Index: src/compiler/state-values-utils.cc |
diff --git a/src/compiler/state-values-utils.cc b/src/compiler/state-values-utils.cc |
index e8310d7d56ed95cb4ebaaa75b86ed56379ea9940..9d8196299e46847080e3c62ad3e6de80e9ddaec4 100644 |
--- a/src/compiler/state-values-utils.cc |
+++ b/src/compiler/state-values-utils.cc |
@@ -4,10 +4,25 @@ |
#include "src/compiler/state-values-utils.h" |
+#include "src/bit-vector.h" |
+ |
namespace v8 { |
namespace internal { |
namespace compiler { |
+// A (Typed)StateValues node's has a bitmask specifying if its inputs are |
+// represented sparsely. If the bitmask value is 0, then the inputs are not |
+// sparse; otherwise, they should be interpreted as follows: |
Jarin
2016/12/08 07:59:43
This explanation should probably be in common-oper
Leszek Swirski
2016/12/08 15:44:31
Done.
|
+// |
+// * The bitmask represents which values are live, with 1 for live values |
+// and 0 for dead (optimized out) values. |
+// * The inputs to the node are the live values, in the order of the 1s from |
+// least- to most-significant |
+// * The top bit of the bitmask is a guard indicating the end of the values, |
+// whether live or dead (and is not representative of a live node) |
Jarin (Google)
2016/12/07 15:16:44
If really want to use such a complex encoding sche
Leszek Swirski
2016/12/08 15:44:30
Done.
|
+// |
+// So, for N 1s in the bitmask, there are N - 1 inputs into the node. |
+ |
StateValuesCache::StateValuesCache(JSGraph* js_graph) |
: js_graph_(js_graph), |
hash_map_(AreKeysEqual, ZoneHashMap::kDefaultHashMapCapacity, |
@@ -47,6 +62,14 @@ bool StateValuesCache::IsKeysEqualToNode(StateValuesKey* key, Node* node) { |
if (key->count != static_cast<size_t>(node->InputCount())) { |
return false; |
} |
+ |
+ DCHECK(node->opcode() == IrOpcode::kStateValues); |
+ uint32_t node_mask = OpParameter<uint32_t>(node); |
Jarin (Google)
2016/12/07 15:16:44
No OpParameter, please!
Leszek Swirski
2016/12/08 15:44:30
Done.
|
+ |
+ if (node_mask != key->mask) { |
+ return false; |
+ } |
+ |
for (size_t i = 0; i < key->count; i++) { |
if (key->values[i] != node->InputAt(static_cast<int>(i))) { |
return false; |
@@ -62,6 +85,9 @@ bool StateValuesCache::AreValueKeysEqual(StateValuesKey* key1, |
if (key1->count != key2->count) { |
return false; |
} |
+ if (key1->mask != key2->mask) { |
+ return false; |
+ } |
for (size_t i = 0; i < key1->count; i++) { |
if (key1->values[i] != key2->values[i]) { |
return false; |
@@ -73,17 +99,15 @@ bool StateValuesCache::AreValueKeysEqual(StateValuesKey* key1, |
Node* StateValuesCache::GetEmptyStateValues() { |
if (empty_state_values_ == nullptr) { |
- empty_state_values_ = graph()->NewNode(common()->StateValues(0)); |
+ empty_state_values_ = graph()->NewNode(common()->StateValues(0, 0u)); |
} |
return empty_state_values_; |
} |
- |
-NodeVector* StateValuesCache::GetWorkingSpace(size_t level) { |
- while (working_space_.size() <= level) { |
- void* space = zone()->New(sizeof(NodeVector)); |
- working_space_.push_back(new (space) |
- NodeVector(kMaxInputCount, nullptr, zone())); |
+StateValuesCache::WorkingBuffer& StateValuesCache::GetWorkingSpace( |
+ size_t level) { |
+ if (working_space_.size() <= level) { |
+ working_space_.resize(level + 1); |
} |
return working_space_[level]; |
} |
@@ -93,16 +117,16 @@ namespace { |
int StateValuesHashKey(Node** nodes, size_t count) { |
size_t hash = count; |
for (size_t i = 0; i < count; i++) { |
