Chromium Code Reviews| Index: pkg/analyzer/lib/src/generated/type_system.dart |
| diff --git a/pkg/analyzer/lib/src/generated/type_system.dart b/pkg/analyzer/lib/src/generated/type_system.dart |
| index 1e1d1824caf386948df9cb9b1832c51cb8801a16..17c7d678eacb9eda2dde0080aae4e5e59fa65a4e 100644 |
| --- a/pkg/analyzer/lib/src/generated/type_system.dart |
| +++ b/pkg/analyzer/lib/src/generated/type_system.dart |
| @@ -8,7 +8,7 @@ import 'dart:collection'; |
| import 'dart:math' as math; |
| import 'package:analyzer/dart/ast/ast.dart' show AstNode; |
| -import 'package:analyzer/dart/ast/token.dart' show TokenType; |
| +import 'package:analyzer/dart/ast/token.dart' show Keyword, TokenType; |
| import 'package:analyzer/dart/element/element.dart'; |
| import 'package:analyzer/dart/element/type.dart'; |
| import 'package:analyzer/error/listener.dart' show ErrorReporter; |
| @@ -22,7 +22,10 @@ import 'package:analyzer/src/generated/resolver.dart' show TypeProvider; |
| import 'package:analyzer/src/generated/utilities_dart.dart' show ParameterKind; |
| bool _isBottom(DartType t, {bool dynamicIsBottom: false}) { |
| - return (t.isDynamic && dynamicIsBottom) || t.isBottom || t.isDartCoreNull; |
| + return (t.isDynamic && dynamicIsBottom) || |
| + t.isBottom || |
| + t.isDartCoreNull || |
| + identical(t, UnknownInferredType.instance); |
| } |
| bool _isTop(DartType t, {bool dynamicIsBottom: false}) { |
| @@ -30,7 +33,9 @@ bool _isTop(DartType t, {bool dynamicIsBottom: false}) { |
| if (t.isDartAsyncFutureOr) { |
| return _isTop((t as InterfaceType).typeArguments[0]); |
| } |
| - return (t.isDynamic && !dynamicIsBottom) || t.isObject; |
| + return (t.isDynamic && !dynamicIsBottom) || |
| + t.isObject || |
| + identical(t, UnknownInferredType.instance); |
| } |
| typedef bool _GuardedSubtypeChecker<T>(T t1, T t2, Set<Element> visited); |
| @@ -125,6 +130,14 @@ class StrongTypeSystemImpl extends TypeSystem { |
| return type1; |
| } |
| + // For any type T, GLB(?, T) == T. |
| + if (identical(type1, UnknownInferredType.instance)) { |
| + return type2; |
| + } |
| + if (identical(type2, UnknownInferredType.instance)) { |
| + return type1; |
| + } |
| + |
| // The GLB of top and any type is just that type. |
| // Also GLB of bottom and any type is bottom. |
| if (_isTop(type1, dynamicIsBottom: dynamicIsBottom) || |
| @@ -204,7 +217,7 @@ class StrongTypeSystemImpl extends TypeSystem { |
| * Given a generic function type `F<T0, T1, ... Tn>` and a context type C, |
| * infer an instantiation of F, such that `F<S0, S1, ..., Sn>` <: C. |
| * |
| - * This is similar to [inferGenericFunctionCall], but the return type is also |
| + * This is similar to [inferGenericFunctionOrType], but the return type is also |
| * considered as part of the solution. |
| * |
| * If this function is called with a [contextType] that is also |
| @@ -212,7 +225,8 @@ class StrongTypeSystemImpl extends TypeSystem { |
| * no effect and return [fnType]. |
| */ |
| FunctionType inferFunctionTypeInstantiation( |
| - FunctionType contextType, FunctionType fnType) { |
| + FunctionType contextType, FunctionType fnType, |
| + {ErrorReporter errorReporter, AstNode errorNode}) { |
| if (contextType.typeFormals.isNotEmpty || fnType.typeFormals.isEmpty) { |
| return fnType; |
| } |
| @@ -221,36 +235,27 @@ class StrongTypeSystemImpl extends TypeSystem { |
| // inferred. It will optimistically assume these type parameters can be |
| // subtypes (or supertypes) as necessary, and track the constraints that |
| // are implied by this. |
| - var inferringTypeSystem = |
| - new _StrongInferenceTypeSystem(typeProvider, this, fnType.typeFormals); |
| + var inferrer = new _GenericInferrer(typeProvider, this, fnType.typeFormals); |
| // Since we're trying to infer the instantiation, we want to ignore type |
| // formals as we check the parameters and return type. |
| var inferFnType = |
| fnType.instantiate(TypeParameterTypeImpl.getTypes(fnType.typeFormals)); |
| - if (!inferringTypeSystem.isSubtypeOf(inferFnType, contextType)) { |
| - return fnType; |
| - } |
| - |
| - // Try to infer and instantiate the resulting type. |
| - var resultType = inferringTypeSystem._infer( |
| - fnType, fnType.typeFormals, fnType.returnType); |
| + inferrer.constrainReturnType(inferFnType, contextType); |
| - // If the instantiation failed (because some type variable constraints |
| - // could not be solved, in other words, we could not find a valid subtype), |
| - // then return the original type, so the error is in terms of it. |
| - // |
| - // It would be safe to return a partial solution here, but the user |
| - // experience may be better if we simply do not infer in this case. |
| - // |
| - // TODO(jmesserly): this heuristic is old. Maybe we should we issue the |
| - // inference error? |
| - return resultType ?? fnType; |
| + // Infer and instantiate the resulting type. |
| + // !!! fix this in the error case. |
| + return inferrer.infer(fnType, fnType.typeFormals, |
| + errorReporter: errorReporter, errorNode: errorNode); |
| } |
| - /// Given a function type with generic type parameters, infer the type |
| - /// parameters from the actual argument types, and return the instantiated |
| - /// function type. If we can't, returns the original function type. |
| + /// Infers a generic type, function, method, or list/map literal |
| + /// instantiation, using the downward context type as well as the argument |
| + /// types if available. |
| + /// |
| + /// For example, given a function type with generic type parameters, this |
| + /// infers the type parameters from the actual argument types, and returns the |
| + /// instantiated function type. |
| /// |
| /// Concretely, given a function type with parameter types P0, P1, ... Pn, |
| /// result type R, and generic type parameters T0, T1, ... Tm, use the |
| @@ -261,21 +266,20 @@ class StrongTypeSystemImpl extends TypeSystem { |
| /// recording the lower or upper bound it must satisfy. At the end, all |
| /// constraints can be combined to determine the type. |
| /// |
| - /// As a simplification, we do not actually store all constraints on each type |
| - /// parameter Tj. Instead we track Uj and Lj where U is the upper bound and |
| - /// L is the lower bound of that type parameter. |
| - /*=T*/ inferGenericFunctionCall/*<T extends ParameterizedType>*/( |
| + /// All constraints on each type parameter Tj are tracked, as well as where |
| + /// they originated, so we can issue an error message tracing back to the |
| + /// argument values, type parameter "extends" clause, or the return type |
| + /// context. |
| + /*=T*/ inferGenericFunctionOrType/*<T extends ParameterizedType>*/( |
