Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(6)

Unified Diff: source/test/intltest/itrbnf.cpp

Issue 2435373002: Delete source/test (Closed)
Patch Set: Created 4 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « source/test/intltest/itrbnf.h ('k') | source/test/intltest/itrbnfp.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: source/test/intltest/itrbnf.cpp
diff --git a/source/test/intltest/itrbnf.cpp b/source/test/intltest/itrbnf.cpp
deleted file mode 100644
index 8b27d94fc66ceaf0ea75cbe982b242503ef96ee0..0000000000000000000000000000000000000000
--- a/source/test/intltest/itrbnf.cpp
+++ /dev/null
@@ -1,2366 +0,0 @@
-/*
- *******************************************************************************
- * Copyright (C) 1996-2015, International Business Machines Corporation and *
- * others. All Rights Reserved. *
- *******************************************************************************
- */
-
-#include "unicode/utypes.h"
-
-#if !UCONFIG_NO_FORMATTING
-
-#include "itrbnf.h"
-
-#include "unicode/umachine.h"
-
-#include "unicode/tblcoll.h"
-#include "unicode/coleitr.h"
-#include "unicode/ures.h"
-#include "unicode/ustring.h"
-#include "unicode/decimfmt.h"
-#include "unicode/udata.h"
-#include "putilimp.h"
-#include "testutil.h"
-
-#include <string.h>
-
-// import com.ibm.text.RuleBasedNumberFormat;
-// import com.ibm.test.TestFmwk;
-
-// import java.util.Locale;
-// import java.text.NumberFormat;
-
-// current macro not in icu1.8.1
-#define TESTCASE(id,test) \
- case id: \
- name = #test; \
- if (exec) { \
- logln(#test "---"); \
- logln(); \
- test(); \
- } \
- break
-
-void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/)
-{
- if (exec) logln("TestSuite RuleBasedNumberFormat");
- switch (index) {
-#if U_HAVE_RBNF
- TESTCASE(0, TestEnglishSpellout);
- TESTCASE(1, TestOrdinalAbbreviations);
- TESTCASE(2, TestDurations);
- TESTCASE(3, TestSpanishSpellout);
- TESTCASE(4, TestFrenchSpellout);
- TESTCASE(5, TestSwissFrenchSpellout);
- TESTCASE(6, TestItalianSpellout);
- TESTCASE(7, TestGermanSpellout);
- TESTCASE(8, TestThaiSpellout);
- TESTCASE(9, TestAPI);
- TESTCASE(10, TestFractionalRuleSet);
- TESTCASE(11, TestSwedishSpellout);
- TESTCASE(12, TestBelgianFrenchSpellout);
- TESTCASE(13, TestSmallValues);
- TESTCASE(14, TestLocalizations);
- TESTCASE(15, TestAllLocales);
- TESTCASE(16, TestHebrewFraction);
- TESTCASE(17, TestPortugueseSpellout);
- TESTCASE(18, TestMultiplierSubstitution);
- TESTCASE(19, TestSetDecimalFormatSymbols);
- TESTCASE(20, TestPluralRules);
- TESTCASE(21, TestMultiplePluralRules);
- TESTCASE(22, TestInfinityNaN);
- TESTCASE(23, TestVariableDecimalPoint);
-#else
- TESTCASE(0, TestRBNFDisabled);
-#endif
- default:
- name = "";
- break;
- }
-}
-
-#if U_HAVE_RBNF
-
-void IntlTestRBNF::TestHebrewFraction() {
-
- // this is the expected output for 123.45, with no '<' in it.
- UChar text1[] = {
- 0x05de, 0x05d0, 0x05d4, 0x0020,
- 0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020,
- 0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020,
- 0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020,
- 0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020,
- 0x05d7, 0x05de, 0x05e9, 0x0000,
- };
- UChar text2[] = {
- 0x05DE, 0x05D0, 0x05D4, 0x0020,
- 0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020,
- 0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020,
- 0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020,
- 0x05D0, 0x05E4, 0x05E1, 0x0020,
- 0x05D0, 0x05E4, 0x05E1, 0x0020,
- 0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020,
- 0x05D7, 0x05DE, 0x05E9, 0x0000,
- };
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status);
- if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
- errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status));
- delete formatter;
- return;
- }
- UnicodeString result;
- Formattable parseResult;
- ParsePosition pp(0);
- {
- UnicodeString expected(text1);
- formatter->format(123.45, result);
- if (result != expected) {
- errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'");
- } else {
-// formatter->parse(result, parseResult, pp);
-// if (parseResult.getDouble() != 123.45) {
-// errln("expected 123.45 but got: %g", parseResult.getDouble());
-// }
- }
- }
- {
- UnicodeString expected(text2);
- result.remove();
- formatter->format(123.0045, result);
- if (result != expected) {
- errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'");
- } else {
- pp.setIndex(0);
-// formatter->parse(result, parseResult, pp);
-// if (parseResult.getDouble() != 123.0045) {
-// errln("expected 123.0045 but got: %g", parseResult.getDouble());
-// }
- }
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestAPI() {
- // This test goes through the APIs that were not tested before.
- // These tests are too small to have separate test classes/functions
-
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
- if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
- dataerrln("Unable to create formatter. - %s", u_errorName(status));
- delete formatter;
- return;
- }
-
- logln("RBNF API test starting");
- // test clone
- {
- logln("Testing Clone");
- RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone();
- if(rbnfClone != NULL) {
- if(!(*rbnfClone == *formatter)) {
- errln("Clone should be semantically equivalent to the original!");
- }
- delete rbnfClone;
- } else {
- errln("Cloning failed!");
- }
- }
-
- // test assignment
- {
- logln("Testing assignment operator");
- RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
- assignResult = *formatter;
- if(!(assignResult == *formatter)) {
- errln("Assignment result should be semantically equivalent to the original!");
- }
- }
-
- // test rule constructor
- {
- logln("Testing rule constructor");
- LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status));
- if(U_FAILURE(status)) {
- errln("Unable to access resource bundle with data!");
- } else {
- int32_t ruleLen = 0;
- int32_t len = 0;
- LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status));
- LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status));
- UnicodeString desc;
- while (ures_hasNext(ruleSets.getAlias())) {
- const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status);
- ruleLen += len;
- desc.append(currentString);
- }
-
- const UChar *spelloutRules = desc.getTerminatedBuffer();
-
- if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) {
- errln("Unable to access the rules string!");
- } else {
- UParseError perror;
- RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status);
- if(!(ruleCtorResult == *formatter)) {
- errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
- }
-
- // Jitterbug 4452, for coverage
- RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status);
- if(!(nf == *formatter)) {
- errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
- }
- }
- }
- }
-
- // test getRules
- {
- logln("Testing getRules function");
- UnicodeString rules = formatter->getRules();
- UParseError perror;
- RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status);
-
- if(!(fromRulesResult == *formatter)) {
- errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!");
- }
- }
-
-
- {
- logln("Testing copy constructor");
- RuleBasedNumberFormat copyCtorResult(*formatter);
- if(!(copyCtorResult == *formatter)) {
- errln("Copy constructor result result should be semantically equivalent to the original!");
- }
- }
-
-#if !UCONFIG_NO_COLLATION
- // test ruleset names
- {
- logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names");
- int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames();
- if(noOfRuleSetNames == 0) {
- errln("Number of rule set names should be more than zero");
- }
- UnicodeString ruleSetName;
- int32_t i = 0;
- int32_t intFormatNum = 34567;
- double doubleFormatNum = 893411.234;
- logln("number of rule set names is %i", noOfRuleSetNames);
- for(i = 0; i < noOfRuleSetNames; i++) {
- FieldPosition pos1, pos2;
- UnicodeString intFormatResult, doubleFormatResult;
- Formattable intParseResult, doubleParseResult;
-
- ruleSetName = formatter->getRuleSetName(i);
- log("Rule set name %i is ", i);
- log(ruleSetName);
- logln(". Format results are: ");
- intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status);
- doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status);
- if(U_FAILURE(status)) {
- errln("Format using a rule set failed");
- break;
- }
- logln(intFormatResult);
- logln(doubleFormatResult);
- formatter->setLenient(TRUE);
- formatter->parse(intFormatResult, intParseResult, status);
- formatter->parse(doubleFormatResult, doubleParseResult, status);
-
- logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
-
- formatter->setLenient(FALSE);
- formatter->parse(intFormatResult, intParseResult, status);
- formatter->parse(doubleFormatResult, doubleParseResult, status);
-
- logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
-
- if(U_FAILURE(status)) {
- errln("Error during parsing");
- }
-
- intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status);
- if(U_SUCCESS(status)) {
- errln("Using invalid rule set name should have failed");
- break;
- }
- status = U_ZERO_ERROR;
- doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status);
- if(U_SUCCESS(status)) {
- errln("Using invalid rule set name should have failed");
- break;
- }
- status = U_ZERO_ERROR;
- }
- status = U_ZERO_ERROR;
- }
-#endif
-
- // test API
- UnicodeString expected("four point five","");
- logln("Testing format(double)");
- UnicodeString result;
- formatter->format(4.5,result);
- if(result != expected) {
- errln("Formatted 4.5, expected " + expected + " got " + result);
- } else {
- logln("Formatted 4.5, expected " + expected + " got " + result);
- }
- result.remove();
- expected = "four";
- formatter->format((int32_t)4,result);
- if(result != expected) {
- errln("Formatted 4, expected " + expected + " got " + result);
- } else {
- logln("Formatted 4, expected " + expected + " got " + result);
- }
-
- result.remove();
- FieldPosition pos;
- formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR);
- if(result != expected) {
- errln("Formatted 4 int64_t, expected " + expected + " got " + result);
- } else {
- logln("Formatted 4 int64_t, expected " + expected + " got " + result);
- }
-
- //Jitterbug 4452, for coverage
- result.remove();
- FieldPosition pos2;
- formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR);
- if(result != expected) {
- errln("Formatted 4 int64_t, expected " + expected + " got " + result);
- } else {
- logln("Formatted 4 int64_t, expected " + expected + " got " + result);
- }
-
- // clean up
- logln("Cleaning up");
- delete formatter;
-}
-
-/**
- * Perform a simple spot check on the parsing going into an infinite loop for alternate rules.