- hash = hash * 23 + nodes[i]->id(); |
+ hash = hash * 23 + (nodes[i] == nullptr ? 0 : nodes[i]->id()); |
} |
return static_cast<int>(hash & 0x7fffffff); |
} |
} // namespace |
- |
-Node* StateValuesCache::GetValuesNodeFromCache(Node** nodes, size_t count) { |
- StateValuesKey key(count, nodes); |
+Node* StateValuesCache::GetValuesNodeFromCache(Node** nodes, size_t count, |
+ uint32_t mask) { |
+ StateValuesKey key(count, mask, nodes); |
int hash = StateValuesHashKey(nodes, count); |
ZoneHashMap::Entry* lookup = |
hash_map_.LookupOrInsert(&key, hash, ZoneAllocationPolicy(zone())); |
@@ -110,8 +134,8 @@ Node* StateValuesCache::GetValuesNodeFromCache(Node** nodes, size_t count) { |
Node* node; |
if (lookup->value == nullptr) { |
int input_count = static_cast<int>(count); |
- node = graph()->NewNode(common()->StateValues(input_count), input_count, |
- nodes); |
+ node = graph()->NewNode(common()->StateValues(input_count, mask), |
+ input_count, nodes); |
NodeKey* new_key = new (zone()->New(sizeof(NodeKey))) NodeKey(node); |
lookup->key = new_key; |
lookup->value = node; |
@@ -121,91 +145,175 @@ Node* StateValuesCache::GetValuesNodeFromCache(Node** nodes, size_t count) { |
return node; |
} |
+Node* StateValuesCache::BuildTree(size_t& idx, Node** values, size_t count, |
+ const BitVector* liveness, size_t level) { |
+ WorkingBuffer& input_buffer = GetWorkingSpace(level); |
+ size_t input_count = 0; |
+ bool use_mask = false; |
+ uint32_t mask = 0; |
+ |
+ if (level == 0) { |
+ // Virtual inputs are the live inputs plus the implicit dead inputs, which |
+ // are implied by the liveness mask. |
+ size_t virtual_input_count = 0; |
+ while (idx < count && input_count < kMaxInputCount && |
+ (!use_mask || virtual_input_count < 31)) { |
Jarin (Google)
2016/12/07 15:16:44
Magic constants (31) defined at the top of the fun
Leszek Swirski
2016/12/08 15:44:31
Done (moved into the new sparse input mask type).
|
+ DCHECK_LE(idx, static_cast<size_t>(INT_MAX)); |
+ if (liveness == nullptr || liveness->Contains(static_cast<int>(idx))) { |
+ mask |= 1 << virtual_input_count; |
+ input_buffer[input_count++] = values[idx]; |
+ } else { |
+ use_mask = true; |
Jarin (Google)
2016/12/07 15:16:44
What improvement do you see from special casing th
Leszek Swirski
2016/12/08 15:44:31
I haven't measured it, but I've removed it since t
|
+ } |
+ virtual_input_count++; |
-class StateValuesCache::ValueArrayIterator { |
- public: |
- ValueArrayIterator(Node** values, size_t count) |
- : values_(values), count_(count), current_(0) {} |
- |
- void Advance() { |
- if (!done()) { |
- current_++; |
+ idx++; |
} |
- } |
- |
- bool done() { return current_ >= count_; } |
- |
- Node* node() { |
- DCHECK(!done()); |
- return values_[current_]; |
- } |
- |
- private: |
- Node** values_; |
- size_t count_; |
- size_t current_; |
-}; |
- |
-Node* StateValuesCache::BuildTree(ValueArrayIterator* it, size_t max_height) { |
- if (max_height == 0) { |
- Node* node = it->node(); |
- it->Advance(); |
- return node; |
+ if (use_mask) { |
+ DCHECK(virtual_input_count < 32); |
+ mask |= 1 << virtual_input_count; |
+ } else { |
+ mask = 0; |
+ } |
+ } else { |
+ while (idx < count && input_count < kMaxInputCount) { |
+ if (count - idx < kMaxInputCount - input_count) { |
+ // If we have fewer values remaining than inputs remaining, dump the |
+ // remaining values into this node. |
+ |
+ // TODO(leszeks): We could optimise this further by counting remaining |
