OLD | NEW |
| (Empty) |
1 /* | |
2 ******************************************************************************* | |
3 * Copyright (C) 1996-2015, International Business Machines Corporation and * | |
4 * others. All Rights Reserved. * | |
5 ******************************************************************************* | |
6 */ | |
7 | |
8 #include "unicode/utypes.h" | |
9 | |
10 #if !UCONFIG_NO_FORMATTING | |
11 | |
12 #include "itrbnf.h" | |
13 | |
14 #include "unicode/umachine.h" | |
15 | |
16 #include "unicode/tblcoll.h" | |
17 #include "unicode/coleitr.h" | |
18 #include "unicode/ures.h" | |
19 #include "unicode/ustring.h" | |
20 #include "unicode/decimfmt.h" | |
21 #include "unicode/udata.h" | |
22 #include "putilimp.h" | |
23 #include "testutil.h" | |
24 | |
25 #include <string.h> | |
26 | |
27 // import com.ibm.text.RuleBasedNumberFormat; | |
28 // import com.ibm.test.TestFmwk; | |
29 | |
30 // import java.util.Locale; | |
31 // import java.text.NumberFormat; | |
32 | |
33 // current macro not in icu1.8.1 | |
34 #define TESTCASE(id,test) \ | |
35 case id: \ | |
36 name = #test; \ | |
37 if (exec) { \ | |
38 logln(#test "---"); \ | |
39 logln(); \ | |
40 test(); \ | |
41 } \ | |
42 break | |
43 | |
44 void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name,
char* /*par*/) | |
45 { | |
46 if (exec) logln("TestSuite RuleBasedNumberFormat"); | |
47 switch (index) { | |
48 #if U_HAVE_RBNF | |
49 TESTCASE(0, TestEnglishSpellout); | |
50 TESTCASE(1, TestOrdinalAbbreviations); | |
51 TESTCASE(2, TestDurations); | |
52 TESTCASE(3, TestSpanishSpellout); | |
53 TESTCASE(4, TestFrenchSpellout); | |
54 TESTCASE(5, TestSwissFrenchSpellout); | |
55 TESTCASE(6, TestItalianSpellout); | |
56 TESTCASE(7, TestGermanSpellout); | |
57 TESTCASE(8, TestThaiSpellout); | |
58 TESTCASE(9, TestAPI); | |
59 TESTCASE(10, TestFractionalRuleSet); | |
60 TESTCASE(11, TestSwedishSpellout); | |
61 TESTCASE(12, TestBelgianFrenchSpellout); | |
62 TESTCASE(13, TestSmallValues); | |
63 TESTCASE(14, TestLocalizations); | |
64 TESTCASE(15, TestAllLocales); | |
65 TESTCASE(16, TestHebrewFraction); | |
66 TESTCASE(17, TestPortugueseSpellout); | |
67 TESTCASE(18, TestMultiplierSubstitution); | |
68 TESTCASE(19, TestSetDecimalFormatSymbols); | |
69 TESTCASE(20, TestPluralRules); | |
70 TESTCASE(21, TestMultiplePluralRules); | |
71 TESTCASE(22, TestInfinityNaN); | |
72 TESTCASE(23, TestVariableDecimalPoint); | |
73 #else | |
74 TESTCASE(0, TestRBNFDisabled); | |
75 #endif | |
76 default: | |
77 name = ""; | |
78 break; | |
79 } | |
80 } | |
81 | |
82 #if U_HAVE_RBNF | |
83 | |
84 void IntlTestRBNF::TestHebrewFraction() { | |
85 | |
86 // this is the expected output for 123.45, with no '<' in it. | |
87 UChar text1[] = { | |
88 0x05de, 0x05d0, 0x05d4, 0x0020, | |
89 0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020, | |
90 0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020, | |
91 0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020, | |
92 0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020, | |
93 0x05d7, 0x05de, 0x05e9, 0x0000, | |
94 }; | |
95 UChar text2[] = { | |
96 0x05DE, 0x05D0, 0x05D4, 0x0020, | |
97 0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020, | |
98 0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020, | |
99 0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020, | |
100 0x05D0, 0x05E4, 0x05E1, 0x0020, | |
101 0x05D0, 0x05E4, 0x05E1, 0x0020, | |
102 0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020, | |
103 0x05D7, 0x05DE, 0x05E9, 0x0000, | |
104 }; | |
105 UErrorCode status = U_ZERO_ERROR; | |
106 RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT,
"he_IL", status); | |
107 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { | |
108 errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s",
u_errorName(status)); | |
109 delete formatter; | |
110 return; | |
111 } | |
112 UnicodeString result; | |
113 Formattable parseResult; | |
114 ParsePosition pp(0); | |
115 { | |
116 UnicodeString expected(text1); | |
117 formatter->format(123.45, result); | |
118 if (result != expected) { | |
119 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\
nbut got: '" + TestUtility::hex(result) + "'"); | |
120 } else { | |
121 // formatter->parse(result, parseResult, pp); | |
122 // if (parseResult.getDouble() != 123.45) { | |
123 // errln("expected 123.45 but got: %g", parseResult.getDouble()); | |
124 // } | |
125 } | |
126 } | |
127 { | |
128 UnicodeString expected(text2); | |
129 result.remove(); | |
130 formatter->format(123.0045, result); | |
131 if (result != expected) { | |
132 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\
nbut got: '" + TestUtility::hex(result) + "'"); | |
133 } else { | |
134 pp.setIndex(0); | |
135 // formatter->parse(result, parseResult, pp); | |
136 // if (parseResult.getDouble() != 123.0045) { | |
137 // errln("expected 123.0045 but got: %g", parseResult.getDouble()
); | |
138 // } | |
139 } | |
140 } | |
141 delete formatter; | |
142 } | |
143 | |
144 void | |
145 IntlTestRBNF::TestAPI() { | |
146 // This test goes through the APIs that were not tested before. | |
147 // These tests are too small to have separate test classes/functions | |
148 | |
149 UErrorCode status = U_ZERO_ERROR; | |
150 RuleBasedNumberFormat* formatter | |
151 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); | |
152 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { | |
153 dataerrln("Unable to create formatter. - %s", u_errorName(status)); | |
154 delete formatter; | |
155 return; | |
156 } | |
157 | |
158 logln("RBNF API test starting"); | |
159 // test clone | |
160 { | |
161 logln("Testing Clone"); | |
162 RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone
(); | |
163 if(rbnfClone != NULL) { | |
164 if(!(*rbnfClone == *formatter)) { | |
165 errln("Clone should be semantically equivalent to the original!"); | |
166 } | |
167 delete rbnfClone; | |
168 } else { | |
169 errln("Cloning failed!"); | |
170 } | |
171 } | |
172 | |
173 // test assignment | |
174 { | |
175 logln("Testing assignment operator"); | |
176 RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), s
tatus); | |
177 assignResult = *formatter; | |
178 if(!(assignResult == *formatter)) { | |
179 errln("Assignment result should be semantically equivalent to the original
!"); | |
180 } | |
181 } | |
182 | |
183 // test rule constructor | |
184 { | |
185 logln("Testing rule constructor"); | |
186 LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STR
ING "rbnf", "en", &status)); | |
187 if(U_FAILURE(status)) { | |
188 errln("Unable to access resource bundle with data!"); | |
189 } else { | |
190 int32_t ruleLen = 0; | |
191 int32_t len = 0; | |
192 LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRu
les", NULL, &status)); | |
193 LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "
SpelloutRules", NULL, &status)); | |
194 UnicodeString desc; | |
195 while (ures_hasNext(ruleSets.getAlias())) { | |
196 const UChar* currentString = ures_getNextString(ruleSets.getAlias(),
&len, NULL, &status); | |
197 ruleLen += len; | |
198 desc.append(currentString); | |
199 } | |
200 | |
201 const UChar *spelloutRules = desc.getTerminatedBuffer(); | |
202 | |
203 if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) { | |
204 errln("Unable to access the rules string!"); | |
205 } else { | |
206 UParseError perror; | |
207 RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), per
ror, status); | |
208 if(!(ruleCtorResult == *formatter)) { | |
209 errln("Formatter constructed from the original rules should be semanti
cally equivalent to the original!"); | |
210 } | |
211 | |
212 // Jitterbug 4452, for coverage | |
213 RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS
(), perror, status); | |
214 if(!(nf == *formatter)) { | |
215 errln("Formatter constructed from the original rules should be semanti
cally equivalent to the original!"); | |
216 } | |
217 } | |
218 } | |
219 } | |
220 | |
221 // test getRules | |
222 { | |
223 logln("Testing getRules function"); | |
224 UnicodeString rules = formatter->getRules(); | |
225 UParseError perror; | |
226 RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status
); | |
227 | |
228 if(!(fromRulesResult == *formatter)) { | |
229 errln("Formatter constructed from rules obtained by getRules should be sem
antically equivalent to the original!"); | |
230 } | |
231 } | |
232 | |
233 | |
234 { | |
235 logln("Testing copy constructor"); | |
236 RuleBasedNumberFormat copyCtorResult(*formatter); | |
237 if(!(copyCtorResult == *formatter)) { | |
238 errln("Copy constructor result result should be semantically equivalent to
the original!"); | |
239 } | |
240 } | |
241 | |
242 #if !UCONFIG_NO_COLLATION | |
243 // test ruleset names | |
244 { | |
245 logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule
set names"); | |
246 int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames(); | |
247 if(noOfRuleSetNames == 0) { | |
248 errln("Number of rule set names should be more than zero"); | |
249 } | |
250 UnicodeString ruleSetName; | |
251 int32_t i = 0; | |
252 int32_t intFormatNum = 34567; | |
253 double doubleFormatNum = 893411.234; | |
254 logln("number of rule set names is %i", noOfRuleSetNames); | |
255 for(i = 0; i < noOfRuleSetNames; i++) { | |
256 FieldPosition pos1, pos2; | |
257 UnicodeString intFormatResult, doubleFormatResult; | |
258 Formattable intParseResult, doubleParseResult; | |
259 | |
260 ruleSetName = formatter->getRuleSetName(i); | |
261 log("Rule set name %i is ", i); | |
262 log(ruleSetName); | |
263 logln(". Format results are: "); | |
264 intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatRe
sult, pos1, status); | |
265 doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubl
eFormatResult, pos2, status); | |
266 if(U_FAILURE(status)) { | |
267 errln("Format using a rule set failed"); | |
268 break; | |
269 } | |
270 logln(intFormatResult); | |
271 logln(doubleFormatResult); | |
272 formatter->setLenient(TRUE); | |
273 formatter->parse(intFormatResult, intParseResult, status); | |
274 formatter->parse(doubleFormatResult, doubleParseResult, status); | |
275 | |
276 logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong()
, doubleParseResult.getDouble()); | |
277 | |
278 formatter->setLenient(FALSE); | |
279 formatter->parse(intFormatResult, intParseResult, status); | |
280 formatter->parse(doubleFormatResult, doubleParseResult, status); | |
281 | |
282 logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(
), doubleParseResult.getDouble()); | |
283 | |
284 if(U_FAILURE(status)) { | |
285 errln("Error during parsing"); | |
286 } | |
287 | |
288 intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResul
t, pos1, status); | |
289 if(U_SUCCESS(status)) { | |
290 errln("Using invalid rule set name should have failed"); | |
291 break; | |
292 } | |
293 status = U_ZERO_ERROR; | |
294 doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleForm
atResult, pos2, status); | |
295 if(U_SUCCESS(status)) { | |
296 errln("Using invalid rule set name should have failed"); | |
297 break; | |
298 } | |
299 status = U_ZERO_ERROR; | |
300 } | |
301 status = U_ZERO_ERROR; | |
302 } | |
303 #endif | |
304 | |
305 // test API | |
306 UnicodeString expected("four point five",""); | |
307 logln("Testing format(double)"); | |
308 UnicodeString result; | |
309 formatter->format(4.5,result); | |
310 if(result != expected) { | |
311 errln("Formatted 4.5, expected " + expected + " got " + result); | |
312 } else { | |