- */
-void IntlTestRBNF::TestMultiplePluralRules() {
- // This is trying to model the feminine form, but don't worry about the details too much.
- // We're trying to test the plural rules where there are different prefixes.
- UnicodeString rules("%spellout-cardinal-feminine-genitive:"
- "0: zero;"
- "1: ono;"
- "2: two;"
- "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];"
- "%spellout-cardinal-feminine:"
- "x.x: [<< $(cardinal,one{singleton}other{plurality})$ ]>%%fractions>;"
- "0: zero;"
- "1: one;"
- "2: two;"
- "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];"
- "%%fractions:"
- "10: <%spellout-cardinal-feminine< $(cardinal,one{oneth}other{tenth})$;"
- "100: <%spellout-cardinal-feminine< $(cardinal,one{1hundredth}other{hundredth})$;");
- UErrorCode status = U_ZERO_ERROR;
- UParseError pError;
- RuleBasedNumberFormat formatter(rules, Locale("ru"), pError, status);
- Formattable result;
- UnicodeString resultStr;
- FieldPosition pos;
-
- if (U_FAILURE(status)) {
- dataerrln("Unable to create formatter - %s", u_errorName(status));
- return;
- }
-
- formatter.parse(formatter.format(1000.0, resultStr, pos, status), result, status);
- if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) {
- errln("RuleBasedNumberFormat did not return the correct value. Got: %d", result.getLong());
- errln(resultStr);
- }
- resultStr.remove();
- formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine-genitive"), resultStr, pos, status), result, status);
- if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("ono thousand")) {
- errln("RuleBasedNumberFormat(cardinal-feminine-genitive) did not return the correct value. Got: %d", result.getLong());
- errln(resultStr);
- }
- resultStr.remove();
- formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine"), resultStr, pos, status), result, status);
- if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) {
- errln("RuleBasedNumberFormat(spellout-cardinal-feminine) did not return the correct value. Got: %d", result.getLong());
- errln(resultStr);
- }
- static const char* const testData[][2] = {
- { "0", "zero" },
- { "1", "one" },
- { "2", "two" },
- { "0.1", "one oneth" },
- { "0.2", "two tenth" },
- { "1.1", "one singleton one oneth" },
- { "1.2", "one singleton two tenth" },
- { "2.1", "two plurality one oneth" },
- { "2.2", "two plurality two tenth" },
- { "0.01", "one 1hundredth" },
- { "0.02", "two hundredth" },
- { NULL, NULL }
- };
- doTest(&formatter, testData, TRUE);
-}
-
-void IntlTestRBNF::TestFractionalRuleSet()
-{
- UnicodeString fracRules(
- "%main:\n"
- // this rule formats the number if it's 1 or more. It formats
- // the integral part using a DecimalFormat ("#,##0" puts
- // thousands separators in the right places) and the fractional
- // part using %%frac. If there is no fractional part, it
- // just shows the integral part.
- " x.0: <#,##0<[ >%%frac>];\n"
- // this rule formats the number if it's between 0 and 1. It
- // shows only the fractional part (0.5 shows up as "1/2," not
- // "0 1/2")
- " 0.x: >%%frac>;\n"
- // the fraction rule set. This works the same way as the one in the
- // preceding example: We multiply the fractional part of the number
- // being formatted by each rule's base value and use the rule that
- // produces the result closest to 0 (or the first rule that produces 0).
- // Since we only provide rules for the numbers from 2 to 10, we know
- // we'll get a fraction with a denominator between 2 and 10.
- // "<0<" causes the numerator of the fraction to be formatted
- // using numerals
- "%%frac:\n"
- " 2: 1/2;\n"
- " 3: <0</3;\n"
- " 4: <0</4;\n"
- " 5: <0</5;\n"
- " 6: <0</6;\n"
- " 7: <0</7;\n"
- " 8: <0</8;\n"
- " 9: <0</9;\n"
- " 10: <0</10;\n");
-
- // mondo hack
- int len = fracRules.length();
- int change = 2;
- for (int i = 0; i < len; ++i) {
- UChar ch = fracRules.charAt(i);
- if (ch == '\n') {
- change = 2; // change ok
- } else if (ch == ':') {
- change = 1; // change, but once we hit a non-space char, don't change
- } else if (ch == ' ') {
- if (change != 0) {
- fracRules.setCharAt(i, (UChar)0x200e);
- }
- } else {
- if (change == 1) {
- change = 0;
- }
- }
- }
-
- UErrorCode status = U_ZERO_ERROR;
- UParseError perror;
- RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status);
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "0", "0" },
- { ".1", "1/10" },
- { ".11", "1/9" },
- { ".125", "1/8" },
- { ".1428", "1/7" },
- { ".1667", "1/6" },
- { ".2", "1/5" },
- { ".25", "1/4" },
- { ".333", "1/3" },
- { ".5", "1/2" },
- { "1.1", "1 1/10" },
- { "2.11", "2 1/9" },
- { "3.125", "3 1/8" },
- { "4.1428", "4 1/7" },
- { "5.1667", "5 1/6" },
- { "6.2", "6 1/5" },
- { "7.25", "7 1/4" },
- { "8.333", "8 1/3" },
- { "9.5", "9 1/2" },
- { ".2222", "2/9" },
- { ".4444", "4/9" },
- { ".5555", "5/9" },
- { "1.2856", "1 2/7" },
- { NULL, NULL }
- };
- doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions
- }
-}
-
-#if 0
-#define LLAssert(a) \
- if (!(a)) errln("FAIL: " #a)
-
-void IntlTestRBNF::TestLLongConstructors()
-{
- logln("Testing constructors");
-
- // constant (shouldn't really be public)
- LLAssert(llong(llong::kD32).asDouble() == llong::kD32);
-
- // internal constructor (shouldn't really be public)
- LLAssert(llong(0, 1).asDouble() == 1);
- LLAssert(llong(1, 0).asDouble() == llong::kD32);
- LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1);
-
- // public empty constructor
- LLAssert(llong().asDouble() == 0);
-
- // public int32_t constructor
- LLAssert(llong((int32_t)0).asInt() == (int32_t)0);
- LLAssert(llong((int32_t)1).asInt() == (int32_t)1);
- LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1);
- LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff);
- LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1);
- LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000);
-
- // public int16_t constructor
- LLAssert(llong((int16_t)0).asInt() == (int16_t)0);
- LLAssert(llong((int16_t)1).asInt() == (int16_t)1);
- LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1);
- LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff);
- LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff);
- LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000);
-
- // public int8_t constructor
- LLAssert(llong((int8_t)0).asInt() == (int8_t)0);
- LLAssert(llong((int8_t)1).asInt() == (int8_t)1);
- LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1);
- LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f);
- LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff);
- LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80);
-
- // public uint16_t constructor
- LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0);
- LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1);
- LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1);
- LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff);
- LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff);
- LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000);
-
- // public uint32_t constructor
- LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0);
- LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1);
- LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1);
- LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff);
- LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1);
- LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
-
- // public double constructor
- LLAssert(llong((double)0).asDouble() == (double)0);
- LLAssert(llong((double)1).asDouble() == (double)1);
- LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff);
- LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000);
- LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001);
-
- // can't access uprv_maxmantissa, so fake it
- double maxmantissa = (llong((int32_t)1) << 40).asDouble();
- LLAssert(llong(maxmantissa).asDouble() == maxmantissa);
- LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa);
-
- // copy constructor
- LLAssert(llong(llong(0, 1)).asDouble() == 1);
- LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32);
- LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1);
-
- // asInt - test unsigned to signed narrowing conversion
- LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff);
- LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000);
-
- // asUInt - test signed to unsigned narrowing conversion
- LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1);
- LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
-
- // asDouble already tested
-
-}
-
-void IntlTestRBNF::TestLLongSimpleOperators()
-{
- logln("Testing simple operators");
-
- // operator==
- LLAssert(llong() == llong(0, 0));
- LLAssert(llong(1,0) == llong(1, 0));
- LLAssert(llong(0,1) == llong(0, 1));
-
- // operator!=
- LLAssert(llong(1,0) != llong(1,1));
- LLAssert(llong(0,1) != llong(1,1));
- LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff));
-
- // unsigned >
- LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff)));
-
- // unsigned <
- LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1)));
-
- // unsigned >=
- LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff)));
- LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1)));
-
- // unsigned <=
- LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1)));
- LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1)));
-
- // operator>
- LLAssert(llong(1, 1) > llong(1, 0));
- LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff));
- LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0));
- LLAssert(llong(1, 0) > llong(0, 0x7fffffff));
- LLAssert(llong(1, 0) > llong(0, 0xffffffff));
- LLAssert(llong(0, 0) > llong(0x80000000, 1));
-
- // operator<
- LLAssert(llong(1, 0) < llong(1, 1));
- LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000));
- LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1));
- LLAssert(llong(0, 0x7fffffff) < llong(1, 0));
- LLAssert(llong(0, 0xffffffff) < llong(1, 0));
- LLAssert(llong(0x80000000, 1) < llong(0, 0));
-
- // operator>=
- LLAssert(llong(1, 1) >= llong(1, 0));
- LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff));
- LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0));
- LLAssert(llong(1, 0) >= llong(0, 0x7fffffff));
- LLAssert(llong(1, 0) >= llong(0, 0xffffffff));
- LLAssert(llong(0, 0) >= llong(0x80000000, 1));
- LLAssert(llong() >= llong(0, 0));
- LLAssert(llong(1,0) >= llong(1, 0));
- LLAssert(llong(0,1) >= llong(0, 1));
-
- // operator<=
- LLAssert(llong(1, 0) <= llong(1, 1));
- LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000));
- LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1));
- LLAssert(llong(0, 0x7fffffff) <= llong(1, 0));
- LLAssert(llong(0, 0xffffffff) <= llong(1, 0));
- LLAssert(llong(0x80000000, 1) <= llong(0, 0));
- LLAssert(llong() <= llong(0, 0));
- LLAssert(llong(1,0) <= llong(1, 0));
- LLAssert(llong(0,1) <= llong(0, 1));
-
- // operator==(int32)
- LLAssert(llong() == (int32_t)0);
- LLAssert(llong(0,1) == (int32_t)1);
-
- // operator!=(int32)
- LLAssert(llong(1,0) != (int32_t)0);
- LLAssert(llong(0,1) != (int32_t)2);
- LLAssert(llong(0,0xffffffff) != (int32_t)-1);
-
- llong negOne(0xffffffff, 0xffffffff);
-
- // operator>(int32)
- LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff);
- LLAssert(negOne > (int32_t)-2);
- LLAssert(llong(1, 0) > (int32_t)0x7fffffff);
- LLAssert(llong(0, 0) > (int32_t)-1);
-
- // operator<(int32)
- LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff);
- LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1);
-
- // operator>=(int32)
- LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff);
- LLAssert(negOne >= (int32_t)-2);
- LLAssert(llong(1, 0) >= (int32_t)0x7fffffff);
- LLAssert(llong(0, 0) >= (int32_t)-1);
- LLAssert(llong() >= (int32_t)0);
- LLAssert(llong(0,1) >= (int32_t)1);
-
- // operator<=(int32)
- LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff);
- LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1);
- LLAssert(llong() <= (int32_t)0);
- LLAssert(llong(0,1) <= (int32_t)1);
-
- // operator=
- LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1);
-
- // operator <<=
- LLAssert((llong(1, 1) <<= 0) == llong(1, 1));
- LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000));
- LLAssert((llong(1, 1) <<= 32) == llong(1, 0));
- LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0));
- LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used
- LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used
-
- // operator <<
- LLAssert((llong((int32_t)1) << 5).asUInt() == 32);
-
- // operator >>= (sign extended)
- LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc));
- LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde));
- LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff));
- LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000));
- LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
- LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used
-
- // operator >> sign extended)
- LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde));
-
- // ushr (right shift without sign extension)
- LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc));
- LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde));
- LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1));
- LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000));
- LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
- LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used
-
- // operator&(llong)
- LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
-
- // operator|(llong)
- LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
-
- // operator^(llong)
- LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
-
- // operator&(uint32)
- LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
-
- // operator|(uint32)
- LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
-
- // operator^(uint32)
- LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
-
- // operator~
- LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa));
-
- // operator&=(llong)
- LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
-
- // operator|=(llong)
- LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
-
- // operator^=(llong)
- LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
-
- // operator&=(uint32)
- LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
-
- // operator|=(uint32)
- LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
-
- // operator^=(uint32)
- LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
-
- // prefix inc
- LLAssert(llong(1, 0) == ++llong(0,0xffffffff));
-
- // prefix dec
- LLAssert(llong(0,0xffffffff) == --llong(1, 0));
-
- // postfix inc
- {
- llong n(0, 0xffffffff);
- LLAssert(llong(0, 0xffffffff) == n++);
- LLAssert(llong(1, 0) == n);
- }
-
- // postfix dec
- {
- llong n(1, 0);
- LLAssert(llong(1, 0) == n--);
- LLAssert(llong(0, 0xffffffff) == n);
- }
-
- // unary minus
- LLAssert(llong(0, 0) == -llong(0, 0));
- LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1));
- LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff));
- LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1));
- LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow
-
- // operator-=
- {
- llong n;
- LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff));
- LLAssert(n == llong(0xffffffff, 0xffffffff));
-
- n = llong(1, 0);
- LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff));
- LLAssert(n == llong(0, 0xffffffff));
- }
-
- // operator-
- {
- llong n;
- LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff));
- LLAssert(n == llong(0, 0));
-
- n = llong(1, 0);
- LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff));
- LLAssert(n == llong(1, 0));
- }
-
- // operator+=
- {
- llong n(0xffffffff, 0xffffffff);
- LLAssert((n += llong(0, 1)) == llong(0, 0));
- LLAssert(n == llong(0, 0));
-
- n = llong(0, 0xffffffff);
- LLAssert((n += llong(0, 1)) == llong(1, 0));
- LLAssert(n == llong(1, 0));
- }
-
- // operator+
- {
- llong n(0xffffffff, 0xffffffff);
- LLAssert((n + llong(0, 1)) == llong(0, 0));
- LLAssert(n == llong(0xffffffff, 0xffffffff));
-
- n = llong(0, 0xffffffff);
