Index: Source/core/platform/graphics/transforms/TransformationMatrix.h |
diff --git a/Source/core/platform/graphics/transforms/TransformationMatrix.h b/Source/core/platform/graphics/transforms/TransformationMatrix.h |
deleted file mode 100644 |
index c28546bf80477604643c5c1d2b52f5eabd7b91b3..0000000000000000000000000000000000000000 |
--- a/Source/core/platform/graphics/transforms/TransformationMatrix.h |
+++ /dev/null |
@@ -1,364 +0,0 @@ |
-/* |
- * Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved. |
- * |
- * Redistribution and use in source and binary forms, with or without |
- * modification, are permitted provided that the following conditions |
- * are met: |
- * 1. Redistributions of source code must retain the above copyright |
- * notice, this list of conditions and the following disclaimer. |
- * 2. Redistributions in binary form must reproduce the above copyright |
- * notice, this list of conditions and the following disclaimer in the |
- * documentation and/or other materials provided with the distribution. |
- * |
- * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY |
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
- * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
- */ |
- |
-#ifndef TransformationMatrix_h |
-#define TransformationMatrix_h |
- |
-#include <SkMatrix.h> |
-#include <string.h> //for memcpy |
-#include "core/platform/graphics/FloatPoint.h" |
-#include "core/platform/graphics/FloatPoint3D.h" |
-#include "core/platform/graphics/IntPoint.h" |
-#include "wtf/CPU.h" |
-#include "wtf/FastAllocBase.h" |
- |
-namespace WebCore { |
- |
-class AffineTransform; |
-class IntRect; |
-class LayoutRect; |
-class FloatRect; |
-class FloatQuad; |
- |
-#if CPU(X86_64) |
-#define TRANSFORMATION_MATRIX_USE_X86_64_SSE2 |
-#endif |
- |
-class TransformationMatrix { |
- WTF_MAKE_FAST_ALLOCATED; |
-public: |
- |
-#if CPU(APPLE_ARMV7S) || defined(TRANSFORMATION_MATRIX_USE_X86_64_SSE2) |
-#if COMPILER(MSVC) |
- __declspec(align(16)) typedef double Matrix4[4][4]; |
-#else |
- typedef double Matrix4[4][4] __attribute__((aligned (16))); |
-#endif |
-#else |
- typedef double Matrix4[4][4]; |
-#endif |
- |
- TransformationMatrix() { makeIdentity(); } |
- TransformationMatrix(const AffineTransform& t); |
- TransformationMatrix(const TransformationMatrix& t) { *this = t; } |
- TransformationMatrix(double a, double b, double c, double d, double e, double f) { setMatrix(a, b, c, d, e, f); } |
- TransformationMatrix(double m11, double m12, double m13, double m14, |
- double m21, double m22, double m23, double m24, |
- double m31, double m32, double m33, double m34, |
- double m41, double m42, double m43, double m44) |
- { |
- setMatrix(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44); |
- } |
- |
- void setMatrix(double a, double b, double c, double d, double e, double f) |
- { |
- m_matrix[0][0] = a; m_matrix[0][1] = b; m_matrix[0][2] = 0; m_matrix[0][3] = 0; |
- m_matrix[1][0] = c; m_matrix[1][1] = d; m_matrix[1][2] = 0; m_matrix[1][3] = 0; |
- m_matrix[2][0] = 0; m_matrix[2][1] = 0; m_matrix[2][2] = 1; m_matrix[2][3] = 0; |
- m_matrix[3][0] = e; m_matrix[3][1] = f; m_matrix[3][2] = 0; m_matrix[3][3] = 1; |
- } |
- |
- void setMatrix(double m11, double m12, double m13, double m14, |
- double m21, double m22, double m23, double m24, |
- double m31, double m32, double m33, double m34, |
- double m41, double m42, double m43, double m44) |
- { |
- m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; m_matrix[0][3] = m14; |
- m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; m_matrix[1][3] = m24; |
- m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; m_matrix[2][3] = m34; |
