Chromium Code Reviews| Index: pkg/analyzer/lib/src/generated/resolver.dart |
| diff --git a/pkg/analyzer/lib/src/generated/resolver.dart b/pkg/analyzer/lib/src/generated/resolver.dart |
| index 95c01cbcf58ac482327c1e2ea1887585f371fca2..9da82783b70ae4cf8ff86fe962532aef3bbb6346 100644 |
| --- a/pkg/analyzer/lib/src/generated/resolver.dart |
| +++ b/pkg/analyzer/lib/src/generated/resolver.dart |
| @@ -1,4 +1,5 @@ |
| // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| + |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| @@ -19,6 +20,7 @@ import 'package:analyzer/exception/exception.dart'; |
| import 'package:analyzer/src/dart/ast/ast.dart'; |
| import 'package:analyzer/src/dart/ast/utilities.dart'; |
| import 'package:analyzer/src/dart/element/element.dart'; |
| +import 'package:analyzer/src/dart/element/member.dart' show ConstructorMember; |
| import 'package:analyzer/src/dart/element/type.dart'; |
| import 'package:analyzer/src/dart/resolver/inheritance_manager.dart'; |
| import 'package:analyzer/src/dart/resolver/scope.dart'; |
| @@ -649,8 +651,9 @@ class BestPracticesVerifier extends RecursiveAstVisitor<Object> { |
| } else if (displayName == FunctionElement.CALL_METHOD_NAME && |
| node is MethodInvocation && |
| node.staticInvokeType is InterfaceType) { |
| - displayName = |
| - "${resolutionMap.staticInvokeTypeForInvocationExpression(node).displayName}.${element.displayName}"; |
| + displayName = "${resolutionMap |
| + .staticInvokeTypeForInvocationExpression(node) |
| + .displayName}.${element.displayName}"; |
| } |
| _errorReporter.reportErrorForNode( |
| HintCode.DEPRECATED_MEMBER_USE, node, [displayName]); |
| @@ -4169,35 +4172,6 @@ class InferenceContext { |
| } |
| /** |
| - * Like [getContext] but expands a union type into a list of types. |
| - */ |
| - Iterable<DartType> getTypes(AstNode node) { |
| - DartType t = getContext(node); |
| - if (t == null) { |
| - return DartType.EMPTY_LIST; |
| - } |
| - if (t is InterfaceType && t.isDartAsyncFutureOr) { |
| - var tArg = t.typeArguments[0]; // The T in FutureOr<T> |
| - return [ |
| - _typeProvider.futureType.instantiate([tArg]), |
| - tArg |
| - ]; |
| - } |
| - return [t]; |
| - } |
| - |
| - /** |
| - * Match type [t1] against type [t2] as follows. |
| - * If `t1 = I<dynamic, ..., dynamic>`, then look for a supertype |
| - * of t1 of the form `K<S0, ..., Sm>` where `t2 = K<S0', ..., Sm'>` |
| - * If the supertype exists, use the constraints `S0 <: S0', ... Sm <: Sm'` |
| - * to derive a concrete instantation for I of the form `<T0, ..., Tn>`, |
| - * such that `I<T0, .., Tn> <: t2` |
| - */ |
| - List<DartType> matchTypes(DartType t1, DartType t2) => |
| - (t1 is InterfaceType && t2 is InterfaceType) ? _matchTypes(t1, t2) : null; |
| - |
| - /** |
| * Pop a return type off of the return stack. |
| * |
| * Also record any inferred return type using [setType], unless this node |
| @@ -4248,113 +4222,6 @@ class InferenceContext { |
| _errorReporter.reportErrorForNode(error, node, [node, type]); |
| } |
| - List<DartType> _matchTypes(InterfaceType t1, InterfaceType t2) { |
| - if (t1 == t2) { |
| - return t2.typeArguments; |
| - } |
| - List<DartType> tArgs1 = t1.typeArguments; |
| - List<DartType> tArgs2 = t2.typeArguments; |
| - // If t1 isn't a raw type, bail out |
| - if (tArgs1 != null && tArgs1.any((t) => !t.isDynamic)) { |
| - return null; |
| - } |
| - |
| - // This is our inferred type argument list. We start at all dynamic, |
| - // and fill in with inferred types when we reach a match. |
| - List<DartType> actuals = |
| - new List<DartType>.filled(tArgs1.length, _typeProvider.dynamicType); |
| - |
| - // When we find the supertype of t1 with the same |
| - // classname as t2 (see below), we have the following: |