- LLAssert((n + llong(0, 1)) == llong(1, 0));
- LLAssert(n == llong(0, 0xffffffff));
- }
-
-}
-
-void IntlTestRBNF::TestLLong()
-{
- logln("Starting TestLLong");
-
- TestLLongConstructors();
-
- TestLLongSimpleOperators();
-
- logln("Testing operator*=, operator*");
-
- // operator*=, operator*
- // small and large values, positive, &NEGative, zero
- // also test commutivity
- {
- const llong ZERO;
- const llong ONE(0, 1);
- const llong NEG_ONE((int32_t)-1);
- const llong THREE(0, 3);
- const llong NEG_THREE((int32_t)-3);
- const llong TWO_TO_16(0, 0x10000);
- const llong NEG_TWO_TO_16 = -TWO_TO_16;
- const llong TWO_TO_32(1, 0);
- const llong NEG_TWO_TO_32 = -TWO_TO_32;
-
- const llong NINE(0, 9);
- const llong NEG_NINE = -NINE;
-
- const llong TWO_TO_16X3(0, 0x00030000);
- const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3;
-
- const llong TWO_TO_32X3(3, 0);
- const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3;
-
- const llong TWO_TO_48(0x10000, 0);
- const llong NEG_TWO_TO_48 = -TWO_TO_48;
-
- const int32_t VALUE_WIDTH = 9;
- const llong* values[VALUE_WIDTH] = {
- &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32
- };
-
- const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = {
- &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO,
- &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32,
- &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32,
- &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3,
- &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3,
- &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48,
- &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48,
- &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO,
- &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO
- };
-
- for (int i = 0; i < VALUE_WIDTH; ++i) {
- for (int j = 0; j < VALUE_WIDTH; ++j) {
- llong lhs = *values[i];
- llong rhs = *values[j];
- llong ans = *answers[i*VALUE_WIDTH + j];
-
- llong n = lhs;
-
- LLAssert((n *= rhs) == ans);
- LLAssert(n == ans);
-
- n = lhs;
- LLAssert((n * rhs) == ans);
- LLAssert(n == lhs);
- }
- }
- }
-
- logln("Testing operator/=, operator/");
- // operator/=, operator/
- // test num = 0, div = 0, pos/neg, > 2^32, div > num
- {
- const llong ZERO;
- const llong ONE(0, 1);
- const llong NEG_ONE = -ONE;
- const llong MAX(0x7fffffff, 0xffffffff);
- const llong MIN(0x80000000, 0);
- const llong TWO(0, 2);
- const llong NEG_TWO = -TWO;
- const llong FIVE(0, 5);
- const llong NEG_FIVE = -FIVE;
- const llong TWO_TO_32(1, 0);
- const llong NEG_TWO_TO_32 = -TWO_TO_32;
- const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0);
- const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5;
- const llong TWO_TO_32X5 = TWO_TO_32 * FIVE;
- const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5;
-
- const llong* tuples[] = { // lhs, rhs, ans
- &ZERO, &ZERO, &ZERO,
- &ONE, &ZERO,&MAX,
- &NEG_ONE, &ZERO, &MIN,
- &ONE, &ONE, &ONE,
- &ONE, &NEG_ONE, &NEG_ONE,
- &NEG_ONE, &ONE, &NEG_ONE,
- &NEG_ONE, &NEG_ONE, &ONE,
- &FIVE, &TWO, &TWO,
- &FIVE, &NEG_TWO, &NEG_TWO,
- &NEG_FIVE, &TWO, &NEG_TWO,
- &NEG_FIVE, &NEG_TWO, &TWO,
- &TWO, &FIVE, &ZERO,
- &TWO, &NEG_FIVE, &ZERO,
- &NEG_TWO, &FIVE, &ZERO,
- &NEG_TWO, &NEG_FIVE, &ZERO,
- &TWO_TO_32, &TWO_TO_32, &ONE,
- &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE,
- &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE,
- &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE,
- &TWO_TO_32, &FIVE, &TWO_TO_32d5,
- &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5,
- &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5,
- &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5,
- &TWO_TO_32X5, &FIVE, &TWO_TO_32,
- &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32,
- &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32,
- &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32,
- &TWO_TO_32X5, &TWO_TO_32, &FIVE,
- &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE,
- &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE,
- &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE
- };
- const int TUPLE_WIDTH = 3;
- const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
- for (int i = 0; i < TUPLE_COUNT; ++i) {
- const llong lhs = *tuples[i*TUPLE_WIDTH+0];
- const llong rhs = *tuples[i*TUPLE_WIDTH+1];
- const llong ans = *tuples[i*TUPLE_WIDTH+2];
-
- llong n = lhs;
- if (!((n /= rhs) == ans)) {
- errln("fail: (n /= rhs) == ans");
- }
- LLAssert(n == ans);
-
- n = lhs;
- LLAssert((n / rhs) == ans);
- LLAssert(n == lhs);
- }
- }
-
- logln("Testing operator%%=, operator%%");
- //operator%=, operator%
- {
- const llong ZERO;
- const llong ONE(0, 1);
- const llong TWO(0, 2);
- const llong THREE(0,3);
- const llong FOUR(0, 4);
- const llong FIVE(0, 5);
- const llong SIX(0, 6);
-
- const llong NEG_ONE = -ONE;
- const llong NEG_TWO = -TWO;
- const llong NEG_THREE = -THREE;
- const llong NEG_FOUR = -FOUR;
- const llong NEG_FIVE = -FIVE;
- const llong NEG_SIX = -SIX;
-
- const llong NINETY_NINE(0, 99);
- const llong HUNDRED(0, 100);
- const llong HUNDRED_ONE(0, 101);
-
- const llong BIG(0x12345678, 0x9abcdef0);
- const llong BIG_FIVE(BIG * FIVE);
- const llong BIG_FIVEm1 = BIG_FIVE - ONE;
- const llong BIG_FIVEp1 = BIG_FIVE + ONE;
-
- const llong* tuples[] = {
- &ZERO, &FIVE, &ZERO,
- &ONE, &FIVE, &ONE,
- &TWO, &FIVE, &TWO,
- &THREE, &FIVE, &THREE,
- &FOUR, &FIVE, &FOUR,
- &FIVE, &FIVE, &ZERO,
- &SIX, &FIVE, &ONE,
- &ZERO, &NEG_FIVE, &ZERO,
- &ONE, &NEG_FIVE, &ONE,
- &TWO, &NEG_FIVE, &TWO,
- &THREE, &NEG_FIVE, &THREE,
- &FOUR, &NEG_FIVE, &FOUR,
- &FIVE, &NEG_FIVE, &ZERO,
- &SIX, &NEG_FIVE, &ONE,
- &NEG_ONE, &FIVE, &NEG_ONE,
- &NEG_TWO, &FIVE, &NEG_TWO,
- &NEG_THREE, &FIVE, &NEG_THREE,
- &NEG_FOUR, &FIVE, &NEG_FOUR,
- &NEG_FIVE, &FIVE, &ZERO,
- &NEG_SIX, &FIVE, &NEG_ONE,
- &NEG_ONE, &NEG_FIVE, &NEG_ONE,
- &NEG_TWO, &NEG_FIVE, &NEG_TWO,
- &NEG_THREE, &NEG_FIVE, &NEG_THREE,
- &NEG_FOUR, &NEG_FIVE, &NEG_FOUR,
- &NEG_FIVE, &NEG_FIVE, &ZERO,
- &NEG_SIX, &NEG_FIVE, &NEG_ONE,
- &NINETY_NINE, &FIVE, &FOUR,
- &HUNDRED, &FIVE, &ZERO,
- &HUNDRED_ONE, &FIVE, &ONE,
- &BIG_FIVEm1, &FIVE, &FOUR,
- &BIG_FIVE, &FIVE, &ZERO,
- &BIG_FIVEp1, &FIVE, &ONE
- };
- const int TUPLE_WIDTH = 3;
- const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
- for (int i = 0; i < TUPLE_COUNT; ++i) {
- const llong lhs = *tuples[i*TUPLE_WIDTH+0];
- const llong rhs = *tuples[i*TUPLE_WIDTH+1];
- const llong ans = *tuples[i*TUPLE_WIDTH+2];
-
- llong n = lhs;
- if (!((n %= rhs) == ans)) {
- errln("fail: (n %= rhs) == ans");
- }
- LLAssert(n == ans);
-
- n = lhs;
- LLAssert((n % rhs) == ans);
- LLAssert(n == lhs);
- }
- }
-
- logln("Testing pow");
- // pow
- LLAssert(llong(0, 0).pow(0) == llong(0, 0));
- LLAssert(llong(0, 0).pow(2) == llong(0, 0));
- LLAssert(llong(0, 2).pow(0) == llong(0, 1));
- LLAssert(llong(0, 2).pow(2) == llong(0, 4));
- LLAssert(llong(0, 2).pow(32) == llong(1, 0));
- LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5));
-
- // absolute value
- {
- const llong n(0xffffffff,0xffffffff);
- LLAssert(n.abs() == llong(0, 1));
- }
-
-#ifdef RBNF_DEBUG
- logln("Testing atoll");
- // atoll
- const char empty[] = "";
- const char zero[] = "0";
- const char neg_one[] = "-1";
- const char neg_12345[] = "-12345";
- const char big1[] = "123456789abcdef0";
- const char big2[] = "fFfFfFfFfFfFfFfF";
- LLAssert(llong::atoll(empty) == llong(0, 0));
- LLAssert(llong::atoll(zero) == llong(0, 0));
- LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff));
- LLAssert(llong::atoll(neg_12345) == -llong(0, 12345));
- LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0));
- LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff));
-#endif
-
- // u_atoll
- const UChar uempty[] = { 0 };
- const UChar uzero[] = { 0x30, 0 };
- const UChar uneg_one[] = { 0x2d, 0x31, 0 };
- const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 };
- const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 };
- const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 };
- LLAssert(llong::utoll(uempty) == llong(0, 0));
- LLAssert(llong::utoll(uzero) == llong(0, 0));
- LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff));
- LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345));
- LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0));
- LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff));
-
-#ifdef RBNF_DEBUG
- logln("Testing lltoa");
- // lltoa
- {
- char buf[64]; // ascii
- LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0));
- LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0));
- LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0));
- LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0));
- }
-#endif
-
- logln("Testing u_lltoa");
- // u_lltoa
- {
- UChar buf[64];
- LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0));
- LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0));
- LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0));
- LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0));
- }
-}
-
-/* if 0 */
-#endif
-
-void
-IntlTestRBNF::TestEnglishSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "1", "one" },
- { "2", "two" },
- { "15", "fifteen" },
- { "20", "twenty" },
- { "23", "twenty-three" },
- { "73", "seventy-three" },
- { "88", "eighty-eight" },
- { "100", "one hundred" },
- { "106", "one hundred six" },
- { "127", "one hundred twenty-seven" },
- { "200", "two hundred" },
- { "579", "five hundred seventy-nine" },
- { "1,000", "one thousand" },
- { "2,000", "two thousand" },
- { "3,004", "three thousand four" },
- { "4,567", "four thousand five hundred sixty-seven" },
- { "15,943", "fifteen thousand nine hundred forty-three" },
- { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" },
- { "-36", "minus thirty-six" },
- { "234.567", "two hundred thirty-four point five six seven" },
- { NULL, NULL}
- };
-
- doTest(formatter, testData, TRUE);
-
-#if !UCONFIG_NO_COLLATION
- if( !logKnownIssue("9503") ) {
- formatter->setLenient(TRUE);
- static const char* lpTestData[][2] = {
- { "fifty-7", "57" },
- { " fifty-7", "57" },
- { " fifty-7", "57" },
- { "2 thousand six HUNDRED fifty-7", "2,657" },
- { "fifteen hundred and zero", "1,500" },
- { "FOurhundred thiRTY six", "436" },
- { NULL, NULL}
- };
- doLenientParseTest(formatter, lpTestData);
- }
-#endif
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestOrdinalAbbreviations()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "1", "1st" },
- { "2", "2nd" },
- { "3", "3rd" },
- { "4", "4th" },
- { "7", "7th" },
- { "10", "10th" },
- { "11", "11th" },
- { "13", "13th" },
- { "20", "20th" },
- { "21", "21st" },
- { "22", "22nd" },
- { "23", "23rd" },
- { "24", "24th" },
- { "33", "33rd" },
- { "102", "102nd" },
- { "312", "312th" },
- { "12,345", "12,345th" },
- { NULL, NULL}
- };
-
- doTest(formatter, testData, FALSE);
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestDurations()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "3,600", "1:00:00" }, //move me and I fail
- { "0", "0 sec." },
- { "1", "1 sec." },
- { "24", "24 sec." },
- { "60", "1:00" },
- { "73", "1:13" },
- { "145", "2:25" },
- { "666", "11:06" },
- // { "3,600", "1:00:00" },
- { "3,740", "1:02:20" },
- { "10,293", "2:51:33" },
- { NULL, NULL}
- };
-
- doTest(formatter, testData, TRUE);
-
-#if !UCONFIG_NO_COLLATION
- formatter->setLenient(TRUE);
- static const char* lpTestData[][2] = {
- { "2-51-33", "10,293" },
- { NULL, NULL}
- };
- doLenientParseTest(formatter, lpTestData);
-#endif
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestSpanishSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "1", "uno" },
- { "6", "seis" },
- { "16", "diecis\\u00e9is" },
- { "20", "veinte" },
- { "24", "veinticuatro" },
- { "26", "veintis\\u00e9is" },
- { "73", "setenta y tres" },
- { "88", "ochenta y ocho" },
- { "100", "cien" },
- { "106", "ciento seis" },
- { "127", "ciento veintisiete" },
- { "200", "doscientos" },
- { "579", "quinientos setenta y nueve" },
- { "1,000", "mil" },
- { "2,000", "dos mil" },
- { "3,004", "tres mil cuatro" },
- { "4,567", "cuatro mil quinientos sesenta y siete" },
- { "15,943", "quince mil novecientos cuarenta y tres" },
- { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"},
- { "-36", "menos treinta y seis" },
- { "234.567", "doscientos treinta y cuatro coma cinco seis siete" },
- { NULL, NULL}
- };
-
- doTest(formatter, testData, TRUE);
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestFrenchSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "1", "un" },
- { "15", "quinze" },
- { "20", "vingt" },
- { "21", "vingt-et-un" },
- { "23", "vingt-trois" },
- { "62", "soixante-deux" },
- { "70", "soixante-dix" },
- { "71", "soixante-et-onze" },
- { "73", "soixante-treize" },
- { "80", "quatre-vingts" },
- { "88", "quatre-vingt-huit" },
- { "100", "cent" },
- { "106", "cent six" },
- { "127", "cent vingt-sept" },
- { "200", "deux cents" },
- { "579", "cinq cent soixante-dix-neuf" },
- { "1,000", "mille" },
- { "1,123", "mille cent vingt-trois" },
- { "1,594", "mille cinq cent quatre-vingt-quatorze" },
- { "2,000", "deux mille" },
- { "3,004", "trois mille quatre" },
- { "4,567", "quatre mille cinq cent soixante-sept" },
- { "15,943", "quinze mille neuf cent quarante-trois" },
- { "2,345,678", "deux millions trois cent quarante-cinq mille six cent soixante-dix-huit" },
- { "-36", "moins trente-six" },
- { "234.567", "deux cent trente-quatre virgule cinq six sept" },
- { NULL, NULL}
- };
-
- doTest(formatter, testData, TRUE);
-
-#if !UCONFIG_NO_COLLATION
- formatter->setLenient(TRUE);
- static const char* lpTestData[][2] = {
- { "trente-et-un", "31" },
- { "un cent quatre vingt dix huit", "198" },
- { NULL, NULL}
- };
- doLenientParseTest(formatter, lpTestData);
-#endif
- }
- delete formatter;
-}
-
-static const char* const swissFrenchTestData[][2] = {
- { "1", "un" },
- { "15", "quinze" },
- { "20", "vingt" },
- { "21", "vingt-et-un" },
- { "23", "vingt-trois" },
- { "62", "soixante-deux" },
- { "70", "septante" },
- { "71", "septante-et-un" },
- { "73", "septante-trois" },
- { "80", "huitante" },
- { "88", "huitante-huit" },
- { "100", "cent" },
- { "106", "cent six" },
- { "127", "cent vingt-sept" },
- { "200", "deux cents" },
- { "579", "cinq cent septante-neuf" },
- { "1,000", "mille" },
- { "1,123", "mille cent vingt-trois" },
- { "1,594", "mille cinq cent nonante-quatre" },
- { "2,000", "deux mille" },
- { "3,004", "trois mille quatre" },
- { "4,567", "quatre mille cinq cent soixante-sept" },
- { "15,943", "quinze mille neuf cent quarante-trois" },
- { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" },
- { "-36", "moins trente-six" },
- { "234.567", "deux cent trente-quatre virgule cinq six sept" },
- { NULL, NULL}
-};
-
-void
-IntlTestRBNF::TestSwissFrenchSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- doTest(formatter, swissFrenchTestData, TRUE);
- }
- delete formatter;
-}
-
-static const char* const belgianFrenchTestData[][2] = {
- { "1", "un" },
- { "15", "quinze" },
- { "20", "vingt" },
- { "21", "vingt-et-un" },
- { "23", "vingt-trois" },
- { "62", "soixante-deux" },
- { "70", "septante" },
- { "71", "septante-et-un" },
- { "73", "septante-trois" },
- { "80", "quatre-vingts" },
- { "88", "quatre-vingt huit" },
- { "90", "nonante" },
- { "91", "nonante-et-un" },
- { "95", "nonante-cinq" },
- { "100", "cent" },
- { "106", "cent six" },
- { "127", "cent vingt-sept" },
- { "200", "deux cents" },
- { "579", "cinq cent septante-neuf" },
- { "1,000", "mille" },
- { "1,123", "mille cent vingt-trois" },
- { "1,594", "mille cinq cent nonante-quatre" },
- { "2,000", "deux mille" },
- { "3,004", "trois mille quatre" },
- { "4,567", "quatre mille cinq cent soixante-sept" },
- { "15,943", "quinze mille neuf cent quarante-trois" },
- { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" },
- { "-36", "moins trente-six" },
- { "234.567", "deux cent trente-quatre virgule cinq six sept" },
- { NULL, NULL}
-};
-
-
-void
-IntlTestRBNF::TestBelgianFrenchSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status));
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- // Belgian french should match Swiss french.
