Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 // Copyright 2015 the V8 project authors. All rights reserved. | 1 // Copyright 2015 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "src/compiler/state-values-utils.h" | 5 #include "src/compiler/state-values-utils.h" |
| 6 | 6 |
| 7 #include "src/bit-vector.h" | |
| 8 | |
| 7 namespace v8 { | 9 namespace v8 { |
| 8 namespace internal { | 10 namespace internal { |
| 9 namespace compiler { | 11 namespace compiler { |
| 10 | 12 |
| 13 // A (Typed)StateValues node's has a bitmask specifying if its inputs are | |
| 14 // represented sparsely. If the bitmask value is 0, then the inputs are not | |
| 15 // sparse; otherwise, they should be interpreted as follows: | |
|
Jarin
2016/12/08 07:59:43
This explanation should probably be in common-oper
Leszek Swirski
2016/12/08 15:44:31
Done.
| |
| 16 // | |
| 17 // * The bitmask represents which values are live, with 1 for live values | |
| 18 // and 0 for dead (optimized out) values. | |
| 19 // * The inputs to the node are the live values, in the order of the 1s from | |
| 20 // least- to most-significant | |
| 21 // * The top bit of the bitmask is a guard indicating the end of the values, | |
| 22 // whether live or dead (and is not representative of a live node) | |
|
Jarin (Google)
2016/12/07 15:16:44
If really want to use such a complex encoding sche
Leszek Swirski
2016/12/08 15:44:30
Done.
| |
| 23 // | |
| 24 // So, for N 1s in the bitmask, there are N - 1 inputs into the node. | |
| 25 | |
| 11 StateValuesCache::StateValuesCache(JSGraph* js_graph) | 26 StateValuesCache::StateValuesCache(JSGraph* js_graph) |
| 12 : js_graph_(js_graph), | 27 : js_graph_(js_graph), |
| 13 hash_map_(AreKeysEqual, ZoneHashMap::kDefaultHashMapCapacity, | 28 hash_map_(AreKeysEqual, ZoneHashMap::kDefaultHashMapCapacity, |
| 14 ZoneAllocationPolicy(zone())), | 29 ZoneAllocationPolicy(zone())), |
| 15 working_space_(zone()), | 30 working_space_(zone()), |
| 16 empty_state_values_(nullptr) {} | 31 empty_state_values_(nullptr) {} |
| 17 | 32 |
| 18 | 33 |
| 19 // static | 34 // static |
| 20 bool StateValuesCache::AreKeysEqual(void* key1, void* key2) { | 35 bool StateValuesCache::AreKeysEqual(void* key1, void* key2) { |
| (...skipping 19 matching lines...) Expand all Loading... | |
| 40 } | 55 } |
| 41 UNREACHABLE(); | 56 UNREACHABLE(); |
| 42 } | 57 } |
| 43 | 58 |
| 44 | 59 |
| 45 // static | 60 // static |
| 46 bool StateValuesCache::IsKeysEqualToNode(StateValuesKey* key, Node* node) { | 61 bool StateValuesCache::IsKeysEqualToNode(StateValuesKey* key, Node* node) { |
| 47 if (key->count != static_cast<size_t>(node->InputCount())) { | 62 if (key->count != static_cast<size_t>(node->InputCount())) { |
| 48 return false; | 63 return false; |
| 49 } | 64 } |
| 65 | |
| 66 DCHECK(node->opcode() == IrOpcode::kStateValues); | |
| 67 uint32_t node_mask = OpParameter<uint32_t>(node); | |
|
Jarin (Google)
2016/12/07 15:16:44
No OpParameter, please!