| /*=T*/ genericType, |
| - List<DartType> declaredParameterTypes, |
| + List<ParameterElement> parameters, |
| List<DartType> argumentTypes, |
| - DartType declaredReturnType, |
| DartType returnContextType, |
| {ErrorReporter errorReporter, |
| - AstNode errorNode}) { |
| + AstNode errorNode, |
| + bool downwards: false}) { |
| // TODO(jmesserly): expose typeFormals on ParameterizedType. |
| - List<TypeParameterElement> typeFormals = genericType is FunctionType |
| - ? genericType.typeFormals |
| - : genericType.typeParameters; |
| + List<TypeParameterElement> typeFormals = typeFormalsAsElements(genericType); |
| if (typeFormals.isEmpty) { |
| return genericType; |
| } |
| @@ -284,22 +288,27 @@ class StrongTypeSystemImpl extends TypeSystem { |
| // inferred. It will optimistically assume these type parameters can be |
| // subtypes (or supertypes) as necessary, and track the constraints that |
| // are implied by this. |
| - var inferringTypeSystem = |
| - new _StrongInferenceTypeSystem(typeProvider, this, typeFormals); |
| + var inferrer = new _GenericInferrer(typeProvider, this, typeFormals); |
| + |
| + DartType declaredReturnType = |
| + genericType is FunctionType ? genericType.returnType : genericType; |
| if (returnContextType != null) { |
| - inferringTypeSystem.isSubtypeOf(declaredReturnType, returnContextType); |
| + inferrer.constrainReturnType(declaredReturnType, returnContextType); |
| } |
| for (int i = 0; i < argumentTypes.length; i++) { |
| // Try to pass each argument to each parameter, recording any type |
| // parameter bounds that were implied by this assignment. |
| - inferringTypeSystem.isSubtypeOf( |
| - argumentTypes[i], declaredParameterTypes[i]); |
| + inferrer.constrainArgument( |
| + argumentTypes[i], parameters[i].type, parameters[i].name, |
| + genericType: genericType); |
| } |
| - return inferringTypeSystem._infer( |
| - genericType, typeFormals, declaredReturnType, errorReporter, errorNode); |
| + return inferrer.infer(genericType, typeFormals, |
| + errorReporter: errorReporter, |
| + errorNode: errorNode, |
| + downwardsInferPhase: downwards); |
| } |
| /** |
| @@ -312,7 +321,8 @@ class StrongTypeSystemImpl extends TypeSystem { |
| * TODO(scheglov) Move this method to elements for classes, typedefs, |
| * and generic functions; compute lazily and cache. |
| */ |
| - DartType instantiateToBounds(DartType type, {List<bool> hasError}) { |
| + DartType instantiateToBounds(DartType type, |
| + {List<bool> hasError, Map<TypeParameterType, DartType> knownTypes}) { |
| List<TypeParameterElement> typeFormals = typeFormalsAsElements(type); |
| int count = typeFormals.length; |
| if (count == 0) { |
| @@ -320,16 +330,20 @@ class StrongTypeSystemImpl extends TypeSystem { |
| } |
| Set<TypeParameterType> all = new Set<TypeParameterType>(); |
| - Map<TypeParameterType, DartType> defaults = {}; // all ground |
| - Map<TypeParameterType, DartType> partials = {}; // not ground |
| + // all ground |
| + Map<TypeParameterType, DartType> defaults = knownTypes ?? {}; |
| + // not ground |
| + Map<TypeParameterType, DartType> partials = {}; |
| for (TypeParameterElement typeParameterElement in typeFormals) { |
| TypeParameterType typeParameter = typeParameterElement.type; |
| all.add(typeParameter); |
| - if (typeParameter.bound == null) { |
| - defaults[typeParameter] = DynamicTypeImpl.instance; |
| - } else { |
| - partials[typeParameter] = typeParameter.bound; |
| + if (!defaults.containsKey(typeParameter)) { |
| + if (typeParameter.bound == null) { |
| + defaults[typeParameter] = DynamicTypeImpl.instance; |
| + } else { |
| + partials[typeParameter] = typeParameter.bound; |
| + } |
| } |
| } |
| @@ -570,6 +584,87 @@ class StrongTypeSystemImpl extends TypeSystem { |
| return t; |
| } |
| + // Given a [type] T that may have an unknown type `?`, returns a type |
| + // R such that T <: R for any type substituted for `?`. |
| + // |
| + // In practice this will always replace `?` with either bottom or top |
| + // (dynamic), depending on the position of `?`. |
| + DartType upperBoundForType(DartType type) { |
| + return _substituteForUnknownType(type); |
| + } |
| + |
| + // Given a [type] T that may have an unknown type `?`, returns a type |
| + // R such that R <: T for any type substituted for `?`. |
| + // |
| + // In practice this will always replace `?` with either bottom or top |
| + // (dynamic), depending on the position of `?`. |
| + DartType lowerBoundForType(DartType type) { |
| + return _substituteForUnknownType(type, lowerBound: true); |
| + } |
| + |
| + DartType _substituteForUnknownType(DartType type, |
| + {bool lowerBound: false, dynamicIsBottom: false}) { |
| + if (identical(type, UnknownInferredType.instance)) { |
| + if (lowerBound && !dynamicIsBottom) { |
| + // TODO(jmesserly): this should be the bottom type, once i can be |
| + // reified. |
| + return typeProvider.nullType; |
| + } |
| + return typeProvider.dynamicType; |
| + } |
| + if (type is InterfaceTypeImpl) { |
| + // Generic types are covariant, so keep the constraint direction. |
| + var newTypeArgs = _transformList(type.typeArguments, |
| + (t) => _substituteForUnknownType(t, lowerBound: lowerBound)); |
| + if (identical(type.typeArguments, newTypeArgs)) return type; |
| + return new InterfaceTypeImpl(type.element, type.prunedTypedefs) |
| + ..typeArguments = newTypeArgs; |
| + } |
| + if (type is FunctionType) { |
| + var parameters = type.parameters; |
| + var returnType = type.returnType; |
| + var newParameters = _transformList(parameters, (ParameterElement p) { |
| + // Parameters are contravariant, so flip the constraint direction. |
| + // Also pass dynamicIsBottom, because this is a fuzzy arrow. |
| + var newType = _substituteForUnknownType(p.type, |
| + lowerBound: !lowerBound, dynamicIsBottom: true); |
| + return identical(p.type, newType) && p is ParameterElementImpl |
| + ? p |
| + : new ParameterElementImpl.synthetic( |
| + p.name, newType, p.parameterKind); |
| + }); |
| + // Return type is covariant. |
| + var newReturnType = |
| + _substituteForUnknownType(returnType, lowerBound: lowerBound); |
| + if (identical(parameters, newParameters) && |
| + identical(returnType, newReturnType)) { |
| + return type; |
| + } |
| + |
| + var function = new FunctionElementImpl(type.name, -1) |
| + ..isSynthetic = true |
| + ..returnType = newReturnType |
| + ..shareTypeParameters(type.typeFormals) |
| + ..shareParameters(newParameters); |
| + return function.type = new FunctionTypeImpl(function); |
| + } |
| + return type; |
| + } |
| + |
| + static List/*<T>*/ _transformList/*<T>*/( |
