; | |
738 | |
739 if (query == GIFImageDecoder::kGIFSizeQuery) { | |
740 // The decoder needs to stop. Hand back the number of bytes we | |
741 // consumed from the buffer minus 9 (the amount we consumed to read | |
742 // the header). | |
743 setRemainingBytes(len + 9); | |
744 GETN(9, GIFImageHeader); | |
745 return true; | |
746 } | |
747 | |
748 addFrameIfNecessary(); | |
749 GIFFrameContext* currentFrame = m_frames.back().get(); | |
750 | |
751 currentFrame->setHeaderDefined(); | |
752 | |
753 // Work around more broken GIF files that have zero image width or | |
754 // height. | |
755 if (!height || !width) { | |
756 height = m_screenHeight; | |
757 width = m_screenWidth; | |
758 if (!height || !width) | |
759 return false; | |
760 } | |
761 currentFrame->setRect(xOffset, yOffset, width, height); | |
762 currentFrame->setInterlaced(currentComponent[8] & 0x40); | |
763 | |
764 // Overlaying interlaced, transparent GIFs over | |
765 // existing image data using the Haeberli display hack | |
766 // requires saving the underlying image in order to | |
767 // avoid jaggies at the transparency edges. We are | |
768 // unprepared to deal with that, so don't display such | |
769 // images progressively. Which means only the first | |
770 // frame can be progressively displayed. | |
771 // FIXME: It is possible that a non-transparent frame | |
772 // can be interlaced and progressively displayed. | |
773 currentFrame->setProgressiveDisplay(currentFrameIsFirstFrame()); | |
774 | |
775 const bool isLocalColormapDefined = currentComponent[8] & 0x80; | |
776 if (isLocalColormapDefined) { | |
777 // The three low-order bits of currentComponent[8] specify the bits | |
778 // per pixel. | |
779 const size_t numColors = 2 << (currentComponent[8] & 0x7); | |
780 currentFrame->localColorMap().setTablePositionAndSize(dataPosition, | |
781 numColors); | |
782 GETN(BYTES_PER_COLORMAP_ENTRY * numColors, GIFImageColormap); | |
783 break; | |
784 } | |
785 | |
786 GETN(1, GIFLZWStart); | |
787 break; | |
788 } | |
789 | |
790 case GIFImageColormap: { | |
791 DCHECK(!m_frames.IsEmpty()); | |
792 m_frames.back()->localColorMap().setDefined(); | |
793 GETN(1, GIFLZWStart); | |
794 break; | |
795 } | |
796 | |
797 case GIFSubBlock: { | |
798 const size_t bytesInBlock = static_cast<unsigned char>( | |
799 reader.GetOneByte(currentComponentPosition)); | |
800 if (bytesInBlock) | |
801 GETN(bytesInBlock, GIFLZW); | |
802 else { | |
803 // Finished parsing one frame; Process next frame. | |
804 DCHECK(!m_frames.IsEmpty()); | |
805 // Note that some broken GIF files do not have enough LZW blocks to | |
806 // fully decode all rows; we treat this case as "frame complete". | |
807 m_frames.back()->setComplete(); | |
808 GETN(1, GIFImageStart); | |
809 } | |
810 break; | |
811 } | |
812 | |
813 case GIFDone: { | |
814 m_parseCompleted = true; | |
815 return true; | |
816 } | |
817 | |
818 default: | |
819 // We shouldn't ever get here. | |
820 return false; | |
821 break; | |
822 } | |
823 } | |
824 | |
825 setRemainingBytes(len); | |
826 return true; | |
827 } | |
828 | |
829 void GIFImageReader::setRemainingBytes(size_t remainingBytes) { | |
830 DCHECK_LE(remainingBytes, m_data->size()); | |
831 m_bytesRead = m_data->size() - remainingBytes; | |
832 } | |
833 | |
834 void GIFImageReader::addFrameIfNecessary() { | |
835 if (m_frames.IsEmpty() || m_frames.back()->isComplete()) | |
836 m_frames.push_back(WTF::WrapUnique(new GIFFrameContext(m_frames.size()))); | |
837 } | |
838 | |
839 // FIXME: Move this method to close to doLZW(). | |
840 bool GIFLZWContext::prepareToDecode() { | |
841 DCHECK(m_frameContext->isDataSizeDefined()); | |
842 DCHECK(m_frameContext->isHeaderDefined()); | |
843 | |
844 // Since we use a codesize of 1 more than the datasize, we need to ensure | |
845 // that our datasize is strictly less than the MAX_DICTIONARY_ENTRY_BITS. | |
846 if (m_frameContext->dataSize() >= MAX_DICTIONARY_ENTRY_BITS) | |
847 return false; | |
848 clearCode = 1 << m_frameContext->dataSize(); | |
849 avail = clearCode + 2; | |
850 oldcode = -1; | |
851 codesize = m_frameContext->dataSize() + 1; | |
852 codemask = (1 << codesize) - 1; | |
853 datum = bits = 0; | |
854 ipass = m_frameContext->interlaced() ? 1 : 0; | |
855 irow = 0; | |
856 | |
857 // We want to know the longest sequence encodable by a dictionary with | |
858 // MAX_DICTIONARY_ENTRIES entries. If we ignore the need to encode the base | |
859 // values themselves at the beginning of the dictionary, as well as the need | |
860 // for a clear code or a termination code, we could use every entry to | |
861 // encode a series of multiple values. If the input value stream looked | |
862 // like "AAAAA..." (a long string of just one value), the first dictionary | |
863 // entry would encode AA, the next AAA, the next AAAA, and so forth. Thus | |
864 // the longest sequence would be MAX_DICTIONARY_ENTRIES + 1 values. | |
865 // | |
866 // However, we have to account for reserved entries. The first |datasize| | |
867 // bits are reserved for the base values, and the next two entries are | |
868 // reserved for the clear code and termination code. In theory a GIF can | |
869 // set the datasize to 0, meaning we have just two reserved entries, making | |
870 // the longest sequence (MAX_DICTIONARY_ENTIRES + 1) - 2 values long. Since | |
871 // each value is a byte, this is also the number of bytes in the longest | |
872 // encodable sequence. | |
873 const size_t maxBytes = MAX_DICTIONARY_ENTRIES - 1; | |
874 | |
875 // Now allocate the output buffer. We decode directly into this buffer | |
876 // until we have at least one row worth of data, then call outputRow(). | |
877 // This means worst case we may have (row width - 1) bytes in the buffer | |
878 // and then decode a sequence |maxBytes| long to append. | |
879 rowBuffer.resize(m_frameContext->width() - 1 + maxBytes); | |
880 rowIter = rowBuffer.begin(); | |
881 rowsRemaining = m_frameContext->height(); | |
882 | |
883 // Clearing the whole suffix table lets us be more tolerant of bad data. | |
884 for (int i = 0; i < clearCode; ++i) { | |
885 suffix[i] = i; | |
886 suffixLength[i] = 1; | |
887 } | |
888 return true; | |
889 } | |
OLD | NEW |