Leszek Swirski
2016/12/08 15:44:30
Done.
| |
| 68 | |
| 69 if (node_mask != key->mask) { | |
| 70 return false; | |
| 71 } | |
| 72 | |
| 50 for (size_t i = 0; i < key->count; i++) { | 73 for (size_t i = 0; i < key->count; i++) { |
| 51 if (key->values[i] != node->InputAt(static_cast<int>(i))) { | 74 if (key->values[i] != node->InputAt(static_cast<int>(i))) { |
| 52 return false; | 75 return false; |
| 53 } | 76 } |
| 54 } | 77 } |
| 55 return true; | 78 return true; |
| 56 } | 79 } |
| 57 | 80 |
| 58 | 81 |
| 59 // static | 82 // static |
| 60 bool StateValuesCache::AreValueKeysEqual(StateValuesKey* key1, | 83 bool StateValuesCache::AreValueKeysEqual(StateValuesKey* key1, |
| 61 StateValuesKey* key2) { | 84 StateValuesKey* key2) { |
| 62 if (key1->count != key2->count) { | 85 if (key1->count != key2->count) { |
| 63 return false; | 86 return false; |
| 64 } | 87 } |
| 88 if (key1->mask != key2->mask) { | |
| 89 return false; | |
| 90 } | |
| 65 for (size_t i = 0; i < key1->count; i++) { | 91 for (size_t i = 0; i < key1->count; i++) { |
| 66 if (key1->values[i] != key2->values[i]) { | 92 if (key1->values[i] != key2->values[i]) { |
| 67 return false; | 93 return false; |
| 68 } | 94 } |
| 69 } | 95 } |
| 70 return true; | 96 return true; |
| 71 } | 97 } |
| 72 | 98 |
| 73 | 99 |
| 74 Node* StateValuesCache::GetEmptyStateValues() { | 100 Node* StateValuesCache::GetEmptyStateValues() { |
| 75 if (empty_state_values_ == nullptr) { | 101 if (empty_state_values_ == nullptr) { |
| 76 empty_state_values_ = graph()->NewNode(common()->StateValues(0)); | 102 empty_state_values_ = graph()->NewNode(common()->StateValues(0, 0u)); |
| 77 } | 103 } |
| 78 return empty_state_values_; | 104 return empty_state_values_; |
| 79 } | 105 } |
| 80 | 106 |
| 81 | 107 StateValuesCache::WorkingBuffer& StateValuesCache::GetWorkingSpace( |
| 82 NodeVector* StateValuesCache::GetWorkingSpace(size_t level) { | 108 size_t level) { |
| 83 while (working_space_.size() <= level) { | 109 if (working_space_.size() <= level) { |
| 84 void* space = zone()->New(sizeof(NodeVector)); | 110 working_space_.resize(level + 1); |
| 85 working_space_.push_back(new (space) | |
| 86 NodeVector(kMaxInputCount, nullptr, zone())); | |
| 87 } | 111 } |
| 88 return working_space_[level]; | 112 return working_space_[level]; |
| 89 } | 113 } |
| 90 | 114 |
| 91 namespace { | 115 namespace { |
| 92 | 116 |
| 93 int StateValuesHashKey(Node** nodes, size_t count) { | 117 int StateValuesHashKey(Node** nodes, size_t count) { |
| 94 size_t hash = count; | 118 size_t hash = count; |
| 95 for (size_t i = 0; i < count; i++) { | 119 for (size_t i = 0; i < count; i++) { |
| 96 hash = hash * 23 + nodes[i]->id(); | 120 hash = hash * 23 + (nodes[i] == nullptr ? 0 : nodes[i]->id()); |
