Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1597)

Unified Diff: Source/core/platform/graphics/transforms/TransformationMatrix.cpp

Issue 25494003: Move geometry classes from core/platform/graphics to platform/geometry (Closed) Base URL: svn://svn.chromium.org/blink/trunk
Patch Set: Created 7 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: Source/core/platform/graphics/transforms/TransformationMatrix.cpp
diff --git a/Source/core/platform/graphics/transforms/TransformationMatrix.cpp b/Source/core/platform/graphics/transforms/TransformationMatrix.cpp
deleted file mode 100644
index e95936b0da877536e3c278f16cdd642903973d57..0000000000000000000000000000000000000000
--- a/Source/core/platform/graphics/transforms/TransformationMatrix.cpp
+++ /dev/null
@@ -1,1531 +0,0 @@
-/*
- * Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved.
- * Copyright (C) 2009 Torch Mobile, Inc.
- * Copyright (C) 2013 Google Inc. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include "config.h"
-#include "core/platform/graphics/transforms/TransformationMatrix.h"
-
-#include "core/platform/graphics/FloatQuad.h"
-#include "core/platform/graphics/FloatRect.h"
-#include "core/platform/graphics/IntRect.h"
-#include "core/platform/graphics/LayoutRect.h"
-#include "core/platform/graphics/skia/SkiaUtils.h"
-#include "core/platform/graphics/transforms/AffineTransform.h"
-
-#include "wtf/Assertions.h"
-#include "wtf/MathExtras.h"
-
-#if CPU(X86_64)
-#include <emmintrin.h>
-#endif
-
-using namespace std;
-
-namespace WebCore {
-
-//
-// Supporting Math Functions
-//
-// This is a set of function from various places (attributed inline) to do things like
-// inversion and decomposition of a 4x4 matrix. They are used throughout the code
-//
-
-//
-// Adapted from Matrix Inversion by Richard Carling, Graphics Gems <http://tog.acm.org/GraphicsGems/index.html>.
-
-// EULA: The Graphics Gems code is copyright-protected. In other words, you cannot claim the text of the code
-// as your own and resell it. Using the code is permitted in any program, product, or library, non-commercial
-// or commercial. Giving credit is not required, though is a nice gesture. The code comes as-is, and if there
-// are any flaws or problems with any Gems code, nobody involved with Gems - authors, editors, publishers, or
-// webmasters - are to be held responsible. Basically, don't be a jerk, and remember that anything free comes
-// with no guarantee.
-
-// A clarification about the storage of matrix elements
-//
-// This class uses a 2 dimensional array internally to store the elements of the matrix. The first index into
-// the array refers to the column that the element lies in; the second index refers to the row.
-//
-// In other words, this is the layout of the matrix:
-//
-// | m_matrix[0][0] m_matrix[1][0] m_matrix[2][0] m_matrix[3][0] |
-// | m_matrix[0][1] m_matrix[1][1] m_matrix[2][1] m_matrix[3][1] |
-// | m_matrix[0][2] m_matrix[1][2] m_matrix[2][2] m_matrix[3][2] |
-// | m_matrix[0][3] m_matrix[1][3] m_matrix[2][3] m_matrix[3][3] |
-
-typedef double Vector4[4];
-typedef double Vector3[3];
-
-const double SMALL_NUMBER = 1.e-8;
-
-// inverse(original_matrix, inverse_matrix)
-//
-// calculate the inverse of a 4x4 matrix
-//
-// -1
-// A = ___1__ adjoint A
-// det A
-
-// double = determinant2x2(double a, double b, double c, double d)
-//
-// calculate the determinant of a 2x2 matrix.
-
-static double determinant2x2(double a, double b, double c, double d)
-{
- return a * d - b * c;
-}
-
-// double = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3)
-//
-// Calculate the determinant of a 3x3 matrix
-// in the form
-//
-// | a1, b1, c1 |
-// | a2, b2, c2 |
-// | a3, b3, c3 |
-
-static double determinant3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3)
-{
- return a1 * determinant2x2(b2, b3, c2, c3)
- - b1 * determinant2x2(a2, a3, c2, c3)
- + c1 * determinant2x2(a2, a3, b2, b3);
-}
-
-// double = determinant4x4(matrix)
-//
-// calculate the determinant of a 4x4 matrix.
-
-static double determinant4x4(const TransformationMatrix::Matrix4& m)
-{
- // Assign to individual variable names to aid selecting
- // correct elements
-
- double a1 = m[0][0];
- double b1 = m[0][1];
- double c1 = m[0][2];
- double d1 = m[0][3];
-
- double a2 = m[1][0];
- double b2 = m[1][1];
- double c2 = m[1][2];
- double d2 = m[1][3];
-
- double a3 = m[2][0];
- double b3 = m[2][1];
- double c3 = m[2][2];
- double d3 = m[2][3];
-
- double a4 = m[3][0];
- double b4 = m[3][1];
- double c4 = m[3][2];
- double d4 = m[3][3];
-
- return a1 * determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4)
- - b1 * determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4)
- + c1 * determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4)
- - d1 * determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
-}
-
-// adjoint( original_matrix, inverse_matrix )
-//
-// calculate the adjoint of a 4x4 matrix
-//
-// Let a denote the minor determinant of matrix A obtained by
-// ij
-//
-// deleting the ith row and jth column from A.
-//
-// i+j
-// Let b = (-1) a
-// ij ji
-//
-// The matrix B = (b ) is the adjoint of A
-// ij
-
-static void adjoint(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result)
-{
- // Assign to individual variable names to aid
- // selecting correct values
- double a1 = matrix[0][0];
- double b1 = matrix[0][1];
- double c1 = matrix[0][2];
- double d1 = matrix[0][3];
-
- double a2 = matrix[1][0];
- double b2 = matrix[1][1];
- double c2 = matrix[1][2];
- double d2 = matrix[1][3];
-
- double a3 = matrix[2][0];
- double b3 = matrix[2][1];
- double c3 = matrix[2][2];
- double d3 = matrix[2][3];
-
- double a4 = matrix[3][0];
- double b4 = matrix[3][1];
- double c4 = matrix[3][2];
- double d4 = matrix[3][3];
-
- // Row column labeling reversed since we transpose rows & columns
- result[0][0] = determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4);
- result[1][0] = - determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4);
- result[2][0] = determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4);
- result[3][0] = - determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
-
- result[0][1] = - determinant3x3(b1, b3, b4, c1, c3, c4, d1, d3, d4);
- result[1][1] = determinant3x3(a1, a3, a4, c1, c3, c4, d1, d3, d4);
- result[2][1] = - determinant3x3(a1, a3, a4, b1, b3, b4, d1, d3, d4);
- result[3][1] = determinant3x3(a1, a3, a4, b1, b3, b4, c1, c3, c4);
-
- result[0][2] = determinant3x3(b1, b2, b4, c1, c2, c4, d1, d2, d4);
- result[1][2] = - determinant3x3(a1, a2, a4, c1, c2, c4, d1, d2, d4);
- result[2][2] = determinant3x3(a1, a2, a4, b1, b2, b4, d1, d2, d4);
- result[3][2] = - determinant3x3(a1, a2, a4, b1, b2, b4, c1, c2, c4);
-
- result[0][3] = - determinant3x3(b1, b2, b3, c1, c2, c3, d1, d2, d3);
- result[1][3] = determinant3x3(a1, a2, a3, c1, c2, c3, d1, d2, d3);
- result[2][3] = - determinant3x3(a1, a2, a3, b1, b2, b3, d1, d2, d3);
- result[3][3] = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3);
-}
-
-// Returns false if the matrix is not invertible
-static bool inverse(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result)
-{
- // Calculate the adjoint matrix
- adjoint(matrix, result);
-
- // Calculate the 4x4 determinant
- // If the determinant is zero,
- // then the inverse matrix is not unique.