- doTest(formatter, belgianFrenchTestData, TRUE);
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestItalianSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "1", "uno" },
- { "15", "quindici" },
- { "20", "venti" },
- { "23", "venti\\u00ADtr\\u00E9" },
- { "73", "settanta\\u00ADtr\\u00E9" },
- { "88", "ottant\\u00ADotto" },
- { "100", "cento" },
- { "101", "cento\\u00ADuno" },
- { "103", "cento\\u00ADtr\\u00E9" },
- { "106", "cento\\u00ADsei" },
- { "108", "cent\\u00ADotto" },
- { "127", "cento\\u00ADventi\\u00ADsette" },
- { "181", "cent\\u00ADottant\\u00ADuno" },
- { "200", "due\\u00ADcento" },
- { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" },
- { "1,000", "mille" },
- { "2,000", "due\\u00ADmila" },
- { "3,004", "tre\\u00ADmila\\u00ADquattro" },
- { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" },
- { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" },
- { "-36", "meno trenta\\u00ADsei" },
- { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" },
- { NULL, NULL}
- };
-
- doTest(formatter, testData, TRUE);
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestPortugueseSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "1", "um" },
- { "15", "quinze" },
- { "20", "vinte" },
- { "23", "vinte e tr\\u00EAs" },
- { "73", "setenta e tr\\u00EAs" },
- { "88", "oitenta e oito" },
- { "100", "cem" },
- { "106", "cento e seis" },
- { "108", "cento e oito" },
- { "127", "cento e vinte e sete" },
- { "181", "cento e oitenta e um" },
- { "200", "duzentos" },
- { "579", "quinhentos e setenta e nove" },
- { "1,000", "mil" },
- { "2,000", "dois mil" },
- { "3,004", "tr\\u00EAs mil e quatro" },
- { "4,567", "quatro mil e quinhentos e sessenta e sete" },
- { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" },
- { "-36", "menos trinta e seis" },
- { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" },
- { NULL, NULL}
- };
-
- doTest(formatter, testData, TRUE);
- }
- delete formatter;
-}
-void
-IntlTestRBNF::TestGermanSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "1", "eins" },
- { "15", "f\\u00fcnfzehn" },
- { "20", "zwanzig" },
- { "23", "drei\\u00ADund\\u00ADzwanzig" },
- { "73", "drei\\u00ADund\\u00ADsiebzig" },
- { "88", "acht\\u00ADund\\u00ADachtzig" },
- { "100", "ein\\u00ADhundert" },
- { "106", "ein\\u00ADhundert\\u00ADsechs" },
- { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" },
- { "200", "zwei\\u00ADhundert" },
- { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" },
- { "1,000", "ein\\u00ADtausend" },
- { "2,000", "zwei\\u00ADtausend" },
- { "3,004", "drei\\u00ADtausend\\u00ADvier" },
- { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" },
- { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" },
- { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" },
- { NULL, NULL}
- };
-
- doTest(formatter, testData, TRUE);
-
-#if !UCONFIG_NO_COLLATION
- formatter->setLenient(TRUE);
- static const char* lpTestData[][2] = {
- { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" },
- { NULL, NULL}
- };
- doLenientParseTest(formatter, lpTestData);
-#endif
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestThaiSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testData[][2] = {
- { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" },
- { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
- { "10", "\\u0e2a\\u0e34\\u0e1a" },
- { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" },
- { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" },
- { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
- { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" },
- { NULL, NULL}
- };
-
- doTest(formatter, testData, TRUE);
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestSwedishSpellout()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* testDataDefault[][2] = {
- { "101", "ett\\u00adhundra\\u00adett" },
- { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" },
- { "1,001", "et\\u00adtusen ett" },
- { "1,100", "et\\u00adtusen ett\\u00adhundra" },
- { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" },
- { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" },
- { "10,001", "tio\\u00adtusen ett" },
- { "11,000", "elva\\u00adtusen" },
- { "12,000", "tolv\\u00adtusen" },
- { "20,000", "tjugo\\u00adtusen" },
- { "21,000", "tjugo\\u00adet\\u00adtusen" },
- { "21,001", "tjugo\\u00adet\\u00adtusen ett" },
- { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" },
- { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" },
- { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" },
- { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" },
- { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" },
- { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" },
- { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" },
- { NULL, NULL }
- };
- doTest(formatter, testDataDefault, TRUE);
-
- static const char* testDataNeutrum[][2] = {
- { "101", "ett\\u00adhundra\\u00adett" },
- { "1,001", "et\\u00adtusen ett" },
- { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" },
- { "10,001", "tio\\u00adtusen ett" },
- { "21,001", "tjugo\\u00adet\\u00adtusen ett" },
- { NULL, NULL }
- };
-
- formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status);
- if (U_SUCCESS(status)) {
- logln(" testing spellout-cardinal-neuter rules");
- doTest(formatter, testDataNeutrum, TRUE);
- }
- else {
- errln("Can't test spellout-cardinal-neuter rules");
- }
-
- static const char* testDataYear[][2] = {
- { "101", "ett\\u00adhundra\\u00adett" },
- { "900", "nio\\u00adhundra" },
- { "1,001", "et\\u00adtusen ett" },
- { "1,100", "elva\\u00adhundra" },
- { "1,101", "elva\\u00adhundra\\u00adett" },
- { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" },
- { "2,001", "tjugo\\u00adhundra\\u00adett" },
- { "10,001", "tio\\u00adtusen ett" },
- { NULL, NULL }
- };
-
- status = U_ZERO_ERROR;
- formatter->setDefaultRuleSet("%spellout-numbering-year", status);
- if (U_SUCCESS(status)) {
- logln("testing year rules");
- doTest(formatter, testDataYear, TRUE);
- }
- else {
- errln("Can't test year rules");
- }
-
- }
- delete formatter;
-}
-
-void
-IntlTestRBNF::TestSmallValues()
-{
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* formatter
- = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status);
-
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- static const char* const testDataDefault[][2] = {
- { "0.001", "zero point zero zero one" },
- { "0.0001", "zero point zero zero zero one" },
- { "0.00001", "zero point zero zero zero zero one" },
- { "0.000001", "zero point zero zero zero zero zero one" },
- { "0.0000001", "zero point zero zero zero zero zero zero one" },
- { "0.00000001", "zero point zero zero zero zero zero zero zero one" },
- { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" },
- { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" },
- { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" },
- { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" },
- { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" },
- { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" },
- { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" },
- { "10,000,000.001", "ten million point zero zero one" },
- { "10,000,000.0001", "ten million point zero zero zero one" },
- { "10,000,000.00001", "ten million point zero zero zero zero one" },
- { "10,000,000.000001", "ten million point zero zero zero zero zero one" },
- { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" },
-// { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" },
-// { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" },
- { "10,000,000", "ten million" },
-// { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" },
-// { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" },
-// { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" },
- { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" },
- { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" },
- { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" },
- { "1,234.4321", "one thousand two hundred thirty-four point four three two one" },
- { "123.321", "one hundred twenty-three point three two one" },
- { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" },
- { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" },
- { NULL, NULL }
- };
-
- doTest(formatter, testDataDefault, TRUE);
-
- delete formatter;
- }
-}
-
-void
-IntlTestRBNF::TestLocalizations(void)
-{
- int i;
- UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n"
- "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need");
-
- UErrorCode status = U_ZERO_ERROR;
- UParseError perror;
- RuleBasedNumberFormat formatter(rules, perror, status);
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
- } else {
- {
- static const char* const testData[][2] = {
- { "0", "nada" },
- { "5", "yah, some" },
- { "423", "plenty" },
- { "12345", "more'n you'll ever need" },
- { NULL, NULL }
- };
- doTest(&formatter, testData, FALSE);
- }
-
- {
- UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, leOther>,<de, 'das Main', 'etwas anderes'>>");
- static const char* const testData[][2] = {
- { "0", "no" },
- { "5", "some" },
- { "423", "a lot" },
- { "12345", "tons" },
- { NULL, NULL }
- };
- RuleBasedNumberFormat formatter0(rules, loc, perror, status);
- if (U_FAILURE(status)) {
- errln("failed to build second formatter");
- } else {
- doTest(&formatter0, testData, FALSE);
-
- {
- // exercise localization info
- Locale locale0("en__VALLEY@turkey=gobblegobble");
- Locale locale1("de_DE_FOO");
- Locale locale2("ja_JP");
- UnicodeString name = formatter0.getRuleSetName(0);
- if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main"
- && formatter0.getRuleSetDisplayName(0, locale1) == "das Main"
- && formatter0.getRuleSetDisplayName(0, locale2) == "%main"
- && formatter0.getRuleSetDisplayName(name, locale0) == "Main"
- && formatter0.getRuleSetDisplayName(name, locale1) == "das Main"
- && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){
- logln("getRuleSetDisplayName tested");
- }else {
- errln("failed to getRuleSetDisplayName");
- }
- }
-
- for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) {
- Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status);
- if (U_SUCCESS(status)) {
- for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) {
- UnicodeString name = formatter0.getRuleSetName(j);
- UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale);
- UnicodeString msg = locale.getName();
- msg.append(": ");
- msg.append(name);
- msg.append(" = ");
- msg.append(lname);
- logln(msg);
- }
- }
- }
- }
- }
-
- {
- static const char* goodLocs[] = {
- "", // zero-length ok, same as providing no localization data
- "<<>>", // no public rule sets ok
- "<<%main>>", // no localizations ok
- "<<%main,>,<en, Main,>>", // comma before close angle ok
- "<<%main>,<en, ',<>\" '>>", // quotes everything until next quote
- "<<%main>,<'en', \"it's ok\">>", // double quotes work too
- " \n <\n <\n %main\n >\n , \t <\t en\t , \tfoo \t\t > \n\n > \n ", // Pattern_White_Space ok
- };
- int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]);
-
- static const char* badLocs[] = {
- " ", // non-zero length
- "<>", // empty array
- "<", // unclosed outer array
- "<<", // unclosed inner array
- "<<,>>", // unexpected comma
- "<<''>>", // empty string
- " x<<%main>>", // first non space char not open angle bracket
- "<%main>", // missing inner array
- "<<%main %other>>", // elements missing separating commma (spaces must be quoted)
- "<<%main><en, Main>>", // arrays missing separating comma
- "<<%main>,<en, main, foo>>", // too many elements in locale data
- "<<%main>,<en>>", // too few elements in locale data
- "<<<%main>>>", // unexpected open angle
- "<<%main<>>>", // unexpected open angle
- "<<%main, %other>,<en,,>>", // implicit empty strings
- "<<%main>,<en,''>>", // empty string
- "<<%main>, < en, '>>", // unterminated quote
- "<<%main>, < en, \"<>>", // unterminated quote
- "<<%main\">>", // quote in string
- "<<%main'>>", // quote in string
- "<<%main<>>", // open angle in string
- "<<%main>> x", // extra non-space text at end
-
- };
- int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]);
-
- for (i = 0; i < goodLocsLen; ++i) {
- logln("[%d] '%s'", i, goodLocs[i]);
- UErrorCode status = U_ZERO_ERROR;
- UnicodeString loc(goodLocs[i]);
- RuleBasedNumberFormat fmt(rules, loc, perror, status);
- if (U_FAILURE(status)) {
- errln("Failed parse of good localization string: '%s'", goodLocs[i]);
- }
- }
-
- for (i = 0; i < badLocsLen; ++i) {
- logln("[%d] '%s'", i, badLocs[i]);
- UErrorCode status = U_ZERO_ERROR;
- UnicodeString loc(badLocs[i]);
- RuleBasedNumberFormat fmt(rules, loc, perror, status);
- if (U_SUCCESS(status)) {
- errln("Successful parse of bad localization string: '%s'", badLocs[i]);
- }
- }
- }
- }
-}
-
-void
-IntlTestRBNF::TestAllLocales()
-{
- const char* names[] = {
- " (spellout) ",
- " (ordinal) "
- // " (duration) " // This is English only, and it's not really supported in CLDR anymore.