| 97 } | 121 } |
| 98 return static_cast<int>(hash & 0x7fffffff); | 122 return static_cast<int>(hash & 0x7fffffff); |
| 99 } | 123 } |
| 100 | 124 |
| 101 } // namespace | 125 } // namespace |
| 102 | 126 |
| 103 | 127 Node* StateValuesCache::GetValuesNodeFromCache(Node** nodes, size_t count, |
| 104 Node* StateValuesCache::GetValuesNodeFromCache(Node** nodes, size_t count) { | 128 uint32_t mask) { |
| 105 StateValuesKey key(count, nodes); | 129 StateValuesKey key(count, mask, nodes); |
| 106 int hash = StateValuesHashKey(nodes, count); | 130 int hash = StateValuesHashKey(nodes, count); |
| 107 ZoneHashMap::Entry* lookup = | 131 ZoneHashMap::Entry* lookup = |
| 108 hash_map_.LookupOrInsert(&key, hash, ZoneAllocationPolicy(zone())); | 132 hash_map_.LookupOrInsert(&key, hash, ZoneAllocationPolicy(zone())); |
| 109 DCHECK_NOT_NULL(lookup); | 133 DCHECK_NOT_NULL(lookup); |
| 110 Node* node; | 134 Node* node; |
| 111 if (lookup->value == nullptr) { | 135 if (lookup->value == nullptr) { |
| 112 int input_count = static_cast<int>(count); | 136 int input_count = static_cast<int>(count); |
| 113 node = graph()->NewNode(common()->StateValues(input_count), input_count, | 137 node = graph()->NewNode(common()->StateValues(input_count, mask), |
| 114 nodes); | 138 input_count, nodes); |
| 115 NodeKey* new_key = new (zone()->New(sizeof(NodeKey))) NodeKey(node); | 139 NodeKey* new_key = new (zone()->New(sizeof(NodeKey))) NodeKey(node); |
| 116 lookup->key = new_key; | 140 lookup->key = new_key; |
| 117 lookup->value = node; | 141 lookup->value = node; |
| 118 } else { | 142 } else { |
| 119 node = reinterpret_cast<Node*>(lookup->value); | 143 node = reinterpret_cast<Node*>(lookup->value); |
| 120 } | 144 } |
| 121 return node; | 145 return node; |
| 122 } | 146 } |
| 123 | 147 |
| 148 Node* StateValuesCache::BuildTree(size_t& idx, Node** values, size_t count, | |
| 149 const BitVector* liveness, size_t level) { | |
| 150 WorkingBuffer& input_buffer = GetWorkingSpace(level); | |
| 151 size_t input_count = 0; | |
| 152 bool use_mask = false; | |
| 153 uint32_t mask = 0; | |
| 124 | 154 |
| 125 class StateValuesCache::ValueArrayIterator { | 155 if (level == 0) { |
| 126 public: | 156 // Virtual inputs are the live inputs plus the implicit dead inputs, which |
| 127 ValueArrayIterator(Node** values, size_t count) | 157 // are implied by the liveness mask. |
| 128 : values_(values), count_(count), current_(0) {} | 158 size_t virtual_input_count = 0; |
| 159 while (idx < count && input_count < kMaxInputCount && | |
| 160 (!use_mask || virtual_input_count < 31)) { | |
|
Jarin (Google)
2016/12/07 15:16:44
Magic constants (31) defined at the top of the fun
Leszek Swirski
2016/12/08 15:44:31
Done (moved into the new sparse input mask type).