+ // live nodes, though this gets complicated with the 31 bit limit on the |
+ // mask. |
Jarin (Google)
2016/12/07 15:16:44
Maybe the remove the comment, the complexity budge
Leszek Swirski
2016/12/08 15:44:30
Kept the comment (shortened it a bit), after refac
|
+ |
+ // All previous inputs are live. |
+ mask = ((1 << input_count) - 1); |
+ |
+ // Add the remaining values as inputs. |
+ size_t virtual_input_count = input_count; |
+ while (idx < count) { |
+ DCHECK_LE(input_count, kMaxInputCount); |
+ DCHECK_LE(idx, static_cast<size_t>(INT_MAX)); |
+ DCHECK(!use_mask || virtual_input_count < 31); |
+ |
+ if (liveness == nullptr || |
+ liveness->Contains(static_cast<int>(idx))) { |
Jarin (Google)
2016/12/07 15:16:44
This looks very similar to the code above, perhaps
Leszek Swirski
2016/12/08 15:44:30
Done, I had a TODO for it at some point anyway.
|
+ mask |= 1 << virtual_input_count; |
+ input_buffer[input_count++] = values[idx]; |
+ } else { |
+ use_mask = true; |
+ } |
+ virtual_input_count++; |
+ |
+ idx++; |
+ } |
+ |
+ if (use_mask) { |
+ DCHECK(virtual_input_count < 32); |
+ mask |= 1 << virtual_input_count; |
+ } else { |
+ mask = 0; |
+ } |
+ } else { |
+ // Otherwise, add the values to a subtree and add that as an input. |
+ Node* subtree = BuildTree(idx, values, count, liveness, level - 1); |
+ input_buffer[input_count++] = subtree; |
+ } |
+ } |
} |
- DCHECK(!it->done()); |
- NodeVector* buffer = GetWorkingSpace(max_height); |
- size_t count = 0; |
- for (; count < kMaxInputCount; count++) { |
- if (it->done()) break; |
- (*buffer)[count] = BuildTree(it, max_height - 1); |
- } |
- if (count == 1) { |
- return (*buffer)[0]; |
+ if (input_count == 1 && !use_mask) { |
+ // Elide the StateValue node if there is only one input. |
+ return input_buffer[0]; |
} else { |
- return GetValuesNodeFromCache(&(buffer->front()), count); |
+ return GetValuesNodeFromCache(input_buffer.data(), input_count, mask); |
} |
} |
- |
-Node* StateValuesCache::GetNodeForValues(Node** values, size_t count) { |
+Node* StateValuesCache::GetNodeForValues(Node** values, size_t count, |
+ const BitVector* liveness) { |
#if DEBUG |
for (size_t i = 0; i < count; i++) { |
- DCHECK_NE(values[i]->opcode(), IrOpcode::kStateValues); |
- DCHECK_NE(values[i]->opcode(), IrOpcode::kTypedStateValues); |
+ if (values[i] != nullptr) { |
+ DCHECK_NE(values[i]->opcode(), IrOpcode::kStateValues); |
+ DCHECK_NE(values[i]->opcode(), IrOpcode::kTypedStateValues); |
+ } |
+ } |
+ if (liveness != nullptr) { |
+ // Liveness can have extra bits for the stack or accumulator, which we |
+ // ignore here. |
+ DCHECK_LE(count, static_cast<size_t>(liveness->length())); |
+ |
+ for (size_t i = 0; i < count; i++) { |
+ if (liveness->Contains(static_cast<int>(i))) { |
+ DCHECK_NOT_NULL(values[i]); |
+ } |
+ } |
} |
#endif |
if (count == 0) { |
return GetEmptyStateValues(); |
} |
+ |
+ // This is a worst-case tree height estimate, assuming that all values are |
+ // live. We could get a better estimate by counting zeroes in the liveness |
+ // vector, but there's no point -- any excess height in the tree will be |
+ // collapsed by the single-input elision at the end of BuildTree. |
size_t height = 0; |
- size_t max_nodes = 1; |
- while (count > max_nodes) { |
+ size_t max_inputs = kMaxInputCount; |
+ while (count > max_inputs) { |
height++; |
- max_nodes *= kMaxInputCount; |
+ max_inputs *= kMaxInputCount; |
} |