| + List/*<T>*/ list, /*=T*/ f(/*=T*/ t)) { |
| + List/*<T>*/ newList = null; |
| + for (var i = 0; i < list.length; i++) { |
| + var item = list[i]; |
| + var newItem = f(item); |
| + if (!identical(item, newItem)) { |
| + newList ??= new List.from(list); |
| + newList[i] = newItem; |
| + } |
| + } |
| + return newList ?? list; |
| + } |
| + |
| /** |
| * Compute the greatest lower bound of function types [f] and [g]. |
| * |
| @@ -829,15 +924,15 @@ class StrongTypeSystemImpl extends TypeSystem { |
| return true; |
| } |
| - // Guard recursive calls |
| - _GuardedSubtypeChecker<DartType> guardedSubtype = _guard(_isSubtypeOf); |
| - |
| // The types are void, dynamic, bottom, interface types, function types, |
| // FutureOr<T> and type parameters. |
| // |
| // We proceed by eliminating these different classes from consideration. |
| // Trivially true. |
| + // |
| + // Note that `?` is treated as a top and a bottom type during inference, |
| + // so it's also covered here. |
| if (_isTop(t2, dynamicIsBottom: dynamicIsBottom) || |
| _isBottom(t1, dynamicIsBottom: dynamicIsBottom)) { |
| return true; |
| @@ -879,11 +974,13 @@ class StrongTypeSystemImpl extends TypeSystem { |
| if (t1 is TypeParameterType) { |
| if (t2 is TypeParameterType && |
| t1.definition == t2.definition && |
| - guardedSubtype(t1.bound, t2.bound, visited)) { |
| + _typeParameterBoundsSubtype(t1.bound, t2.bound, true)) { |
| return true; |
| } |
| DartType bound = t1.element.bound; |
| - return bound == null ? false : guardedSubtype(bound, t2, visited); |
| + return bound == null |
| + ? false |
| + : _typeParameterBoundsSubtype(bound, t2, false); |
| } |
| if (t2 is TypeParameterType) { |
| return false; |
| @@ -979,6 +1076,21 @@ class StrongTypeSystemImpl extends TypeSystem { |
| .substitute2([typeProvider.objectType], [type2]); |
| return getLeastUpperBound(type1, type2); |
| } |
| + |
| + bool _typeParameterBoundsSubtype( |
|
Leaf
2017/03/15 00:27:13
Can you write a comment for this? I won't remembe
|
| + DartType t1, DartType t2, bool recursionValue) { |
| + if (_comparingTypeParameterBounds) { |
| + return recursionValue; |
| + } |
| + _comparingTypeParameterBounds = true; |
| + try { |
| + return isSubtypeOf(t1, t2); |
| + } finally { |
| + _comparingTypeParameterBounds = false; |
| + } |
| + } |
| + |
| + static bool _comparingTypeParameterBounds = false; |
| } |
| /** |
| @@ -1026,6 +1138,15 @@ abstract class TypeSystem { |
| if (identical(type1, type2)) { |
| return type1; |
| } |
| + |
| + // For any type T, LUB(?, T) == T. |
| + if (identical(type1, UnknownInferredType.instance)) { |
| + return type2; |
| + } |
| + if (identical(type2, UnknownInferredType.instance)) { |
| + return type1; |
| + } |
| + |
| // The least upper bound of top and any type T is top. |
| // The least upper bound of bottom and any type T is T. |
| if (_isTop(type1, dynamicIsBottom: dynamicIsBottom) || |
| @@ -1444,7 +1565,7 @@ class TypeSystemImpl extends TypeSystem { |
| /// (due to covariant generic types) as would `() -> A <: () -> num`. In |
| /// contrast `(A) -> void <: (num) -> void`. |
| /// |
| -/// Once the lower/upper bounds are determined, [_infer] should be called to |
| +/// Once the lower/upper bounds are determined, [infer] should be called to |
| /// finish the inference. It will instantiate a generic function type with the |
| /// inferred types for each type parameter. |
| /// |
| @@ -1454,164 +1575,595 @@ class TypeSystemImpl extends TypeSystem { |
| /// |
| /// As currently designed, an instance of this class should only be used to |
| /// infer a single call and discarded immediately afterwards. |
| -class _StrongInferenceTypeSystem extends StrongTypeSystemImpl { |
| +class _GenericInferrer { |
| /// The outer strong mode type system, used for GLB and LUB, so we don't |
| /// recurse into our constraint solving code. |
|
Leaf
2017/03/14 22:37:40
I think the second part of this comment is obsolet
Jennifer Messerly
2017/03/14 23:49:09
done
|
| final StrongTypeSystemImpl _typeSystem; |
| - final Map<TypeParameterType, _TypeParameterBound> _bounds; |
| + final TypeProvider typeProvider; |
| + final Map<TypeParameterElement, List<_TypeConstraint>> _constraints; |
| - _StrongInferenceTypeSystem(TypeProvider typeProvider, this._typeSystem, |
| + /// Counter internally by [_matchSubtypeOf] to see if a recursive call |
| + /// added anything to [_constraints]. |
| + /// |
| + /// Essentially just an optimization for: |
| + /// `_constraints.values.expand((x) => x).length` |
| + int _constraintCount = 0; |
| + |
| + _GenericInferrer(this.typeProvider, this._typeSystem, |
| Iterable<TypeParameterElement> typeFormals) |
| - : _bounds = new Map.fromIterable(typeFormals, |
| - key: (t) => t.type, value: (t) => new _TypeParameterBound()), |
| - super(typeProvider); |
| + : _constraints = new HashMap( |
| + equals: (x, y) => x.location == y.location, |
|
Leaf
2017/03/14 22:37:39
Why is using the location safe here? There seems
Jennifer Messerly
2017/03/14 23:49:09
Type variables are an absolute mess, is the short
Jennifer Messerly
2017/03/14 23:55:16
I dug into this more. All I'm doing here is what E
Leaf
2017/03/15 00:27:13
Ok, thanks for looking into it. I'm still a littl
|
| + hashCode: (x) => x.location.hashCode) { |
| + for (var formal in typeFormals) { |
| + _constraints[formal] = []; |
| + } |
| + } |
| + |
| + /// Apply a return type constraint, which asserts that the [declaredType] |
| + /// is a subtype of the [contextType]. |
| + void constrainReturnType(DartType declaredType, DartType contextType) { |
| + var origin = new _TypeConstraintFromReturnType(declaredType, contextType); |
| + _matchSubtypeOf(declaredType, contextType, null, origin, covariant: true); |
| + } |
| + |
| + /// Apply an argument constraint, which asserts that the [argument] staticType |
| + /// is a subtype of the [parameterType]. |
| + void constrainArgument( |
| + DartType argumentType, DartType parameterType, String parameterName, |
| + {DartType genericType}) { |
| + var origin = new _TypeConstraintFromArgument( |
| + argumentType, parameterType, parameterName, |
| + genericType: genericType); |
| + _matchSubtypeOf(argumentType, parameterType, null, origin, |
| + covariant: false); |
| + } |
| + |
| + /// Assert that [t1] will be a subtype of [t2], and returns if the constraint |
| + /// can be satisfied. |
| + /// |
| + /// [covariant] must be true if [t1] is a declared type of the generic |
|
Leaf
2017/03/15 00:27:13
I'm not sure I understand why covariant is needed,
|
| + /// function and [t2] is the context type, or false if the reverse. For |