| - // If t1 is an instantiation of a class T1<X0, ..., Xn> |
| - // and t2 is an instantiation of a class T2<Y0, ...., Ym> |
| - // of the form t2 = T2<S0, ..., Sm> |
| - // then we want to choose instantiations for the Xi |
| - // T0, ..., Tn such that T1<T0, ..., Tn> <: t2 . |
| - // To find this, we simply instantate T1 with |
| - // X0, ..., Xn, and then find its superclass |
| - // T2<T0', ..., Tn'>. We then solve the constraint |
| - // set T0' <: S0, ..., Tn' <: Sn for the Xi. |
| - // Currently, we only handle constraints where |
| - // the Ti' is one of the Xi'. If there are multiple |
| - // constraints on some Xi, we choose the lower of the |
| - // two (if it exists). |
| - bool permute(List<DartType> permutedArgs) { |
| - if (permutedArgs == null) { |
| - return false; |
| - } |
| - List<TypeParameterElement> ps = t1.typeParameters; |
| - List<DartType> ts = ps.map((p) => p.type).toList(); |
| - for (int i = 0; i < permutedArgs.length; i++) { |
| - DartType tVar = permutedArgs[i]; |
| - DartType tActual = tArgs2[i]; |
| - int index = ts.indexOf(tVar); |
| - if (index >= 0 && _typeSystem.isSubtypeOf(tActual, actuals[index])) { |
| - actuals[index] = tActual; |
| - } |
| - } |
| - return actuals.any((x) => !x.isDynamic); |
| - } |
| - |
| - // Look for the first supertype of t1 with the same class name as t2. |
| - bool match(InterfaceType t1, Set<Element> visited) { |
| - if (t1.element == t2.element) { |
| - return permute(t1.typeArguments); |
| - } |
| - |
| - if (t1 == _typeProvider.objectType) { |
| - return false; |
| - } |
| - |
| - Element element = t1.element; |
| - if (visited == null) { |
| - visited = new HashSet<Element>(); |
| - } |
| - if (element == null || !visited.add(element)) { |
| - return false; |
| - } |
| - try { |
| - if (match(t1.superclass, visited)) { |
| - return true; |
| - } |
| - |
| - List<InterfaceType> mixins = t1.mixins; |
| - int mixinLength = mixins.length; |
| - for (int i = 0; i < mixinLength; i++) { |
| - if (match(mixins[i], visited)) { |
| - return true; |
| - } |
| - } |
| - |
| - List<InterfaceType> interfaces = t1.interfaces; |
| - int interfaceLength = interfaces.length; |
| - for (int j = 0; j < interfaceLength; j++) { |
| - if (match(interfaces[j], visited)) { |
| - return true; |
| - } |
| - } |
| - } finally { |
| - visited.remove(element); |
| - } |
| - return false; |
| - } |
| - |
| - // We have that t1 = T1<dynamic, ..., dynamic>. |
| - // To match t1 against t2, we use the uninstantiated version |
| - // of t1, essentially treating it as an instantiation with |
| - // fresh variables, and solve for the variables. |
| - // t1.element.type will be of the form T1<X0, ..., Xn> |
| - if (!match(t1.element.type, null)) { |
| - return null; |
| - } |
| - DartType newT1 = t1.element.type.instantiate(actuals); |
| - // If we found a solution, return it. |
| - if (_typeSystem.isSubtypeOf(newT1, t2)) { |
| - return actuals; |
| - } |
| - return null; |
| - } |
| - |
| /** |
| * Clear the type information assocated with [node]. |
| */ |
| @@ -4363,28 +4230,36 @@ class InferenceContext { |
| } |
| /** |
| - * Look for contextual type information attached to [node]. Returns |
| - * the type if found, otherwise null. |
| + * Look for contextual type information attached to [node], and returns |
| + * the type if found. |
| * |
| - * If [node] has a contextual union type like `T | Future<T>` this will be |
| - * returned. You can use [getType] if you prefer to only get the `T`. |
| + * If [node] has a contextual union type like `T | Future<T>` or a type that |
| + * contains `?` this will be returned. You can use [getValueContext] if you |
|
Leaf
2017/03/14 22:37:40
Is this residual? I can't find getValueContext an
Jennifer Messerly
2017/03/14 23:49:09
fixed!