- double det = determinant4x4(matrix);
-
- if (fabs(det) < SMALL_NUMBER)
- return false;
-
- // Scale the adjoint matrix to get the inverse
-
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- result[i][j] = result[i][j] / det;
-
- return true;
-}
-
-// End of code adapted from Matrix Inversion by Richard Carling
-
-// Perform a decomposition on the passed matrix, return false if unsuccessful
-// From Graphics Gems: unmatrix.c
-
-// Transpose rotation portion of matrix a, return b
-static void transposeMatrix4(const TransformationMatrix::Matrix4& a, TransformationMatrix::Matrix4& b)
-{
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- b[i][j] = a[j][i];
-}
-
-// Multiply a homogeneous point by a matrix and return the transformed point
-static void v4MulPointByMatrix(const Vector4 p, const TransformationMatrix::Matrix4& m, Vector4 result)
-{
- result[0] = (p[0] * m[0][0]) + (p[1] * m[1][0]) +
- (p[2] * m[2][0]) + (p[3] * m[3][0]);
- result[1] = (p[0] * m[0][1]) + (p[1] * m[1][1]) +
- (p[2] * m[2][1]) + (p[3] * m[3][1]);
- result[2] = (p[0] * m[0][2]) + (p[1] * m[1][2]) +
- (p[2] * m[2][2]) + (p[3] * m[3][2]);
- result[3] = (p[0] * m[0][3]) + (p[1] * m[1][3]) +
- (p[2] * m[2][3]) + (p[3] * m[3][3]);
-}
-
-static double v3Length(Vector3 a)
-{
- return sqrt((a[0] * a[0]) + (a[1] * a[1]) + (a[2] * a[2]));
-}
-
-static void v3Scale(Vector3 v, double desiredLength)
-{
- double len = v3Length(v);
- if (len != 0) {
- double l = desiredLength / len;
- v[0] *= l;
- v[1] *= l;
- v[2] *= l;
- }
-}
-
-static double v3Dot(const Vector3 a, const Vector3 b)
-{
- return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
-}
-
-// Make a linear combination of two vectors and return the result.
-// result = (a * ascl) + (b * bscl)
-static void v3Combine(const Vector3 a, const Vector3 b, Vector3 result, double ascl, double bscl)
-{
- result[0] = (ascl * a[0]) + (bscl * b[0]);
- result[1] = (ascl * a[1]) + (bscl * b[1]);
- result[2] = (ascl * a[2]) + (bscl * b[2]);
-}
-
-// Return the cross product result = a cross b */
-static void v3Cross(const Vector3 a, const Vector3 b, Vector3 result)
-{
- result[0] = (a[1] * b[2]) - (a[2] * b[1]);
- result[1] = (a[2] * b[0]) - (a[0] * b[2]);
- result[2] = (a[0] * b[1]) - (a[1] * b[0]);
-}
-
-static bool decompose(const TransformationMatrix::Matrix4& mat, TransformationMatrix::DecomposedType& result)
-{
- TransformationMatrix::Matrix4 localMatrix;
- memcpy(localMatrix, mat, sizeof(TransformationMatrix::Matrix4));
-
- // Normalize the matrix.
- if (localMatrix[3][3] == 0)
- return false;
-
- int i, j;
- for (i = 0; i < 4; i++)
- for (j = 0; j < 4; j++)
- localMatrix[i][j] /= localMatrix[3][3];
-
- // perspectiveMatrix is used to solve for perspective, but it also provides
- // an easy way to test for singularity of the upper 3x3 component.
- TransformationMatrix::Matrix4 perspectiveMatrix;
- memcpy(perspectiveMatrix, localMatrix, sizeof(TransformationMatrix::Matrix4));
- for (i = 0; i < 3; i++)
- perspectiveMatrix[i][3] = 0;
- perspectiveMatrix[3][3] = 1;
-
- if (determinant4x4(perspectiveMatrix) == 0)
- return false;
-
- // First, isolate perspective. This is the messiest.
- if (localMatrix[0][3] != 0 || localMatrix[1][3] != 0 || localMatrix[2][3] != 0) {
- // rightHandSide is the right hand side of the equation.
- Vector4 rightHandSide;
- rightHandSide[0] = localMatrix[0][3];
- rightHandSide[1] = localMatrix[1][3];
- rightHandSide[2] = localMatrix[2][3];
- rightHandSide[3] = localMatrix[3][3];
-
- // Solve the equation by inverting perspectiveMatrix and multiplying
- // rightHandSide by the inverse. (This is the easiest way, not
- // necessarily the best.)
- TransformationMatrix::Matrix4 inversePerspectiveMatrix, transposedInversePerspectiveMatrix;
- inverse(perspectiveMatrix, inversePerspectiveMatrix);
- transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
-
- Vector4 perspectivePoint;
- v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
-
- result.perspectiveX = perspectivePoint[0];
- result.perspectiveY = perspectivePoint[1];
- result.perspectiveZ = perspectivePoint[2];
- result.perspectiveW = perspectivePoint[3];
-
- // Clear the perspective partition
- localMatrix[0][3] = localMatrix[1][3] = localMatrix[2][3] = 0;
- localMatrix[3][3] = 1;
- } else {
- // No perspective.
- result.perspectiveX = result.perspectiveY = result.perspectiveZ = 0;
- result.perspectiveW = 1;
- }
-
- // Next take care of translation (easy).
- result.translateX = localMatrix[3][0];
- localMatrix[3][0] = 0;
- result.translateY = localMatrix[3][1];
- localMatrix[3][1] = 0;
- result.translateZ = localMatrix[3][2];
- localMatrix[3][2] = 0;
-
- // Vector4 type and functions need to be added to the common set.
- Vector3 row[3], pdum3;
-
- // Now get scale and shear.
- for (i = 0; i < 3; i++) {
- row[i][0] = localMatrix[i][0];
- row[i][1] = localMatrix[i][1];
- row[i][2] = localMatrix[i][2];
- }
-
- // Compute X scale factor and normalize first row.
- result.scaleX = v3Length(row[0]);
- v3Scale(row[0], 1.0);
-
- // Compute XY shear factor and make 2nd row orthogonal to 1st.
- result.skewXY = v3Dot(row[0], row[1]);
- v3Combine(row[1], row[0], row[1], 1.0, -result.skewXY);
-
- // Now, compute Y scale and normalize 2nd row.
- result.scaleY = v3Length(row[1]);
- v3Scale(row[1], 1.0);
- result.skewXY /= result.scaleY;
-
- // Compute XZ and YZ shears, orthogonalize 3rd row.
- result.skewXZ = v3Dot(row[0], row[2]);
- v3Combine(row[2], row[0], row[2], 1.0, -result.skewXZ);
- result.skewYZ = v3Dot(row[1], row[2]);
- v3Combine(row[2], row[1], row[2], 1.0, -result.skewYZ);
-
- // Next, get Z scale and normalize 3rd row.
- result.scaleZ = v3Length(row[2]);
- v3Scale(row[2], 1.0);
- result.skewXZ /= result.scaleZ;
- result.skewYZ /= result.scaleZ;
-
- // At this point, the matrix (in rows[]) is orthonormal.
- // Check for a coordinate system flip. If the determinant
- // is -1, then negate the matrix and the scaling factors.
- v3Cross(row[1], row[2], pdum3);
- if (v3Dot(row[0], pdum3) < 0) {
-
- result.scaleX *= -1;
- result.scaleY *= -1;
- result.scaleZ *= -1;
-
- for (i = 0; i < 3; i++) {
- row[i][0] *= -1;
- row[i][1] *= -1;
- row[i][2] *= -1;
- }
- }
-
- // Now, get the rotations out, as described in the gem.
-
- // FIXME - Add the ability to return either quaternions (which are
- // easier to recompose with) or Euler angles (rx, ry, rz), which
- // are easier for authors to deal with. The latter will only be useful
- // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
- // will leave the Euler angle code here for now.