| + /// example [covariant] is used when [t1] is the declared return type |
| + /// and [t2] is the context type. Contravariant would be used if [t1] is the |
| + /// argument type (i.e. passed in to the generic function) and [t2] is the |
| + /// declared parameter type. |
| + /// |
| + /// [origin] indicates where the constraint came from, for example an argument |
| + /// or return type. |
| + void _matchSubtypeOf(DartType t1, DartType t2, Set<Element> visited, |
| + _TypeConstraintOrigin origin, |
| + {bool covariant, bool dynamicIsBottom: false}) { |
| + // TODO(jmesserly): I think we should handle `dynamicIsBottom` |
| + // https://github.com/dart-lang/sdk/issues/29041 |
| + if (covariant && t1 is TypeParameterType) { |
| + var constraints = _constraints[t1.element]; |
| + if (constraints != null) { |
| + if (!identical(t2, UnknownInferredType.instance)) { |
| + constraints.add(new _TypeConstraint(origin, t1, upper: t2)); |
| + _constraintCount++; |
| + } |
| + return; |
| + } |
| + } |
| + if (!covariant && t2 is TypeParameterType) { |
| + var constraints = _constraints[t2.element]; |
| + if (constraints != null) { |
| + if (!identical(t1, UnknownInferredType.instance)) { |
| + constraints.add(new _TypeConstraint(origin, t2, lower: t1)); |
| + _constraintCount++; |
| + } |
| + return; |
| + } |
| + } |
| + |
| + if (identical(t1, t2)) { |
| + return; |
| + } |
| + |
| + // TODO(jmesserly): this logic is taken from subtype. |
| + void matchSubtype(DartType t1, DartType t2) { |
| + _matchSubtypeOf(t1, t2, null, origin, covariant: covariant); |
| + } |
| + |
| + // Handle FutureOr<T> union type. |
| + if (t1 is InterfaceType && t1.isDartAsyncFutureOr) { |
| + var t1TypeArg = t1.typeArguments[0]; |
| + if (t2 is InterfaceType && t2.isDartAsyncFutureOr) { |
| + var t2TypeArg = t2.typeArguments[0]; |
| + // FutureOr<A> <: FutureOr<B> iff A <: B |
| + matchSubtype(t1TypeArg, t2TypeArg); |
| + return; |
| + } |
| + |
| + // given t1 is Future<A> | A, then: |
| + // (Future<A> | A) <: t2 iff Future<A> <: t2 and A <: t2. |
| + var t1Future = typeProvider.futureType.instantiate([t1TypeArg]); |
| + matchSubtype(t1Future, t2); |
| + matchSubtype(t1TypeArg, t2); |
| + return; |
| + } |
| + |
| + if (t2 is InterfaceType && t2.isDartAsyncFutureOr) { |
| + // given t2 is Future<A> | A, then: |
| + // t1 <: (Future<A> | A) iff t1 <: Future<A> or t1 <: A |
| + var t2TypeArg = t2.typeArguments[0]; |
| + var t2Future = typeProvider.futureType.instantiate([t2TypeArg]); |
| + |
| + int constraintCount = _constraintCount; |
| + matchSubtype(t1, t2Future); |
| + |
| + // We only want to record these as "or" constraints, so if we matched |
| + // the `t1 <: Future<A>` constraint, don't add `t1 <: A` constraint, as |
| + // that would be interpreted incorrectly as `t1 <: Future<A> && t1 <: A`. |
| + if (constraintCount == _constraintCount) { |
| + matchSubtype(t1, t2TypeArg); |
| + } |
| + return; |
| + } |
| + |
| + // S <: T where S is a type variable |
| + // T is not dynamic or object (handled above) |
| + // True if T == S |
| + // Or true if bound of S is S' and S' <: T |
| + |
| + if (t1 is TypeParameterType) { |
| + // Guard against recursive type parameters |
| + void guardedSubtype(DartType t1, DartType t2) { |
| + var visitedSet = visited ?? new HashSet<Element>(); |
| + if (visitedSet.add(t1.element)) { |
| + matchSubtype(t1, t2); |
| + visitedSet.remove(t1.element); |
| + } |
| + } |
| + |
| + if (t2 is TypeParameterType && t1.definition == t2.definition) { |
| + guardedSubtype(t1.bound, t2.bound); |
| + return; |
| + } |
| + guardedSubtype(t1.bound, t2); |
| + return; |
| + } |
| + if (t2 is TypeParameterType) { |
| + return; |
| + } |
| + |
| + if (t1 is InterfaceType && t2 is InterfaceType) { |
| + _matchInterfaceSubtypeOf(t1, t2, visited, origin, covariant: covariant); |
| + return; |
| + } |
| + |
| + // An interface type can only subtype a function type if |
| + // the interface type declares a call method with a type |
| + // which is a super type of the function type. |
| + if (t1 is InterfaceType) { |
| + t1 = _typeSystem.getCallMethodDefiniteType(t1); |
| + if (t1 == null) return; |
| + } |
| + |
| + if (t1 is FunctionType && t2 is FunctionType) { |
| + FunctionTypeImpl.relate( |
| + t1, |
| + t2, |
| + (t1, t2, _, __) { |
| + _matchSubtypeOf(t2, t1, null, origin, |
| + covariant: !covariant, dynamicIsBottom: true); |
| + return true; |
| + }, |
| + _typeSystem.instantiateToBounds, |
| + returnRelation: (t1, t2) { |
| + matchSubtype(t1, t2); |
| + return true; |
| + }); |
| + } |
| + } |
| + |
| + void _matchInterfaceSubtypeOf(InterfaceType i1, InterfaceType i2, |
| + Set<Element> visited, _TypeConstraintOrigin origin, |
| + {bool covariant}) { |
| + if (identical(i1, i2)) { |
| + return; |
| + } |
| + |
| + if (i1.element == i2.element) { |
| + List<DartType> tArgs1 = i1.typeArguments; |
| + List<DartType> tArgs2 = i2.typeArguments; |
| + assert(tArgs1.length == tArgs2.length); |
| + for (int i = 0; i < tArgs1.length; i++) { |
| + _matchSubtypeOf(tArgs1[i], tArgs2[i], visited, origin, |
| + covariant: covariant); |
| + } |
| + return; |
| + } |
| + if (i2.isDartCoreFunction && i1.element.getMethod("call") != null) { |
| + return; |
| + } |
| + if (i1.isObject) { |
| + return; |
| + } |
| + |
| + // Guard against loops in the class hierarchy |
| + void guardedInterfaceSubtype(InterfaceType t1) { |
| + var visitedSet = visited ?? new HashSet<Element>(); |
| + if (visitedSet.add(t1.element)) { |
| + _matchInterfaceSubtypeOf(t1, i2, visited, origin, covariant: covariant); |
| + visitedSet.remove(t1.element); |
| + } |
| + } |
| + |
| + guardedInterfaceSubtype(i1.superclass); |
| + for (final parent in i1.interfaces) { |
| + guardedInterfaceSubtype(parent); |
| + } |
| + for (final parent in i1.mixins) { |
| + guardedInterfaceSubtype(parent); |
| + } |
| + } |
| /// Given the constraints that were given by calling [isSubtypeOf], find the |
| /// instantiation of the generic function that satisfies these constraints. |
| - /*=T*/ _infer/*<T extends ParameterizedType>*/(/*=T*/ genericType, |
| - List<TypeParameterElement> typeFormals, DartType declaredReturnType, |
| - [ErrorReporter errorReporter, AstNode errorNode]) { |
| - List<TypeParameterType> fnTypeParams = |
| - TypeParameterTypeImpl.getTypes(typeFormals); |
| + /// |
| + /// If [downwardsInferPhase] is set, we are in the first pass of inference, |
| + /// pushing context types down. At that point we are allowed to push down |
| + /// `?` to precisely represent an unknown type. If [downwardsInferPhase] is |
| + /// false, we are on our final inference pass, have all available information |