|
| + * prefer to eliminate the Future union, or [getType] to eliminate both. |
| */ |
| static DartType getContext(AstNode node) => node?.getProperty(_typeProperty); |
| /** |
| - * Look for a single contextual type attached to [node], and returns the type |
| - * if found, otherwise null. |
| - * |
| - * If [node] has a contextual union type like `T | Future<T>` this will |
| - * simplify it to only return `T`. If the caller can handle a union type, |
| - * [getContext] should be used instead. |
| - */ |
| - static DartType getType(AstNode node) { |
| + * Look for a single contextual type attached to [node], and returns the type |
| + * if found, otherwise null. |
| + * |
| + * If [node] has a contextual union type like `T | Future<T>` this will |
| + * simplify it to only return `T`. If the caller can handle a union type, |
| + * [getContext] should be used instead. |
| + */ |
| + DartType getType(AstNode node) { |
| DartType t = getContext(node); |
| - if (t is InterfaceType && t.isDartAsyncFutureOr) { |
| - return t.typeArguments[0]; // The T in FutureOr<T> |
| + if (t == null) return null; |
| + var ts = _typeSystem; |
| + if (ts is StrongTypeSystemImpl) { |
| + if (t is InterfaceType && t.isDartAsyncFutureOr) { |
| + return ts.upperBoundForType(t.typeArguments[0]); // The T in FutureOr<T> |
| + } |
| + // Since the type is being used for downwards inference, the expression |
| + // type E must be a subtype of the context type T, i.e. T is an upper bound. |
|
Leaf
2017/03/14 22:37:40
length.
Jennifer Messerly
2017/03/14 23:49:09
fixed, this method is gone now.
|
| + return ts.upperBoundForType(t); |
| } |
| - return t; |
| + return null; |
| } |
| /** |
| @@ -4509,7 +4384,8 @@ class InstanceFieldResolverVisitor extends ResolverVisitor { |
| typeAnalyzer.thisType = enclosingClass?.type; |
| if (enclosingClass == null) { |
| AnalysisEngine.instance.logger.logInformation( |
| - "Missing element for class declaration ${node.name.name} in ${definingLibrary.source.fullName}", |
| + "Missing element for class declaration ${node.name |
| + .name} in ${definingLibrary.source.fullName}", |
| new CaughtException(new AnalysisException(), null)); |
| // Don't try to re-resolve the initializers if we cannot set up the |
| // right name scope for resolution. |
| @@ -5456,7 +5332,7 @@ class ResolverVisitor extends ScopedVisitor { |
| @override |
| Object visitArgumentList(ArgumentList node) { |
| - DartType callerType = InferenceContext.getType(node); |
| + DartType callerType = InferenceContext.getContext(node); |
| if (callerType is FunctionType) { |
| Map<String, DartType> namedParameterTypes = |
| callerType.namedParameterTypes; |
| @@ -6069,7 +5945,7 @@ class ResolverVisitor extends ScopedVisitor { |
| _enclosingFunction = node.element; |
| _overrideManager.enterScope(); |
| try { |
| - DartType functionType = InferenceContext.getType(node); |
| + DartType functionType = inferenceContext.getType(node); |
| if (functionType is FunctionType) { |
| functionType = |
| matchFunctionTypeParameters(node.typeParameters, functionType); |
| @@ -6113,7 +5989,7 @@ class ResolverVisitor extends ScopedVisitor { |
| Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) { |
| node.function?.accept(this); |
| node.accept(elementResolver); |
| - _inferArgumentTypesFromContext(node); |
| + _inferArgumentTypesForInvocation(node); |
| node.argumentList?.accept(this); |
| node.accept(typeAnalyzer); |
| return null; |
| @@ -6211,56 +6087,8 @@ class ResolverVisitor extends ScopedVisitor { |
| @override |