313 logln("Formatted 4.5, expected " + expected + " got " + result); | |
314 } | |
315 result.remove(); | |
316 expected = "four"; | |
317 formatter->format((int32_t)4,result); | |
318 if(result != expected) { | |
319 errln("Formatted 4, expected " + expected + " got " + result); | |
320 } else { | |
321 logln("Formatted 4, expected " + expected + " got " + result); | |
322 } | |
323 | |
324 result.remove(); | |
325 FieldPosition pos; | |
326 formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR); | |
327 if(result != expected) { | |
328 errln("Formatted 4 int64_t, expected " + expected + " got " + result); | |
329 } else { | |
330 logln("Formatted 4 int64_t, expected " + expected + " got " + result); | |
331 } | |
332 | |
333 //Jitterbug 4452, for coverage | |
334 result.remove(); | |
335 FieldPosition pos2; | |
336 formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, stat
us = U_ZERO_ERROR); | |
337 if(result != expected) { | |
338 errln("Formatted 4 int64_t, expected " + expected + " got " + result); | |
339 } else { | |
340 logln("Formatted 4 int64_t, expected " + expected + " got " + result); | |
341 } | |
342 | |
343 // clean up | |
344 logln("Cleaning up"); | |
345 delete formatter; | |
346 } | |
347 | |
348 /** | |
349 * Perform a simple spot check on the parsing going into an infinite loop for al
ternate rules. | |
350 */ | |
351 void IntlTestRBNF::TestMultiplePluralRules() { | |
352 // This is trying to model the feminine form, but don't worry about the deta
ils too much. | |
353 // We're trying to test the plural rules where there are different prefixes. | |
354 UnicodeString rules("%spellout-cardinal-feminine-genitive:" | |
355 "0: zero;" | |
356 "1: ono;" | |
357 "2: two;" | |
358 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$
[ >>];" | |
359 "%spellout-cardinal-feminine:" | |
360 "x.x: [<< $(cardinal,one{singleton}other{plurality})$ ]>%%fracti
ons>;" | |
361 "0: zero;" | |
362 "1: one;" | |
363 "2: two;" | |
364 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$
[ >>];" | |
365 "%%fractions:" | |
366 "10: <%spellout-cardinal-feminine< $(cardinal,one{oneth}other{te
nth})$;" | |
367 "100: <%spellout-cardinal-feminine< $(cardinal,one{1hundredth}ot
her{hundredth})$;"); | |
368 UErrorCode status = U_ZERO_ERROR; | |
369 UParseError pError; | |
370 RuleBasedNumberFormat formatter(rules, Locale("ru"), pError, status); | |
371 Formattable result; | |
372 UnicodeString resultStr; | |
373 FieldPosition pos; | |
374 | |
375 if (U_FAILURE(status)) { | |
376 dataerrln("Unable to create formatter - %s", u_errorName(status)); | |
377 return; | |
378 } | |
379 | |
380 formatter.parse(formatter.format(1000.0, resultStr, pos, status), result, st
atus); | |
381 if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thou
sand")) { | |
382 errln("RuleBasedNumberFormat did not return the correct value. Got: %d",
result.getLong()); | |
383 errln(resultStr); | |
384 } | |
385 resultStr.remove(); | |
386 formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-f
eminine-genitive"), resultStr, pos, status), result, status); | |
387 if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("ono thou
sand")) { | |
388 errln("RuleBasedNumberFormat(cardinal-feminine-genitive) did not return
the correct value. Got: %d", result.getLong()); | |
389 errln(resultStr); | |
390 } | |
391 resultStr.remove(); | |
392 formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-f
eminine"), resultStr, pos, status), result, status); | |
393 if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thou
sand")) { | |
394 errln("RuleBasedNumberFormat(spellout-cardinal-feminine) did not return
the correct value. Got: %d", result.getLong()); | |
395 errln(resultStr); | |
396 } | |
397 static const char* const testData[][2] = { | |
398 { "0", "zero" }, | |
399 { "1", "one" }, | |
400 { "2", "two" }, | |
401 { "0.1", "one oneth" }, | |
402 { "0.2", "two tenth" }, | |
403 { "1.1", "one singleton one oneth" }, | |
404 { "1.2", "one singleton two tenth" }, | |
405 { "2.1", "two plurality one oneth" }, | |
406 { "2.2", "two plurality two tenth" }, | |
407 { "0.01", "one 1hundredth" }, | |
408 { "0.02", "two hundredth" }, | |
409 { NULL, NULL } | |
410 }; | |
411 doTest(&formatter, testData, TRUE); | |
412 } | |
413 | |
414 void IntlTestRBNF::TestFractionalRuleSet() | |
415 { | |
416 UnicodeString fracRules( | |
417 "%main:\n" | |
418 // this rule formats the number if it's 1 or more. It formats | |
419 // the integral part using a DecimalFormat ("#,##0" puts | |
420 // thousands separators in the right places) and the fractional | |
421 // part using %%frac. If there is no fractional part, it | |
422 // just shows the integral part. | |
423 " x.0: <#,##0<[ >%%frac>];\n" | |
424 // this rule formats the number if it's between 0 and 1. It | |
425 // shows only the fractional part (0.5 shows up as "1/2," not | |
426 // "0 1/2") | |
427 " 0.x: >%%frac>;\n" | |
428 // the fraction rule set. This works the same way as the one in the | |
429 // preceding example: We multiply the fractional part of the number | |
430 // being formatted by each rule's base value and use the rule that | |
431 // produces the result closest to 0 (or the first rule that produces 0). | |
432 // Since we only provide rules for the numbers from 2 to 10, we know | |
433 // we'll get a fraction with a denominator between 2 and 10. | |
434 // "<0<" causes the numerator of the fraction to be formatted | |
435 // using numerals | |
436 "%%frac:\n" | |
437 " 2: 1/2;\n" | |
438 " 3: <0</3;\n" | |
439 " 4: <0</4;\n" | |
440 " 5: <0</5;\n" | |
441 " 6: <0</6;\n" | |
442 " 7: <0</7;\n" | |
443 " 8: <0</8;\n" | |
444 " 9: <0</9;\n" | |
445 " 10: <0</10;\n"); | |
446 | |
447 // mondo hack | |
448 int len = fracRules.length(); | |
449 int change = 2; | |
450 for (int i = 0; i < len; ++i) { | |
451 UChar ch = fracRules.charAt(i); | |
452 if (ch == '\n') { | |
453 change = 2; // change ok | |
454 } else if (ch == ':') { | |
455 change = 1; // change, but once we hit a non-space char, don't chang
e | |
456 } else if (ch == ' ') { | |
457 if (change != 0) { | |
458 fracRules.setCharAt(i, (UChar)0x200e); | |
459 } | |
460 } else { | |
461 if (change == 1) { | |
462 change = 0; | |
463 } | |
464 } | |
465 } | |
466 | |
467 UErrorCode status = U_ZERO_ERROR; | |
468 UParseError perror; | |
469 RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, sta
tus); | |
470 if (U_FAILURE(status)) { | |
471 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
472 } else { | |
473 static const char* const testData[][2] = { | |
474 { "0", "0" }, | |
475 { ".1", "1/10" }, | |
476 { ".11", "1/9" }, | |
477 { ".125", "1/8" }, | |
478 { ".1428", "1/7" }, | |
479 { ".1667", "1/6" }, | |
480 { ".2", "1/5" }, | |
481 { ".25", "1/4" }, | |
482 { ".333", "1/3" }, | |
483 { ".5", "1/2" }, | |
484 { "1.1", "1 1/10" }, | |
485 { "2.11", "2 1/9" }, | |
486 { "3.125", "3 1/8" }, | |
487 { "4.1428", "4 1/7" }, | |
488 { "5.1667", "5 1/6" }, | |
489 { "6.2", "6 1/5" }, | |
490 { "7.25", "7 1/4" }, | |
491 { "8.333", "8 1/3" }, | |
492 { "9.5", "9 1/2" }, | |
493 { ".2222", "2/9" }, | |
494 { ".4444", "4/9" }, | |
495 { ".5555", "5/9" }, | |
496 { "1.2856", "1 2/7" }, | |
497 { NULL, NULL } | |
498 }; | |
499 doTest(&formatter, testData, FALSE); // exact values aren't parsable fro
m fractions | |
500 } | |
501 } | |
502 | |
503 #if 0 | |
504 #define LLAssert(a) \ | |
505 if (!(a)) errln("FAIL: " #a) | |
506 | |
507 void IntlTestRBNF::TestLLongConstructors() | |
508 { | |
509 logln("Testing constructors"); | |
510 | |
511 // constant (shouldn't really be public) | |
512 LLAssert(llong(llong::kD32).asDouble() == llong::kD32); | |
513 | |
514 // internal constructor (shouldn't really be public) | |
515 LLAssert(llong(0, 1).asDouble() == 1); | |
516 LLAssert(llong(1, 0).asDouble() == llong::kD32); | |
517 LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1); | |
518 | |
519 // public empty constructor | |
520 LLAssert(llong().asDouble() == 0); | |
521 | |
522 // public int32_t constructor | |
523 LLAssert(llong((int32_t)0).asInt() == (int32_t)0); | |
524 LLAssert(llong((int32_t)1).asInt() == (int32_t)1); | |
525 LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1); | |
526 LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff); | |
527 LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1); | |
528 LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000); | |
529 | |
530 // public int16_t constructor | |
531 LLAssert(llong((int16_t)0).asInt() == (int16_t)0); | |
532 LLAssert(llong((int16_t)1).asInt() == (int16_t)1); | |
533 LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1); | |
534 LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff); | |
535 LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff); | |
536 LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000); | |
537 | |
538 // public int8_t constructor | |
539 LLAssert(llong((int8_t)0).asInt() == (int8_t)0); | |
540 LLAssert(llong((int8_t)1).asInt() == (int8_t)1); | |
541 LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1); | |
542 LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f); | |
543 LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff); | |
544 LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80); | |
545 | |
546 // public uint16_t constructor | |
547 LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0); | |
548 LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1); | |
549 LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1); | |
550 LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff); | |
551 LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff); | |
552 LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000); | |
553 | |
554 // public uint32_t constructor | |
555 LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0); | |
556 LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1); | |
557 LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1); | |
558 LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff); | |
559 LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1); | |
560 LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000); | |
561 | |
562 // public double constructor | |
563 LLAssert(llong((double)0).asDouble() == (double)0); | |
564 LLAssert(llong((double)1).asDouble() == (double)1); | |
565 LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff); | |
566 LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000); | |
567 LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001); | |
568 | |
569 // can't access uprv_maxmantissa, so fake it | |
570 double maxmantissa = (llong((int32_t)1) << 40).asDouble(); | |
571 LLAssert(llong(maxmantissa).asDouble() == maxmantissa); | |
572 LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa); | |
573 | |
574 // copy constructor | |
575 LLAssert(llong(llong(0, 1)).asDouble() == 1); | |
576 LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32); | |
577 LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1); | |
578 | |
579 // asInt - test unsigned to signed narrowing conversion | |
580 LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff); | |
581 LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000); | |
582 | |
583 // asUInt - test signed to unsigned narrowing conversion | |
584 LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1); | |
585 LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000); | |
586 | |
587 // asDouble already tested | |
588 | |
589 } | |
590 | |