| + /// including argument types, and must not conclude `?` for any type formal. |
| + /*=T*/ infer/*<T extends ParameterizedType>*/( |
| + /*=T*/ genericType, |
| + List<TypeParameterElement> typeFormals, |
| + {ErrorReporter errorReporter, |
| + AstNode errorNode, |
| + bool downwardsInferPhase: false}) { |
| + var fnTypeParams = TypeParameterTypeImpl.getTypes(typeFormals); |
| // Initialize the inferred type array. |
| // |
| - // They all start as `dynamic` to offer reasonable degradation for f-bounded |
| - // type parameters. |
| + // In the downwards phase, they all start as `?` to offer reasonable |
| + // degradation for f-bounded type parameters. |
| var inferredTypes = new List<DartType>.filled( |
| - fnTypeParams.length, DynamicTypeImpl.instance, |
| - growable: false); |
| + fnTypeParams.length, UnknownInferredType.instance); |
| + var _inferTypeParameter = downwardsInferPhase |
| + ? _inferTypeParameterFromContext |
| + : _inferTypeParameterFromAll; |
| for (int i = 0; i < fnTypeParams.length; i++) { |
| TypeParameterType typeParam = fnTypeParams[i]; |
| - _TypeParameterBound bound = _bounds[typeParam]; |
| - // Apply the `extends` clause for the type parameter, if any. |
| - // |
| - // Assumption: if the current type parameter has an "extends" clause |
| - // that refers to another type variable we are inferring, it will appear |
| - // before us or in this list position. For example: |
| + var typeParamBound = typeParam.bound; |
| + _TypeConstraint extendsClause; |
| + if (!typeParamBound.isDynamic) { |
| + extendsClause = new _TypeConstraint.fromExtends(typeParam, |
| + typeParam.bound.substitute2(inferredTypes, fnTypeParams)); |
| + } |
| + |
| + var constraints = _constraints[typeParam.element]; |
| + inferredTypes[i] = _inferTypeParameter(constraints, extendsClause); |
| + } |
| + |
| + // If the downwards infer phase has failed, we'll catch this in the upwards |
| + // phase later on. |
| + if (downwardsInferPhase) { |
| + return genericType.instantiate(inferredTypes) as dynamic/*=T*/; |
| + } |
| + |
| + // Check the inferred types against all of the constraints. |
| + var knownTypes = new HashMap<TypeParameterType, DartType>( |
| + equals: (x, y) => x.element == y.element, |
| + hashCode: (x) => x.element.hashCode); |
| + for (int i = 0; i < fnTypeParams.length; i++) { |
| + TypeParameterType typeParam = fnTypeParams[i]; |
| + var constraints = _constraints[typeParam.element]; |
| + var typeParamBound = |
| + typeParam.bound.substitute2(inferredTypes, fnTypeParams); |
| + if (!typeParamBound.isDynamic) { |
| + constraints |
| + .add(new _TypeConstraint.fromExtends(typeParam, typeParamBound)); |
| + } |
| + var inferred = inferredTypes[i]; |
| + if (constraints.any((c) => !c.isSatisifedBy(_typeSystem, inferred))) { |
| + // Heuristic: keep the erroneous type, it should satisfy at least some |
| + // of the constraints (e.g. the return context). If we fall back to |
| + // instantiateToBounds, we'll typically get more errors (e.g. because |
| + // `dynamic` is the most common bound). |
| + knownTypes[typeParam] = inferred; |
| + errorReporter?.reportErrorForNode(StrongModeCode.COULD_NOT_INFER, |
| + errorNode, [typeParam, _formatError(inferred, constraints)]); |
| + } else if (UnknownInferredType.isKnown(inferred)) { |
| + knownTypes[typeParam] = inferred; |
| + } |
| + } |
| + |
| + // Use instantiate to bounds to finish things off. |
| + var hasError = new List<bool>.filled(fnTypeParams.length, false); |
| + var result = _typeSystem.instantiateToBounds(genericType, |
| + hasError: hasError, knownTypes: knownTypes) as dynamic/*=T*/; |
| + |
| + // Report any errors from instantiateToBounds. |
| + for (int i = 0; i < hasError.length; i++) { |
| + if (hasError[i]) { |
| + TypeParameterType typeParam = fnTypeParams[i]; |
| + var typeParamBound = |
| + typeParam.bound.substitute2(inferredTypes, fnTypeParams); |
| + // TODO(jmesserly): improve this error message. |
| + errorReporter |
| + ?.reportErrorForNode(StrongModeCode.COULD_NOT_INFER, errorNode, [ |
| + typeParam, |
| + "\nRecursive bound cannot be instantiated: '$typeParamBound'." |
| + "\nConsider passing explicit type argument(s) to the generic.\n\n'" |
| + ]); |
| + } |
| + } |
| + return result; |
| + } |
| + |
| + DartType _inferTypeParameterFromContext( |
| + Iterable<_TypeConstraint> constraints, _TypeConstraint extendsClause) { |
| + DartType t = _chooseTypeFromConstraints(constraints); |
| + if (UnknownInferredType.isUnknown(t)) { |
| + return t; |
| + } |
| + |
| + // If we're about to make our final choice, apply the extends clause. |
| + // This gives us a chance to refine the choice, in case it would violate |
| + // the `extends` clause. For example: |
| + // |
| + // Object obj = math.min/*<infer Object, error>*/(1, 2); |
| + // |
| + // If we consider the `T extends num` we conclude `<num>`, which works. |
| + if (extendsClause != null) { |
| + constraints = constraints.toList()..add(extendsClause); |
| + return _chooseTypeFromConstraints(constraints); |
| + } |
| + return t; |
| + } |
| + |
| + DartType _inferTypeParameterFromAll( |
| + Iterable<_TypeConstraint> constraints, _TypeConstraint extendsClause) { |
| + // See if we already fixed this type from downwards inference. |
| + // If so, then we aren't allowed to change it based on argument types. |
| + DartType t = _inferTypeParameterFromContext( |
| + constraints.where((c) => c.isDownwards), extendsClause); |
| + if (UnknownInferredType.isKnown(t)) { |
| + return t; |
| + } |
| + |
| + if (extendsClause != null) { |
| + constraints = constraints.toList()..add(extendsClause); |
| + } |
| + |
| + var choice = _chooseTypeFromConstraints(constraints, toKnownType: true); |
| + return choice; |
| + } |
| + |
| + /// Choose the bound that was implied by the return type, if any. |
| + /// |
| + /// Which bound this is depends on what positions the type parameter |
| + /// appears in. If the type only appears only in a contravariant position, |
| + /// we will choose the lower bound instead. |
| + /// |
| + /// For example given: |
| + /// |
| + /// Func1<T, bool> makeComparer<T>(T x) => (T y) => x() == y; |
| + /// |
| + /// main() { |
| + /// Func1<num, bool> t = makeComparer/* infer <num> */(42); |
| + /// print(t(42.0)); /// false, no error. |
| + /// } |
| + /// |
| + /// The constraints we collect are: |
| + /// |
| + /// * `num <: T` |
| + /// * `int <: T` |
| + /// |
| + /// ... and no upper bound. Therefore the lower bound is the best choice. |
| + DartType _chooseTypeFromConstraints(Iterable<_TypeConstraint> constraints, |
| + {bool toKnownType: false}) { |