| Object visitInstanceCreationExpression(InstanceCreationExpression node) { |
| - TypeName classTypeName = node.constructorName.type; |
| - // TODO(leafp): Currently, we may re-infer types here, since we |
| - // sometimes resolve multiple times. We should really check that we |
| - // have not already inferred something. However, the obvious ways to |
| - // check this don't work, since we may have been instantiated |
| - // to bounds in an earlier phase, and we *do* want to do inference |
| - // in that case. |
| - if (classTypeName.typeArguments == null) { |
| - // Given a union of context types ` T0 | T1 | ... | Tn`, find the first |
| - // valid instantiation `new C<Ti>`, if it exists. |
| - // TODO(jmesserly): if we support union types for real, `new C<Ti | Tj>` |
| - // will become a valid possibility. Right now the only allowed union is |
| - // `T | Future<T>` so we can take a simple approach. |
| - for (var contextType in inferenceContext.getTypes(node)) { |
| - if (contextType is InterfaceType && |
| - contextType.typeArguments != null && |
| - contextType.typeArguments.isNotEmpty) { |
| - // TODO(jmesserly): for generic methods we use the |
| - // StrongTypeSystemImpl.inferGenericFunctionCall, which appears to |
| - // be a tad more powerful than matchTypes. |
| - // |
| - // For example it can infer this case: |
| - // |
| - // class E<S, T> extends A<C<S>, T> { ... } |
| - // A<C<int>, String> a0 = /*infer<int, String>*/new E("hello"); |
| - // |
| - // See _inferArgumentTypesFromContext in this file for use of it. |
| - List<DartType> targs = |
| - inferenceContext.matchTypes(classTypeName.type, contextType); |
| - if (targs != null && targs.any((t) => !t.isDynamic)) { |
| - ClassElement classElement = |
| - resolutionMap.typeForTypeName(classTypeName).element; |
| - InterfaceType rawType = classElement.type; |
| - InterfaceType fullType = |
| - rawType.substitute2(targs, rawType.typeArguments); |
| - // The element resolver uses the type on the constructor name, so |
| - // infer it first |
| - typeAnalyzer.inferConstructorName(node.constructorName, fullType); |
| - break; |
| - } |
| - } |
| - } |
| - } |
| node.constructorName?.accept(this); |
| - FunctionType constructorType = resolutionMap |
| - .staticElementForConstructorReference(node.constructorName) |
| - ?.type; |
| - if (constructorType != null) { |
| - InferenceContext.setType(node.argumentList, constructorType); |
| - } |
| + _inferArgumentTypesForInstanceCreate(node); |
| node.argumentList?.accept(this); |
| node.accept(elementResolver); |
| node.accept(typeAnalyzer); |
| @@ -6275,18 +6103,18 @@ class ResolverVisitor extends ScopedVisitor { |
| @override |
| Object visitListLiteral(ListLiteral node) { |
| - DartType contextType = InferenceContext.getType(node); |
| - List<DartType> targs = null; |
| + InterfaceType listT; |
| + |
| if (node.typeArguments != null) { |
| - targs = node.typeArguments.arguments.map((t) => t.type).toList(); |
| - } else if (contextType is InterfaceType) { |
| - InterfaceType listD = |
| - typeProvider.listType.instantiate([typeProvider.dynamicType]); |
| - targs = inferenceContext.matchTypes(listD, contextType); |
| - } |
| - if (targs != null && targs.length == 1 && !targs[0].isDynamic) { |
| - DartType eType = targs[0]; |
| - InterfaceType listT = typeProvider.listType.instantiate([eType]); |
| + var targs = node.typeArguments.arguments.map((t) => t.type).toList(); |
| + if (targs.length == 1 && !targs[0].isDynamic) { |
| + listT = typeProvider.listType.instantiate([targs[0]]); |