| |
| 161 DCHECK_LE(idx, static_cast<size_t>(INT_MAX)); | |
| 162 if (liveness == nullptr || liveness->Contains(static_cast<int>(idx))) { | |
| 163 mask |= 1 << virtual_input_count; | |
| 164 input_buffer[input_count++] = values[idx]; | |
| 165 } else { | |
| 166 use_mask = true; | |
|
Jarin (Google)
2016/12/07 15:16:44
What improvement do you see from special casing th
Leszek Swirski
2016/12/08 15:44:31
I haven't measured it, but I've removed it since t
| |
| 167 } | |
| 168 virtual_input_count++; | |
| 129 | 169 |
| 130 void Advance() { | 170 idx++; |
| 131 if (!done()) { | 171 } |
| 132 current_++; | 172 |
| 173 if (use_mask) { | |
| 174 DCHECK(virtual_input_count < 32); | |
| 175 mask |= 1 << virtual_input_count; | |
| 176 } else { | |
| 177 mask = 0; | |
| 178 } | |
| 179 } else { | |
| 180 while (idx < count && input_count < kMaxInputCount) { | |
| 181 if (count - idx < kMaxInputCount - input_count) { | |
| 182 // If we have fewer values remaining than inputs remaining, dump the | |
| 183 // remaining values into this node. | |
| 184 | |
| 185 // TODO(leszeks): We could optimise this further by counting remaining | |
| 186 // live nodes, though this gets complicated with the 31 bit limit on the | |
| 187 // mask. | |
|
Jarin (Google)
2016/12/07 15:16:44
Maybe the remove the comment, the complexity budge
Leszek Swirski
2016/12/08 15:44:30
Kept the comment (shortened it a bit), after refac
| |
| 188 | |
| 189 // All previous inputs are live. | |
| 190 mask = ((1 << input_count) - 1); | |
| 191 | |
| 192 // Add the remaining values as inputs. | |
| 193 size_t virtual_input_count = input_count; | |
| 194 while (idx < count) { | |
| 195 DCHECK_LE(input_count, kMaxInputCount); | |
| 196 DCHECK_LE(idx, static_cast<size_t>(INT_MAX)); | |
| 197 DCHECK(!use_mask || virtual_input_count < 31); | |
| 198 | |
| 199 if (liveness == nullptr || | |
| 200 liveness->Contains(static_cast<int>(idx))) { | |
|
Jarin (Google)
2016/12/07 15:16:44
This looks very similar to the code above, perhaps
Leszek Swirski
2016/12/08 15:44:30
Done, I had a TODO for it at some point anyway.
| |
| 201 mask |= 1 << virtual_input_count; | |
| 202 input_buffer[input_count++] = values[idx]; | |
| 203 } else { | |
| 204 use_mask = true; | |
| 205 } | |
| 206 virtual_input_count++; | |
| 207 | |
| 208 idx++; | |
| 209 } | |
| 210 | |
| 211 if (use_mask) { | |
| 212 DCHECK(virtual_input_count < 32); | |
| 213 mask |= 1 << virtual_input_count; | |
| 214 } else { | |
| 215 mask = 0; | |
| 216 } | |
| 217 } else { | |
| 218 // Otherwise, add the values to a subtree and add that as an input. | |
| 219 Node* subtree = BuildTree(idx, values, count, liveness, level - 1); | |
| 220 input_buffer[input_count++] = subtree; | |
| 221 } | |
| 133 } | 222 } |
| 134 } | 223 } |
| 135 | 224 |
| 136 bool done() { return current_ >= count_; } | 225 if (input_count == 1 && !use_mask) { |
| 137 | 226 // Elide the StateValue node if there is only one input. |
| 138 Node* node() { | 227 return input_buffer[0]; |
| 139 DCHECK(!done()); | |
| 140 return values_[current_]; | |
| 141 } | |
| 142 | |
| 143 private: | |
| 144 Node** values_; | |
| 145 size_t count_; | |
| 146 size_t current_; | |
| 147 }; | |
| 148 | |
| 149 | |
| 150 Node* StateValuesCache::BuildTree(ValueArrayIterator* it, size_t max_height) { | |
| 151 if (max_height == 0) { | |
| 152 Node* node = it->node(); | |
| 153 it->Advance(); | |
| 154 return node; | |
| 155 } | |
| 156 DCHECK(!it->done()); | |
| 157 | |
| 158 NodeVector* buffer = GetWorkingSpace(max_height); | |
| 159 size_t count = 0; | |
| 160 for (; count < kMaxInputCount; count++) { | |
| 161 if (it->done()) break; | |
| 162 (*buffer)[count] = BuildTree(it, max_height - 1); | |