-
- // ret.rotateY = asin(-row[0][2]);
- // if (cos(ret.rotateY) != 0) {
- // ret.rotateX = atan2(row[1][2], row[2][2]);
- // ret.rotateZ = atan2(row[0][1], row[0][0]);
- // } else {
- // ret.rotateX = atan2(-row[2][0], row[1][1]);
- // ret.rotateZ = 0;
- // }
-
- double s, t, x, y, z, w;
-
- t = row[0][0] + row[1][1] + row[2][2] + 1.0;
-
- if (t > 1e-4) {
- s = 0.5 / sqrt(t);
- w = 0.25 / s;
- x = (row[2][1] - row[1][2]) * s;
- y = (row[0][2] - row[2][0]) * s;
- z = (row[1][0] - row[0][1]) * s;
- } else if (row[0][0] > row[1][1] && row[0][0] > row[2][2]) {
- s = sqrt (1.0 + row[0][0] - row[1][1] - row[2][2]) * 2.0; // S=4*qx
- x = 0.25 * s;
- y = (row[0][1] + row[1][0]) / s;
- z = (row[0][2] + row[2][0]) / s;
- w = (row[2][1] - row[1][2]) / s;
- } else if (row[1][1] > row[2][2]) {
- s = sqrt (1.0 + row[1][1] - row[0][0] - row[2][2]) * 2.0; // S=4*qy
- x = (row[0][1] + row[1][0]) / s;
- y = 0.25 * s;
- z = (row[1][2] + row[2][1]) / s;
- w = (row[0][2] - row[2][0]) / s;
- } else {
- s = sqrt(1.0 + row[2][2] - row[0][0] - row[1][1]) * 2.0; // S=4*qz
- x = (row[0][2] + row[2][0]) / s;
- y = (row[1][2] + row[2][1]) / s;
- z = 0.25 * s;
- w = (row[1][0] - row[0][1]) / s;
- }
-
- result.quaternionX = x;
- result.quaternionY = y;
- result.quaternionZ = z;
- result.quaternionW = w;
-
- return true;
-}
-
-// Perform a spherical linear interpolation between the two
-// passed quaternions with 0 <= t <= 1
-static void slerp(double qa[4], const double qb[4], double t)
-{
- double ax, ay, az, aw;
- double bx, by, bz, bw;
- double cx, cy, cz, cw;
- double angle;
- double th, invth, scale, invscale;
-
- ax = qa[0]; ay = qa[1]; az = qa[2]; aw = qa[3];
- bx = qb[0]; by = qb[1]; bz = qb[2]; bw = qb[3];
-
- angle = ax * bx + ay * by + az * bz + aw * bw;
-
- if (angle < 0.0) {
- ax = -ax; ay = -ay;
- az = -az; aw = -aw;
- angle = -angle;
- }
-
- if (angle + 1.0 > .05) {
- if (1.0 - angle >= .05) {
- th = acos (angle);
- invth = 1.0 / sin (th);
- scale = sin (th * (1.0 - t)) * invth;
- invscale = sin (th * t) * invth;
- } else {
- scale = 1.0 - t;
- invscale = t;
- }
- } else {
- bx = -ay;
- by = ax;
- bz = -aw;
- bw = az;
- scale = sin(piDouble * (.5 - t));
- invscale = sin (piDouble * t);
- }
-
- cx = ax * scale + bx * invscale;
- cy = ay * scale + by * invscale;
- cz = az * scale + bz * invscale;
- cw = aw * scale + bw * invscale;
-
- qa[0] = cx; qa[1] = cy; qa[2] = cz; qa[3] = cw;
-}
-
-// End of Supporting Math Functions
-
-TransformationMatrix::TransformationMatrix(const AffineTransform& t)
-{
- setMatrix(t.a(), t.b(), t.c(), t.d(), t.e(), t.f());
-}
-
-TransformationMatrix& TransformationMatrix::scale(double s)
-{
- return scaleNonUniform(s, s);
-}
-
-TransformationMatrix& TransformationMatrix::rotateFromVector(double x, double y)
-{
- return rotate(rad2deg(atan2(y, x)));
-}
-
-TransformationMatrix& TransformationMatrix::flipX()
-{
- return scaleNonUniform(-1.0, 1.0);
-}
-
-TransformationMatrix& TransformationMatrix::flipY()
-{
- return scaleNonUniform(1.0, -1.0);
-}
-
-FloatPoint TransformationMatrix::projectPoint(const FloatPoint& p, bool* clamped) const
-{
- // This is basically raytracing. We have a point in the destination
- // plane with z=0, and we cast a ray parallel to the z-axis from that
- // point to find the z-position at which it intersects the z=0 plane
- // with the transform applied. Once we have that point we apply the
- // inverse transform to find the corresponding point in the source
- // space.
- //
- // Given a plane with normal Pn, and a ray starting at point R0 and
- // with direction defined by the vector Rd, we can find the
- // intersection point as a distance d from R0 in units of Rd by:
- //
- // d = -dot (Pn', R0) / dot (Pn', Rd)
- if (clamped)
- *clamped = false;
-
- if (m33() == 0) {
- // In this case, the projection plane is parallel to the ray we are trying to
- // trace, and there is no well-defined value for the projection.
- return FloatPoint();
- }
-
- double x = p.x();
- double y = p.y();
- double z = -(m13() * x + m23() * y + m43()) / m33();
-
- // FIXME: use multVecMatrix()
- double outX = x * m11() + y * m21() + z * m31() + m41();
- double outY = x * m12() + y * m22() + z * m32() + m42();
-
- double w = x * m14() + y * m24() + z * m34() + m44();
- if (w <= 0) {
- // Using int max causes overflow when other code uses the projected point. To
- // represent infinity yet reduce the risk of overflow, we use a large but
- // not-too-large number here when clamping.
- const int largeNumber = 100000000 / kFixedPointDenominator;
- outX = copysign(largeNumber, outX);
- outY = copysign(largeNumber, outY);
- if (clamped)
- *clamped = true;
- } else if (w != 1) {
- outX /= w;
- outY /= w;
- }
-
- return FloatPoint(static_cast<float>(outX), static_cast<float>(outY));
-}
-
-FloatQuad TransformationMatrix::projectQuad(const FloatQuad& q, bool* clamped) const
-{
- FloatQuad projectedQuad;
-
- bool clamped1 = false;
- bool clamped2 = false;
- bool clamped3 = false;
- bool clamped4 = false;
-
- projectedQuad.setP1(projectPoint(q.p1(), &clamped1));
- projectedQuad.setP2(projectPoint(q.p2(), &clamped2));
- projectedQuad.setP3(projectPoint(q.p3(), &clamped3));
- projectedQuad.setP4(projectPoint(q.p4(), &clamped4));
-
- if (clamped)
- *clamped = clamped1 || clamped2 || clamped3 || clamped4;
-
- // If all points on the quad had w < 0, then the entire quad would not be visible to the projected surface.