| + } |
| + } else if (strongMode) { |
| + listT = typeAnalyzer.inferListType(node, downwards: true); |
| + } |
| + if (listT != null) { |
| + DartType eType = listT.typeArguments[0]; |
| for (Expression child in node.elements) { |
| InferenceContext.setType(child, eType); |
| } |
| @@ -6300,19 +6128,18 @@ class ResolverVisitor extends ScopedVisitor { |
| @override |
| Object visitMapLiteral(MapLiteral node) { |
| - DartType contextType = InferenceContext.getType(node); |
| - List<DartType> targs = null; |
| + InterfaceType mapT; |
| if (node.typeArguments != null) { |
| - targs = node.typeArguments.arguments.map((t) => t.type).toList(); |
| - } else if (contextType is InterfaceType) { |
| - InterfaceType mapD = typeProvider.mapType |
| - .instantiate([typeProvider.dynamicType, typeProvider.dynamicType]); |
| - targs = inferenceContext.matchTypes(mapD, contextType); |
| - } |
| - if (targs != null && targs.length == 2 && targs.any((t) => !t.isDynamic)) { |
| - DartType kType = targs[0]; |
| - DartType vType = targs[1]; |
| - InterfaceType mapT = typeProvider.mapType.instantiate([kType, vType]); |
| + var targs = node.typeArguments.arguments.map((t) => t.type).toList(); |
| + if (targs.length == 2 && targs.any((t) => !t.isDynamic)) { |
| + mapT = typeProvider.mapType.instantiate([targs[0], targs[1]]); |
| + } |
| + } else if (strongMode) { |
| + mapT = typeAnalyzer.inferMapType(node, downwards: true); |
| + } |
| + if (mapT != null) { |
| + DartType kType = mapT.typeArguments[0]; |
| + DartType vType = mapT.typeArguments[1]; |
| for (MapLiteralEntry entry in node.entries) { |
| InferenceContext.setType(entry.key, kType); |
| InferenceContext.setType(entry.value, vType); |
| @@ -6358,7 +6185,7 @@ class ResolverVisitor extends ScopedVisitor { |
| node.target?.accept(this); |
| node.typeArguments?.accept(this); |
| node.accept(elementResolver); |
| - _inferArgumentTypesFromContext(node); |
| + _inferArgumentTypesForInvocation(node); |
| node.argumentList?.accept(this); |
| node.accept(typeAnalyzer); |
| return null; |
| @@ -6651,12 +6478,13 @@ class ResolverVisitor extends ScopedVisitor { |
| // If it's sync* we expect Iterable<T> |
| // If it's async* we expect Stream<T> |
| InterfaceType rawType = isAsynchronous |
| - ? typeProvider.streamDynamicType |
| - : typeProvider.iterableDynamicType; |
| + ? typeProvider.streamType |
| + : typeProvider.iterableType; |
| // Match the types to instantiate the type arguments if possible |
| - List<DartType> typeArgs = |
| - inferenceContext.matchTypes(rawType, declaredType); |
| - return (typeArgs?.length == 1) ? typeArgs[0] : null; |
| + List<DartType> targs = declaredType.typeArguments; |
| + if (targs.length == 1 && rawType.instantiate(targs) == declaredType) { |
| + return targs[0]; |
| + } |
| } |
| // async functions expect `Future<T> | T` |
| var futureTypeParam = declaredType.flattenFutures(typeSystem); |
| @@ -6755,33 +6583,99 @@ class ResolverVisitor extends ScopedVisitor { |
| return false; |
| } |
| - void _inferArgumentTypesFromContext(InvocationExpression node) { |
| - if (!strongMode) { |
| - // Use propagated type inference for lambdas if not in strong mode. |
| - _inferFunctionExpressionsParametersTypes(node.argumentList); |
| + FunctionType _inferArgumentTypesForGeneric(AstNode inferenceNode, |
| + DartType uninstantiatedType, TypeArgumentList typeArguments, |
| + {AstNode errorNode}) { |
| + errorNode ??= inferenceNode; |
| + TypeSystem ts = typeSystem; |
| + if (typeArguments == null && |