| 163 } | |
| 164 if (count == 1) { | |
| 165 return (*buffer)[0]; | |
| 166 } else { | 228 } else { |
| 167 return GetValuesNodeFromCache(&(buffer->front()), count); | 229 return GetValuesNodeFromCache(input_buffer.data(), input_count, mask); |
| 168 } | 230 } |
| 169 } | 231 } |
| 170 | 232 |
| 171 | 233 Node* StateValuesCache::GetNodeForValues(Node** values, size_t count, |
| 172 Node* StateValuesCache::GetNodeForValues(Node** values, size_t count) { | 234 const BitVector* liveness) { |
| 173 #if DEBUG | 235 #if DEBUG |
| 174 for (size_t i = 0; i < count; i++) { | 236 for (size_t i = 0; i < count; i++) { |
| 175 DCHECK_NE(values[i]->opcode(), IrOpcode::kStateValues); | 237 if (values[i] != nullptr) { |
| 176 DCHECK_NE(values[i]->opcode(), IrOpcode::kTypedStateValues); | 238 DCHECK_NE(values[i]->opcode(), IrOpcode::kStateValues); |
| 239 DCHECK_NE(values[i]->opcode(), IrOpcode::kTypedStateValues); | |
| 240 } | |
| 241 } | |
| 242 if (liveness != nullptr) { | |
| 243 // Liveness can have extra bits for the stack or accumulator, which we | |
| 244 // ignore here. | |
| 245 DCHECK_LE(count, static_cast<size_t>(liveness->length())); | |
| 246 | |
| 247 for (size_t i = 0; i < count; i++) { | |
| 248 if (liveness->Contains(static_cast<int>(i))) { | |
| 249 DCHECK_NOT_NULL(values[i]); | |
| 250 } | |
| 251 } | |
| 177 } | 252 } |
| 178 #endif | 253 #endif |
| 179 if (count == 0) { | 254 if (count == 0) { |
| 180 return GetEmptyStateValues(); | 255 return GetEmptyStateValues(); |
| 181 } | 256 } |
| 257 | |
| 258 // This is a worst-case tree height estimate, assuming that all values are | |
| 259 // live. We could get a better estimate by counting zeroes in the liveness | |
| 260 // vector, but there's no point -- any excess height in the tree will be | |
| 261 // collapsed by the single-input elision at the end of BuildTree. | |
| 182 size_t height = 0; | 262 size_t height = 0; |
| 183 size_t max_nodes = 1; | 263 size_t max_inputs = kMaxInputCount; |
| 184 while (count > max_nodes) { | 264 while (count > max_inputs) { |
| 185 height++; | 265 height++; |
| 186 max_nodes *= kMaxInputCount; | 266 max_inputs *= kMaxInputCount; |
| 187 } | 267 } |
| 188 | 268 |
| 189 ValueArrayIterator it(values, count); | 269 size_t idx = 0; |
| 190 | 270 Node* tree = BuildTree(idx, values, count, liveness, height); |
| 191 Node* tree = BuildTree(&it, height); | |
| 192 | 271 |
| 193 // If the 'tree' is a single node, equip it with a StateValues wrapper. | 272 // If the 'tree' is a single node, equip it with a StateValues wrapper. |
| 194 if (tree->opcode() != IrOpcode::kStateValues && | 273 if (tree->opcode() != IrOpcode::kStateValues) { |
| 195 tree->opcode() != IrOpcode::kTypedStateValues) { | 274 tree = GetValuesNodeFromCache(&tree, 1, 0u); |
| 196 tree = GetValuesNodeFromCache(&tree, 1); | |
| 197 } | 275 } |
| 198 | 276 |
| 277 #if DEBUG | |
| 278 { | |
| 279 DCHECK_EQ(count, StateValuesAccess(tree).size()); | |
| 280 int i; | |
| 281 auto access = StateValuesAccess(tree); | |
| 282 auto it = access.begin(); | |
| 283 auto itend = access.end(); | |
| 284 for (i = 0; it != itend; ++it, ++i) { | |
| 285 if (liveness == nullptr || liveness->Contains(i)) { | |
| 286 DCHECK((*it).node == values[i]); | |
| 287 } else { | |
| 288 DCHECK((*it).node == nullptr); | |
| 289 } | |
| 290 } | |
| 291 DCHECK_EQ(static_cast<size_t>(i), count); | |
| 292 } | |
| 293 #endif | |
| 294 | |
| 199 return tree; | 295 return tree; |
| 200 } | 296 } |
| 201 | 297 |
| 298 namespace { | |
| 299 | |
| 300 uint32_t GetStateValueMask(Node* node) { | |
|
Jarin (Google)
2016/12/07 15:16:44
This should live somewhere in common-operator.h
Leszek Swirski
2016/12/08 15:44:30
Done.