591 void IntlTestRBNF::TestLLongSimpleOperators() | |
592 { | |
593 logln("Testing simple operators"); | |
594 | |
595 // operator== | |
596 LLAssert(llong() == llong(0, 0)); | |
597 LLAssert(llong(1,0) == llong(1, 0)); | |
598 LLAssert(llong(0,1) == llong(0, 1)); | |
599 | |
600 // operator!= | |
601 LLAssert(llong(1,0) != llong(1,1)); | |
602 LLAssert(llong(0,1) != llong(1,1)); | |
603 LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff)); | |
604 | |
605 // unsigned > | |
606 LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff))); | |
607 | |
608 // unsigned < | |
609 LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1))); | |
610 | |
611 // unsigned >= | |
612 LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff))); | |
613 LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1))); | |
614 | |
615 // unsigned <= | |
616 LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1))); | |
617 LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1))); | |
618 | |
619 // operator> | |
620 LLAssert(llong(1, 1) > llong(1, 0)); | |
621 LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff)); | |
622 LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0)); | |
623 LLAssert(llong(1, 0) > llong(0, 0x7fffffff)); | |
624 LLAssert(llong(1, 0) > llong(0, 0xffffffff)); | |
625 LLAssert(llong(0, 0) > llong(0x80000000, 1)); | |
626 | |
627 // operator< | |
628 LLAssert(llong(1, 0) < llong(1, 1)); | |
629 LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000)); | |
630 LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1)); | |
631 LLAssert(llong(0, 0x7fffffff) < llong(1, 0)); | |
632 LLAssert(llong(0, 0xffffffff) < llong(1, 0)); | |
633 LLAssert(llong(0x80000000, 1) < llong(0, 0)); | |
634 | |
635 // operator>= | |
636 LLAssert(llong(1, 1) >= llong(1, 0)); | |
637 LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff)); | |
638 LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0)); | |
639 LLAssert(llong(1, 0) >= llong(0, 0x7fffffff)); | |
640 LLAssert(llong(1, 0) >= llong(0, 0xffffffff)); | |
641 LLAssert(llong(0, 0) >= llong(0x80000000, 1)); | |
642 LLAssert(llong() >= llong(0, 0)); | |
643 LLAssert(llong(1,0) >= llong(1, 0)); | |
644 LLAssert(llong(0,1) >= llong(0, 1)); | |
645 | |
646 // operator<= | |
647 LLAssert(llong(1, 0) <= llong(1, 1)); | |
648 LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000)); | |
649 LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1)); | |
650 LLAssert(llong(0, 0x7fffffff) <= llong(1, 0)); | |
651 LLAssert(llong(0, 0xffffffff) <= llong(1, 0)); | |
652 LLAssert(llong(0x80000000, 1) <= llong(0, 0)); | |
653 LLAssert(llong() <= llong(0, 0)); | |
654 LLAssert(llong(1,0) <= llong(1, 0)); | |
655 LLAssert(llong(0,1) <= llong(0, 1)); | |
656 | |
657 // operator==(int32) | |
658 LLAssert(llong() == (int32_t)0); | |
659 LLAssert(llong(0,1) == (int32_t)1); | |
660 | |
661 // operator!=(int32) | |
662 LLAssert(llong(1,0) != (int32_t)0); | |
663 LLAssert(llong(0,1) != (int32_t)2); | |
664 LLAssert(llong(0,0xffffffff) != (int32_t)-1); | |
665 | |
666 llong negOne(0xffffffff, 0xffffffff); | |
667 | |
668 // operator>(int32) | |
669 LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff); | |
670 LLAssert(negOne > (int32_t)-2); | |
671 LLAssert(llong(1, 0) > (int32_t)0x7fffffff); | |
672 LLAssert(llong(0, 0) > (int32_t)-1); | |
673 | |
674 // operator<(int32) | |
675 LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff); | |
676 LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1); | |
677 | |
678 // operator>=(int32) | |
679 LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff); | |
680 LLAssert(negOne >= (int32_t)-2); | |
681 LLAssert(llong(1, 0) >= (int32_t)0x7fffffff); | |
682 LLAssert(llong(0, 0) >= (int32_t)-1); | |
683 LLAssert(llong() >= (int32_t)0); | |
684 LLAssert(llong(0,1) >= (int32_t)1); | |
685 | |
686 // operator<=(int32) | |
687 LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff); | |
688 LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1); | |
689 LLAssert(llong() <= (int32_t)0); | |
690 LLAssert(llong(0,1) <= (int32_t)1); | |
691 | |
692 // operator= | |
693 LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1); | |
694 | |
695 // operator <<= | |
696 LLAssert((llong(1, 1) <<= 0) == llong(1, 1)); | |
697 LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000)); | |
698 LLAssert((llong(1, 1) <<= 32) == llong(1, 0)); | |
699 LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0)); | |
700 LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used | |
701 LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits
are used | |
702 | |
703 // operator << | |
704 LLAssert((llong((int32_t)1) << 5).asUInt() == 32); | |
705 | |
706 // operator >>= (sign extended) | |
707 LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc))
; | |
708 LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abc
de)); | |
709 LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff)); | |
710 LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000)); | |
711 LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x800000
00)); // only lower 6 bits are used | |
712 LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); //
only lower 6 bits are used | |
713 | |
714 // operator >> sign extended) | |
715 LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcd
e)); | |
716 | |
717 // ushr (right shift without sign extension) | |
718 LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc))
; | |
719 LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abc
de)); | |
720 LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1)); | |
721 LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000)); | |
722 LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000
000)); // only lower 6 bits are used | |
723 LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits
are used | |
724 | |
725 // operator&(llong) | |
726 LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) ==
llong(0x00005555, 0x55550000)); | |
727 | |
728 // operator|(llong) | |
729 LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) ==
llong(0xffffffff, 0xffffffff)); | |
730 | |
731 // operator^(llong) | |
732 LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) ==
llong(0xffffaaaa, 0xaaaaffff)); | |
733 | |
734 // operator&(uint32) | |
735 LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0,
0x55550000)); | |
736 | |
737 // operator|(uint32) | |
738 LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x5
5555555, 0xffffffff)); | |
739 | |
740 // operator^(uint32) | |
741 LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x5
5555555, 0xaaaaffff)); | |
742 | |
743 // operator~ | |
744 LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa)); | |
745 | |
746 // operator&=(llong) | |
747 LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) ==
llong(0x00005555, 0x55550000)); | |
748 | |
749 // operator|=(llong) | |
750 LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) ==
llong(0xffffffff, 0xffffffff)); | |
751 | |
752 // operator^=(llong) | |
753 LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) ==
llong(0xffffaaaa, 0xaaaaffff)); | |
754 | |
755 // operator&=(uint32) | |
756 LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0,
0x55550000)); | |
757 | |
758 // operator|=(uint32) | |
759 LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x
55555555, 0xffffffff)); | |
760 | |
761 // operator^=(uint32) | |
762 LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x
55555555, 0xaaaaffff)); | |
763 | |
764 // prefix inc | |
765 LLAssert(llong(1, 0) == ++llong(0,0xffffffff)); | |
766 | |
767 // prefix dec | |
768 LLAssert(llong(0,0xffffffff) == --llong(1, 0)); | |
769 | |
770 // postfix inc | |
771 { | |
772 llong n(0, 0xffffffff); | |
773 LLAssert(llong(0, 0xffffffff) == n++); | |
774 LLAssert(llong(1, 0) == n); | |
775 } | |
776 | |
777 // postfix dec | |
778 { | |
779 llong n(1, 0); | |
780 LLAssert(llong(1, 0) == n--); | |
781 LLAssert(llong(0, 0xffffffff) == n); | |
782 } | |
783 | |
784 // unary minus | |
785 LLAssert(llong(0, 0) == -llong(0, 0)); | |
786 LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1)); | |
787 LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff)); | |
788 LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1)); | |
789 LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't han
dle overflow | |
790 | |
791 // operator-= | |
792 { | |
793 llong n; | |
794 LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff)); | |
795 LLAssert(n == llong(0xffffffff, 0xffffffff)); | |
796 | |
797 n = llong(1, 0); | |
798 LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff)); | |
799 LLAssert(n == llong(0, 0xffffffff)); | |
800 } | |
801 | |
802 // operator- | |
803 { | |
804 llong n; | |
805 LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff)); | |
806 LLAssert(n == llong(0, 0)); | |
807 | |
808 n = llong(1, 0); | |
809 LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff)); | |
810 LLAssert(n == llong(1, 0)); | |
811 } | |
812 | |
813 // operator+= | |
814 { | |
815 llong n(0xffffffff, 0xffffffff); | |
816 LLAssert((n += llong(0, 1)) == llong(0, 0)); | |
817 LLAssert(n == llong(0, 0)); | |
818 | |
819 n = llong(0, 0xffffffff); | |
820 LLAssert((n += llong(0, 1)) == llong(1, 0)); | |
821 LLAssert(n == llong(1, 0)); | |
822 } | |
823 | |
824 // operator+ | |
825 { | |
826 llong n(0xffffffff, 0xffffffff); | |
827 LLAssert((n + llong(0, 1)) == llong(0, 0)); | |
828 LLAssert(n == llong(0xffffffff, 0xffffffff)); | |
829 | |
830 n = llong(0, 0xffffffff); | |
831 LLAssert((n + llong(0, 1)) == llong(1, 0)); | |
832 LLAssert(n == llong(0, 0xffffffff)); | |
833 } | |
834 | |
835 } | |
836 | |
837 void IntlTestRBNF::TestLLong() | |
838 { | |
839 logln("Starting TestLLong"); | |
840 | |
841 TestLLongConstructors(); | |
842 | |
843 TestLLongSimpleOperators(); | |
844 | |
845 logln("Testing operator*=, operator*"); | |
846 | |
847 // operator*=, operator* | |
848 // small and large values, positive, &NEGative, zero | |
849 // also test commutivity | |
850 { | |
851 const llong ZERO; | |
852 const llong ONE(0, 1); | |
853 const llong NEG_ONE((int32_t)-1); | |
854 const llong THREE(0, 3); | |
855 const llong NEG_THREE((int32_t)-3); | |
856 const llong TWO_TO_16(0, 0x10000); | |
857 const llong NEG_TWO_TO_16 = -TWO_TO_16; | |
858 const llong TWO_TO_32(1, 0); | |
859 const llong NEG_TWO_TO_32 = -TWO_TO_32; | |
860 | |
861 const llong NINE(0, 9); | |
862 const llong NEG_NINE = -NINE; | |
863 | |
864 const llong TWO_TO_16X3(0, 0x00030000); | |
865 const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3; | |
866 | |
867 const llong TWO_TO_32X3(3, 0); | |
868 const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3; | |
869 | |
870 const llong TWO_TO_48(0x10000, 0); | |
871 const llong NEG_TWO_TO_48 = -TWO_TO_48; | |
872 | |
873 const int32_t VALUE_WIDTH = 9; | |
874 const llong* values[VALUE_WIDTH] = { | |
875 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_1
6, &TWO_TO_32, &NEG_TWO_TO_32 | |
876 }; | |
877 | |
878 const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = { | |
879 &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, | |
880 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO
_16, &TWO_TO_32, &NEG_TWO_TO_32, | |
881 &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_1
6, &NEG_TWO_TO_32, &TWO_TO_32, | |
882 &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_
TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3, | |
883 &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_
TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3, | |
884 &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &
TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48, | |
885 &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &
NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48, | |
886 &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &
TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO, | |
887 &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &
NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO | |
888 }; | |
889 | |
890 for (int i = 0; i < VALUE_WIDTH; ++i) { | |
891 for (int j = 0; j < VALUE_WIDTH; ++j) { | |
892 llong lhs = *values[i]; | |
893 llong rhs = *values[j]; | |
894 llong ans = *answers[i*VALUE_WIDTH + j]; | |
895 | |
896 llong n = lhs; | |
897 | |
898 LLAssert((n *= rhs) == ans); | |
899 LLAssert(n == ans); | |
900 | |
901 n = lhs; | |
902 LLAssert((n * rhs) == ans); | |
903 LLAssert(n == lhs); | |
904 } | |
905 } | |
906 } | |
907 | |
908 logln("Testing operator/=, operator/"); | |
909 // operator/=, operator/ | |
910 // test num = 0, div = 0, pos/neg, > 2^32, div > num | |
911 { | |
912 const llong ZERO; | |
913 const llong ONE(0, 1); | |
914 const llong NEG_ONE = -ONE; | |
915 const llong MAX(0x7fffffff, 0xffffffff); | |
916 const llong MIN(0x80000000, 0); | |
917 const llong TWO(0, 2); | |
918 const llong NEG_TWO = -TWO; | |
919 const llong FIVE(0, 5); | |
920 const llong NEG_FIVE = -FIVE; | |
921 const llong TWO_TO_32(1, 0); | |
922 const llong NEG_TWO_TO_32 = -TWO_TO_32; | |
923 const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0); | |
924 const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5; | |
925 const llong TWO_TO_32X5 = TWO_TO_32 * FIVE; | |
926 const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5; | |
927 | |
928 const llong* tuples[] = { // lhs, rhs, ans | |
929 &ZERO, &ZERO, &ZERO, | |
930 &ONE, &ZERO,&MAX, | |
931 &NEG_ONE, &ZERO, &MIN, | |
932 &ONE, &ONE, &ONE, | |
933 &ONE, &NEG_ONE, &NEG_ONE, | |
934 &NEG_ONE, &ONE, &NEG_ONE, | |
935 &NEG_ONE, &NEG_ONE, &ONE, | |
936 &FIVE, &TWO, &TWO, | |
937 &FIVE, &NEG_TWO, &NEG_TWO, | |
938 &NEG_FIVE, &TWO, &NEG_TWO, | |
939 &NEG_FIVE, &NEG_TWO, &TWO, | |
940 &TWO, &FIVE, &ZERO, | |
941 &TWO, &NEG_FIVE, &ZERO, | |
942 &NEG_TWO, &FIVE, &ZERO, | |
943 &NEG_TWO, &NEG_FIVE, &ZERO, | |
944 &TWO_TO_32, &TWO_TO_32, &ONE, | |
945 &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE, | |
946 &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE, | |
947 &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE, | |
948 &TWO_TO_32, &FIVE, &TWO_TO_32d5, | |
949 &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5, | |
950 &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5, | |
951 &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5, | |
952 &TWO_TO_32X5, &FIVE, &TWO_TO_32, | |
953 &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32, | |
954 &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32, | |
955 &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32, | |
956 &TWO_TO_32X5, &TWO_TO_32, &FIVE, | |
957 &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE, | |
958 &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE, | |
959 &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE | |
960 }; | |
961 const int TUPLE_WIDTH = 3; | |
962 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WI
DTH; | |
963 for (int i = 0; i < TUPLE_COUNT; ++i) { | |
964 const llong lhs = *tuples[i*TUPLE_WIDTH+0]; | |
965 const llong rhs = *tuples[i*TUPLE_WIDTH+1]; | |
966 const llong ans = *tuples[i*TUPLE_WIDTH+2]; | |
967 | |
968 llong n = lhs; | |
969 if (!((n /= rhs) == ans)) { | |
970 errln("fail: (n /= rhs) == ans"); | |
971 } | |
972 LLAssert(n == ans); | |
973 | |
974 n = lhs; | |
975 LLAssert((n / rhs) == ans); | |
976 LLAssert(n == lhs); | |
977 } | |
978 } | |
979 | |
980 logln("Testing operator%%=, operator%%"); | |
981 //operator%=, operator% | |
982 { | |
983 const llong ZERO; | |
984 const llong ONE(0, 1); | |
985 const llong TWO(0, 2); | |
986 const llong THREE(0,3); | |
987 const llong FOUR(0, 4); | |
988 const llong FIVE(0, 5); | |
989 const llong SIX(0, 6); | |
990 | |
991 const llong NEG_ONE = -ONE; | |
992 const llong NEG_TWO = -TWO; | |
993 const llong NEG_THREE = -THREE; | |
994 const llong NEG_FOUR = -FOUR; | |
995 const llong NEG_FIVE = -FIVE; | |
996 const llong NEG_SIX = -SIX; | |
997 | |
998 const llong NINETY_NINE(0, 99); | |
999 const llong HUNDRED(0, 100); | |
1000 const llong HUNDRED_ONE(0, 101); | |
1001 | |
1002 const llong BIG(0x12345678, 0x9abcdef0); | |
1003 const llong BIG_FIVE(BIG * FIVE); | |
1004 const llong BIG_FIVEm1 = BIG_FIVE - ONE; | |
1005 const llong BIG_FIVEp1 = BIG_FIVE + ONE; | |
1006 | |
1007 const llong* tuples[] = { | |
1008 &ZERO, &FIVE, &ZERO, | |
1009 &ONE, &FIVE, &ONE, | |
1010 &TWO, &FIVE, &TWO, | |
1011 &THREE, &FIVE, &THREE, | |
1012 &FOUR, &FIVE, &FOUR, | |
1013 &FIVE, &FIVE, &ZERO, | |
1014 &SIX, &FIVE, &ONE, | |
1015 &ZERO, &NEG_FIVE, &ZERO, | |
1016 &ONE, &NEG_FIVE, &ONE, | |
1017 &TWO, &NEG_FIVE, &TWO, | |
1018 &THREE, &NEG_FIVE, &THREE, | |
1019 &FOUR, &NEG_FIVE, &FOUR, | |
1020 &FIVE, &NEG_FIVE, &ZERO, | |
1021 &SIX, &NEG_FIVE, &ONE, | |
1022 &NEG_ONE, &FIVE, &NEG_ONE, | |
1023 &NEG_TWO, &FIVE, &NEG_TWO, | |
1024 &NEG_THREE, &FIVE, &NEG_THREE, | |
1025 &NEG_FOUR, &FIVE, &NEG_FOUR, | |
1026 &NEG_FIVE, &FIVE, &ZERO, | |
1027 &NEG_SIX, &FIVE, &NEG_ONE, | |
1028 &NEG_ONE, &NEG_FIVE, &NEG_ONE, | |
1029 &NEG_TWO, &NEG_FIVE, &NEG_TWO, | |
1030 &NEG_THREE, &NEG_FIVE, &NEG_THREE, | |
1031 &NEG_FOUR, &NEG_FIVE, &NEG_FOUR, | |
1032 &NEG_FIVE, &NEG_FIVE, &ZERO, | |
1033 &NEG_SIX, &NEG_FIVE, &NEG_ONE, | |
1034 &NINETY_NINE, &FIVE, &FOUR, | |
1035 &HUNDRED, &FIVE, &ZERO, | |
1036 &HUNDRED_ONE, &FIVE, &ONE, | |
1037 &BIG_FIVEm1, &FIVE, &FOUR, | |
1038 &BIG_FIVE, &FIVE, &ZERO, | |
1039 &BIG_FIVEp1, &FIVE, &ONE | |
1040 }; | |
1041 const int TUPLE_WIDTH = 3; | |
1042 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WI
DTH; | |
1043 for (int i = 0; i < TUPLE_COUNT; ++i) { | |
1044 const llong lhs = *tuples[i*TUPLE_WIDTH+0]; | |
1045 const llong rhs = *tuples[i*TUPLE_WIDTH+1]; | |
1046 const llong ans = *tuples[i*TUPLE_WIDTH+2]; | |
1047 | |
1048 llong n = lhs; | |
1049 if (!((n %= rhs) == ans)) { | |
1050 errln("fail: (n %= rhs) == ans"); | |
1051 } | |
1052 LLAssert(n == ans); | |
1053 | |
1054 n = lhs; | |
1055 LLAssert((n % rhs) == ans); | |
1056 LLAssert(n == lhs); | |
1057 } | |
1058 } | |
1059 | |
1060 logln("Testing pow"); | |
1061 // pow | |
1062 LLAssert(llong(0, 0).pow(0) == llong(0, 0)); | |
1063 LLAssert(llong(0, 0).pow(2) == llong(0, 0)); | |
1064 LLAssert(llong(0, 2).pow(0) == llong(0, 1)); | |
1065 LLAssert(llong(0, 2).pow(2) == llong(0, 4)); | |
1066 LLAssert(llong(0, 2).pow(32) == llong(1, 0)); | |
1067 LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 *
5 * 5 * 5)); | |
1068 | |
1069 // absolute value | |
1070 { | |
1071 const llong n(0xffffffff,0xffffffff); | |
1072 LLAssert(n.abs() == llong(0, 1)); | |
1073 } | |
1074 | |
1075 #ifdef RBNF_DEBUG | |
1076 logln("Testing atoll"); | |
1077 // atoll | |
1078 const char empty[] = ""; | |
1079 const char zero[] = "0"; | |
1080 const char neg_one[] = "-1"; | |
1081 const char neg_12345[] = "-12345"; | |
1082 const char big1[] = "123456789abcdef0"; | |
1083 const char big2[] = "fFfFfFfFfFfFfFfF"; | |
1084 LLAssert(llong::atoll(empty) == llong(0, 0)); | |
1085 LLAssert(llong::atoll(zero) == llong(0, 0)); | |
1086 LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff)); | |
1087 LLAssert(llong::atoll(neg_12345) == -llong(0, 12345)); | |
1088 LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0)); | |
1089 LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff)); | |
1090 #endif | |
1091 | |
1092 // u_atoll | |
1093 const UChar uempty[] = { 0 }; | |
1094 const UChar uzero[] = { 0x30, 0 }; | |
1095 const UChar uneg_one[] = { 0x2d, 0x31, 0 }; | |
1096 const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 }; | |
1097 const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39
, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 }; | |
1098 const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66
, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 }; | |
1099 LLAssert(llong::utoll(uempty) == llong(0, 0)); | |
1100 LLAssert(llong::utoll(uzero) == llong(0, 0)); | |
1101 LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff)); | |
1102 LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345)); | |
1103 LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0)); | |
1104 LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff)); | |
1105 | |
1106 #ifdef RBNF_DEBUG | |
1107 logln("Testing lltoa"); | |
1108 // lltoa | |
1109 { | |
1110 char buf[64]; // ascii | |
1111 LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp
(buf, zero) == 0)); | |
1112 LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)
) == 2) && (strcmp(buf, neg_one) == 0)); | |
1113 LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) &&
(strcmp(buf, neg_12345) == 0)); | |
1114 LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf)
, 16) == 16) && (strcmp(buf, big1) == 0)); | |
1115 } | |
1116 #endif | |
1117 | |
1118 logln("Testing u_lltoa"); | |
1119 // u_lltoa | |
1120 { | |
1121 UChar buf[64]; | |
1122 LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strc
mp(buf, uzero) == 0)); | |
1123 LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)
) == 2) && (u_strcmp(buf, uneg_one) == 0)); | |
1124 LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) &&
(u_strcmp(buf, uneg_12345) == 0)); | |
1125 LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf)
, 16) == 16) && (u_strcmp(buf, ubig1) == 0)); | |
1126 } | |
1127 } | |
1128 | |
1129 /* if 0 */ | |
1130 #endif | |
1131 | |
1132 void | |
1133 IntlTestRBNF::TestEnglishSpellout() | |
1134 { | |
1135 UErrorCode status = U_ZERO_ERROR; | |
1136 RuleBasedNumberFormat* formatter | |
1137 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); | |
1138 if (U_FAILURE(status)) { | |
1139 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1140 } else { | |
1141 static const char* const testData[][2] = { | |
1142 { "1", "one" }, | |
1143 { "2", "two" }, | |
1144 { "15", "fifteen" }, | |
1145 { "20", "twenty" }, | |
1146 { "23", "twenty-three" }, | |
1147 { "73", "seventy-three" }, | |
1148 { "88", "eighty-eight" }, | |
1149 { "100", "one hundred" }, | |
1150 { "106", "one hundred six" }, | |
1151 { "127", "one hundred twenty-seven" }, | |
1152 { "200", "two hundred" }, | |
1153 { "579", "five hundred seventy-nine" }, | |
1154 { "1,000", "one thousand" }, | |
1155 { "2,000", "two thousand" }, | |
1156 { "3,004", "three thousand four" }, | |
1157 { "4,567", "four thousand five hundred sixty-seven" }, | |
1158 { "15,943", "fifteen thousand nine hundred forty-three" }, | |
1159 { "2,345,678", "two million three hundred forty-five thousand six hu
ndred seventy-eight" }, | |
1160 { "-36", "minus thirty-six" }, | |
1161 { "234.567", "two hundred thirty-four point five six seven" }, | |
1162 { NULL, NULL} | |
1163 }; | |
1164 | |
1165 doTest(formatter, testData, TRUE); | |
1166 | |
1167 #if !UCONFIG_NO_COLLATION | |
1168 if( !logKnownIssue("9503") ) { | |
1169 formatter->setLenient(TRUE); | |
1170 static const char* lpTestData[][2] = { | |
1171 { "fifty-7", "57" }, | |
1172 { " fifty-7", "57" }, | |
1173 { " fifty-7", "57" }, | |
1174 { "2 thousand six HUNDRED fifty-7", "2,657" }, | |
1175 { "fifteen hundred and zero", "1,500" }, | |