| + DartType lower = UnknownInferredType.instance; |
| + DartType upper = UnknownInferredType.instance; |
| + for (var constraint in constraints) { |
| + // Given constraints: |
| // |
| - // <TFrom, TTo extends TFrom> |
| + // L1 <: T <: U1 |
| + // L2 <: T <: U2 |
| // |
| - // We may infer TTo is TFrom. In that case, we already know what TFrom |
| - // is inferred as, so we can substitute it now. This also handles more |
| - // complex cases such as: |
| + // These can be combined to produce: |
| // |
| - // <TFrom, TTo extends Iterable<TFrom>> |
| + // LUB(L1, L2) <: T <: GLB(U1, U2). |
| // |
| - // Or if the type parameter's bound depends on itself such as: |
| + // This can then be done for all constraints in sequence. |
| // |
| - // <T extends Clonable<T>> |
| - DartType declaredUpperBound = typeParam.element.bound; |
| - if (declaredUpperBound != null) { |
| - // Assert that the type parameter is a subtype of its bound. |
| - // TODO(jmesserly): the order of calling GLB here matters, because of |
| - // https://github.com/dart-lang/sdk/issues/28513 |
| - bound.upper = _typeSystem.getGreatestLowerBound(bound.upper, |
| - declaredUpperBound.substitute2(inferredTypes, fnTypeParams)); |
| - } |
| + // This resulting constraint may be unsatisfiable; in that case inference |
| + // will fail. |
| + upper = _getGreatestLowerBound(upper, constraint.upperBound); |
| + lower = _typeSystem.getLeastUpperBound(lower, constraint.lowerBound); |
| + } |
| - // Now we've computed lower and upper bounds for each type parameter. |
| - // |
| - // To decide on which type to assign, we look at the return type and see |
| - // if the type parameter occurs in covariant or contravariant positions. |
| - // |
| - // If the type is "passed in" at all, or if our lower bound was bottom, |
| - // we choose the upper bound as being the most useful. |
| - // |
| - // Otherwise we choose the more precise lower bound. |
| - _TypeParameterVariance variance = |
| - new _TypeParameterVariance.from(typeParam, declaredReturnType); |
| - |
| - DartType lowerBound = bound.lower; |
| - DartType upperBound = bound.upper; |
| - |
| - // See if the bounds can be satisfied. |
| - // TODO(jmesserly): also we should have an error for unconstrained type |
| - // parameters, rather than silently inferring dynamic. |
| - if (upperBound.isBottom || |
| - !_typeSystem.isSubtypeOf(lowerBound, upperBound)) { |
| - // Inference failed. |
| - if (errorReporter == null) { |
| - return null; |
| + // Prefer the known bound, if any. |
| + // Otherwise take whatever bound has partial information, e.g. `Iterable<?>` |
| + // |
| + // For both of those, prefer the lower bound (arbitrary heuristic). |
| + if (UnknownInferredType.isKnown(lower)) { |
| + return lower; |
| + } |
| + if (UnknownInferredType.isKnown(upper)) { |
| + return upper; |
| + } |
| + if (!identical(UnknownInferredType.instance, lower)) { |
| + return toKnownType ? _typeSystem.lowerBoundForType(lower) : lower; |
| + } |
| + if (!identical(UnknownInferredType.instance, upper)) { |
| + return toKnownType ? _typeSystem.upperBoundForType(upper) : upper; |
| + } |
| + return lower; |
| + } |
| + |
| + /// This is first calls strong mode's GLB, but if it fails to find anything |
| + /// (i.e. returns the bottom type), we kick in a few additional rules: |
| + /// |
| + /// - `GLB(FutureOr<A>, B)` is defined as: |
| + /// - `GLB(FutureOr<A>, FutureOr<B>) == FutureOr<GLB(A, B)>` |
| + /// - `GLB(FutureOr<A>, Future<B>) == Future<GLB(A, B)>` |
| + /// - else `GLB(FutureOr<A>, B) == GLB(A, B)` |
| + /// - `GLB(A, FutureOr<B>) == GLB(FutureOr<A>, B)` (defined above), |
| + /// - else `GLB(A, B) == Null` |
| + DartType _getGreatestLowerBound(DartType t1, DartType t2) { |
| + var result = _typeSystem.getGreatestLowerBound(t1, t2); |
| + if (result.isBottom) { |
| + // See if we can do better by considering FutureOr rules. |
| + if (t1 is InterfaceType && t1.isDartAsyncFutureOr) { |
| + var t1TypeArg = t1.typeArguments[0]; |
| + if (t2 is InterfaceType) { |
| + // GLB(FutureOr<A>, FutureOr<B>) == FutureOr<GLB(A, B)> |
| + if (t2.isDartAsyncFutureOr) { |
| + var t2TypeArg = t2.typeArguments[0]; |
| + return typeProvider.futureOrType.instantiate( |
| + [_getGreatestLowerBound(t1TypeArg, t2TypeArg)]); |
| + } |
| + // GLB(FutureOr<A>, Future<B>) == Future<GLB(A, B)> |
| + if (t2.isDartAsyncFuture) { |
| + var t2TypeArg = t2.typeArguments[0]; |
| + return typeProvider.futureType.instantiate( |
| + [_getGreatestLowerBound(t1TypeArg, t2TypeArg)]); |
| + } |
| } |
| - errorReporter.reportErrorForNode(StrongModeCode.COULD_NOT_INFER, |
| - errorNode, [typeParam, lowerBound, upperBound]); |
| - |
| - // To make the errors more useful, we swap the normal heuristic. |
| - // |
| - // The normal heuristic prefers using the argument types (upwards |
| - // inference, lower bound) to choose a tighter type. |
| - // |
| - // Here we want to prefer the return context type, so we can put the |
| - // blame on the arguments to the function. That will result in narrow |
| - // error spans. But ultimately it's just a heuristic, as the code is |
| - // already erroneous. |
| - // |
| - // (we may adjust the normal heuristic too, once upwards+downwards |
| - // inference are fully integrated, to prefer downwards info). |
| - lowerBound = bound.upper; |
| - upperBound = bound.lower; |
| + // GLB(FutureOr<A>, B) == GLB(A, B) |
| + return _getGreatestLowerBound(t1TypeArg, t2); |
| } |
| - inferredTypes[i] = |
| - variance.passedIn && !upperBound.isDynamic || lowerBound.isBottom |
| - ? upperBound |
| - : lowerBound; |
| + if (t2 is InterfaceType && t2.isDartAsyncFutureOr) { |
| + // GLB(A, FutureOr<B>) == GLB(FutureOr<A>, B) |
| + return _getGreatestLowerBound(t2, t1); |
| + } |
| + // TODO(jmesserly): fix this rule once we support non-nullable types. |
| + return typeProvider.nullType; |
| } |
| - |
| - // Return the instantiated type. |
| - return genericType.instantiate(inferredTypes) as dynamic/*=T*/; |
| + return result; |
| } |
| - @override |
| - bool _isSubtypeOf(DartType t1, DartType t2, Set<Element> visited, |
| - {bool dynamicIsBottom: false}) { |
| - // TODO(jmesserly): the trivial constraints are not treated as part of |
| - // the constraint set here. This seems incorrect once we are able to pin the |
| - // inferred type of a type parameter based on the downwards information. |
| - if (identical(t1, t2) || |
| - _isTop(t2, dynamicIsBottom: dynamicIsBottom) || |
| - _isBottom(t1, dynamicIsBottom: dynamicIsBottom)) { |
| - return true; |
| + String _formatError( |
| + DartType inferred, Iterable<_TypeConstraint> constraints) { |