| |
| 301 if (node->opcode() == IrOpcode::kStateValues) { | |
| 302 return OpParameter<uint32_t>(node); | |
| 303 } else { | |
| 304 DCHECK_EQ(node->opcode(), IrOpcode::kTypedStateValues); | |
| 305 return OpParameter<TypedStateValueInfo>(node).mask(); | |
| 306 } | |
| 307 } | |
| 308 | |
| 309 } // namespace | |
| 202 | 310 |
| 203 StateValuesAccess::iterator::iterator(Node* node) : current_depth_(0) { | 311 StateValuesAccess::iterator::iterator(Node* node) : current_depth_(0) { |
| 204 // A hacky way initialize - just set the index before the node we want | |
| 205 // to process and then advance to it. | |
| 206 stack_[current_depth_].node = node; | 312 stack_[current_depth_].node = node; |
| 207 stack_[current_depth_].index = -1; | 313 stack_[current_depth_].index = 0; |
| 208 Advance(); | 314 stack_[current_depth_].mask = GetStateValueMask(node); |
| 315 | |
| 316 EnsureValid(); | |
| 209 } | 317 } |
| 210 | 318 |
| 211 | 319 |
| 212 StateValuesAccess::iterator::StatePos* StateValuesAccess::iterator::Top() { | 320 StateValuesAccess::iterator::StatePos* StateValuesAccess::iterator::Top() { |
| 213 DCHECK(current_depth_ >= 0); | 321 DCHECK(current_depth_ >= 0); |
| 214 DCHECK(current_depth_ < kMaxInlineDepth); | 322 DCHECK(current_depth_ < kMaxInlineDepth); |
| 215 return &(stack_[current_depth_]); | 323 return &(stack_[current_depth_]); |
| 216 } | 324 } |
| 217 | 325 |
| 218 | 326 void StateValuesAccess::iterator::Push(Node* node, uint32_t mask) { |
| 219 void StateValuesAccess::iterator::Push(Node* node) { | |
| 220 current_depth_++; | 327 current_depth_++; |
| 221 CHECK(current_depth_ < kMaxInlineDepth); | 328 CHECK(current_depth_ < kMaxInlineDepth); |
| 222 stack_[current_depth_].node = node; | 329 stack_[current_depth_].node = node; |
| 330 stack_[current_depth_].mask = mask; | |
| 223 stack_[current_depth_].index = 0; | 331 stack_[current_depth_].index = 0; |
| 224 } | 332 } |
| 225 | 333 |
| 226 | 334 |
| 227 void StateValuesAccess::iterator::Pop() { | 335 void StateValuesAccess::iterator::Pop() { |
| 228 DCHECK(current_depth_ >= 0); | 336 DCHECK(current_depth_ >= 0); |
| 229 current_depth_--; | 337 current_depth_--; |
| 230 } | 338 } |
| 231 | 339 |
| 232 | 340 |
| 233 bool StateValuesAccess::iterator::done() { return current_depth_ < 0; } | 341 bool StateValuesAccess::iterator::done() { return current_depth_ < 0; } |
| 234 | 342 |
| 235 | 343 |
| 236 void StateValuesAccess::iterator::Advance() { | 344 void StateValuesAccess::iterator::Advance() { |
| 237 // Advance the current index. | 345 MoveToNextSibling(); |
| 238 Top()->index++; | 346 EnsureValid(); |
| 347 } | |
| 239 | 348 |
| 240 // Fix up the position to point to a valid node. | 349 void StateValuesAccess::iterator::MoveToNextSibling() { |
| 350 int mask = Top()->mask; | |
| 351 if (mask == 0 || (mask & 0x1) == 1) { | |
|
Jarin (Google)
2016/12/07 15:16:44
Nit: Why 0x1? On line 446, you say mask & 1. Perha