| + uninstantiatedType is FunctionType && |
| + uninstantiatedType.typeFormals.isNotEmpty && |
| + ts is StrongTypeSystemImpl) { |
| + return ts.inferGenericFunctionOrType/*<FunctionType>*/( |
| + uninstantiatedType, |
| + ParameterElement.EMPTY_LIST, |
| + DartType.EMPTY_LIST, |
| + InferenceContext.getContext(inferenceNode), |
| + downwards: true, |
| + errorReporter: errorReporter, |
| + errorNode: errorNode); |
| + } |
| + return null; |
| + } |
| + |
| + void _inferArgumentTypesForInstanceCreate(InstanceCreationExpression node) { |
| + ConstructorName constructor = node.constructorName; |
| + TypeName classTypeName = constructor?.type; |
| + if (classTypeName == null || !strongMode) { |
| return; |
| } |
| - DartType contextType = node.staticInvokeType; |
| - if (contextType is FunctionType) { |
| - DartType originalType = node.function.staticType; |
| - DartType returnContextType = InferenceContext.getContext(node); |
| - TypeSystem ts = typeSystem; |
| - if (returnContextType != null && |
| - node.typeArguments == null && |
| - originalType is FunctionType && |
| - originalType.typeFormals.isNotEmpty && |
| - ts is StrongTypeSystemImpl) { |
| - contextType = ts.inferGenericFunctionCall( |
| - originalType, |
| - DartType.EMPTY_LIST, |
| - DartType.EMPTY_LIST, |
| - originalType.returnType, |
| - returnContextType); |
| + ConstructorElement originalElement = |
| + resolutionMap.staticElementForConstructorReference(constructor); |
| + FunctionType inferred; |
| + // If the constructor is generic, we'll have a ConstructorMember that |
| + // substitutes in type arguments (possibly `dynamic`) from earlier in |
| + // resolution. |
| + // |
| + // Otherwise we'll have a ConstructorElement, and we can skip inference |
| + // because there's nothing to infer in a non-generic type. |
| + if (classTypeName.typeArguments == null && |
| + originalElement is ConstructorMember) { |
| + // TODO(leafp): Currently, we may re-infer types here, since we |
| + // sometimes resolve multiple times. We should really check that we |
| + // have not already inferred something. However, the obvious ways to |
| + // check this don't work, since we may have been instantiated |
| + // to bounds in an earlier phase, and we *do* want to do inference |
| + // in that case. |
| + |
| + // Get back to the uninstantiated generic constructor. |
| + // TODO(jmesserly): should we store this earlier in resolution? |
| + // Or look it up, instead of jumping backwards through the Member? |
| + var rawElement = originalElement.baseElement; |
| + |
| + FunctionType constructorType = |
| + StaticTypeAnalyzer.constructorToGenericFunctionType(rawElement); |
| + |
| + inferred = _inferArgumentTypesForGeneric( |
| + node, constructorType, constructor.type.typeArguments, |
| + errorNode: node.constructorName); |
| + |
| + if (inferred != null) { |
| + ArgumentList arguments = node.argumentList; |
| + InferenceContext.setType(arguments, inferred); |
| + // Fix up the parameter elements based on inferred method. |
| + arguments.correspondingStaticParameters = |
| + resolveArgumentsToParameters(arguments, inferred.parameters, null); |
| + |
| + constructor.type.type = inferred.returnType; |
| + if (UnknownInferredType.isKnown(inferred)) { |
| + inferenceContext.recordInference(node, inferred.returnType); |
| + } |
| + |
| + // Update the static element as well. This is used in some cases, such |
| + // as computing constant values. It is stored in two places. |
| + constructor.staticElement = |
| + ConstructorMember.from(rawElement, inferred.returnType); |