- ValueArrayIterator it(values, count); |
- |
- Node* tree = BuildTree(&it, height); |
+ size_t idx = 0; |
+ Node* tree = BuildTree(idx, values, count, liveness, height); |
// If the 'tree' is a single node, equip it with a StateValues wrapper. |
- if (tree->opcode() != IrOpcode::kStateValues && |
- tree->opcode() != IrOpcode::kTypedStateValues) { |
- tree = GetValuesNodeFromCache(&tree, 1); |
+ if (tree->opcode() != IrOpcode::kStateValues) { |
+ tree = GetValuesNodeFromCache(&tree, 1, 0u); |
} |
+#if DEBUG |
+ { |
+ DCHECK_EQ(count, StateValuesAccess(tree).size()); |
+ int i; |
+ auto access = StateValuesAccess(tree); |
+ auto it = access.begin(); |
+ auto itend = access.end(); |
+ for (i = 0; it != itend; ++it, ++i) { |
+ if (liveness == nullptr || liveness->Contains(i)) { |
+ DCHECK((*it).node == values[i]); |
+ } else { |
+ DCHECK((*it).node == nullptr); |
+ } |
+ } |
+ DCHECK_EQ(static_cast<size_t>(i), count); |
+ } |
+#endif |
+ |
return tree; |
} |
+namespace { |
+ |
+uint32_t GetStateValueMask(Node* node) { |
Jarin (Google)
2016/12/07 15:16:44
This should live somewhere in common-operator.h
Leszek Swirski
2016/12/08 15:44:30
Done.
|
+ if (node->opcode() == IrOpcode::kStateValues) { |
+ return OpParameter<uint32_t>(node); |
+ } else { |
+ DCHECK_EQ(node->opcode(), IrOpcode::kTypedStateValues); |
+ return OpParameter<TypedStateValueInfo>(node).mask(); |
+ } |
+} |
+ |
+} // namespace |
StateValuesAccess::iterator::iterator(Node* node) : current_depth_(0) { |
- // A hacky way initialize - just set the index before the node we want |
- // to process and then advance to it. |
stack_[current_depth_].node = node; |
- stack_[current_depth_].index = -1; |
- Advance(); |
+ stack_[current_depth_].index = 0; |
+ stack_[current_depth_].mask = GetStateValueMask(node); |
+ |
+ EnsureValid(); |
} |
@@ -215,11 +323,11 @@ StateValuesAccess::iterator::StatePos* StateValuesAccess::iterator::Top() { |
return &(stack_[current_depth_]); |
} |
- |
-void StateValuesAccess::iterator::Push(Node* node) { |
+void StateValuesAccess::iterator::Push(Node* node, uint32_t mask) { |
current_depth_++; |
CHECK(current_depth_ < kMaxInlineDepth); |
stack_[current_depth_].node = node; |
+ stack_[current_depth_].mask = mask; |
stack_[current_depth_].index = 0; |
} |
@@ -234,37 +342,63 @@ bool StateValuesAccess::iterator::done() { return current_depth_ < 0; } |
void StateValuesAccess::iterator::Advance() { |
- // Advance the current index. |
- Top()->index++; |
+ MoveToNextSibling(); |
+ EnsureValid(); |
+} |
- // Fix up the position to point to a valid node. |
+void StateValuesAccess::iterator::MoveToNextSibling() { |
+ int mask = Top()->mask; |
+ if (mask == 0 || (mask & 0x1) == 1) { |
Jarin (Google)
2016/12/07 15:16:44
Nit: Why 0x1? On line 446, you say mask & 1. Perha
Leszek Swirski
2016/12/08 15:44:31
Completely refactored out into sparse input iterat
|
+ Top()->index++; |
+ } |
+ Top()->mask >>= 1; |
+} |
+ |
+void StateValuesAccess::iterator::EnsureValid() { |
while (true) { |
- // TODO(jarin): Factor to a separate method. |
- Node* node = Top()->node; |
+ uint32_t mask = Top()->mask; |
int index = Top()->index; |
+ Node* node = Top()->node; |
- if (index >= node->InputCount()) { |
- // Pop stack and move to the next sibling. |
+ if (mask != 0 && (mask & 0x1) == 0) { |
+ // We are on a valid (dead) node. |
Jarin (Google)
2016/12/07 15:16:44
dead -> optimized_out here and elsewhere
Leszek Swirski
2016/12/08 15:44:30
Done.