- bool everythingWasClipped = clamped1 && clamped2 && clamped3 && clamped4;
- if (everythingWasClipped)
- return FloatQuad();
-
- return projectedQuad;
-}
-
-static float clampEdgeValue(float f)
-{
- ASSERT(!std::isnan(f));
- return min<float>(max<float>(f, -LayoutUnit::max() / 2), LayoutUnit::max() / 2);
-}
-
-LayoutRect TransformationMatrix::clampedBoundsOfProjectedQuad(const FloatQuad& q) const
-{
- FloatRect mappedQuadBounds = projectQuad(q).boundingBox();
-
- float left = clampEdgeValue(floorf(mappedQuadBounds.x()));
- float top = clampEdgeValue(floorf(mappedQuadBounds.y()));
-
- float right;
- if (std::isinf(mappedQuadBounds.x()) && std::isinf(mappedQuadBounds.width()))
- right = LayoutUnit::max() / 2;
- else
- right = clampEdgeValue(ceilf(mappedQuadBounds.maxX()));
-
- float bottom;
- if (std::isinf(mappedQuadBounds.y()) && std::isinf(mappedQuadBounds.height()))
- bottom = LayoutUnit::max() / 2;
- else
- bottom = clampEdgeValue(ceilf(mappedQuadBounds.maxY()));
-
- return LayoutRect(LayoutUnit::clamp(left), LayoutUnit::clamp(top), LayoutUnit::clamp(right - left), LayoutUnit::clamp(bottom - top));
-}
-
-FloatPoint TransformationMatrix::mapPoint(const FloatPoint& p) const
-{
- if (isIdentityOrTranslation())
- return FloatPoint(p.x() + static_cast<float>(m_matrix[3][0]), p.y() + static_cast<float>(m_matrix[3][1]));
-
- return internalMapPoint(p);
-}
-
-FloatPoint3D TransformationMatrix::mapPoint(const FloatPoint3D& p) const
-{
- if (isIdentityOrTranslation())
- return FloatPoint3D(p.x() + static_cast<float>(m_matrix[3][0]),
- p.y() + static_cast<float>(m_matrix[3][1]),
- p.z() + static_cast<float>(m_matrix[3][2]));
-
- return internalMapPoint(p);
-}
-
-IntRect TransformationMatrix::mapRect(const IntRect &rect) const
-{
- return enclosingIntRect(mapRect(FloatRect(rect)));
-}
-
-LayoutRect TransformationMatrix::mapRect(const LayoutRect& r) const
-{
- return enclosingLayoutRect(mapRect(FloatRect(r)));
-}
-
-FloatRect TransformationMatrix::mapRect(const FloatRect& r) const
-{
- if (isIdentityOrTranslation()) {
- FloatRect mappedRect(r);
- mappedRect.move(static_cast<float>(m_matrix[3][0]), static_cast<float>(m_matrix[3][1]));
- return mappedRect;
- }
-
- FloatQuad result;
-
- float maxX = r.maxX();
- float maxY = r.maxY();
- result.setP1(internalMapPoint(FloatPoint(r.x(), r.y())));
- result.setP2(internalMapPoint(FloatPoint(maxX, r.y())));
- result.setP3(internalMapPoint(FloatPoint(maxX, maxY)));
- result.setP4(internalMapPoint(FloatPoint(r.x(), maxY)));
-
- return result.boundingBox();
-}
-
-FloatQuad TransformationMatrix::mapQuad(const FloatQuad& q) const
-{
- if (isIdentityOrTranslation()) {
- FloatQuad mappedQuad(q);
- mappedQuad.move(static_cast<float>(m_matrix[3][0]), static_cast<float>(m_matrix[3][1]));
- return mappedQuad;
- }
-
- FloatQuad result;
- result.setP1(internalMapPoint(q.p1()));
- result.setP2(internalMapPoint(q.p2()));
- result.setP3(internalMapPoint(q.p3()));
- result.setP4(internalMapPoint(q.p4()));
- return result;
-}
-
-TransformationMatrix& TransformationMatrix::scaleNonUniform(double sx, double sy)
-{
- m_matrix[0][0] *= sx;
- m_matrix[0][1] *= sx;
- m_matrix[0][2] *= sx;
- m_matrix[0][3] *= sx;
-
- m_matrix[1][0] *= sy;
- m_matrix[1][1] *= sy;
- m_matrix[1][2] *= sy;
- m_matrix[1][3] *= sy;
- return *this;
-}
-
-TransformationMatrix& TransformationMatrix::scale3d(double sx, double sy, double sz)
-{
- scaleNonUniform(sx, sy);
-
- m_matrix[2][0] *= sz;
- m_matrix[2][1] *= sz;
- m_matrix[2][2] *= sz;
- m_matrix[2][3] *= sz;
- return *this;
-}
-
-TransformationMatrix& TransformationMatrix::rotate3d(double x, double y, double z, double angle)
-{
- // Normalize the axis of rotation
- double length = sqrt(x * x + y * y + z * z);
- if (length == 0) {
- // A direction vector that cannot be normalized, such as [0, 0, 0], will cause the rotation to not be applied.
- return *this;
- } else if (length != 1) {
- x /= length;
- y /= length;
- z /= length;
- }
-
- // Angles are in degrees. Switch to radians.
- angle = deg2rad(angle);
-
- double sinTheta = sin(angle);
- double cosTheta = cos(angle);
-
- TransformationMatrix mat;
-
- // Optimize cases where the axis is along a major axis
- if (x == 1.0 && y == 0.0 && z == 0.0) {
- mat.m_matrix[0][0] = 1.0;
- mat.m_matrix[0][1] = 0.0;
- mat.m_matrix[0][2] = 0.0;
- mat.m_matrix[1][0] = 0.0;
- mat.m_matrix[1][1] = cosTheta;
- mat.m_matrix[1][2] = sinTheta;
- mat.m_matrix[2][0] = 0.0;
- mat.m_matrix[2][1] = -sinTheta;
- mat.m_matrix[2][2] = cosTheta;
- mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
- mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
- mat.m_matrix[3][3] = 1.0;
- } else if (x == 0.0 && y == 1.0 && z == 0.0) {
- mat.m_matrix[0][0] = cosTheta;
- mat.m_matrix[0][1] = 0.0;
- mat.m_matrix[0][2] = -sinTheta;
- mat.m_matrix[1][0] = 0.0;
- mat.m_matrix[1][1] = 1.0;
- mat.m_matrix[1][2] = 0.0;
- mat.m_matrix[2][0] = sinTheta;
- mat.m_matrix[2][1] = 0.0;
- mat.m_matrix[2][2] = cosTheta;
- mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
- mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
- mat.m_matrix[3][3] = 1.0;
- } else if (x == 0.0 && y == 0.0 && z == 1.0) {
- mat.m_matrix[0][0] = cosTheta;
- mat.m_matrix[0][1] = sinTheta;
- mat.m_matrix[0][2] = 0.0;
- mat.m_matrix[1][0] = -sinTheta;
- mat.m_matrix[1][1] = cosTheta;
- mat.m_matrix[1][2] = 0.0;
- mat.m_matrix[2][0] = 0.0;
- mat.m_matrix[2][1] = 0.0;
- mat.m_matrix[2][2] = 1.0;
- mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
- mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
- mat.m_matrix[3][3] = 1.0;
- } else {
- // This case is the rotation about an arbitrary unit vector.
- //
- // Formula is adapted from Wikipedia article on Rotation matrix,
- // http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
- //
- // An alternate resource with the same matrix: http://www.fastgraph.com/makegames/3drotation/
- //
- double oneMinusCosTheta = 1 - cosTheta;
- mat.m_matrix[0][0] = cosTheta + x * x * oneMinusCosTheta;
- mat.m_matrix[0][1] = y * x * oneMinusCosTheta + z * sinTheta;
- mat.m_matrix[0][2] = z * x * oneMinusCosTheta - y * sinTheta;
- mat.m_matrix[1][0] = x * y * oneMinusCosTheta - z * sinTheta;
- mat.m_matrix[1][1] = cosTheta + y * y * oneMinusCosTheta;
- mat.m_matrix[1][2] = z * y * oneMinusCosTheta + x * sinTheta;
- mat.m_matrix[2][0] = x * z * oneMinusCosTheta + y * sinTheta;
- mat.m_matrix[2][1] = y * z * oneMinusCosTheta - x * sinTheta;
- mat.m_matrix[2][2] = cosTheta + z * z * oneMinusCosTheta;
- mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
- mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
- mat.m_matrix[3][3] = 1.0;
- }
- multiply(mat);
- return *this;
-}
-
-TransformationMatrix& TransformationMatrix::rotate3d(double rx, double ry, double rz)
-{
- // Angles are in degrees. Switch to radians.