Leszek Swirski
2016/12/08 15:44:31
Completely refactored out into sparse input iterat
| |
| 352 Top()->index++; | |
| 353 } | |
| 354 Top()->mask >>= 1; | |
| 355 } | |
| 356 | |
| 357 void StateValuesAccess::iterator::EnsureValid() { | |
| 241 while (true) { | 358 while (true) { |
| 242 // TODO(jarin): Factor to a separate method. | 359 uint32_t mask = Top()->mask; |
| 360 int index = Top()->index; | |
| 243 Node* node = Top()->node; | 361 Node* node = Top()->node; |
| 244 int index = Top()->index; | |
| 245 | 362 |
| 246 if (index >= node->InputCount()) { | 363 if (mask != 0 && (mask & 0x1) == 0) { |
| 247 // Pop stack and move to the next sibling. | 364 // We are on a valid (dead) node. |
|
Jarin (Google)
2016/12/07 15:16:44
dead -> optimized_out here and elsewhere
Leszek Swirski
2016/12/08 15:44:30
Done.
| |
| 365 return; | |
| 366 } | |
| 367 | |
| 368 if (mask == 1 || (mask == 0 && index >= node->InputCount())) { | |
| 369 // We have hit the guard bit or exhausted our inputs. Pop the stack and | |
| 370 // move to the next sibling. | |
| 248 Pop(); | 371 Pop(); |
| 249 if (done()) { | 372 if (done()) { |
| 250 // Stack is exhausted, we have reached the end. | 373 // Stack is exhausted, we have reached the end. |
| 251 return; | 374 return; |
| 252 } | 375 } |
| 253 Top()->index++; | 376 MoveToNextSibling(); |
| 254 } else if (node->InputAt(index)->opcode() == IrOpcode::kStateValues || | 377 continue; |
| 255 node->InputAt(index)->opcode() == IrOpcode::kTypedStateValues) { | 378 } |
| 379 | |
| 380 // At this point the value is known to be live and within our input nodes. | |
| 381 Node* value_node = node->InputAt(Top()->index); | |
| 382 | |
| 383 if (value_node->opcode() == IrOpcode::kStateValues || | |
| 384 value_node->opcode() == IrOpcode::kTypedStateValues) { | |
| 256 // Nested state, we need to push to the stack. | 385 // Nested state, we need to push to the stack. |
| 257 Push(node->InputAt(index)); | 386 Push(node->InputAt(index), GetStateValueMask(node->InputAt(index))); |
| 258 } else { | 387 continue; |
| 259 // We are on a valid node, we can stop the iteration. | |
| 260 return; | |
| 261 } | 388 } |
| 389 | |
| 390 // We are on a valid node, we can stop the iteration. | |
| 391 return; | |
| 262 } | 392 } |
| 263 } | 393 } |
| 264 | 394 |
| 265 | 395 |
| 266 Node* StateValuesAccess::iterator::node() { | 396 Node* StateValuesAccess::iterator::node() { |
| 267 return Top()->node->InputAt(Top()->index); | 397 if (Top()->mask != 0 && (Top()->mask & 0x1) == 0) { |
| 398 return nullptr; | |
| 399 } else { | |
| 400 return Top()->node->InputAt(Top()->index); | |
| 401 } | |
| 268 } | 402 } |
| 269 | 403 |
| 270 | 404 |
| 271 MachineType StateValuesAccess::iterator::type() { | 405 MachineType StateValuesAccess::iterator::type() { |
| 272 Node* state = Top()->node; | 406 Node* state = Top()->node; |
| 273 if (state->opcode() == IrOpcode::kStateValues) { | 407 if (state->opcode() == IrOpcode::kStateValues) { |