| + var intro = "Inferred type '$inferred' does not work with constraints:"; |
| + |
| + var constraintsByOrigin = <_TypeConstraintOrigin, List<_TypeConstraint>>{}; |
| + for (var c in constraints) { |
| + constraintsByOrigin.putIfAbsent(c.origin, () => []).add(c); |
| } |
| - if (t1 is TypeParameterType) { |
| - // TODO(jmesserly): we ignore `dynamicIsBottom` here, is that correct? |
| - _TypeParameterBound bound = _bounds[t1]; |
| - if (bound != null) { |
| - // Ensure T1 <: T2, where T1 is a type parameter we are inferring. |
| - // T2 is an upper bound, so merge it with our existing upper bound. |
| - // |
| - // We already know T1 <: U, for some U. |
| - // So update U to reflect the new constraint T1 <: GLB(U, T2) |
| - // |
| - bound.upper = _typeSystem.getGreatestLowerBound(bound.upper, t2); |
| - // Optimistically assume we will be able to satisfy the constraint. |
| - return true; |
| - } |
| + Iterable<_TypeConstraint> isSatisified(bool expected) => constraintsByOrigin |
| + .values |
| + .where((l) => |
| + l.every((c) => c.isSatisifedBy(_typeSystem, inferred)) == expected) |
| + .expand((i) => i); |
| + |
| + // Only report unique constraint origins. |
| + String unsatisified = _formatConstraints(isSatisified(false)); |
| + String satisified = _formatConstraints(isSatisified(true)); |
| + |
| + assert(unsatisified.isNotEmpty); |
| + if (satisified.isNotEmpty) { |
| + satisified = "\nThe type '$inferred' was inferred from:\n$satisified"; |
| } |
| - if (t2 is TypeParameterType) { |
| - _TypeParameterBound bound = _bounds[t2]; |
| - if (bound != null) { |
| - // Ensure T1 <: T2, where T2 is a type parameter we are inferring. |
| - // T1 is a lower bound, so merge it with our existing lower bound. |
| - // |
| - // We already know L <: T2, for some L. |
| - // So update L to reflect the new constraint LUB(L, T1) <: T2 |
| - // |
| - bound.lower = _typeSystem.getLeastUpperBound(bound.lower, t1); |
| - // Optimistically assume we will be able to satisfy the constraint. |
| - return true; |
| - } |
| + |
| + return '\n\n$intro\n$unsatisified$satisified\n\n' |
| + 'Consider passing explicit type argument(s) to the generic.\n\n'; |
| + } |
| + |
| + static String _formatConstraints(Iterable<_TypeConstraint> constraints) { |
| + List<List<String>> lineParts = |
| + new Set<_TypeConstraintOrigin>.from(constraints.map((c) => c.origin)) |
| + .map((o) => o.formatError()) |
| + .toList(); |
| + |
| + int prefixMax = lineParts.map((p) => p[0].length).fold(0, math.max); |
| + int middleMax = lineParts.map((p) => p[1].length).fold(0, math.max); |
| + |
| + // Use a set to prevent identical message lines. |
| + // (It's not uncommon for the same constraint to show up in a few places.) |
| + var messageLines = new Set<String>.from(lineParts.map((parts) { |
| + var prefix = parts[0]; |
| + var middle = parts[1]; |
| + var prefixPad = ' ' * (prefixMax - prefix.length); |
| + var middlePad = ' ' * (middleMax - middle.length); |
| + return ' $prefix$prefixPad $middle$middlePad ${parts[2]}'.trimRight(); |
| + })); |
| + |
| + return messageLines.join('\n'); |
| + } |
| +} |
| + |
| +/// The origin of a type constraint, for the purposes of producing a human |
| +/// readable error message during type inference as well as determining whether |
| +/// the constraint was used to fix the type parameter or not. |
| +abstract class _TypeConstraintOrigin { |
| + List<String> formatError(); |
| +} |
| + |
| +class _TypeConstraintFromArgument extends _TypeConstraintOrigin { |
| + final DartType argumentType; |
| + final DartType parameterType; |
| + final String parameterName; |
| + final DartType genericType; |
| + |
| + _TypeConstraintFromArgument( |
| + this.argumentType, this.parameterType, this.parameterName, |
| + {this.genericType}); |
| + |
| + @override |
| + formatError() { |
| + // TODO(jmesserly): we should highlight the span. That would be more useful. |
| + // However in summary code it doesn't look like the AST node with span is |
| + // available. |
| + String prefix; |
| + if ((genericType.name == "List" || genericType.name == "Map") && |
| + genericType?.element?.library?.isDartCore == true) { |
| + // This will become: |
| + // "List element" |
| + // "Map key" |
| + // "Map value" |
| + prefix = "${genericType.name} $parameterName"; |
| + } else { |
| + prefix = "Argument '$parameterName'"; |
| } |
| - return super |
| - ._isSubtypeOf(t1, t2, visited, dynamicIsBottom: dynamicIsBottom); |
| + |
| + return [ |
| + prefix, |
| + "inferred as '$argumentType'", |
| + "must be a '$parameterType'." |
| + ]; |
| } |
| } |
| -/// An [upper] and [lower] bound for a type variable. |
| -class _TypeParameterBound { |
| +class _TypeConstraintFromReturnType extends _TypeConstraintOrigin { |
| + final DartType contextType; |
| + final DartType declaredType; |
| + |
| + _TypeConstraintFromReturnType(this.declaredType, this.contextType); |
| + |
| + @override |
| + formatError() { |
| + return [ |
| + "Return type", |
| + "declared as '$declaredType'", |
| + "used where a '$contextType' is required." |
| + ]; |
| + } |
| +} |
| + |
| +class _TypeConstraintFromExtendsClause extends _TypeConstraintOrigin { |
| + final TypeParameterType typeParam; |
| + final DartType extendsType; |
| + |
| + _TypeConstraintFromExtendsClause(this.typeParam, this.extendsType); |
| + |
| + @override |
| + formatError() { |
| + return [ |
| + "Type parameter '$typeParam'", |
| + "declared to extend '$extendsType'.", |
| + "" |
| + ]; |
| + } |
| +} |
| + |
| +class _TypeRange { |
| /// The upper bound of the type parameter. In other words, T <: upperBound. |
| /// |
| /// In Dart this can be written as `<T extends UpperBoundType>`. |
| @@ -1633,7 +2185,7 @@ class _TypeParameterBound { |
| /// |
| /// Here the [lower] will be `String` and the upper bound will be `num`, |
| /// which cannot be satisfied, so this is ill typed. |
| - DartType upper = DynamicTypeImpl.instance; |
| + final DartType upperBound; |
| /// The lower bound of the type parameter. In other words, lowerBound <: T. |
| /// |
| @@ -1652,71 +2204,137 @@ class _TypeParameterBound { |
| /// |
| /// In general, we choose the lower bound as our inferred type, so we can |
| /// offer the most constrained (strongest) result type. |
| - DartType lower = BottomTypeImpl.instance; |
| + final DartType lowerBound; |
| + |
| + _TypeRange({DartType lower, DartType upper}) |
| + : lowerBound = lower ?? UnknownInferredType.instance, |
| + upperBound = upper ?? UnknownInferredType.instance; |
| } |
| -/// Records what positions a type parameter is used in. |
| -class _TypeParameterVariance { |
| - /// The type parameter is a value passed out. It must satisfy T <: S, |