- rx = deg2rad(rx);
- ry = deg2rad(ry);
- rz = deg2rad(rz);
-
- TransformationMatrix mat;
-
- double sinTheta = sin(rz);
- double cosTheta = cos(rz);
-
- mat.m_matrix[0][0] = cosTheta;
- mat.m_matrix[0][1] = sinTheta;
- mat.m_matrix[0][2] = 0.0;
- mat.m_matrix[1][0] = -sinTheta;
- mat.m_matrix[1][1] = cosTheta;
- mat.m_matrix[1][2] = 0.0;
- mat.m_matrix[2][0] = 0.0;
- mat.m_matrix[2][1] = 0.0;
- mat.m_matrix[2][2] = 1.0;
- mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
- mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
- mat.m_matrix[3][3] = 1.0;
-
- TransformationMatrix rmat(mat);
-
- sinTheta = sin(ry);
- cosTheta = cos(ry);
-
- mat.m_matrix[0][0] = cosTheta;
- mat.m_matrix[0][1] = 0.0;
- mat.m_matrix[0][2] = -sinTheta;
- mat.m_matrix[1][0] = 0.0;
- mat.m_matrix[1][1] = 1.0;
- mat.m_matrix[1][2] = 0.0;
- mat.m_matrix[2][0] = sinTheta;
- mat.m_matrix[2][1] = 0.0;
- mat.m_matrix[2][2] = cosTheta;
- mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
- mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
- mat.m_matrix[3][3] = 1.0;
-
- rmat.multiply(mat);
-
- sinTheta = sin(rx);
- cosTheta = cos(rx);
-
- mat.m_matrix[0][0] = 1.0;
- mat.m_matrix[0][1] = 0.0;
- mat.m_matrix[0][2] = 0.0;
- mat.m_matrix[1][0] = 0.0;
- mat.m_matrix[1][1] = cosTheta;
- mat.m_matrix[1][2] = sinTheta;
- mat.m_matrix[2][0] = 0.0;
- mat.m_matrix[2][1] = -sinTheta;
- mat.m_matrix[2][2] = cosTheta;
- mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
- mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
- mat.m_matrix[3][3] = 1.0;
-
- rmat.multiply(mat);
-
- multiply(rmat);
- return *this;
-}
-
-TransformationMatrix& TransformationMatrix::translate(double tx, double ty)
-{
- m_matrix[3][0] += tx * m_matrix[0][0] + ty * m_matrix[1][0];
- m_matrix[3][1] += tx * m_matrix[0][1] + ty * m_matrix[1][1];
- m_matrix[3][2] += tx * m_matrix[0][2] + ty * m_matrix[1][2];
- m_matrix[3][3] += tx * m_matrix[0][3] + ty * m_matrix[1][3];
- return *this;
-}
-
-TransformationMatrix& TransformationMatrix::translate3d(double tx, double ty, double tz)
-{
- m_matrix[3][0] += tx * m_matrix[0][0] + ty * m_matrix[1][0] + tz * m_matrix[2][0];
- m_matrix[3][1] += tx * m_matrix[0][1] + ty * m_matrix[1][1] + tz * m_matrix[2][1];
- m_matrix[3][2] += tx * m_matrix[0][2] + ty * m_matrix[1][2] + tz * m_matrix[2][2];
- m_matrix[3][3] += tx * m_matrix[0][3] + ty * m_matrix[1][3] + tz * m_matrix[2][3];
- return *this;
-}
-
-TransformationMatrix& TransformationMatrix::translateRight(double tx, double ty)
-{
- if (tx != 0) {
- m_matrix[0][0] += m_matrix[0][3] * tx;
- m_matrix[1][0] += m_matrix[1][3] * tx;
- m_matrix[2][0] += m_matrix[2][3] * tx;
- m_matrix[3][0] += m_matrix[3][3] * tx;
- }
-
- if (ty != 0) {
- m_matrix[0][1] += m_matrix[0][3] * ty;
- m_matrix[1][1] += m_matrix[1][3] * ty;
- m_matrix[2][1] += m_matrix[2][3] * ty;
- m_matrix[3][1] += m_matrix[3][3] * ty;
- }
-
- return *this;
-}
-
-TransformationMatrix& TransformationMatrix::translateRight3d(double tx, double ty, double tz)
-{
- translateRight(tx, ty);
- if (tz != 0) {
- m_matrix[0][2] += m_matrix[0][3] * tz;
- m_matrix[1][2] += m_matrix[1][3] * tz;
- m_matrix[2][2] += m_matrix[2][3] * tz;
- m_matrix[3][2] += m_matrix[3][3] * tz;
- }
-
- return *this;
-}
-
-TransformationMatrix& TransformationMatrix::skew(double sx, double sy)
-{
- // angles are in degrees. Switch to radians
- sx = deg2rad(sx);
- sy = deg2rad(sy);
-
- TransformationMatrix mat;
- mat.m_matrix[0][1] = tan(sy); // note that the y shear goes in the first row
- mat.m_matrix[1][0] = tan(sx); // and the x shear in the second row
-
- multiply(mat);
- return *this;
-}
-
-TransformationMatrix& TransformationMatrix::applyPerspective(double p)
-{
- TransformationMatrix mat;
- if (p != 0)
- mat.m_matrix[2][3] = -1/p;
-
- multiply(mat);
- return *this;
-}
-
-TransformationMatrix TransformationMatrix::rectToRect(const FloatRect& from, const FloatRect& to)
-{
- ASSERT(!from.isEmpty());
- return TransformationMatrix(to.width() / from.width(),
- 0, 0,
- to.height() / from.height(),
- to.x() - from.x(),
- to.y() - from.y());
-}
-
-// this = mat * this.
-TransformationMatrix& TransformationMatrix::multiply(const TransformationMatrix& mat)
-{
-#if CPU(APPLE_ARMV7S)
- double* leftMatrix = &(m_matrix[0][0]);
- const double* rightMatrix = &(mat.m_matrix[0][0]);
- asm volatile (// First row of leftMatrix.
- "mov r3, %[leftMatrix]\n\t"
- "vld1.64 { d16-d19 }, [%[leftMatrix], :128]!\n\t"
- "vld1.64 { d0-d3}, [%[rightMatrix], :128]!\n\t"
- "vmul.f64 d4, d0, d16\n\t"
- "vld1.64 { d20-d23 }, [%[leftMatrix], :128]!\n\t"
- "vmla.f64 d4, d1, d20\n\t"
- "vld1.64 { d24-d27 }, [%[leftMatrix], :128]!\n\t"
- "vmla.f64 d4, d2, d24\n\t"
- "vld1.64 { d28-d31 }, [%[leftMatrix], :128]!\n\t"
- "vmla.f64 d4, d3, d28\n\t"
-
- "vmul.f64 d5, d0, d17\n\t"
- "vmla.f64 d5, d1, d21\n\t"
- "vmla.f64 d5, d2, d25\n\t"
- "vmla.f64 d5, d3, d29\n\t"
-
- "vmul.f64 d6, d0, d18\n\t"
- "vmla.f64 d6, d1, d22\n\t"
- "vmla.f64 d6, d2, d26\n\t"
- "vmla.f64 d6, d3, d30\n\t"
-
- "vmul.f64 d7, d0, d19\n\t"
- "vmla.f64 d7, d1, d23\n\t"
- "vmla.f64 d7, d2, d27\n\t"
- "vmla.f64 d7, d3, d31\n\t"
- "vld1.64 { d0-d3}, [%[rightMatrix], :128]!\n\t"
- "vst1.64 { d4-d7 }, [r3, :128]!\n\t"
-
- // Second row of leftMatrix.
- "vmul.f64 d4, d0, d16\n\t"
- "vmla.f64 d4, d1, d20\n\t"
- "vmla.f64 d4, d2, d24\n\t"
- "vmla.f64 d4, d3, d28\n\t"
-
- "vmul.f64 d5, d0, d17\n\t"
- "vmla.f64 d5, d1, d21\n\t"
- "vmla.f64 d5, d2, d25\n\t"
- "vmla.f64 d5, d3, d29\n\t"
-
- "vmul.f64 d6, d0, d18\n\t"
- "vmla.f64 d6, d1, d22\n\t"
- "vmla.f64 d6, d2, d26\n\t"
- "vmla.f64 d6, d3, d30\n\t"
-
- "vmul.f64 d7, d0, d19\n\t"
- "vmla.f64 d7, d1, d23\n\t"
- "vmla.f64 d7, d2, d27\n\t"
- "vmla.f64 d7, d3, d31\n\t"
- "vld1.64 { d0-d3}, [%[rightMatrix], :128]!\n\t"
- "vst1.64 { d4-d7 }, [r3, :128]!\n\t"
-
- // Third row of leftMatrix.