1176 { "FOurhundred thiRTY six", "436" }, | |
1177 { NULL, NULL} | |
1178 }; | |
1179 doLenientParseTest(formatter, lpTestData); | |
1180 } | |
1181 #endif | |
1182 } | |
1183 delete formatter; | |
1184 } | |
1185 | |
1186 void | |
1187 IntlTestRBNF::TestOrdinalAbbreviations() | |
1188 { | |
1189 UErrorCode status = U_ZERO_ERROR; | |
1190 RuleBasedNumberFormat* formatter | |
1191 = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status); | |
1192 | |
1193 if (U_FAILURE(status)) { | |
1194 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1195 } else { | |
1196 static const char* const testData[][2] = { | |
1197 { "1", "1st" }, | |
1198 { "2", "2nd" }, | |
1199 { "3", "3rd" }, | |
1200 { "4", "4th" }, | |
1201 { "7", "7th" }, | |
1202 { "10", "10th" }, | |
1203 { "11", "11th" }, | |
1204 { "13", "13th" }, | |
1205 { "20", "20th" }, | |
1206 { "21", "21st" }, | |
1207 { "22", "22nd" }, | |
1208 { "23", "23rd" }, | |
1209 { "24", "24th" }, | |
1210 { "33", "33rd" }, | |
1211 { "102", "102nd" }, | |
1212 { "312", "312th" }, | |
1213 { "12,345", "12,345th" }, | |
1214 { NULL, NULL} | |
1215 }; | |
1216 | |
1217 doTest(formatter, testData, FALSE); | |
1218 } | |
1219 delete formatter; | |
1220 } | |
1221 | |
1222 void | |
1223 IntlTestRBNF::TestDurations() | |
1224 { | |
1225 UErrorCode status = U_ZERO_ERROR; | |
1226 RuleBasedNumberFormat* formatter | |
1227 = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status); | |
1228 | |
1229 if (U_FAILURE(status)) { | |
1230 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1231 } else { | |
1232 static const char* const testData[][2] = { | |
1233 { "3,600", "1:00:00" }, //move me and I fail | |
1234 { "0", "0 sec." }, | |
1235 { "1", "1 sec." }, | |
1236 { "24", "24 sec." }, | |
1237 { "60", "1:00" }, | |
1238 { "73", "1:13" }, | |
1239 { "145", "2:25" }, | |
1240 { "666", "11:06" }, | |
1241 // { "3,600", "1:00:00" }, | |
1242 { "3,740", "1:02:20" }, | |
1243 { "10,293", "2:51:33" }, | |
1244 { NULL, NULL} | |
1245 }; | |
1246 | |
1247 doTest(formatter, testData, TRUE); | |
1248 | |
1249 #if !UCONFIG_NO_COLLATION | |
1250 formatter->setLenient(TRUE); | |
1251 static const char* lpTestData[][2] = { | |
1252 { "2-51-33", "10,293" }, | |
1253 { NULL, NULL} | |
1254 }; | |
1255 doLenientParseTest(formatter, lpTestData); | |
1256 #endif | |
1257 } | |
1258 delete formatter; | |
1259 } | |
1260 | |
1261 void | |
1262 IntlTestRBNF::TestSpanishSpellout() | |
1263 { | |
1264 UErrorCode status = U_ZERO_ERROR; | |
1265 RuleBasedNumberFormat* formatter | |
1266 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), stat
us); | |
1267 | |
1268 if (U_FAILURE(status)) { | |
1269 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1270 } else { | |
1271 static const char* const testData[][2] = { | |
1272 { "1", "uno" }, | |
1273 { "6", "seis" }, | |
1274 { "16", "diecis\\u00e9is" }, | |
1275 { "20", "veinte" }, | |
1276 { "24", "veinticuatro" }, | |
1277 { "26", "veintis\\u00e9is" }, | |
1278 { "73", "setenta y tres" }, | |
1279 { "88", "ochenta y ocho" }, | |
1280 { "100", "cien" }, | |
1281 { "106", "ciento seis" }, | |
1282 { "127", "ciento veintisiete" }, | |
1283 { "200", "doscientos" }, | |
1284 { "579", "quinientos setenta y nueve" }, | |
1285 { "1,000", "mil" }, | |
1286 { "2,000", "dos mil" }, | |
1287 { "3,004", "tres mil cuatro" }, | |
1288 { "4,567", "cuatro mil quinientos sesenta y siete" }, | |
1289 { "15,943", "quince mil novecientos cuarenta y tres" }, | |
1290 { "2,345,678", "dos millones trescientos cuarenta y cinco mil seisci
entos setenta y ocho"}, | |
1291 { "-36", "menos treinta y seis" }, | |
1292 { "234.567", "doscientos treinta y cuatro coma cinco seis siete" }, | |
1293 { NULL, NULL} | |
1294 }; | |
1295 | |
1296 doTest(formatter, testData, TRUE); | |
1297 } | |
1298 delete formatter; | |
1299 } | |
1300 | |
1301 void | |
1302 IntlTestRBNF::TestFrenchSpellout() | |
1303 { | |
1304 UErrorCode status = U_ZERO_ERROR; | |
1305 RuleBasedNumberFormat* formatter | |
1306 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status)
; | |
1307 | |
1308 if (U_FAILURE(status)) { | |
1309 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1310 } else { | |
1311 static const char* const testData[][2] = { | |
1312 { "1", "un" }, | |
1313 { "15", "quinze" }, | |
1314 { "20", "vingt" }, | |
1315 { "21", "vingt-et-un" }, | |
1316 { "23", "vingt-trois" }, | |
1317 { "62", "soixante-deux" }, | |
1318 { "70", "soixante-dix" }, | |
1319 { "71", "soixante-et-onze" }, | |
1320 { "73", "soixante-treize" }, | |
1321 { "80", "quatre-vingts" }, | |
1322 { "88", "quatre-vingt-huit" }, | |
1323 { "100", "cent" }, | |
1324 { "106", "cent six" }, | |
1325 { "127", "cent vingt-sept" }, | |
1326 { "200", "deux cents" }, | |
1327 { "579", "cinq cent soixante-dix-neuf" }, | |
1328 { "1,000", "mille" }, | |
1329 { "1,123", "mille cent vingt-trois" }, | |
1330 { "1,594", "mille cinq cent quatre-vingt-quatorze" }, | |
1331 { "2,000", "deux mille" }, | |
1332 { "3,004", "trois mille quatre" }, | |
1333 { "4,567", "quatre mille cinq cent soixante-sept" }, | |
1334 { "15,943", "quinze mille neuf cent quarante-trois" }, | |
1335 { "2,345,678", "deux millions trois cent quarante-cinq mille six cen
t soixante-dix-huit" }, | |
1336 { "-36", "moins trente-six" }, | |
1337 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, | |
1338 { NULL, NULL} | |
1339 }; | |
1340 | |
1341 doTest(formatter, testData, TRUE); | |
1342 | |
1343 #if !UCONFIG_NO_COLLATION | |
1344 formatter->setLenient(TRUE); | |
1345 static const char* lpTestData[][2] = { | |
1346 { "trente-et-un", "31" }, | |
1347 { "un cent quatre vingt dix huit", "198" }, | |
1348 { NULL, NULL} | |
1349 }; | |
1350 doLenientParseTest(formatter, lpTestData); | |
1351 #endif | |
1352 } | |
1353 delete formatter; | |
1354 } | |
1355 | |
1356 static const char* const swissFrenchTestData[][2] = { | |
1357 { "1", "un" }, | |
1358 { "15", "quinze" }, | |
1359 { "20", "vingt" }, | |
1360 { "21", "vingt-et-un" }, | |
1361 { "23", "vingt-trois" }, | |
1362 { "62", "soixante-deux" }, | |
1363 { "70", "septante" }, | |
1364 { "71", "septante-et-un" }, | |
1365 { "73", "septante-trois" }, | |
1366 { "80", "huitante" }, | |
1367 { "88", "huitante-huit" }, | |
1368 { "100", "cent" }, | |
1369 { "106", "cent six" }, | |
1370 { "127", "cent vingt-sept" }, | |
1371 { "200", "deux cents" }, | |
1372 { "579", "cinq cent septante-neuf" }, | |
1373 { "1,000", "mille" }, | |
1374 { "1,123", "mille cent vingt-trois" }, | |
1375 { "1,594", "mille cinq cent nonante-quatre" }, | |
1376 { "2,000", "deux mille" }, | |
1377 { "3,004", "trois mille quatre" }, | |
1378 { "4,567", "quatre mille cinq cent soixante-sept" }, | |
1379 { "15,943", "quinze mille neuf cent quarante-trois" }, | |
1380 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septan
te-huit" }, | |
1381 { "-36", "moins trente-six" }, | |
1382 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, | |
1383 { NULL, NULL} | |
1384 }; | |
1385 | |
1386 void | |
1387 IntlTestRBNF::TestSwissFrenchSpellout() | |
1388 { | |
1389 UErrorCode status = U_ZERO_ERROR; | |
1390 RuleBasedNumberFormat* formatter | |
1391 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), stat
us); | |
1392 | |
1393 if (U_FAILURE(status)) { | |
1394 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1395 } else { | |
1396 doTest(formatter, swissFrenchTestData, TRUE); | |
1397 } | |
1398 delete formatter; | |
1399 } | |
1400 | |
1401 static const char* const belgianFrenchTestData[][2] = { | |
1402 { "1", "un" }, | |
1403 { "15", "quinze" }, | |
1404 { "20", "vingt" }, | |
1405 { "21", "vingt-et-un" }, | |
1406 { "23", "vingt-trois" }, | |
1407 { "62", "soixante-deux" }, | |
1408 { "70", "septante" }, | |
1409 { "71", "septante-et-un" }, | |
1410 { "73", "septante-trois" }, | |
1411 { "80", "quatre-vingts" }, | |
1412 { "88", "quatre-vingt huit" }, | |
1413 { "90", "nonante" }, | |
1414 { "91", "nonante-et-un" }, | |
1415 { "95", "nonante-cinq" }, | |
1416 { "100", "cent" }, | |
1417 { "106", "cent six" }, | |
1418 { "127", "cent vingt-sept" }, | |
1419 { "200", "deux cents" }, | |
1420 { "579", "cinq cent septante-neuf" }, | |
1421 { "1,000", "mille" }, | |
1422 { "1,123", "mille cent vingt-trois" }, | |
1423 { "1,594", "mille cinq cent nonante-quatre" }, | |
1424 { "2,000", "deux mille" }, | |
1425 { "3,004", "trois mille quatre" }, | |
1426 { "4,567", "quatre mille cinq cent soixante-sept" }, | |
1427 { "15,943", "quinze mille neuf cent quarante-trois" }, | |
1428 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septan
te-huit" }, | |
1429 { "-36", "moins trente-six" }, | |
1430 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, | |
1431 { NULL, NULL} | |
1432 }; | |
1433 | |
1434 | |
1435 void | |
1436 IntlTestRBNF::TestBelgianFrenchSpellout() | |
1437 { | |
1438 UErrorCode status = U_ZERO_ERROR; | |
1439 RuleBasedNumberFormat* formatter | |
1440 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), stat
us); | |
1441 | |
1442 if (U_FAILURE(status)) { | |
1443 errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(statu
s)); | |
1444 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1445 } else { | |
1446 // Belgian french should match Swiss french. | |
1447 doTest(formatter, belgianFrenchTestData, TRUE); | |
1448 } | |
1449 delete formatter; | |
1450 } | |
1451 | |
1452 void | |
1453 IntlTestRBNF::TestItalianSpellout() | |
1454 { | |
1455 UErrorCode status = U_ZERO_ERROR; | |
1456 RuleBasedNumberFormat* formatter | |
1457 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status
); | |
1458 | |
1459 if (U_FAILURE(status)) { | |
1460 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1461 } else { | |
1462 static const char* const testData[][2] = { | |
1463 { "1", "uno" }, | |
1464 { "15", "quindici" }, | |
1465 { "20", "venti" }, | |
1466 { "23", "venti\\u00ADtr\\u00E9" }, | |
1467 { "73", "settanta\\u00ADtr\\u00E9" }, | |
1468 { "88", "ottant\\u00ADotto" }, | |
1469 { "100", "cento" }, | |
1470 { "101", "cento\\u00ADuno" }, | |
1471 { "103", "cento\\u00ADtr\\u00E9" }, | |
1472 { "106", "cento\\u00ADsei" }, | |
1473 { "108", "cent\\u00ADotto" }, | |
1474 { "127", "cento\\u00ADventi\\u00ADsette" }, | |
1475 { "181", "cent\\u00ADottant\\u00ADuno" }, | |
1476 { "200", "due\\u00ADcento" }, | |
1477 { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" }, | |
1478 { "1,000", "mille" }, | |
1479 { "2,000", "due\\u00ADmila" }, | |
1480 { "3,004", "tre\\u00ADmila\\u00ADquattro" }, | |
1481 { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessan
ta\\u00ADsette" }, | |
1482 { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaran
ta\\u00ADtr\\u00E9" }, | |
1483 { "-36", "meno trenta\\u00ADsei" }, | |
1484 { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cin
que sei sette" }, | |
1485 { NULL, NULL} | |
1486 }; | |
1487 | |
1488 doTest(formatter, testData, TRUE); | |
1489 } | |
1490 delete formatter; | |
1491 } | |
1492 | |
1493 void | |
1494 IntlTestRBNF::TestPortugueseSpellout() | |
1495 { | |
1496 UErrorCode status = U_ZERO_ERROR; | |
1497 RuleBasedNumberFormat* formatter | |
1498 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status
); | |
1499 | |
1500 if (U_FAILURE(status)) { | |
1501 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1502 } else { | |
1503 static const char* const testData[][2] = { | |
1504 { "1", "um" }, | |
1505 { "15", "quinze" }, | |
1506 { "20", "vinte" }, | |
1507 { "23", "vinte e tr\\u00EAs" }, | |
1508 { "73", "setenta e tr\\u00EAs" }, | |
1509 { "88", "oitenta e oito" }, | |
