Index: src/core/SkScan_AAAPath.cpp |
diff --git a/src/core/SkScan_AAAPath.cpp b/src/core/SkScan_AAAPath.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e5b8c57d5fa9366ef44e7c04d10093a726c6ccc7 |
--- /dev/null |
+++ b/src/core/SkScan_AAAPath.cpp |
@@ -0,0 +1,1279 @@ |
+/* |
+ * Copyright 2016 The Android Open Source Project |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkAntiRun.h" |
+#include "SkBlitter.h" |
+#include "SkEdge.h" |
+#include "SkAnalyticEdge.h" |
+#include "SkEdgeBuilder.h" |
+#include "SkGeometry.h" |
+#include "SkPath.h" |
+#include "SkQuadClipper.h" |
+#include "SkRasterClip.h" |
+#include "SkRegion.h" |
+#include "SkScan.h" |
+#include "SkScanPriv.h" |
+#include "SkTemplates.h" |
+#include "SkTSort.h" |
+#include "SkUtils.h" |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+/* |
+ |
+The following is a high-level overview of our analytic anti-aliasing |
+algorithm. We consider a path as a collection of line segments, as |
+quadratic/cubic curves are converted to small line segments. Without loss of |
+generality, let's assume that the draw region is [0, W] x [0, H]. |
+ |
+Our algorithm is based on horizontal scan lines (y = c_i) as the previous |
+sampling-based algorithm did. However, our algorithm uses non-equal-spaced |
+scan lines, while the previous method always uses equal-spaced scan lines, |
+such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm, |
+and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous |
+16-supersampling AA algorithm. |
+ |
+Our algorithm contains scan lines y = c_i for c_i that is either: |
+ |
+1. an integer between [0, H] |
+ |
+2. the y value of a line segment endpoint |
+ |
+3. the y value of an intersection of two line segments |
+ |
+For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes |
+the coverage of this horizontal strip of our path on each pixel. This can be |
+done very efficiently because the strip of our path now only consists of |
+trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes |
+rectangles and triangles as special cases). |
+ |
+We now describe how the coverage of single pixel is computed against such a |
+trapezoid. That coverage is essentially the intersection area of a rectangle |
+(e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection |
+could be complicated, as shown in the example region A below: |
+ |
++-----------\----+ |
+| \ C| |
+| \ | |
+\ \ | |
+|\ A \| |
+| \ \ |
+| \ | |
+| B \ | |
++----\-----------+ |
+ |
+However, we don't have to compute the area of A directly. Instead, we can |
+compute the excluded area, which are B and C, quite easily, because they're |
+just triangles. In fact, we can prove that an excluded region (take B as an |
+example) is either itself a simple trapezoid (including rectangles, triangles, |
+and empty regions), or its opposite (the opposite of B is A + C) is a simple |
+trapezoid. In any case, we can compute its area efficiently. |
+ |
+In summary, our algorithm has a higher quality because it generates ground- |
+truth coverages analytically. It is also faster because it has much fewer |
+unnessasary horizontal scan lines. For example, given a triangle path, the |
+number of scan lines in our algorithm is only about 3 + H while the |
+16-supersampling algorithm has about 4H scan lines. |
+ |
+*/ |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+inline void addAlpha(SkAlpha& alpha, SkAlpha delta) { |
+ SkASSERT(alpha + (int)delta <= 0xFF); |
+ alpha += delta; |
+} |
+ |
+class AdditiveBlitter : public SkBlitter { |
+public: |
+ virtual ~AdditiveBlitter() {} |
+ |
+ virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0; |
+ |
+ virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0; |
+ virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0; |
+ virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0; |
+ |
+ void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override { |
+ SkDEBUGFAIL("Please call real blitter's blitAntiH instead."); |