| - /// where T is the type parameter and S is what it's assigned to. |
| - /// |
| - /// For example, this could be the return type, or a parameter to a parameter: |
| - /// |
| - /// TOut method<TOut>(void f(TOut t)); |
| - bool passedOut = false; |
| +/// A constraint on a type parameter that we're inferring. |
| +class _TypeConstraint extends _TypeRange { |
| + /// The type parameter that is constrained by [lowerBound] or [upperBound]. |
| + final TypeParameterType typeParameter; |
| - /// The type parameter is a value passed in. It must satisfy S <: T, |
| - /// where T is the type parameter and S is what's being assigned to it. |
| - /// |
| - /// For example, this could be a parameter type, or the parameter of the |
| - /// return value: |
| + /// Where this constraint comes from, used for error messages. |
| /// |
| - /// typedef void Func<T>(T t); |
| - /// Func<TIn> method<TIn>(TIn t); |
| - bool passedIn = false; |
| + /// See [toString]. |
| + final _TypeConstraintOrigin origin; |
| + |
| + _TypeConstraint(this.origin, this.typeParameter, |
| + {DartType upper, DartType lower}) |
| + : super(upper: upper, lower: lower); |
| + |
| + _TypeConstraint.fromExtends(TypeParameterType type, DartType extendsType) |
| + : this(new _TypeConstraintFromExtendsClause(type, extendsType), type, |
| + upper: extendsType); |
| + |
| + bool get isDownwards => origin is! _TypeConstraintFromArgument; |
| + |
| + bool isSatisifedBy(TypeSystem ts, DartType type) => |
| + ts.isSubtypeOf(lowerBound, type) && ts.isSubtypeOf(type, upperBound); |
| - _TypeParameterVariance.from(TypeParameterType typeParam, DartType type) { |
| - _visitType(typeParam, type, false); |
| + /// Converts this constraint to a message suitable for a type inference error. |
| + @override |
| + String toString() => !identical(upperBound, UnknownInferredType.instance) |
| + ? "'$typeParameter' must extend '$upperBound'" |
| + : "'$lowerBound' must extend '$typeParameter'"; |
| +} |
| + |
| +/// The synthetic element for [UnknownInferredType]. |
| +class UnknownInferredTypeElement extends ElementImpl |
| + implements TypeDefiningElement { |
| + static final UnknownInferredTypeElement instance = |
| + new UnknownInferredTypeElement._(); |
| + |
| + @override |
| + UnknownInferredType get type => UnknownInferredType.instance; |
| + |
| + UnknownInferredTypeElement._() : super(Keyword.DYNAMIC.syntax, -1) { |
| + setModifier(Modifier.SYNTHETIC, true); |
| } |
| - void _visitFunctionType( |
| - TypeParameterType typeParam, FunctionType type, bool paramIn) { |
| - for (ParameterElement p in type.parameters) { |
| - // If a lambda L is passed in to a function F, the parameters are |
| - // "passed out" of F into L. Thus we invert the "passedIn" state. |
| - _visitType(typeParam, p.type, !paramIn); |
| + @override |
| + ElementKind get kind => ElementKind.DYNAMIC; |
| + |
| + @override |
| + /*=T*/ accept/*<T>*/(ElementVisitor visitor) => null; |
| +} |
| + |
| +/// A type that is being inferred but is not currently known. |
| +/// |
| +/// This type will only appear in a downward inference context for type |
| +/// parameters that we do not know yet. Notationally it is written `?`, for |
| +/// example `List<?>`. This is distinct from `List<dynamic>`. These types will |
| +/// never appear in the final resolved AST. |
| +class UnknownInferredType extends TypeImpl { |
| + static final UnknownInferredType instance = new UnknownInferredType._(); |
| + |
| + UnknownInferredType._() |
| + : super(UnknownInferredTypeElement.instance, Keyword.DYNAMIC.syntax); |
| + |
| + @override |
| + int get hashCode => 1; |
| + |
| + @override |
| + bool get isDynamic => true; |
| + |
| + @override |
| + bool operator ==(Object object) => identical(object, this); |
| + |
| + @override |
| + bool isMoreSpecificThan(DartType type, |
| + [bool withDynamic = false, Set<Element> visitedElements]) { |
| + // T is S |
| + if (identical(this, type)) { |
| + return true; |
| } |
| - // If a lambda L is passed in to a function F, and we call L, the result of |
| - // L is then "passed in" to F. So we keep the "passedIn" state. |
| - _visitType(typeParam, type.returnType, paramIn); |
| + // else |
| + return withDynamic; |
| } |
| - void _visitInterfaceType( |
| - TypeParameterType typeParam, InterfaceType type, bool paramIn) { |
| - // Currently in "strong mode" generic type parameters are covariant. |
| - // |
| - // This means we treat them as "out" type parameters similar to the result |
| - // of a function, and thus they follow the same rules. |
| - // |
| - // For example, we pass in Iterable<T> as a parameter. Then we iterate over |
| - // it. The "T" is essentially an input. So it keeps the same state. |
| - // Similarly, if we return an Iterable<T> it's equivalent to returning a T. |
| - for (DartType typeArg in type.typeArguments) { |
| - _visitType(typeParam, typeArg, paramIn); |
| + @override |
| + bool isSubtypeOf(DartType type) => true; |
| + |
| + @override |
| + bool isSupertypeOf(DartType type) => true; |
| + |
| + @override |
| + TypeImpl pruned(List<FunctionTypeAliasElement> prune) => this; |
| + |
| + @override |
| + DartType substitute2( |
| + List<DartType> argumentTypes, List<DartType> parameterTypes, |
| + [List<FunctionTypeAliasElement> prune]) { |
| + int length = parameterTypes.length; |
| + for (int i = 0; i < length; i++) { |
| + if (parameterTypes[i] == this) { |
| + return argumentTypes[i]; |
| + } |
| } |
| + return this; |
| } |
| - void _visitType(TypeParameterType typeParam, DartType type, bool paramIn) { |
| - if (type == typeParam) { |
| - if (paramIn) { |
| - passedIn = true; |
| - } else { |
| - passedOut = true; |
| - } |
| - } else if (type is FunctionType) { |
| - _visitFunctionType(typeParam, type, paramIn); |
| - } else if (type is InterfaceType) { |
| - _visitInterfaceType(typeParam, type, paramIn); |
| + @override |
| + void appendTo(StringBuffer buffer, Set<TypeImpl> types) { |
| + buffer.write('?'); |
| + } |
| + |
| + /// Given a [type] T, return true if it does not have an unknown type `?`. |
| + static bool isKnown(DartType type) => !isUnknown(type); |
| + |
| + /// Given a [type] T, return true if it has an unknown type `?`. |
| + static bool isUnknown(DartType type) { |
| + if (identical(type, UnknownInferredType.instance)) { |
| + return true; |
| } |
| + if (type is InterfaceTypeImpl) { |
| + return type.typeArguments.any(isUnknown); |
| + } |
| + if (type is FunctionType) { |
| + return isUnknown(type.returnType) || |
| + type.parameters.any((p) => isUnknown(p.type)); |
| + } |
| + return false; |
| } |
| } |