- "vmul.f64 d4, d0, d16\n\t"
- "vmla.f64 d4, d1, d20\n\t"
- "vmla.f64 d4, d2, d24\n\t"
- "vmla.f64 d4, d3, d28\n\t"
-
- "vmul.f64 d5, d0, d17\n\t"
- "vmla.f64 d5, d1, d21\n\t"
- "vmla.f64 d5, d2, d25\n\t"
- "vmla.f64 d5, d3, d29\n\t"
-
- "vmul.f64 d6, d0, d18\n\t"
- "vmla.f64 d6, d1, d22\n\t"
- "vmla.f64 d6, d2, d26\n\t"
- "vmla.f64 d6, d3, d30\n\t"
-
- "vmul.f64 d7, d0, d19\n\t"
- "vmla.f64 d7, d1, d23\n\t"
- "vmla.f64 d7, d2, d27\n\t"
- "vmla.f64 d7, d3, d31\n\t"
- "vld1.64 { d0-d3}, [%[rightMatrix], :128]\n\t"
- "vst1.64 { d4-d7 }, [r3, :128]!\n\t"
-
- // Fourth and last row of leftMatrix.
- "vmul.f64 d4, d0, d16\n\t"
- "vmla.f64 d4, d1, d20\n\t"
- "vmla.f64 d4, d2, d24\n\t"
- "vmla.f64 d4, d3, d28\n\t"
-
- "vmul.f64 d5, d0, d17\n\t"
- "vmla.f64 d5, d1, d21\n\t"
- "vmla.f64 d5, d2, d25\n\t"
- "vmla.f64 d5, d3, d29\n\t"
-
- "vmul.f64 d6, d0, d18\n\t"
- "vmla.f64 d6, d1, d22\n\t"
- "vmla.f64 d6, d2, d26\n\t"
- "vmla.f64 d6, d3, d30\n\t"
-
- "vmul.f64 d7, d0, d19\n\t"
- "vmla.f64 d7, d1, d23\n\t"
- "vmla.f64 d7, d2, d27\n\t"
- "vmla.f64 d7, d3, d31\n\t"
- "vst1.64 { d4-d7 }, [r3, :128]\n\t"
- : [leftMatrix]"+r"(leftMatrix), [rightMatrix]"+r"(rightMatrix)
- :
- : "memory", "r3", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31");
-#elif defined(TRANSFORMATION_MATRIX_USE_X86_64_SSE2)
- // x86_64 has 16 XMM registers which is enough to do the multiplication fully in registers.
- __m128d matrixBlockA = _mm_load_pd(&(m_matrix[0][0]));
- __m128d matrixBlockC = _mm_load_pd(&(m_matrix[1][0]));
- __m128d matrixBlockE = _mm_load_pd(&(m_matrix[2][0]));
- __m128d matrixBlockG = _mm_load_pd(&(m_matrix[3][0]));
-
- // First row.
- __m128d otherMatrixFirstParam = _mm_set1_pd(mat.m_matrix[0][0]);
- __m128d otherMatrixSecondParam = _mm_set1_pd(mat.m_matrix[0][1]);
- __m128d otherMatrixThirdParam = _mm_set1_pd(mat.m_matrix[0][2]);
- __m128d otherMatrixFourthParam = _mm_set1_pd(mat.m_matrix[0][3]);
-
- // output00 and output01.
- __m128d accumulator = _mm_mul_pd(matrixBlockA, otherMatrixFirstParam);
- __m128d temp1 = _mm_mul_pd(matrixBlockC, otherMatrixSecondParam);
- __m128d temp2 = _mm_mul_pd(matrixBlockE, otherMatrixThirdParam);
- __m128d temp3 = _mm_mul_pd(matrixBlockG, otherMatrixFourthParam);
-
- __m128d matrixBlockB = _mm_load_pd(&(m_matrix[0][2]));
- __m128d matrixBlockD = _mm_load_pd(&(m_matrix[1][2]));
- __m128d matrixBlockF = _mm_load_pd(&(m_matrix[2][2]));
- __m128d matrixBlockH = _mm_load_pd(&(m_matrix[3][2]));
-
- accumulator = _mm_add_pd(accumulator, temp1);
- accumulator = _mm_add_pd(accumulator, temp2);
- accumulator = _mm_add_pd(accumulator, temp3);
- _mm_store_pd(&m_matrix[0][0], accumulator);
-
- // output02 and output03.
- accumulator = _mm_mul_pd(matrixBlockB, otherMatrixFirstParam);
- temp1 = _mm_mul_pd(matrixBlockD, otherMatrixSecondParam);
- temp2 = _mm_mul_pd(matrixBlockF, otherMatrixThirdParam);
- temp3 = _mm_mul_pd(matrixBlockH, otherMatrixFourthParam);
-
- accumulator = _mm_add_pd(accumulator, temp1);
- accumulator = _mm_add_pd(accumulator, temp2);
- accumulator = _mm_add_pd(accumulator, temp3);
- _mm_store_pd(&m_matrix[0][2], accumulator);
-
- // Second row.
- otherMatrixFirstParam = _mm_set1_pd(mat.m_matrix[1][0]);
- otherMatrixSecondParam = _mm_set1_pd(mat.m_matrix[1][1]);
- otherMatrixThirdParam = _mm_set1_pd(mat.m_matrix[1][2]);
- otherMatrixFourthParam = _mm_set1_pd(mat.m_matrix[1][3]);
-
- // output10 and output11.
- accumulator = _mm_mul_pd(matrixBlockA, otherMatrixFirstParam);
- temp1 = _mm_mul_pd(matrixBlockC, otherMatrixSecondParam);
- temp2 = _mm_mul_pd(matrixBlockE, otherMatrixThirdParam);
- temp3 = _mm_mul_pd(matrixBlockG, otherMatrixFourthParam);
-
- accumulator = _mm_add_pd(accumulator, temp1);
- accumulator = _mm_add_pd(accumulator, temp2);
- accumulator = _mm_add_pd(accumulator, temp3);
- _mm_store_pd(&m_matrix[1][0], accumulator);
-
- // output12 and output13.
- accumulator = _mm_mul_pd(matrixBlockB, otherMatrixFirstParam);
- temp1 = _mm_mul_pd(matrixBlockD, otherMatrixSecondParam);
- temp2 = _mm_mul_pd(matrixBlockF, otherMatrixThirdParam);
- temp3 = _mm_mul_pd(matrixBlockH, otherMatrixFourthParam);
-
- accumulator = _mm_add_pd(accumulator, temp1);
- accumulator = _mm_add_pd(accumulator, temp2);
- accumulator = _mm_add_pd(accumulator, temp3);
- _mm_store_pd(&m_matrix[1][2], accumulator);
-
- // Third row.
- otherMatrixFirstParam = _mm_set1_pd(mat.m_matrix[2][0]);
- otherMatrixSecondParam = _mm_set1_pd(mat.m_matrix[2][1]);
- otherMatrixThirdParam = _mm_set1_pd(mat.m_matrix[2][2]);
- otherMatrixFourthParam = _mm_set1_pd(mat.m_matrix[2][3]);
-
- // output20 and output21.
- accumulator = _mm_mul_pd(matrixBlockA, otherMatrixFirstParam);
- temp1 = _mm_mul_pd(matrixBlockC, otherMatrixSecondParam);
- temp2 = _mm_mul_pd(matrixBlockE, otherMatrixThirdParam);
- temp3 = _mm_mul_pd(matrixBlockG, otherMatrixFourthParam);
-
- accumulator = _mm_add_pd(accumulator, temp1);
- accumulator = _mm_add_pd(accumulator, temp2);
- accumulator = _mm_add_pd(accumulator, temp3);
- _mm_store_pd(&m_matrix[2][0], accumulator);
-
- // output22 and output23.
- accumulator = _mm_mul_pd(matrixBlockB, otherMatrixFirstParam);
- temp1 = _mm_mul_pd(matrixBlockD, otherMatrixSecondParam);
- temp2 = _mm_mul_pd(matrixBlockF, otherMatrixThirdParam);
- temp3 = _mm_mul_pd(matrixBlockH, otherMatrixFourthParam);
-
- accumulator = _mm_add_pd(accumulator, temp1);
- accumulator = _mm_add_pd(accumulator, temp2);
- accumulator = _mm_add_pd(accumulator, temp3);
- _mm_store_pd(&m_matrix[2][2], accumulator);
-
- // Fourth row.
- otherMatrixFirstParam = _mm_set1_pd(mat.m_matrix[3][0]);
- otherMatrixSecondParam = _mm_set1_pd(mat.m_matrix[3][1]);
- otherMatrixThirdParam = _mm_set1_pd(mat.m_matrix[3][2]);
- otherMatrixFourthParam = _mm_set1_pd(mat.m_matrix[3][3]);
-
- // output30 and output31.