+ } |
+ |
+ void blitV(int x, int y, int height, SkAlpha alpha) override { |
+ SkDEBUGFAIL("Please call real blitter's blitV instead."); |
+ } |
+ |
+ void blitH(int x, int y, int width) override { |
+ SkDEBUGFAIL("Please call real blitter's blitH instead."); |
+ } |
+ |
+ void blitRect(int x, int y, int width, int height) override { |
+ SkDEBUGFAIL("Please call real blitter's blitRect instead."); |
+ } |
+ |
+ void blitAntiRect(int x, int y, int width, int height, |
+ SkAlpha leftAlpha, SkAlpha rightAlpha) override { |
+ SkDEBUGFAIL("Please call real blitter's blitAntiRect instead."); |
+ } |
+ |
+ virtual int getWidth() = 0; |
+}; |
+ |
+// We need this mask blitter because it significantly accelerates small path filling. |
+class MaskAdditiveBlitter : public AdditiveBlitter { |
+public: |
+ MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
+ bool isInverse); |
+ ~MaskAdditiveBlitter() { |
+ fRealBlitter->blitMask(fMask, fClipRect); |
+ } |
+ |
+ // Most of the time, we still consider this mask blitter as the real blitter |
+ // so we can accelerate blitRect and others. But sometimes we want to return |
+ // the absolute real blitter (e.g., when we fall back to the old code path). |
+ SkBlitter* getRealBlitter(bool forceRealBlitter) override { |
+ return forceRealBlitter ? fRealBlitter : this; |
+ } |
+ |
+ // Virtual function is slow. So don't use this. Directly add alpha to the mask instead. |
+ void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
+ |
+ // Allowing following methods are used to blit rectangles during aaa_walk_convex_edges |
+ // Since there aren't many rectangles, we can still break the slow speed of virtual functions. |
+ void blitAntiH(int x, int y, const SkAlpha alpha) override; |
+ void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
+ void blitV(int x, int y, int height, SkAlpha alpha) override; |
+ void blitRect(int x, int y, int width, int height) override; |
+ void blitAntiRect(int x, int y, int width, int height, |
+ SkAlpha leftAlpha, SkAlpha rightAlpha) override; |
+ |
+ int getWidth() override { return fClipRect.width(); } |
+ |
+ static bool canHandleRect(const SkIRect& bounds) { |
+ int width = bounds.width(); |
+ int64_t rb = SkAlign4(width); |
+ // use 64bits to detect overflow |
+ int64_t storage = rb * bounds.height(); |
+ |
+ return (width <= MaskAdditiveBlitter::kMAX_WIDTH) && |
+ (storage <= MaskAdditiveBlitter::kMAX_STORAGE); |
+ } |
+ |
+ // Return a pointer where pointer[x] corresonds to the alpha of (x, y) |
+ inline uint8_t* getRow(int y) { |
+ if (y != fY) { |
+ fY = y; |
+ fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - fMask.fBounds.fLeft; |
+ } |
+ return fRow; |
+ } |
+ |
+private: |
+ // so we don't try to do very wide things, where the RLE blitter would be faster |
+ static const int kMAX_WIDTH = 32; |
+ static const int kMAX_STORAGE = 1024; |
+ |
+ SkBlitter* fRealBlitter; |
+ SkMask fMask; |
+ SkIRect fClipRect; |
+ // we add 2 because we can write 1 extra byte at either end due to precision error |
+ uint32_t fStorage[(kMAX_STORAGE >> 2) + 2]; |
+ |
+ uint8_t* fRow; |
+ int fY; |
+}; |
+ |
+MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
+ bool isInverse) { |
+ SkASSERT(canHandleRect(ir)); |
+ SkASSERT(!isInverse); |
+ |
+ fRealBlitter = realBlitter; |
+ |
+ fMask.fImage = (uint8_t*)fStorage + 1; // There's 1 extra byte at either end of fStorage |
+ fMask.fBounds = ir; |
+ fMask.fRowBytes = ir.width(); |
+ fMask.fFormat = SkMask::kA8_Format; |
+ |
+ fY = ir.fTop - 1; |
+ fRow = nullptr; |
+ |
+ fClipRect = ir; |
+ if (!fClipRect.intersect(clip.getBounds())) { |
+ SkASSERT(0); |
+ fClipRect.setEmpty(); |
+ } |
+ |
+ memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2); |
+} |
+ |
+void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
+ SkFAIL("Don't use this; directly add alphas to the mask."); |
+} |
+ |
+void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
+ SkASSERT(x >= fMask.fBounds.fLeft -1); |