|
+ return; |
+ } |
+ |
+ if (mask == 1 || (mask == 0 && index >= node->InputCount())) { |
+ // We have hit the guard bit or exhausted our inputs. Pop the stack and |
+ // move to the next sibling. |
Pop(); |
if (done()) { |
// Stack is exhausted, we have reached the end. |
return; |
} |
- Top()->index++; |
- } else if (node->InputAt(index)->opcode() == IrOpcode::kStateValues || |
- node->InputAt(index)->opcode() == IrOpcode::kTypedStateValues) { |
+ MoveToNextSibling(); |
+ continue; |
+ } |
+ |
+ // At this point the value is known to be live and within our input nodes. |
+ Node* value_node = node->InputAt(Top()->index); |
+ |
+ if (value_node->opcode() == IrOpcode::kStateValues || |
+ value_node->opcode() == IrOpcode::kTypedStateValues) { |
// Nested state, we need to push to the stack. |
- Push(node->InputAt(index)); |
- } else { |
- // We are on a valid node, we can stop the iteration. |
- return; |
+ Push(node->InputAt(index), GetStateValueMask(node->InputAt(index))); |
+ continue; |
} |
+ |
+ // We are on a valid node, we can stop the iteration. |
+ return; |
} |
} |
Node* StateValuesAccess::iterator::node() { |
- return Top()->node->InputAt(Top()->index); |
+ if (Top()->mask != 0 && (Top()->mask & 0x1) == 0) { |
+ return nullptr; |
+ } else { |
+ return Top()->node->InputAt(Top()->index); |
+ } |
} |
@@ -274,8 +408,13 @@ MachineType StateValuesAccess::iterator::type() { |
return MachineType::AnyTagged(); |
} else { |
DCHECK_EQ(IrOpcode::kTypedStateValues, state->opcode()); |
- ZoneVector<MachineType> const* types = MachineTypesOf(state->op()); |
- return (*types)[Top()->index]; |
+ |
+ if (Top()->mask != 0 && (Top()->mask & 0x1) == 0) { |
+ return MachineType::None(); |
+ } else { |
+ ZoneVector<MachineType> const* types = MachineTypesOf(state->op()); |
+ return (*types)[Top()->index]; |
+ } |
} |
} |
@@ -300,14 +439,24 @@ StateValuesAccess::TypedNode StateValuesAccess::iterator::operator*() { |
size_t StateValuesAccess::size() { |
size_t count = 0; |
- for (int i = 0; i < node_->InputCount(); i++) { |
- if (node_->InputAt(i)->opcode() == IrOpcode::kStateValues || |
- node_->InputAt(i)->opcode() == IrOpcode::kTypedStateValues) { |
- count += StateValuesAccess(node_->InputAt(i)).size(); |
- } else { |
+ uint32_t mask = GetStateValueMask(node_); |
+ |
+ int i = 0; |
+ while ((mask == 0 && i < node_->InputCount()) || (mask != 0 && mask != 1)) { |
+ if (mask != 0 && (mask & 1) == 0) { |
count++; |
+ } else { |
+ if (node_->InputAt(i)->opcode() == IrOpcode::kStateValues || |
+ node_->InputAt(i)->opcode() == IrOpcode::kTypedStateValues) { |
+ count += StateValuesAccess(node_->InputAt(i)).size(); |
+ } else { |
+ count++; |
+ } |
+ i++; |
} |
+ mask >>= 1; |
} |
+ |
return count; |
} |