- accumulator = _mm_mul_pd(matrixBlockA, otherMatrixFirstParam);
- temp1 = _mm_mul_pd(matrixBlockC, otherMatrixSecondParam);
- temp2 = _mm_mul_pd(matrixBlockE, otherMatrixThirdParam);
- temp3 = _mm_mul_pd(matrixBlockG, otherMatrixFourthParam);
-
- accumulator = _mm_add_pd(accumulator, temp1);
- accumulator = _mm_add_pd(accumulator, temp2);
- accumulator = _mm_add_pd(accumulator, temp3);
- _mm_store_pd(&m_matrix[3][0], accumulator);
-
- // output32 and output33.
- accumulator = _mm_mul_pd(matrixBlockB, otherMatrixFirstParam);
- temp1 = _mm_mul_pd(matrixBlockD, otherMatrixSecondParam);
- temp2 = _mm_mul_pd(matrixBlockF, otherMatrixThirdParam);
- temp3 = _mm_mul_pd(matrixBlockH, otherMatrixFourthParam);
-
- accumulator = _mm_add_pd(accumulator, temp1);
- accumulator = _mm_add_pd(accumulator, temp2);
- accumulator = _mm_add_pd(accumulator, temp3);
- _mm_store_pd(&m_matrix[3][2], accumulator);
-#else
- Matrix4 tmp;
-
- tmp[0][0] = (mat.m_matrix[0][0] * m_matrix[0][0] + mat.m_matrix[0][1] * m_matrix[1][0]
- + mat.m_matrix[0][2] * m_matrix[2][0] + mat.m_matrix[0][3] * m_matrix[3][0]);
- tmp[0][1] = (mat.m_matrix[0][0] * m_matrix[0][1] + mat.m_matrix[0][1] * m_matrix[1][1]
- + mat.m_matrix[0][2] * m_matrix[2][1] + mat.m_matrix[0][3] * m_matrix[3][1]);
- tmp[0][2] = (mat.m_matrix[0][0] * m_matrix[0][2] + mat.m_matrix[0][1] * m_matrix[1][2]
- + mat.m_matrix[0][2] * m_matrix[2][2] + mat.m_matrix[0][3] * m_matrix[3][2]);
- tmp[0][3] = (mat.m_matrix[0][0] * m_matrix[0][3] + mat.m_matrix[0][1] * m_matrix[1][3]
- + mat.m_matrix[0][2] * m_matrix[2][3] + mat.m_matrix[0][3] * m_matrix[3][3]);
-
- tmp[1][0] = (mat.m_matrix[1][0] * m_matrix[0][0] + mat.m_matrix[1][1] * m_matrix[1][0]
- + mat.m_matrix[1][2] * m_matrix[2][0] + mat.m_matrix[1][3] * m_matrix[3][0]);
- tmp[1][1] = (mat.m_matrix[1][0] * m_matrix[0][1] + mat.m_matrix[1][1] * m_matrix[1][1]
- + mat.m_matrix[1][2] * m_matrix[2][1] + mat.m_matrix[1][3] * m_matrix[3][1]);
- tmp[1][2] = (mat.m_matrix[1][0] * m_matrix[0][2] + mat.m_matrix[1][1] * m_matrix[1][2]
- + mat.m_matrix[1][2] * m_matrix[2][2] + mat.m_matrix[1][3] * m_matrix[3][2]);
- tmp[1][3] = (mat.m_matrix[1][0] * m_matrix[0][3] + mat.m_matrix[1][1] * m_matrix[1][3]
- + mat.m_matrix[1][2] * m_matrix[2][3] + mat.m_matrix[1][3] * m_matrix[3][3]);
-
- tmp[2][0] = (mat.m_matrix[2][0] * m_matrix[0][0] + mat.m_matrix[2][1] * m_matrix[1][0]
- + mat.m_matrix[2][2] * m_matrix[2][0] + mat.m_matrix[2][3] * m_matrix[3][0]);
- tmp[2][1] = (mat.m_matrix[2][0] * m_matrix[0][1] + mat.m_matrix[2][1] * m_matrix[1][1]
- + mat.m_matrix[2][2] * m_matrix[2][1] + mat.m_matrix[2][3] * m_matrix[3][1]);
- tmp[2][2] = (mat.m_matrix[2][0] * m_matrix[0][2] + mat.m_matrix[2][1] * m_matrix[1][2]
- + mat.m_matrix[2][2] * m_matrix[2][2] + mat.m_matrix[2][3] * m_matrix[3][2]);
- tmp[2][3] = (mat.m_matrix[2][0] * m_matrix[0][3] + mat.m_matrix[2][1] * m_matrix[1][3]
- + mat.m_matrix[2][2] * m_matrix[2][3] + mat.m_matrix[2][3] * m_matrix[3][3]);
-
- tmp[3][0] = (mat.m_matrix[3][0] * m_matrix[0][0] + mat.m_matrix[3][1] * m_matrix[1][0]
- + mat.m_matrix[3][2] * m_matrix[2][0] + mat.m_matrix[3][3] * m_matrix[3][0]);
- tmp[3][1] = (mat.m_matrix[3][0] * m_matrix[0][1] + mat.m_matrix[3][1] * m_matrix[1][1]
- + mat.m_matrix[3][2] * m_matrix[2][1] + mat.m_matrix[3][3] * m_matrix[3][1]);
- tmp[3][2] = (mat.m_matrix[3][0] * m_matrix[0][2] + mat.m_matrix[3][1] * m_matrix[1][2]
- + mat.m_matrix[3][2] * m_matrix[2][2] + mat.m_matrix[3][3] * m_matrix[3][2]);
- tmp[3][3] = (mat.m_matrix[3][0] * m_matrix[0][3] + mat.m_matrix[3][1] * m_matrix[1][3]
- + mat.m_matrix[3][2] * m_matrix[2][3] + mat.m_matrix[3][3] * m_matrix[3][3]);
-
- setMatrix(tmp);
-#endif
- return *this;
-}
-
-void TransformationMatrix::multVecMatrix(double x, double y, double& resultX, double& resultY) const
-{
- resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0];
- resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1];
- double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3];
- if (w != 1 && w != 0) {
- resultX /= w;
- resultY /= w;
- }
-}
-
-void TransformationMatrix::multVecMatrix(double x, double y, double z, double& resultX, double& resultY, double& resultZ) const
-{
- resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
- resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
- resultZ = m_matrix[3][2] + x * m_matrix[0][2] + y * m_matrix[1][2] + z * m_matrix[2][2];
- double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3] + z * m_matrix[2][3];
- if (w != 1 && w != 0) {
- resultX /= w;
- resultY /= w;
- resultZ /= w;
- }
-}
-
-bool TransformationMatrix::isInvertible() const
-{
- if (isIdentityOrTranslation())
- return true;
-
- double det = WebCore::determinant4x4(m_matrix);
-
- if (fabs(det) < SMALL_NUMBER)
- return false;
-
- return true;
-}
-
-TransformationMatrix TransformationMatrix::inverse() const
-{
- if (isIdentityOrTranslation()) {
- // identity matrix
- if (m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0)
- return TransformationMatrix();
-
- // translation
- return TransformationMatrix(1, 0, 0, 0,
- 0, 1, 0, 0,
- 0, 0, 1, 0,
- -m_matrix[3][0], -m_matrix[3][1], -m_matrix[3][2], 1);
- }
-
- TransformationMatrix invMat;
- bool inverted = WebCore::inverse(m_matrix, invMat.m_matrix);
- if (!inverted)
- return TransformationMatrix();
-
- return invMat;
-}
-
-void TransformationMatrix::makeAffine()
-{
- m_matrix[0][2] = 0;
- m_matrix[0][3] = 0;
-
- m_matrix[1][2] = 0;
- m_matrix[1][3] = 0;
-
- m_matrix[2][0] = 0;
- m_matrix[2][1] = 0;
- m_matrix[2][2] = 1;
- m_matrix[2][3] = 0;
-
- m_matrix[3][2] = 0;
- m_matrix[3][3] = 1;
-}
-
-AffineTransform TransformationMatrix::toAffineTransform() const
-{
- return AffineTransform(m_matrix[0][0], m_matrix[0][1], m_matrix[1][0],
- m_matrix[1][1], m_matrix[3][0], m_matrix[3][1]);
-}
-
-TransformationMatrix::operator SkMatrix() const
-{
- SkMatrix result;
-
- result.setScaleX(WebCoreDoubleToSkScalar(a()));
- result.setSkewX(WebCoreDoubleToSkScalar(c()));
- result.setTranslateX(WebCoreDoubleToSkScalar(e()));
-
- result.setScaleY(WebCoreDoubleToSkScalar(d()));
- result.setSkewY(WebCoreDoubleToSkScalar(b()));
- result.setTranslateY(WebCoreDoubleToSkScalar(f()));
-
- // FIXME: Set perspective properly.