| + node.staticElement = constructor.staticElement; |
| } |
| + } |
| + |
| + if (inferred == null) { |
| + InferenceContext.setType(node.argumentList, originalElement?.type); |
| + } |
| + } |
| - InferenceContext.setType(node.argumentList, contextType); |
| + void _inferArgumentTypesForInvocation(InvocationExpression node) { |
| + if (!strongMode) { |
| + // Use propagated type inference for lambdas if not in strong mode. |
| + _inferFunctionExpressionsParametersTypes(node.argumentList); |
| + return; |
| } |
| + DartType inferred = _inferArgumentTypesForGeneric( |
| + node, node.function.staticType, node.typeArguments); |
| + InferenceContext.setType( |
| + node.argumentList, inferred ?? node.staticInvokeType); |
| } |
| void _inferFormalParameterList(FormalParameterList node, DartType type) { |
| @@ -7363,7 +7257,8 @@ abstract class ScopedVisitor extends UnifyingAstVisitor<Object> { |
| try { |
| if (classElement == null) { |
| AnalysisEngine.instance.logger.logInformation( |
| - "Missing element for class declaration ${node.name.name} in ${definingLibrary.source.fullName}", |
| + "Missing element for class declaration ${node.name |
| + .name} in ${definingLibrary.source.fullName}", |
| new CaughtException(new AnalysisException(), null)); |
| super.visitClassDeclaration(node); |
| } else { |
| @@ -7491,7 +7386,8 @@ abstract class ScopedVisitor extends UnifyingAstVisitor<Object> { |
| try { |
| if (classElement == null) { |
| AnalysisEngine.instance.logger.logInformation( |
| - "Missing element for enum declaration ${node.name.name} in ${definingLibrary.source.fullName}", |
| + "Missing element for enum declaration ${node.name |
| + .name} in ${definingLibrary.source.fullName}", |
| new CaughtException(new AnalysisException(), null)); |
| super.visitEnumDeclaration(node); |
| } else { |
| @@ -7607,7 +7503,8 @@ abstract class ScopedVisitor extends UnifyingAstVisitor<Object> { |
| try { |
| if (functionElement == null) { |
| AnalysisEngine.instance.logger.logInformation( |
| - "Missing element for top-level function ${node.name.name} in ${definingLibrary.source.fullName}", |
| + "Missing element for top-level function ${node.name |
| + .name} in ${definingLibrary.source.fullName}", |
| new CaughtException(new AnalysisException(), null)); |
| } else { |
| nameScope = new FunctionScope(nameScope, functionElement); |
| @@ -7683,7 +7580,8 @@ abstract class ScopedVisitor extends UnifyingAstVisitor<Object> { |
| ParameterElement parameterElement = node.element; |
| if (parameterElement == null) { |
| AnalysisEngine.instance.logger.logInformation( |
| - "Missing element for function typed formal parameter ${node.identifier.name} in ${definingLibrary.source.fullName}", |
| + "Missing element for function typed formal parameter ${node |
| + .identifier.name} in ${definingLibrary.source.fullName}", |
| new CaughtException(new AnalysisException(), null)); |
| } else { |
| nameScope = new EnclosedScope(nameScope); |
| @@ -7727,7 +7625,8 @@ abstract class ScopedVisitor extends UnifyingAstVisitor<Object> { |
| ExecutableElement methodElement = node.element; |
| if (methodElement == null) { |
| AnalysisEngine.instance.logger.logInformation( |
| - "Missing element for method ${node.name.name} in ${definingLibrary.source.fullName}", |
| + "Missing element for method ${node.name.name} in ${definingLibrary |
| + .source.fullName}", |
| new CaughtException(new AnalysisException(), null)); |
| } else { |
| nameScope = new FunctionScope(nameScope, methodElement); |