- m_matrix[3][0] = m41; m_matrix[3][1] = m42; m_matrix[3][2] = m43; m_matrix[3][3] = m44; |
- } |
- |
- TransformationMatrix& operator =(const TransformationMatrix &t) |
- { |
- setMatrix(t.m_matrix); |
- return *this; |
- } |
- |
- TransformationMatrix& makeIdentity() |
- { |
- setMatrix(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); |
- return *this; |
- } |
- |
- bool isIdentity() const |
- { |
- return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 && |
- m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 && |
- m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 && |
- m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0 && m_matrix[3][3] == 1; |
- } |
- |
- // This form preserves the double math from input to output |
- void map(double x, double y, double& x2, double& y2) const { multVecMatrix(x, y, x2, y2); } |
- |
- // Map a 3D point through the transform, returning a 3D point. |
- FloatPoint3D mapPoint(const FloatPoint3D&) const; |
- |
- // Map a 2D point through the transform, returning a 2D point. |
- // Note that this ignores the z component, effectively projecting the point into the z=0 plane. |
- FloatPoint mapPoint(const FloatPoint&) const; |
- |
- // Like the version above, except that it rounds the mapped point to the nearest integer value. |
- IntPoint mapPoint(const IntPoint& p) const |
- { |
- return roundedIntPoint(mapPoint(FloatPoint(p))); |
- } |
- |
- // If the matrix has 3D components, the z component of the result is |
- // dropped, effectively projecting the rect into the z=0 plane |
- FloatRect mapRect(const FloatRect&) const; |
- |
- // Rounds the resulting mapped rectangle out. This is helpful for bounding |
- // box computations but may not be what is wanted in other contexts. |
- IntRect mapRect(const IntRect&) const; |
- LayoutRect mapRect(const LayoutRect&) const; |
- |
- // If the matrix has 3D components, the z component of the result is |
- // dropped, effectively projecting the quad into the z=0 plane |
- FloatQuad mapQuad(const FloatQuad&) const; |
- |
- // Map a point on the z=0 plane into a point on |
- // the plane with with the transform applied, by extending |
- // a ray perpendicular to the source plane and computing |
- // the local x,y position of the point where that ray intersects |
- // with the destination plane. |
- FloatPoint projectPoint(const FloatPoint&, bool* clamped = 0) const; |
- // Projects the four corners of the quad |
- FloatQuad projectQuad(const FloatQuad&, bool* clamped = 0) const; |
- // Projects the four corners of the quad and takes a bounding box, |
- // while sanitizing values created when the w component is negative. |
- LayoutRect clampedBoundsOfProjectedQuad(const FloatQuad&) const; |
- |
- double m11() const { return m_matrix[0][0]; } |
- void setM11(double f) { m_matrix[0][0] = f; } |
- double m12() const { return m_matrix[0][1]; } |
- void setM12(double f) { m_matrix[0][1] = f; } |
- double m13() const { return m_matrix[0][2]; } |
- void setM13(double f) { m_matrix[0][2] = f; } |
- double m14() const { return m_matrix[0][3]; } |
- void setM14(double f) { m_matrix[0][3] = f; } |
- double m21() const { return m_matrix[1][0]; } |
- void setM21(double f) { m_matrix[1][0] = f; } |
- double m22() const { return m_matrix[1][1]; } |
- void setM22(double f) { m_matrix[1][1] = f; } |
- double m23() const { return m_matrix[1][2]; } |
- void setM23(double f) { m_matrix[1][2] = f; } |
- double m24() const { return m_matrix[1][3]; } |
- void setM24(double f) { m_matrix[1][3] = f; } |
- double m31() const { return m_matrix[2][0]; } |