- };
- double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111};
-
- int32_t count = 0;
- const Locale* locales = Locale::getAvailableLocales(count);
- for (int i = 0; i < count; ++i) {
- const Locale* loc = &locales[i];
-
- for (int j = 0; j < 2; ++j) {
- UErrorCode status = U_ZERO_ERROR;
- RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status);
-
- if (status == U_USING_DEFAULT_WARNING || status == U_USING_FALLBACK_WARNING) {
- // Skip it.
- delete f;
- break;
- }
- if (U_FAILURE(status)) {
- errln(UnicodeString(loc->getName()) + names[j]
- + "ERROR could not instantiate -> " + u_errorName(status));
- continue;
- }
-#if !UCONFIG_NO_COLLATION
- for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double); numidx++) {
- double n = numbers[numidx];
- UnicodeString str;
- f->format(n, str);
-
- if (verbose) {
- logln(UnicodeString(loc->getName()) + names[j]
- + "success: " + n + " -> " + str);
- }
-
- // We do not validate the result in this test case,
- // because there are cases which do not round trip by design.
- Formattable num;
-
- // regular parse
- status = U_ZERO_ERROR;
- f->setLenient(FALSE);
- f->parse(str, num, status);
- if (U_FAILURE(status)) {
- errln(UnicodeString(loc->getName()) + names[j]
- + "ERROR could not parse '" + str + "' -> " + u_errorName(status));
- }
- // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers.
- if (j == 0) {
- if (num.getType() == Formattable::kLong && num.getLong() != n) {
- errln(UnicodeString(loc->getName()) + names[j]
- + UnicodeString("ERROR could not roundtrip ") + n
- + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong());
- }
- else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) {
- // The epsilon difference is too high.
- errln(UnicodeString(loc->getName()) + names[j]
- + UnicodeString("ERROR could not roundtrip ") + n
- + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble());
- }
- }
- if (!quick && !logKnownIssue("9503") ) {
- // lenient parse
- status = U_ZERO_ERROR;
- f->setLenient(TRUE);
- f->parse(str, num, status);
- if (U_FAILURE(status)) {
- errln(UnicodeString(loc->getName()) + names[j]
- + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status));
- }
- // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers.
- if (j == 0) {
- if (num.getType() == Formattable::kLong && num.getLong() != n) {
- errln(UnicodeString(loc->getName()) + names[j]
- + UnicodeString("ERROR could not roundtrip ") + n
- + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong());
- }
- else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) {
- // The epsilon difference is too high.
- errln(UnicodeString(loc->getName()) + names[j]
- + UnicodeString("ERROR could not roundtrip ") + n
- + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble());
- }
- }
- }
- }
-#endif
- delete f;
- }
- }
-}
-
-void
-IntlTestRBNF::TestMultiplierSubstitution(void) {
- UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;");
- UErrorCode status = U_ZERO_ERROR;
- UParseError parse_error;
- RuleBasedNumberFormat *rbnf =
- new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status);
- if (U_SUCCESS(status)) {
- UnicodeString res;
- FieldPosition pos;
- double n = 1234000.0;
- rbnf->format(n, res, pos);
- delete rbnf;
-
- UnicodeString expected(UNICODE_STRING_SIMPLE("1.234 million"));
- if (expected != res) {
- UnicodeString msg = "Expected: ";
- msg.append(expected);
- msg.append(" but got ");
- msg.append(res);
- errln(msg);
- }
- }
-}
-
-void
-IntlTestRBNF::TestSetDecimalFormatSymbols() {
- UErrorCode status = U_ZERO_ERROR;
-
- RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status);
- if (U_FAILURE(status)) {
- dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
- return;
- }
-
- DecimalFormatSymbols dfs(Locale::getEnglish(), status);
- if (U_FAILURE(status)) {
- errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status)));
- return;
- }
-
- UnicodeString expected[] = {
- UnicodeString("1,001st"),
- UnicodeString("1&001st")
- };
-
- double number = 1001;
-
- UnicodeString result;
-
- rbnf.format(number, result);
- if (result != expected[0]) {
- errln("Format Error - Got: " + result + " Expected: " + expected[0]);
- }
-
- result.remove();
-
- /* Set new symbol for testing */
- dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE);
- rbnf.setDecimalFormatSymbols(dfs);
-
- rbnf.format(number, result);
- if (result != expected[1]) {
- errln("Format Error - Got: " + result + " Expected: " + expected[1]);
- }
-}
-
-void IntlTestRBNF::TestPluralRules() {
- UErrorCode status = U_ZERO_ERROR;
- UnicodeString enRules("%digits-ordinal:-x: ->>;0: =#,##0=$(ordinal,one{st}two{nd}few{rd}other{th})$;");
- UParseError parseError;
- RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status);
- if (U_FAILURE(status)) {
- dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
- return;
- }
- const char* const enTestData[][2] = {
- { "1", "1st" },
- { "2", "2nd" },
- { "3", "3rd" },
- { "4", "4th" },
- { "11", "11th" },
- { "12", "12th" },
- { "13", "13th" },
- { "14", "14th" },
- { "21", "21st" },
- { "22", "22nd" },
- { "23", "23rd" },
- { "24", "24th" },
- { NULL, NULL }
- };
-
- doTest(&enFormatter, enTestData, TRUE);
-
- // This is trying to model the feminine form, but don't worry about the details too much.
- // We're trying to test the plural rules.