1510 { "100", "cem" }, | |
1511 { "106", "cento e seis" }, | |
1512 { "108", "cento e oito" }, | |
1513 { "127", "cento e vinte e sete" }, | |
1514 { "181", "cento e oitenta e um" }, | |
1515 { "200", "duzentos" }, | |
1516 { "579", "quinhentos e setenta e nove" }, | |
1517 { "1,000", "mil" }, | |
1518 { "2,000", "dois mil" }, | |
1519 { "3,004", "tr\\u00EAs mil e quatro" }, | |
1520 { "4,567", "quatro mil e quinhentos e sessenta e sete" }, | |
1521 { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" }, | |
1522 { "-36", "menos trinta e seis" }, | |
1523 { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis se
te" }, | |
1524 { NULL, NULL} | |
1525 }; | |
1526 | |
1527 doTest(formatter, testData, TRUE); | |
1528 } | |
1529 delete formatter; | |
1530 } | |
1531 void | |
1532 IntlTestRBNF::TestGermanSpellout() | |
1533 { | |
1534 UErrorCode status = U_ZERO_ERROR; | |
1535 RuleBasedNumberFormat* formatter | |
1536 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status
); | |
1537 | |
1538 if (U_FAILURE(status)) { | |
1539 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1540 } else { | |
1541 static const char* const testData[][2] = { | |
1542 { "1", "eins" }, | |
1543 { "15", "f\\u00fcnfzehn" }, | |
1544 { "20", "zwanzig" }, | |
1545 { "23", "drei\\u00ADund\\u00ADzwanzig" }, | |
1546 { "73", "drei\\u00ADund\\u00ADsiebzig" }, | |
1547 { "88", "acht\\u00ADund\\u00ADachtzig" }, | |
1548 { "100", "ein\\u00ADhundert" }, | |
1549 { "106", "ein\\u00ADhundert\\u00ADsechs" }, | |
1550 { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" }, | |
1551 { "200", "zwei\\u00ADhundert" }, | |
1552 { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzi
g" }, | |
1553 { "1,000", "ein\\u00ADtausend" }, | |
1554 { "2,000", "zwei\\u00ADtausend" }, | |
1555 { "3,004", "drei\\u00ADtausend\\u00ADvier" }, | |
1556 { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00AD
sieben\\u00ADund\\u00ADsechzig" }, | |
1557 { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\
u00ADdrei\\u00ADund\\u00ADvierzig" }, | |
1558 { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\
u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00AD
und\\u00ADsiebzig" }, | |
1559 { NULL, NULL} | |
1560 }; | |
1561 | |
1562 doTest(formatter, testData, TRUE); | |
1563 | |
1564 #if !UCONFIG_NO_COLLATION | |
1565 formatter->setLenient(TRUE); | |
1566 static const char* lpTestData[][2] = { | |
1567 { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" }, | |
1568 { NULL, NULL} | |
1569 }; | |
1570 doLenientParseTest(formatter, lpTestData); | |
1571 #endif | |
1572 } | |
1573 delete formatter; | |
1574 } | |
1575 | |
1576 void | |
1577 IntlTestRBNF::TestThaiSpellout() | |
1578 { | |
1579 UErrorCode status = U_ZERO_ERROR; | |
1580 RuleBasedNumberFormat* formatter | |
1581 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status); | |
1582 | |
1583 if (U_FAILURE(status)) { | |
1584 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1585 } else { | |
1586 static const char* const testData[][2] = { | |
1587 { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" }, | |
1588 { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, | |
1589 { "10", "\\u0e2a\\u0e34\\u0e1a" }, | |
1590 { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }
, | |
1591 { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u
0e40\\u0e2d\\u0e47\\u0e14" }, | |
1592 { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\
u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, | |
1593 { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38
\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" }
, | |
1594 { NULL, NULL} | |
1595 }; | |
1596 | |
1597 doTest(formatter, testData, TRUE); | |
1598 } | |
1599 delete formatter; | |
1600 } | |
1601 | |
1602 void | |
1603 IntlTestRBNF::TestSwedishSpellout() | |
1604 { | |
1605 UErrorCode status = U_ZERO_ERROR; | |
1606 RuleBasedNumberFormat* formatter | |
1607 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status); | |
1608 | |
1609 if (U_FAILURE(status)) { | |
1610 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1611 } else { | |
1612 static const char* testDataDefault[][2] = { | |
1613 { "101", "ett\\u00adhundra\\u00adett" }, | |
1614 { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" }, | |
1615 { "1,001", "et\\u00adtusen ett" }, | |
1616 { "1,100", "et\\u00adtusen ett\\u00adhundra" }, | |
1617 { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, | |
1618 { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00
adfyra" }, | |
1619 { "10,001", "tio\\u00adtusen ett" }, | |
1620 { "11,000", "elva\\u00adtusen" }, | |
1621 { "12,000", "tolv\\u00adtusen" }, | |
1622 { "20,000", "tjugo\\u00adtusen" }, | |
1623 { "21,000", "tjugo\\u00adet\\u00adtusen" }, | |
1624 { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, | |
1625 { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" }, | |
1626 { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" }, | |
1627 { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhun
dra" }, | |
1628 { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" }, | |
1629 { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adf
em\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" }, | |
1630 { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen
fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" }, | |
1631 { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrt
io\\u00adfem komma sex sju \\u00e5tta" }, | |
1632 { NULL, NULL } | |
1633 }; | |
1634 doTest(formatter, testDataDefault, TRUE); | |
1635 | |
1636 static const char* testDataNeutrum[][2] = { | |
1637 { "101", "ett\\u00adhundra\\u00adett" }, | |
1638 { "1,001", "et\\u00adtusen ett" }, | |
1639 { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, | |
1640 { "10,001", "tio\\u00adtusen ett" }, | |
1641 { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, | |
1642 { NULL, NULL } | |
1643 }; | |
1644 | |
1645 formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status); | |
1646 if (U_SUCCESS(status)) { | |
1647 logln(" testing spellout-cardinal-neuter rules"); | |
1648 doTest(formatter, testDataNeutrum, TRUE); | |
1649 } | |
1650 else { | |
1651 errln("Can't test spellout-cardinal-neuter rules"); | |
1652 } | |
1653 | |
1654 static const char* testDataYear[][2] = { | |
1655 { "101", "ett\\u00adhundra\\u00adett" }, | |
1656 { "900", "nio\\u00adhundra" }, | |
1657 { "1,001", "et\\u00adtusen ett" }, | |
1658 { "1,100", "elva\\u00adhundra" }, | |
1659 { "1,101", "elva\\u00adhundra\\u00adett" }, | |
1660 { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" }, | |
1661 { "2,001", "tjugo\\u00adhundra\\u00adett" }, | |
1662 { "10,001", "tio\\u00adtusen ett" }, | |
1663 { NULL, NULL } | |
1664 }; | |
1665 | |
1666 status = U_ZERO_ERROR; | |
1667 formatter->setDefaultRuleSet("%spellout-numbering-year", status); | |
1668 if (U_SUCCESS(status)) { | |
1669 logln("testing year rules"); | |
1670 doTest(formatter, testDataYear, TRUE); | |
1671 } | |
1672 else { | |
1673 errln("Can't test year rules"); | |
1674 } | |
1675 | |
1676 } | |
1677 delete formatter; | |
1678 } | |
1679 | |
1680 void | |
1681 IntlTestRBNF::TestSmallValues() | |
1682 { | |
1683 UErrorCode status = U_ZERO_ERROR; | |
1684 RuleBasedNumberFormat* formatter | |
1685 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status); | |
1686 | |
1687 if (U_FAILURE(status)) { | |
1688 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1689 } else { | |
1690 static const char* const testDataDefault[][2] = { | |
1691 { "0.001", "zero point zero zero one" }, | |
1692 { "0.0001", "zero point zero zero zero one" }, | |
1693 { "0.00001", "zero point zero zero zero zero one" }, | |
1694 { "0.000001", "zero point zero zero zero zero zero one" }, | |
1695 { "0.0000001", "zero point zero zero zero zero zero zero one" }, | |
1696 { "0.00000001", "zero point zero zero zero zero zero zero zero one" }, | |
1697 { "0.000000001", "zero point zero zero zero zero zero zero zero zero one
" }, | |
1698 { "0.0000000001", "zero point zero zero zero zero zero zero zero zero ze
ro one" }, | |
1699 { "0.00000000001", "zero point zero zero zero zero zero zero zero zero z
ero zero one" }, | |
1700 { "0.000000000001", "zero point zero zero zero zero zero zero zero zero
zero zero zero one" }, | |
1701 { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero
zero zero zero zero one" }, | |
1702 { "0.00000000000001", "zero point zero zero zero zero zero zero zero zer
o zero zero zero zero zero one" }, | |
1703 { "0.000000000000001", "zero point zero zero zero zero zero zero zero ze
ro zero zero zero zero zero zero one" }, | |
1704 { "10,000,000.001", "ten million point zero zero one" }, | |
1705 { "10,000,000.0001", "ten million point zero zero zero one" }, | |
1706 { "10,000,000.00001", "ten million point zero zero zero zero one" }, | |
1707 { "10,000,000.000001", "ten million point zero zero zero zero zero one"
}, | |
1708 { "10,000,000.0000001", "ten million point zero zero zero zero zero zero
one" }, | |
1709 // { "10,000,000.00000001", "ten million point zero zero zero zero zero z
ero zero one" }, | |
1710 // { "10,000,000.000000002", "ten million point zero zero zero zero zero
zero zero zero two" }, | |
1711 { "10,000,000", "ten million" }, | |
1712 // { "1,234,567,890.0987654", "one billion, two hundred and thirty-four m
illion, five hundred and sixty-seven thousand, eight hundred and ninety point ze
ro nine eight seven six five four" }, | |
1713 // { "123,456,789.9876543", "one hundred and twenty-three million, four h
undred and fifty-six thousand, seven hundred and eighty-nine point nine eight se
ven six five four three" }, | |
1714 // { "12,345,678.87654321", "twelve million, three hundred and forty-five
thousand, six hundred and seventy-eight point eight seven six five four three t
wo one" }, | |
1715 { "1,234,567.7654321", "one million two hundred thirty-four thousand fiv
e hundred sixty-seven point seven six five four three two one" }, | |
1716 { "123,456.654321", "one hundred twenty-three thousand four hundred fift
y-six point six five four three two one" }, | |
1717 { "12,345.54321", "twelve thousand three hundred forty-five point five f
our three two one" }, | |
1718 { "1,234.4321", "one thousand two hundred thirty-four point four three t
wo one" }, | |
1719 { "123.321", "one hundred twenty-three point three two one" }, | |
1720 { "0.0000000011754944", "zero point zero zero zero zero zero zero zero z
ero one one seven five four nine four four" }, | |
1721 { "0.000001175494351", "zero point zero zero zero zero zero one one seve
n five four nine four three five one" }, | |
1722 { NULL, NULL } | |
1723 }; | |
1724 | |
1725 doTest(formatter, testDataDefault, TRUE); | |
1726 | |
1727 delete formatter; | |
1728 } | |
1729 } | |
1730 | |
1731 void | |
1732 IntlTestRBNF::TestLocalizations(void) | |
1733 { | |
1734 int i; | |
1735 UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n" | |
1736 "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need"); | |
1737 | |
1738 UErrorCode status = U_ZERO_ERROR; | |
1739 UParseError perror; | |
1740 RuleBasedNumberFormat formatter(rules, perror, status); | |
1741 if (U_FAILURE(status)) { | |
1742 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa
me(status)); | |
1743 } else { | |
1744 { | |
1745 static const char* const testData[][2] = { | |
1746 { "0", "nada" }, | |
1747 { "5", "yah, some" }, | |
1748 { "423", "plenty" }, | |
1749 { "12345", "more'n you'll ever need" }, | |
1750 { NULL, NULL } | |
1751 }; | |