| 274 return MachineType::AnyTagged(); | 408 return MachineType::AnyTagged(); |
| 275 } else { | 409 } else { |
| 276 DCHECK_EQ(IrOpcode::kTypedStateValues, state->opcode()); | 410 DCHECK_EQ(IrOpcode::kTypedStateValues, state->opcode()); |
| 277 ZoneVector<MachineType> const* types = MachineTypesOf(state->op()); | 411 |
| 278 return (*types)[Top()->index]; | 412 if (Top()->mask != 0 && (Top()->mask & 0x1) == 0) { |
| 413 return MachineType::None(); | |
| 414 } else { | |
| 415 ZoneVector<MachineType> const* types = MachineTypesOf(state->op()); | |
| 416 return (*types)[Top()->index]; | |
| 417 } | |
| 279 } | 418 } |
| 280 } | 419 } |
| 281 | 420 |
| 282 | 421 |
| 283 bool StateValuesAccess::iterator::operator!=(iterator& other) { | 422 bool StateValuesAccess::iterator::operator!=(iterator& other) { |
| 284 // We only allow comparison with end(). | 423 // We only allow comparison with end(). |
| 285 CHECK(other.done()); | 424 CHECK(other.done()); |
| 286 return !done(); | 425 return !done(); |
| 287 } | 426 } |
| 288 | 427 |
| 289 | 428 |
| 290 StateValuesAccess::iterator& StateValuesAccess::iterator::operator++() { | 429 StateValuesAccess::iterator& StateValuesAccess::iterator::operator++() { |
| 291 Advance(); | 430 Advance(); |
| 292 return *this; | 431 return *this; |
| 293 } | 432 } |
| 294 | 433 |
| 295 | 434 |
| 296 StateValuesAccess::TypedNode StateValuesAccess::iterator::operator*() { | 435 StateValuesAccess::TypedNode StateValuesAccess::iterator::operator*() { |
| 297 return TypedNode(node(), type()); | 436 return TypedNode(node(), type()); |
| 298 } | 437 } |
| 299 | 438 |
| 300 | 439 |
| 301 size_t StateValuesAccess::size() { | 440 size_t StateValuesAccess::size() { |
| 302 size_t count = 0; | 441 size_t count = 0; |
| 303 for (int i = 0; i < node_->InputCount(); i++) { | 442 uint32_t mask = GetStateValueMask(node_); |
| 304 if (node_->InputAt(i)->opcode() == IrOpcode::kStateValues || | 443 |
| 305 node_->InputAt(i)->opcode() == IrOpcode::kTypedStateValues) { | 444 int i = 0; |
| 306 count += StateValuesAccess(node_->InputAt(i)).size(); | 445 while ((mask == 0 && i < node_->InputCount()) || (mask != 0 && mask != 1)) { |
| 446 if (mask != 0 && (mask & 1) == 0) { | |
| 447 count++; | |
| 307 } else { | 448 } else { |
| 308 count++; | 449 if (node_->InputAt(i)->opcode() == IrOpcode::kStateValues || |
| 450 node_->InputAt(i)->opcode() == IrOpcode::kTypedStateValues) { | |
| 451 count += StateValuesAccess(node_->InputAt(i)).size(); | |
| 452 } else { | |
| 453 count++; | |
| 454 } | |
| 455 i++; | |
| 309 } | 456 } |
| 457 mask >>= 1; | |
| 310 } | 458 } |
| 459 | |
| 311 return count; | 460 return count; |
| 312 } | 461 } |
| 313 | 462 |
| 314 } // namespace compiler | 463 } // namespace compiler |
| 315 } // namespace internal | 464 } // namespace internal |
| 316 } // namespace v8 | 465 } // namespace v8 |
| OLD | NEW |