- UnicodeString ruRules("%spellout-numbering:"
- "-x: minus >>;"
- "x.x: << point >>;"
- "0: zero;"
- "1: one;"
- "2: two;"
- "3: three;"
- "4: four;"
- "5: five;"
- "6: six;"
- "7: seven;"
- "8: eight;"
- "9: nine;"
- "10: ten;"
- "11: eleven;"
- "12: twelve;"
- "13: thirteen;"
- "14: fourteen;"
- "15: fifteen;"
- "16: sixteen;"
- "17: seventeen;"
- "18: eighteen;"
- "19: nineteen;"
- "20: twenty[->>];"
- "30: thirty[->>];"
- "40: forty[->>];"
- "50: fifty[->>];"
- "60: sixty[->>];"
- "70: seventy[->>];"
- "80: eighty[->>];"
- "90: ninety[->>];"
- "100: hundred[ >>];"
- "200: << hundred[ >>];"
- "300: << hundreds[ >>];"
- "500: << hundredss[ >>];"
- "1000: << $(cardinal,one{thousand}few{thousands}other{thousandss})$[ >>];"
- "1000000: << $(cardinal,one{million}few{millions}other{millionss})$[ >>];");
- RuleBasedNumberFormat ruFormatter(ruRules, Locale("ru"), parseError, status);
- const char* const ruTestData[][2] = {
- { "1", "one" },
- { "100", "hundred" },
- { "125", "hundred twenty-five" },
- { "399", "three hundreds ninety-nine" },
- { "1,000", "one thousand" },
- { "1,001", "one thousand one" },
- { "2,000", "two thousands" },
- { "2,001", "two thousands one" },
- { "2,002", "two thousands two" },
- { "3,333", "three thousands three hundreds thirty-three" },
- { "5,000", "five thousandss" },
- { "11,000", "eleven thousandss" },
- { "21,000", "twenty-one thousand" },
- { "22,000", "twenty-two thousands" },
- { "25,001", "twenty-five thousandss one" },
- { NULL, NULL }
- };
-
- if (U_FAILURE(status)) {
- errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
- return;
- }
- doTest(&ruFormatter, ruTestData, TRUE);
-
- // Make sure there are no divide by 0 errors.
- UnicodeString result;
- RuleBasedNumberFormat(ruRules, Locale("ru"), parseError, status).format(21000, result);
- if (result.compare(UNICODE_STRING_SIMPLE("twenty-one thousand")) != 0) {
- errln("Got " + result + " for 21000");
- }
-
-}
-
-void IntlTestRBNF::TestInfinityNaN() {
- UErrorCode status = U_ZERO_ERROR;
- UParseError parseError;
- UnicodeString enRules("%default:"
- "-x: minus >>;"
- "Inf: infinite;"
- "NaN: not a number;"
- "0: =#,##0=;");
- RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status);
- const char * const enTestData[][2] = {
- {"1", "1"},
- {"\\u221E", "infinite"},
- {"-\\u221E", "minus infinite"},
- {"NaN", "not a number"},
- { NULL, NULL }
- };
- if (U_FAILURE(status)) {
- dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
- return;
- }
-
- doTest(&enFormatter, enTestData, true);
-
- // Test the default behavior when the rules are undefined.
- UnicodeString enRules2("%default:"
- "-x: ->>;"
- "0: =#,##0=;");
- RuleBasedNumberFormat enFormatter2(enRules2, Locale::getEnglish(), parseError, status);
- if (U_FAILURE(status)) {
- errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
- return;
- }
- const char * const enDefaultTestData[][2] = {
- {"1", "1"},
- {"\\u221E", "\\u221E"},
- {"-\\u221E", "-\\u221E"},
- {"NaN", "NaN"},
- { NULL, NULL }
- };
-
- doTest(&enFormatter2, enDefaultTestData, true);
-}
-
-void IntlTestRBNF::TestVariableDecimalPoint() {
- UErrorCode status = U_ZERO_ERROR;
- UParseError parseError;
- UnicodeString enRules("%spellout-numbering:"
- "-x: minus >>;"
- "x.x: << point >>;"
- "x,x: << comma >>;"
- "0.x: xpoint >>;"
- "0,x: xcomma >>;"
- "0: zero;"
- "1: one;"
- "2: two;"
- "3: three;"
- "4: four;"
- "5: five;"
- "6: six;"
- "7: seven;"
- "8: eight;"
- "9: nine;");
- RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status);
- const char * const enTestPointData[][2] = {
- {"1.1", "one point one"},
- {"1.23", "one point two three"},
- {"0.4", "xpoint four"},
- { NULL, NULL }
- };
- if (U_FAILURE(status)) {
- dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
- return;
- }
- doTest(&enFormatter, enTestPointData, true);
-
- DecimalFormatSymbols decimalFormatSymbols(Locale::getEnglish(), status);
- decimalFormatSymbols.setSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol, UNICODE_STRING_SIMPLE(","));
- enFormatter.setDecimalFormatSymbols(decimalFormatSymbols);
- const char * const enTestCommaData[][2] = {
- {"1.1", "one comma one"},
- {"1.23", "one comma two three"},
- {"0.4", "xcomma four"},
- { NULL, NULL }
- };
- doTest(&enFormatter, enTestCommaData, true);
-}
-
-void
-IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing)
-{
- // man, error reporting would be easier with printf-style syntax for unicode string and formattable
-
- UErrorCode status = U_ZERO_ERROR;
- DecimalFormatSymbols dfs("en", status);
- // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
- DecimalFormat decFmt("#,###.################", dfs, status);
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status));
- } else {
- for (int i = 0; testData[i][0]; ++i) {
- const char* numString = testData[i][0];
- const char* expectedWords = testData[i][1];
-
- log("[%i] %s = ", i, numString);
- Formattable expectedNumber;
- UnicodeString escapedNumString = UnicodeString(numString, -1, US_INV).unescape();
- decFmt.parse(escapedNumString, expectedNumber, status);
- if (U_FAILURE(status)) {
- errln("FAIL: decFmt could not parse %s", numString);
- break;
- } else {
- UnicodeString actualString;
- FieldPosition pos;
- formatter->format(expectedNumber, actualString/* , pos*/, status);
- if (U_FAILURE(status)) {
- UnicodeString msg = "Fail: formatter could not format ";
- decFmt.format(expectedNumber, msg, status);
- errln(msg);
- break;
- } else {
- UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape();
- if (actualString != expectedString) {
- UnicodeString msg = "FAIL: check failed for ";
- decFmt.format(expectedNumber, msg, status);
- msg.append(", expected ");
- msg.append(expectedString);
- msg.append(" but got ");
- msg.append(actualString);
- errln(msg);
- break;
- } else {
- logln(actualString);
- if (testParsing) {
- Formattable parsedNumber;
- formatter->parse(actualString, parsedNumber, status);
- if (U_FAILURE(status)) {
- UnicodeString msg = "FAIL: formatter could not parse ";
- msg.append(actualString);
- msg.append(" status code: " );
- msg.append(u_errorName(status));
- errln(msg);
- break;
- } else {
- if (parsedNumber != expectedNumber
- && (!uprv_isNaN(parsedNumber.getDouble()) || !uprv_isNaN(expectedNumber.getDouble())))
- {
- UnicodeString msg = "FAIL: parse failed for ";
- msg.append(actualString);
- msg.append(", expected ");
- decFmt.format(expectedNumber, msg, status);
- msg.append(", but got ");
- decFmt.format(parsedNumber, msg, status);
- errln(msg);
- break;
- }
- }
- }
- }
- }
- }
- }
- }
-}
-
-void
-IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2])
-{
- UErrorCode status = U_ZERO_ERROR;
- NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
- if (U_FAILURE(status)) {
- errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status));
- } else {
- for (int i = 0; testData[i][0]; ++i) {
- const char* spelledNumber = testData[i][0]; // spelled-out number
- const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale
-
- UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape();
- Formattable actualNumber;
- formatter->parse(spelledNumberString, actualNumber, status);
- if (U_FAILURE(status)) {
- UnicodeString msg = "FAIL: formatter could not parse ";
- msg.append(spelledNumberString);
- errln(msg);
- break;
- } else {
- // I changed the logic of this test somewhat from Java-- instead of comparing the
- // strings, I compare the Formattables. Hmmm, but the Formattables don't compare,
- // so change it back.
-
- UnicodeString asciiUSNumberString = asciiUSNumber;
- Formattable expectedNumber;
- decFmt->parse(asciiUSNumberString, expectedNumber, status);
- if (U_FAILURE(status)) {
- UnicodeString msg = "FAIL: decFmt could not parse ";
- msg.append(asciiUSNumberString);
- errln(msg);
- break;
- } else {
- UnicodeString actualNumberString;
- UnicodeString expectedNumberString;
- decFmt->format(actualNumber, actualNumberString, status);
- decFmt->format(expectedNumber, expectedNumberString, status);
- if (actualNumberString != expectedNumberString) {
- UnicodeString msg = "FAIL: parsing";
- msg.append(asciiUSNumberString);
- msg.append("\n");
- msg.append(" lenient parse failed for ");
- msg.append(spelledNumberString);
- msg.append(", expected ");
- msg.append(expectedNumberString);
- msg.append(", but got ");
- msg.append(actualNumberString);
- errln(msg);
- break;
- }
- }
- }
- }
- delete decFmt;
- }
-}
-
-/* U_HAVE_RBNF */
-#else
-
-void
-IntlTestRBNF::TestRBNFDisabled() {
- errln("*** RBNF currently disabled on this platform ***\n");
-}
-
-/* U_HAVE_RBNF */
-#endif
-
-#endif /* #if !UCONFIG_NO_FORMATTING */
« no previous file with comments | « source/test/intltest/itrbnf.h ('k') | source/test/intltest/itrbnfp.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698