1752 doTest(&formatter, testData, FALSE); | |
1753 } | |
1754 | |
1755 { | |
1756 UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, l
eOther>,<de, 'das Main', 'etwas anderes'>>"); | |
1757 static const char* const testData[][2] = { | |
1758 { "0", "no" }, | |
1759 { "5", "some" }, | |
1760 { "423", "a lot" }, | |
1761 { "12345", "tons" }, | |
1762 { NULL, NULL } | |
1763 }; | |
1764 RuleBasedNumberFormat formatter0(rules, loc, perror, status); | |
1765 if (U_FAILURE(status)) { | |
1766 errln("failed to build second formatter"); | |
1767 } else { | |
1768 doTest(&formatter0, testData, FALSE); | |
1769 | |
1770 { | |
1771 // exercise localization info | |
1772 Locale locale0("en__VALLEY@turkey=gobblegobble"); | |
1773 Locale locale1("de_DE_FOO"); | |
1774 Locale locale2("ja_JP"); | |
1775 UnicodeString name = formatter0.getRuleSetName(0); | |
1776 if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main" | |
1777 && formatter0.getRuleSetDisplayName(0, locale1) == "das Ma
in" | |
1778 && formatter0.getRuleSetDisplayName(0, locale2) == "%main" | |
1779 && formatter0.getRuleSetDisplayName(name, locale0) == "Mai
n" | |
1780 && formatter0.getRuleSetDisplayName(name, locale1) == "das
Main" | |
1781 && formatter0.getRuleSetDisplayName(name, locale2) == "%ma
in"){ | |
1782 logln("getRuleSetDisplayName tested"); | |
1783 }else { | |
1784 errln("failed to getRuleSetDisplayName"); | |
1785 } | |
1786 } | |
1787 | |
1788 for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(
); ++i) { | |
1789 Locale locale = formatter0.getRuleSetDisplayNameLocale(i, st
atus); | |
1790 if (U_SUCCESS(status)) { | |
1791 for (int j = 0; j < formatter0.getNumberOfRuleSetNames()
; ++j) { | |
1792 UnicodeString name = formatter0.getRuleSetName(j); | |
1793 UnicodeString lname = formatter0.getRuleSetDisplayNa
me(j, locale); | |
1794 UnicodeString msg = locale.getName(); | |
1795 msg.append(": "); | |
1796 msg.append(name); | |
1797 msg.append(" = "); | |
1798 msg.append(lname); | |
1799 logln(msg); | |
1800 } | |
1801 } | |
1802 } | |
1803 } | |
1804 } | |
1805 | |
1806 { | |
1807 static const char* goodLocs[] = { | |
1808 "", // zero-length ok, same as providing no localization data | |
1809 "<<>>", // no public rule sets ok | |
1810 "<<%main>>", // no localizations ok | |
1811 "<<%main,>,<en, Main,>>", // comma before close angle ok | |
1812 "<<%main>,<en, ',<>\" '>>", // quotes everything until next quot
e | |
1813 "<<%main>,<'en', \"it's ok\">>", // double quotes work too | |
1814 " \n <\n <\n %main\n >\n , \t <\t en\t , \tfoo \t\t > \
n\n > \n ", // Pattern_White_Space ok | |
1815 }; | |
1816 int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]); | |
1817 | |
1818 static const char* badLocs[] = { | |
1819 " ", // non-zero length | |
1820 "<>", // empty array | |
1821 "<", // unclosed outer array | |
1822 "<<", // unclosed inner array | |
1823 "<<,>>", // unexpected comma | |
1824 "<<''>>", // empty string | |
1825 " x<<%main>>", // first non space char not open angle bracket | |
1826 "<%main>", // missing inner array | |
1827 "<<%main %other>>", // elements missing separating commma (space
s must be quoted) | |
1828 "<<%main><en, Main>>", // arrays missing separating comma | |
1829 "<<%main>,<en, main, foo>>", // too many elements in locale data | |
1830 "<<%main>,<en>>", // too few elements in locale data | |
1831 "<<<%main>>>", // unexpected open angle | |
1832 "<<%main<>>>", // unexpected open angle | |
1833 "<<%main, %other>,<en,,>>", // implicit empty strings | |
1834 "<<%main>,<en,''>>", // empty string | |
1835 "<<%main>, < en, '>>", // unterminated quote | |
1836 "<<%main>, < en, \"<>>", // unterminated quote | |
1837 "<<%main\">>", // quote in string | |
1838 "<<%main'>>", // quote in string | |
1839 "<<%main<>>", // open angle in string | |
1840 "<<%main>> x", // extra non-space text at end | |
1841 | |
1842 }; | |
1843 int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]); | |
1844 | |
1845 for (i = 0; i < goodLocsLen; ++i) { | |
1846 logln("[%d] '%s'", i, goodLocs[i]); | |
1847 UErrorCode status = U_ZERO_ERROR; | |
1848 UnicodeString loc(goodLocs[i]); | |
1849 RuleBasedNumberFormat fmt(rules, loc, perror, status); | |
1850 if (U_FAILURE(status)) { | |
1851 errln("Failed parse of good localization string: '%s'", good
Locs[i]); | |
1852 } | |
1853 } | |
1854 | |
1855 for (i = 0; i < badLocsLen; ++i) { | |
1856 logln("[%d] '%s'", i, badLocs[i]); | |
1857 UErrorCode status = U_ZERO_ERROR; | |
1858 UnicodeString loc(badLocs[i]); | |
1859 RuleBasedNumberFormat fmt(rules, loc, perror, status); | |
1860 if (U_SUCCESS(status)) { | |
1861 errln("Successful parse of bad localization string: '%s'", b
adLocs[i]); | |
1862 } | |
1863 } | |
1864 } | |
1865 } | |
1866 } | |
1867 | |
1868 void | |
1869 IntlTestRBNF::TestAllLocales() | |
1870 { | |
1871 const char* names[] = { | |
1872 " (spellout) ", | |
1873 " (ordinal) " | |
1874 // " (duration) " // This is English only, and it's not really supported
in CLDR anymore. | |
1875 }; | |
1876 double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111}; | |
1877 | |
1878 int32_t count = 0; | |
1879 const Locale* locales = Locale::getAvailableLocales(count); | |
1880 for (int i = 0; i < count; ++i) { | |
1881 const Locale* loc = &locales[i]; | |
1882 | |
1883 for (int j = 0; j < 2; ++j) { | |
1884 UErrorCode status = U_ZERO_ERROR; | |
1885 RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTa
g)j, *loc, status); | |
1886 | |
1887 if (status == U_USING_DEFAULT_WARNING || status == U_USING_FALLBACK_
WARNING) { | |
1888 // Skip it. | |
1889 delete f; | |
1890 break; | |
1891 } | |
1892 if (U_FAILURE(status)) { | |
1893 errln(UnicodeString(loc->getName()) + names[j] | |
1894 + "ERROR could not instantiate -> " + u_errorName(status)); | |
1895 continue; | |
1896 } | |
1897 #if !UCONFIG_NO_COLLATION | |
1898 for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double
); numidx++) { | |
1899 double n = numbers[numidx]; | |
1900 UnicodeString str; | |
1901 f->format(n, str); | |
1902 | |
1903 if (verbose) { | |
1904 logln(UnicodeString(loc->getName()) + names[j] | |
1905 + "success: " + n + " -> " + str); | |
1906 } | |
1907 | |
1908 // We do not validate the result in this test case, | |
1909 // because there are cases which do not round trip by design. | |
1910 Formattable num; | |
1911 | |
1912 // regular parse | |
1913 status = U_ZERO_ERROR; | |
1914 f->setLenient(FALSE); | |
1915 f->parse(str, num, status); | |
1916 if (U_FAILURE(status)) { | |
1917 errln(UnicodeString(loc->getName()) + names[j] | |
1918 + "ERROR could not parse '" + str + "' -> " + u_errorNam
e(status)); | |
1919 } | |
1920 // We only check the spellout. The behavior is undefined for num
bers < 1 and fractional numbers. | |
1921 if (j == 0) { | |
1922 if (num.getType() == Formattable::kLong && num.getLong() !=
n) { | |
1923 errln(UnicodeString(loc->getName()) + names[j] | |
1924 + UnicodeString("ERROR could not roundtrip ") + n | |
1925 + UnicodeString(" -> ") + str + UnicodeString(" -> "
) + num.getLong()); | |
1926 } | |
1927 else if (num.getType() == Formattable::kDouble && (int64_t)(
num.getDouble() * 1000) != (int64_t)(n*1000)) { | |
1928 // The epsilon difference is too high. | |
1929 errln(UnicodeString(loc->getName()) + names[j] | |
1930 + UnicodeString("ERROR could not roundtrip ") + n | |
1931 + UnicodeString(" -> ") + str + UnicodeString(" -> "
) + num.getDouble()); | |
1932 } | |
1933 } | |
1934 if (!quick && !logKnownIssue("9503") ) { | |
1935 // lenient parse | |
1936 status = U_ZERO_ERROR; | |
1937 f->setLenient(TRUE); | |
1938 f->parse(str, num, status); | |
1939 if (U_FAILURE(status)) { | |
1940 errln(UnicodeString(loc->getName()) + names[j] | |
1941 + "ERROR could not parse(lenient) '" + str + "' -> "
+ u_errorName(status)); | |
1942 } | |
1943 // We only check the spellout. The behavior is undefined for
numbers < 1 and fractional numbers. | |
1944 if (j == 0) { | |
1945 if (num.getType() == Formattable::kLong && num.getLong()
!= n) { | |
1946 errln(UnicodeString(loc->getName()) + names[j] | |
1947 + UnicodeString("ERROR could not roundtrip ") +
n | |
1948 + UnicodeString(" -> ") + str + UnicodeString("
-> ") + num.getLong()); | |
1949 } | |
1950 else if (num.getType() == Formattable::kDouble && (int64
_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { | |
1951 // The epsilon difference is too high. | |
1952 errln(UnicodeString(loc->getName()) + names[j] | |
1953 + UnicodeString("ERROR could not roundtrip ") +
n | |
1954 + UnicodeString(" -> ") + str + UnicodeString("
-> ") + num.getDouble()); | |
1955 } | |
1956 } | |
1957 } | |
1958 } | |
1959 #endif | |
1960 delete f; | |
1961 } | |
1962 } | |
1963 } | |
1964 | |
1965 void | |
1966 IntlTestRBNF::TestMultiplierSubstitution(void) { | |
1967 UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;"); | |
1968 UErrorCode status = U_ZERO_ERROR; | |
1969 UParseError parse_error; | |
1970 RuleBasedNumberFormat *rbnf = | |
1971 new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status); | |
1972 if (U_SUCCESS(status)) { | |
1973 UnicodeString res; | |
1974 FieldPosition pos; | |
1975 double n = 1234000.0; | |
1976 rbnf->format(n, res, pos); | |
1977 delete rbnf; | |
1978 | |
1979 UnicodeString expected(UNICODE_STRING_SIMPLE("1.234 million")); | |
1980 if (expected != res) { | |
1981 UnicodeString msg = "Expected: "; | |
1982 msg.append(expected); | |
1983 msg.append(" but got "); | |
1984 msg.append(res); | |
1985 errln(msg); | |
1986 } | |
1987 } | |
1988 } | |
1989 | |
1990 void | |
1991 IntlTestRBNF::TestSetDecimalFormatSymbols() { | |
1992 UErrorCode status = U_ZERO_ERROR; | |
1993 | |
1994 RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status); | |
1995 if (U_FAILURE(status)) { | |
1996 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_
errorName(status))); | |
1997 return; | |
1998 } | |
1999 | |
2000 DecimalFormatSymbols dfs(Locale::getEnglish(), status); | |
2001 if (U_FAILURE(status)) { | |
2002 errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_error
Name(status))); | |
2003 return; | |
2004 } | |
2005 | |
2006 UnicodeString expected[] = { | |
2007 UnicodeString("1,001st"), | |
2008 UnicodeString("1&001st") | |
2009 }; | |
2010 | |
2011 double number = 1001; | |
2012 | |
2013 UnicodeString result; | |
2014 | |
2015 rbnf.format(number, result); | |
2016 if (result != expected[0]) { | |
2017 errln("Format Error - Got: " + result + " Expected: " + expected[0]); | |
2018 } | |
2019 | |
2020 result.remove(); | |
2021 | |
2022 /* Set new symbol for testing */ | |
2023 dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString(
"&"), TRUE); | |
2024 rbnf.setDecimalFormatSymbols(dfs); | |
2025 | |
2026 rbnf.format(number, result); | |
2027 if (result != expected[1]) { | |
2028 errln("Format Error - Got: " + result + " Expected: " + expected[1]); | |
2029 } | |
2030 } | |
2031 | |
2032 void IntlTestRBNF::TestPluralRules() { | |
2033 UErrorCode status = U_ZERO_ERROR; | |
2034 UnicodeString enRules("%digits-ordinal:-x: ->>;0: =#,##0=$(ordinal,one{st}tw
o{nd}few{rd}other{th})$;"); | |
2035 UParseError parseError; | |
2036 RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError,
status); | |
2037 if (U_FAILURE(status)) { | |
2038 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_
errorName(status))); | |
2039 return; | |
2040 } | |
2041 const char* const enTestData[][2] = { | |
2042 { "1", "1st" }, | |
2043 { "2", "2nd" }, | |
2044 { "3", "3rd" }, | |
2045 { "4", "4th" }, | |
2046 { "11", "11th" }, | |