- void setM31(double f) { m_matrix[2][0] = f; } |
- double m32() const { return m_matrix[2][1]; } |
- void setM32(double f) { m_matrix[2][1] = f; } |
- double m33() const { return m_matrix[2][2]; } |
- void setM33(double f) { m_matrix[2][2] = f; } |
- double m34() const { return m_matrix[2][3]; } |
- void setM34(double f) { m_matrix[2][3] = f; } |
- double m41() const { return m_matrix[3][0]; } |
- void setM41(double f) { m_matrix[3][0] = f; } |
- double m42() const { return m_matrix[3][1]; } |
- void setM42(double f) { m_matrix[3][1] = f; } |
- double m43() const { return m_matrix[3][2]; } |
- void setM43(double f) { m_matrix[3][2] = f; } |
- double m44() const { return m_matrix[3][3]; } |
- void setM44(double f) { m_matrix[3][3] = f; } |
- |
- double a() const { return m_matrix[0][0]; } |
- void setA(double a) { m_matrix[0][0] = a; } |
- |
- double b() const { return m_matrix[0][1]; } |
- void setB(double b) { m_matrix[0][1] = b; } |
- |
- double c() const { return m_matrix[1][0]; } |
- void setC(double c) { m_matrix[1][0] = c; } |
- |
- double d() const { return m_matrix[1][1]; } |
- void setD(double d) { m_matrix[1][1] = d; } |
- |
- double e() const { return m_matrix[3][0]; } |
- void setE(double e) { m_matrix[3][0] = e; } |
- |
- double f() const { return m_matrix[3][1]; } |
- void setF(double f) { m_matrix[3][1] = f; } |
- |
- // this = mat * this. |
- TransformationMatrix& multiply(const TransformationMatrix&); |
- |
- TransformationMatrix& scale(double); |
- TransformationMatrix& scaleNonUniform(double sx, double sy); |
- TransformationMatrix& scale3d(double sx, double sy, double sz); |
- |
- TransformationMatrix& rotate(double d) { return rotate3d(0, 0, d); } |
- TransformationMatrix& rotateFromVector(double x, double y); |
- TransformationMatrix& rotate3d(double rx, double ry, double rz); |
- |
- // The vector (x,y,z) is normalized if it's not already. A vector of |
- // (0,0,0) uses a vector of (0,0,1). |
- TransformationMatrix& rotate3d(double x, double y, double z, double angle); |
- |
- TransformationMatrix& translate(double tx, double ty); |
- TransformationMatrix& translate3d(double tx, double ty, double tz); |
- |
- // translation added with a post-multiply |
- TransformationMatrix& translateRight(double tx, double ty); |
- TransformationMatrix& translateRight3d(double tx, double ty, double tz); |
- |
- TransformationMatrix& flipX(); |
- TransformationMatrix& flipY(); |
- TransformationMatrix& skew(double angleX, double angleY); |
- TransformationMatrix& skewX(double angle) { return skew(angle, 0); } |
- TransformationMatrix& skewY(double angle) { return skew(0, angle); } |
- |
- TransformationMatrix& applyPerspective(double p); |
- bool hasPerspective() const { return m_matrix[2][3] != 0.0f; } |
- |
- // returns a transformation that maps a rect to a rect |
- static TransformationMatrix rectToRect(const FloatRect&, const FloatRect&); |
- |
- bool isInvertible() const; |
- |
- // This method returns the identity matrix if it is not invertible. |
- // Use isInvertible() before calling this if you need to know. |
- TransformationMatrix inverse() const; |
- |
- // decompose the matrix into its component parts |
- typedef struct { |
- double scaleX, scaleY, scaleZ; |
- double skewXY, skewXZ, skewYZ; |
- double quaternionX, quaternionY, quaternionZ, quaternionW; |
- double translateX, translateY, translateZ; |
- double perspectiveX, perspectiveY, perspectiveZ, perspectiveW; |
- } DecomposedType; |
- |
- bool decompose(DecomposedType& decomp) const; |
- void recompose(const DecomposedType& decomp); |
- |
- void blend(const TransformationMatrix& from, double progress); |
- |