- result.setPerspX(0);
- result.setPerspY(0);
- result.set(SkMatrix::kMPersp2, SK_Scalar1);
-
- return result;
-}
-
-static inline void blendFloat(double& from, double to, double progress)
-{
- if (from != to)
- from = from + (to - from) * progress;
-}
-
-void TransformationMatrix::blend(const TransformationMatrix& from, double progress)
-{
- if (from.isIdentity() && isIdentity())
- return;
-
- // decompose
- DecomposedType fromDecomp;
- DecomposedType toDecomp;
- from.decompose(fromDecomp);
- decompose(toDecomp);
-
- // interpolate
- blendFloat(fromDecomp.scaleX, toDecomp.scaleX, progress);
- blendFloat(fromDecomp.scaleY, toDecomp.scaleY, progress);
- blendFloat(fromDecomp.scaleZ, toDecomp.scaleZ, progress);
- blendFloat(fromDecomp.skewXY, toDecomp.skewXY, progress);
- blendFloat(fromDecomp.skewXZ, toDecomp.skewXZ, progress);
- blendFloat(fromDecomp.skewYZ, toDecomp.skewYZ, progress);
- blendFloat(fromDecomp.translateX, toDecomp.translateX, progress);
- blendFloat(fromDecomp.translateY, toDecomp.translateY, progress);
- blendFloat(fromDecomp.translateZ, toDecomp.translateZ, progress);
- blendFloat(fromDecomp.perspectiveX, toDecomp.perspectiveX, progress);
- blendFloat(fromDecomp.perspectiveY, toDecomp.perspectiveY, progress);
- blendFloat(fromDecomp.perspectiveZ, toDecomp.perspectiveZ, progress);
- blendFloat(fromDecomp.perspectiveW, toDecomp.perspectiveW, progress);
-
- slerp(&fromDecomp.quaternionX, &toDecomp.quaternionX, progress);
-
- // recompose
- recompose(fromDecomp);
-}
-
-bool TransformationMatrix::decompose(DecomposedType& decomp) const
-{
- if (isIdentity()) {
- memset(&decomp, 0, sizeof(decomp));
- decomp.perspectiveW = 1;
- decomp.scaleX = 1;
- decomp.scaleY = 1;
- decomp.scaleZ = 1;
- }
-
- if (!WebCore::decompose(m_matrix, decomp))
- return false;
- return true;
-}
-
-void TransformationMatrix::recompose(const DecomposedType& decomp)
-{
- makeIdentity();
-
- // first apply perspective
- m_matrix[0][3] = decomp.perspectiveX;
- m_matrix[1][3] = decomp.perspectiveY;
- m_matrix[2][3] = decomp.perspectiveZ;
- m_matrix[3][3] = decomp.perspectiveW;
-
- // now translate
- translate3d(decomp.translateX, decomp.translateY, decomp.translateZ);
-
- // apply rotation
- double xx = decomp.quaternionX * decomp.quaternionX;
- double xy = decomp.quaternionX * decomp.quaternionY;
- double xz = decomp.quaternionX * decomp.quaternionZ;
- double xw = decomp.quaternionX * decomp.quaternionW;
- double yy = decomp.quaternionY * decomp.quaternionY;
- double yz = decomp.quaternionY * decomp.quaternionZ;
- double yw = decomp.quaternionY * decomp.quaternionW;
- double zz = decomp.quaternionZ * decomp.quaternionZ;
- double zw = decomp.quaternionZ * decomp.quaternionW;
-
- // Construct a composite rotation matrix from the quaternion values
- TransformationMatrix rotationMatrix(1 - 2 * (yy + zz), 2 * (xy - zw), 2 * (xz + yw), 0,
- 2 * (xy + zw), 1 - 2 * (xx + zz), 2 * (yz - xw), 0,
- 2 * (xz - yw), 2 * (yz + xw), 1 - 2 * (xx + yy), 0,
- 0, 0, 0, 1);
-
- multiply(rotationMatrix);
-
- // now apply skew
- if (decomp.skewYZ) {
- TransformationMatrix tmp;
- tmp.setM32(decomp.skewYZ);
- multiply(tmp);
- }
-
- if (decomp.skewXZ) {
- TransformationMatrix tmp;
- tmp.setM31(decomp.skewXZ);
- multiply(tmp);
- }
-
- if (decomp.skewXY) {
- TransformationMatrix tmp;
- tmp.setM21(decomp.skewXY);
- multiply(tmp);
- }
-
- // finally, apply scale
- scale3d(decomp.scaleX, decomp.scaleY, decomp.scaleZ);
-}
-
-bool TransformationMatrix::isIntegerTranslation() const
-{
- if (!isIdentityOrTranslation())
- return false;
-
- // Check for translate Z.
- if (m_matrix[3][2])
- return false;
-
- // Check for non-integer translate X/Y.
- if (static_cast<int>(m_matrix[3][0]) != m_matrix[3][0] || static_cast<int>(m_matrix[3][1]) != m_matrix[3][1])
- return false;
-
- return true;
-}
-
-TransformationMatrix TransformationMatrix::to2dTransform() const
-{
- return TransformationMatrix(m_matrix[0][0], m_matrix[0][1], 0, m_matrix[0][3],
- m_matrix[1][0], m_matrix[1][1], 0, m_matrix[1][3],
- 0, 0, 1, 0,
- m_matrix[3][0], m_matrix[3][1], 0, m_matrix[3][3]);
-}
-
-void TransformationMatrix::toColumnMajorFloatArray(FloatMatrix4& result) const
-{
- result[0] = m11();
- result[1] = m12();
- result[2] = m13();
- result[3] = m14();
- result[4] = m21();
- result[5] = m22();
- result[6] = m23();
- result[7] = m24();
- result[8] = m31();
- result[9] = m32();
- result[10] = m33();
- result[11] = m34();
- result[12] = m41();
- result[13] = m42();
- result[14] = m43();
- result[15] = m44();
-}
-
-bool TransformationMatrix::isBackFaceVisible() const
-{
- // Back-face visibility is determined by transforming the normal vector (0, 0, 1) and
- // checking the sign of the resulting z component. However, normals cannot be
- // transformed by the original matrix, they require being transformed by the
- // inverse-transpose.
- //
- // Since we know we will be using (0, 0, 1), and we only care about the z-component of
- // the transformed normal, then we only need the m33() element of the
- // inverse-transpose. Therefore we do not need the transpose.
- //
- // Additionally, if we only need the m33() element, we do not need to compute a full
- // inverse. Instead, knowing the inverse of a matrix is adjoint(matrix) / determinant,
- // we can simply compute the m33() of the adjoint (adjugate) matrix, without computing
- // the full adjoint.
-
- double determinant = WebCore::determinant4x4(m_matrix);
-
- // If the matrix is not invertible, then we assume its backface is not visible.
- if (fabs(determinant) < SMALL_NUMBER)
- return false;
-
- double cofactor33 = determinant3x3(m11(), m12(), m14(), m21(), m22(), m24(), m41(), m42(), m44());
- double zComponentOfTransformedNormal = cofactor33 / determinant;
-
- return zComponentOfTransformedNormal < 0;
-}
-
-}
« no previous file with comments | « Source/core/platform/graphics/transforms/TransformationMatrix.h ('k') | Source/core/platform/image-decoders/ImageDecoder.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698