2047 { "12", "12th" }, | |
2048 { "13", "13th" }, | |
2049 { "14", "14th" }, | |
2050 { "21", "21st" }, | |
2051 { "22", "22nd" }, | |
2052 { "23", "23rd" }, | |
2053 { "24", "24th" }, | |
2054 { NULL, NULL } | |
2055 }; | |
2056 | |
2057 doTest(&enFormatter, enTestData, TRUE); | |
2058 | |
2059 // This is trying to model the feminine form, but don't worry about the deta
ils too much. | |
2060 // We're trying to test the plural rules. | |
2061 UnicodeString ruRules("%spellout-numbering:" | |
2062 "-x: minus >>;" | |
2063 "x.x: << point >>;" | |
2064 "0: zero;" | |
2065 "1: one;" | |
2066 "2: two;" | |
2067 "3: three;" | |
2068 "4: four;" | |
2069 "5: five;" | |
2070 "6: six;" | |
2071 "7: seven;" | |
2072 "8: eight;" | |
2073 "9: nine;" | |
2074 "10: ten;" | |
2075 "11: eleven;" | |
2076 "12: twelve;" | |
2077 "13: thirteen;" | |
2078 "14: fourteen;" | |
2079 "15: fifteen;" | |
2080 "16: sixteen;" | |
2081 "17: seventeen;" | |
2082 "18: eighteen;" | |
2083 "19: nineteen;" | |
2084 "20: twenty[->>];" | |
2085 "30: thirty[->>];" | |
2086 "40: forty[->>];" | |
2087 "50: fifty[->>];" | |
2088 "60: sixty[->>];" | |
2089 "70: seventy[->>];" | |
2090 "80: eighty[->>];" | |
2091 "90: ninety[->>];" | |
2092 "100: hundred[ >>];" | |
2093 "200: << hundred[ >>];" | |
2094 "300: << hundreds[ >>];" | |
2095 "500: << hundredss[ >>];" | |
2096 "1000: << $(cardinal,one{thousand}few{thousands}other{thousandss})$[
>>];" | |
2097 "1000000: << $(cardinal,one{million}few{millions}other{millionss})$[
>>];"); | |
2098 RuleBasedNumberFormat ruFormatter(ruRules, Locale("ru"), parseError, status)
; | |
2099 const char* const ruTestData[][2] = { | |
2100 { "1", "one" }, | |
2101 { "100", "hundred" }, | |
2102 { "125", "hundred twenty-five" }, | |
2103 { "399", "three hundreds ninety-nine" }, | |
2104 { "1,000", "one thousand" }, | |
2105 { "1,001", "one thousand one" }, | |
2106 { "2,000", "two thousands" }, | |
2107 { "2,001", "two thousands one" }, | |
2108 { "2,002", "two thousands two" }, | |
2109 { "3,333", "three thousands three hundreds thirty-three" }, | |
2110 { "5,000", "five thousandss" }, | |
2111 { "11,000", "eleven thousandss" }, | |
2112 { "21,000", "twenty-one thousand" }, | |
2113 { "22,000", "twenty-two thousands" }, | |
2114 { "25,001", "twenty-five thousandss one" }, | |
2115 { NULL, NULL } | |
2116 }; | |
2117 | |
2118 if (U_FAILURE(status)) { | |
2119 errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_erro
rName(status))); | |
2120 return; | |
2121 } | |
2122 doTest(&ruFormatter, ruTestData, TRUE); | |
2123 | |
2124 // Make sure there are no divide by 0 errors. | |
2125 UnicodeString result; | |
2126 RuleBasedNumberFormat(ruRules, Locale("ru"), parseError, status).format(2100
0, result); | |
2127 if (result.compare(UNICODE_STRING_SIMPLE("twenty-one thousand")) != 0) { | |
2128 errln("Got " + result + " for 21000"); | |
2129 } | |
2130 | |
2131 } | |
2132 | |
2133 void IntlTestRBNF::TestInfinityNaN() { | |
2134 UErrorCode status = U_ZERO_ERROR; | |
2135 UParseError parseError; | |
2136 UnicodeString enRules("%default:" | |
2137 "-x: minus >>;" | |
2138 "Inf: infinite;" | |
2139 "NaN: not a number;" | |
2140 "0: =#,##0=;"); | |
2141 RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError,
status); | |
2142 const char * const enTestData[][2] = { | |
2143 {"1", "1"}, | |
2144 {"\\u221E", "infinite"}, | |
2145 {"-\\u221E", "minus infinite"}, | |
2146 {"NaN", "not a number"}, | |
2147 { NULL, NULL } | |
2148 }; | |
2149 if (U_FAILURE(status)) { | |
2150 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_
errorName(status))); | |
2151 return; | |
2152 } | |
2153 | |
2154 doTest(&enFormatter, enTestData, true); | |
2155 | |
2156 // Test the default behavior when the rules are undefined. | |
2157 UnicodeString enRules2("%default:" | |
2158 "-x: ->>;" | |
2159 "0: =#,##0=;"); | |
2160 RuleBasedNumberFormat enFormatter2(enRules2, Locale::getEnglish(), parseErro
r, status); | |
2161 if (U_FAILURE(status)) { | |
2162 errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_erro
rName(status))); | |
2163 return; | |
2164 } | |
2165 const char * const enDefaultTestData[][2] = { | |
2166 {"1", "1"}, | |
2167 {"\\u221E", "\\u221E"}, | |
2168 {"-\\u221E", "-\\u221E"}, | |
2169 {"NaN", "NaN"}, | |
2170 { NULL, NULL } | |
2171 }; | |
2172 | |
2173 doTest(&enFormatter2, enDefaultTestData, true); | |
2174 } | |
2175 | |
2176 void IntlTestRBNF::TestVariableDecimalPoint() { | |
2177 UErrorCode status = U_ZERO_ERROR; | |
2178 UParseError parseError; | |
2179 UnicodeString enRules("%spellout-numbering:" | |
2180 "-x: minus >>;" | |
2181 "x.x: << point >>;" | |
2182 "x,x: << comma >>;" | |
2183 "0.x: xpoint >>;" | |
2184 "0,x: xcomma >>;" | |
2185 "0: zero;" | |
2186 "1: one;" | |
2187 "2: two;" | |
2188 "3: three;" | |
2189 "4: four;" | |
2190 "5: five;" | |
2191 "6: six;" | |
2192 "7: seven;" | |
2193 "8: eight;" | |
2194 "9: nine;"); | |
2195 RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError,
status); | |
2196 const char * const enTestPointData[][2] = { | |
2197 {"1.1", "one point one"}, | |
2198 {"1.23", "one point two three"}, | |
2199 {"0.4", "xpoint four"}, | |
2200 { NULL, NULL } | |
2201 }; | |
2202 if (U_FAILURE(status)) { | |
2203 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_
errorName(status))); | |
2204 return; | |
2205 } | |
2206 doTest(&enFormatter, enTestPointData, true); | |
2207 | |
2208 DecimalFormatSymbols decimalFormatSymbols(Locale::getEnglish(), status); | |
2209 decimalFormatSymbols.setSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol
, UNICODE_STRING_SIMPLE(",")); | |
2210 enFormatter.setDecimalFormatSymbols(decimalFormatSymbols); | |
2211 const char * const enTestCommaData[][2] = { | |
2212 {"1.1", "one comma one"}, | |
2213 {"1.23", "one comma two three"}, | |
2214 {"0.4", "xcomma four"}, | |
2215 { NULL, NULL } | |
2216 }; | |
2217 doTest(&enFormatter, enTestCommaData, true); | |
2218 } | |
2219 | |
2220 void | |
2221 IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testDat
a[][2], UBool testParsing) | |
2222 { | |
2223 // man, error reporting would be easier with printf-style syntax for unicode s
tring and formattable | |
2224 | |
2225 UErrorCode status = U_ZERO_ERROR; | |
2226 DecimalFormatSymbols dfs("en", status); | |
2227 // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), stat
us); | |
2228 DecimalFormat decFmt("#,###.################", dfs, status); | |
2229 if (U_FAILURE(status)) { | |
2230 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorNa
me(status)); | |
2231 } else { | |
2232 for (int i = 0; testData[i][0]; ++i) { | |
2233 const char* numString = testData[i][0]; | |
2234 const char* expectedWords = testData[i][1]; | |
2235 | |
2236 log("[%i] %s = ", i, numString); | |
2237 Formattable expectedNumber; | |
2238 UnicodeString escapedNumString = UnicodeString(numString, -1, US_INV
).unescape(); | |
2239 decFmt.parse(escapedNumString, expectedNumber, status); | |
2240 if (U_FAILURE(status)) { | |
2241 errln("FAIL: decFmt could not parse %s", numString); | |
2242 break; | |
2243 } else { | |
2244 UnicodeString actualString; | |
2245 FieldPosition pos; | |
2246 formatter->format(expectedNumber, actualString/* , pos*/, status
); | |
2247 if (U_FAILURE(status)) { | |
2248 UnicodeString msg = "Fail: formatter could not format "; | |
2249 decFmt.format(expectedNumber, msg, status); | |
2250 errln(msg); | |
2251 break; | |
2252 } else { | |
2253 UnicodeString expectedString = UnicodeString(expectedWords,
-1, US_INV).unescape(); | |
2254 if (actualString != expectedString) { | |
2255 UnicodeString msg = "FAIL: check failed for "; | |
2256 decFmt.format(expectedNumber, msg, status); | |
2257 msg.append(", expected "); | |
2258 msg.append(expectedString); | |
2259 msg.append(" but got "); | |
2260 msg.append(actualString); | |
2261 errln(msg); | |
2262 break; | |
2263 } else { | |
2264 logln(actualString); | |
2265 if (testParsing) { | |
2266 Formattable parsedNumber; | |
2267 formatter->parse(actualString, parsedNumber, status)
; | |
2268 if (U_FAILURE(status)) { | |
2269 UnicodeString msg = "FAIL: formatter could not p
arse "; | |
2270 msg.append(actualString); | |
2271 msg.append(" status code: " ); | |
2272 msg.append(u_errorName(status)); | |
2273 errln(msg); | |
2274 break; | |
2275 } else { | |
2276 if (parsedNumber != expectedNumber | |
2277 && (!uprv_isNaN(parsedNumber.getDouble()) ||
!uprv_isNaN(expectedNumber.getDouble()))) | |
2278 { | |
2279 UnicodeString msg = "FAIL: parse failed for
"; | |
2280 msg.append(actualString); | |
2281 msg.append(", expected "); | |
2282 decFmt.format(expectedNumber, msg, status); | |
2283 msg.append(", but got "); | |
2284 decFmt.format(parsedNumber, msg, status); | |
2285 errln(msg); | |
2286 break; | |
2287 } | |
2288 } | |
2289 } | |
2290 } | |
2291 } | |
2292 } | |
2293 } | |
2294 } | |
2295 } | |
2296 | |
2297 void | |
2298 IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* t
estData[][2]) | |
2299 { | |
2300 UErrorCode status = U_ZERO_ERROR; | |
2301 NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status)
; | |
2302 if (U_FAILURE(status)) { | |
2303 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorNa
me(status)); | |
2304 } else { | |
2305 for (int i = 0; testData[i][0]; ++i) { | |
2306 const char* spelledNumber = testData[i][0]; // spelled-out number | |
2307 const char* asciiUSNumber = testData[i][1]; // number as ascii digit
s formatted for US locale | |
2308 | |
2309 UnicodeString spelledNumberString = UnicodeString(spelledNumber).une
scape(); | |
2310 Formattable actualNumber; | |
2311 formatter->parse(spelledNumberString, actualNumber, status); | |
2312 if (U_FAILURE(status)) { | |
2313 UnicodeString msg = "FAIL: formatter could not parse "; | |
2314 msg.append(spelledNumberString); | |
2315 errln(msg); | |
2316 break; | |
2317 } else { | |
2318 // I changed the logic of this test somewhat from Java-- instead
of comparing the | |
2319 // strings, I compare the Formattables. Hmmm, but the Formattab
les don't compare, | |
2320 // so change it back. | |
2321 | |
2322 UnicodeString asciiUSNumberString = asciiUSNumber; | |
2323 Formattable expectedNumber; | |
2324 decFmt->parse(asciiUSNumberString, expectedNumber, status); | |
2325 if (U_FAILURE(status)) { | |
2326 UnicodeString msg = "FAIL: decFmt could not parse "; | |
2327 msg.append(asciiUSNumberString); | |
2328 errln(msg); | |
2329 break; | |
2330 } else { | |
2331 UnicodeString actualNumberString; | |
2332 UnicodeString expectedNumberString; | |
2333 decFmt->format(actualNumber, actualNumberString, status); | |
2334 decFmt->format(expectedNumber, expectedNumberString, status)
; | |
2335 if (actualNumberString != expectedNumberString) { | |
2336 UnicodeString msg = "FAIL: parsing"; | |
2337 msg.append(asciiUSNumberString); | |
2338 msg.append("\n"); | |
2339 msg.append(" lenient parse failed for "); | |
2340 msg.append(spelledNumberString); | |
2341 msg.append(", expected "); | |
2342 msg.append(expectedNumberString); | |
2343 msg.append(", but got "); | |
2344 msg.append(actualNumberString); | |
2345 errln(msg); | |
2346 break; | |
2347 } | |
2348 } | |
2349 } | |
2350 } | |
2351 delete decFmt; | |
2352 } | |
2353 } | |
2354 | |
2355 /* U_HAVE_RBNF */ | |
2356 #else | |
2357 | |
2358 void | |
2359 IntlTestRBNF::TestRBNFDisabled() { | |
2360 errln("*** RBNF currently disabled on this platform ***\n"); | |
2361 } | |
2362 | |
2363 /* U_HAVE_RBNF */ | |
2364 #endif | |
2365 | |
2366 #endif /* #if !UCONFIG_NO_FORMATTING */ | |
OLD | NEW |