- bool isAffine() const |
- { |
- return (m13() == 0 && m14() == 0 && m23() == 0 && m24() == 0 && |
- m31() == 0 && m32() == 0 && m33() == 1 && m34() == 0 && m43() == 0 && m44() == 1); |
- } |
- |
- // Throw away the non-affine parts of the matrix (lossy!) |
- void makeAffine(); |
- |
- AffineTransform toAffineTransform() const; |
- |
- bool operator==(const TransformationMatrix& m2) const |
- { |
- return (m_matrix[0][0] == m2.m_matrix[0][0] && |
- m_matrix[0][1] == m2.m_matrix[0][1] && |
- m_matrix[0][2] == m2.m_matrix[0][2] && |
- m_matrix[0][3] == m2.m_matrix[0][3] && |
- m_matrix[1][0] == m2.m_matrix[1][0] && |
- m_matrix[1][1] == m2.m_matrix[1][1] && |
- m_matrix[1][2] == m2.m_matrix[1][2] && |
- m_matrix[1][3] == m2.m_matrix[1][3] && |
- m_matrix[2][0] == m2.m_matrix[2][0] && |
- m_matrix[2][1] == m2.m_matrix[2][1] && |
- m_matrix[2][2] == m2.m_matrix[2][2] && |
- m_matrix[2][3] == m2.m_matrix[2][3] && |
- m_matrix[3][0] == m2.m_matrix[3][0] && |
- m_matrix[3][1] == m2.m_matrix[3][1] && |
- m_matrix[3][2] == m2.m_matrix[3][2] && |
- m_matrix[3][3] == m2.m_matrix[3][3]); |
- } |
- |
- bool operator!=(const TransformationMatrix& other) const { return !(*this == other); } |
- |
- // *this = *this * t |
- TransformationMatrix& operator*=(const TransformationMatrix& t) |
- { |
- return multiply(t); |
- } |
- |
- // result = *this * t |
- TransformationMatrix operator*(const TransformationMatrix& t) const |
- { |
- TransformationMatrix result = *this; |
- result.multiply(t); |
- return result; |
- } |
- |
- operator SkMatrix() const; |
- |
- bool isIdentityOrTranslation() const |
- { |
- return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 |
- && m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 |
- && m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 |
- && m_matrix[3][3] == 1; |
- } |
- |
- bool isIntegerTranslation() const; |
- |
- // This method returns the matrix without 3D components. |
- TransformationMatrix to2dTransform() const; |
- |
- typedef float FloatMatrix4[16]; |
- void toColumnMajorFloatArray(FloatMatrix4& result) const; |
- |
- // A local-space layer is implicitly defined at the z = 0 plane, with its front side |
- // facing the positive z-axis (i.e. a camera looking along the negative z-axis sees |
- // the front side of the layer). This function checks if the transformed layer's back |
- // face would be visible to a camera looking along the negative z-axis in the target space. |
- bool isBackFaceVisible() const; |
- |
-private: |
- // multiply passed 2D point by matrix (assume z=0) |
- void multVecMatrix(double x, double y, double& dstX, double& dstY) const; |
- FloatPoint internalMapPoint(const FloatPoint& sourcePoint) const |
- { |
- double resultX; |
- double resultY; |
- multVecMatrix(sourcePoint.x(), sourcePoint.y(), resultX, resultY); |
- return FloatPoint(static_cast<float>(resultX), static_cast<float>(resultY)); |
- } |
- |
- // multiply passed 3D point by matrix |
- void multVecMatrix(double x, double y, double z, double& dstX, double& dstY, double& dstZ) const; |
- FloatPoint3D internalMapPoint(const FloatPoint3D& sourcePoint) const |
- { |
- double resultX; |
- double resultY; |
- double resultZ; |
- multVecMatrix(sourcePoint.x(), sourcePoint.y(), sourcePoint.z(), resultX, resultY, resultZ); |
- return FloatPoint3D(static_cast<float>(resultX), static_cast<float>(resultY), static_cast<float>(resultZ)); |
- } |
- |
- void setMatrix(const Matrix4 m) |
- { |
- if (m && m != m_matrix) |
- memcpy(m_matrix, m, sizeof(Matrix4)); |
- } |
- |
- Matrix4 m_matrix; |
-}; |
- |
-} // namespace WebCore |
- |
-#endif // TransformationMatrix_h |