+ addAlpha(this->getRow(y)[x], alpha); |
+} |
+ |
+void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
+ SkASSERT(x >= fMask.fBounds.fLeft -1); |
+ uint8_t* row = this->getRow(y); |
+ for (int i=0; i<width; i++) { |
+ addAlpha(row[x + i], alpha); |
+ } |
+} |
+ |
+void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
+ if (alpha == 0) { |
+ return; |
+ } |
+ SkASSERT(x >= fMask.fBounds.fLeft -1); |
+ // This must be called as if this is a real blitter. |
+ // So we directly set alpha rather than adding it. |
+ uint8_t* row = this->getRow(y); |
+ for (int i=0; i<height; i++) { |
+ row[x] = alpha; |
+ row += fMask.fRowBytes; |
+ } |
+} |
+ |
+void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) { |
+ SkASSERT(x >= fMask.fBounds.fLeft -1); |
+ // This must be called as if this is a real blitter. |
+ // So we directly set alpha rather than adding it. |
+ uint8_t* row = this->getRow(y); |
+ for (int i=0; i<height; i++) { |
+ memset(row + x, 0xFF, width); |
+ row += fMask.fRowBytes; |
+ } |
+} |
+ |
+void MaskAdditiveBlitter::blitAntiRect(int x, int y, int width, int height, |
+ SkAlpha leftAlpha, SkAlpha rightAlpha) { |
+ blitV(x, y, height, leftAlpha); |
+ blitV(x + 1 + width, y, height, rightAlpha); |
+ blitRect(x + 1, y, width, height); |
+} |
+ |
+class RunBasedAdditiveBlitter : public AdditiveBlitter { |
+public: |
+ RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
+ bool isInverse); |
+ ~RunBasedAdditiveBlitter(); |
+ |
+ SkBlitter* getRealBlitter(bool forceRealBlitter) override; |
+ |
+ void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
+ void blitAntiH(int x, int y, const SkAlpha alpha) override; |
+ void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
+ |
+ int getWidth() override; |
+ |
+private: |
+ SkBlitter* fRealBlitter; |
+ |
+ /// Current y coordinate |
+ int fCurrY; |
+ /// Widest row of region to be blitted |
+ int fWidth; |
+ /// Leftmost x coordinate in any row |
+ int fLeft; |
+ /// Initial y coordinate (top of bounds). |
+ int fTop; |
+ |
+ // The next three variables are used to track a circular buffer that |
+ // contains the values used in SkAlphaRuns. These variables should only |
+ // ever be updated in advanceRuns(), and fRuns should always point to |
+ // a valid SkAlphaRuns... |
+ int fRunsToBuffer; |
+ void* fRunsBuffer; |
+ int fCurrentRun; |
+ SkAlphaRuns fRuns; |
+ |
+ int fOffsetX; |
+ |
+ inline bool check(int x, int width) { |
+ #ifdef SK_DEBUG |
+ if (x < 0 || x + width > fWidth) { |
+ SkDebugf("Ignore x = %d, width = %d\n", x, width); |
+ } |
+ #endif |
+ return (x >= 0 && x + width <= fWidth); |
+ } |
+ |
+ // extra one to store the zero at the end |
+ inline int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); } |
+ |
+ // This function updates the fRuns variable to point to the next buffer space |
+ // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun |
+ // and resets fRuns to point to an empty scanline. |
+ inline void advanceRuns() { |
+ const size_t kRunsSz = this->getRunsSz(); |
+ fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer; |
+ fRuns.fRuns = reinterpret_cast<int16_t*>( |
+ reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz); |
+ fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1); |
+ fRuns.reset(fWidth); |
+ } |
+ |
+ // Blitting 0xFF and 0 is much faster so we snap alphas close to them |
+ inline SkAlpha snapAlpha(SkAlpha alpha) { |
+ return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha; |
+ } |
+ |
+ inline void flush() { |
+ if (fCurrY >= fTop) { |
+ SkASSERT(fCurrentRun < fRunsToBuffer); |
+ for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) { |
+ // It seems that blitting 255 or 0 is much faster than blitting 254 or 1 |
+ fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]); |
+ } |
+ if (!fRuns.empty()) { |
+ // SkDEBUGCODE(fRuns.dump();) |
+ fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns); |
+ this->advanceRuns(); |
+ fOffsetX = 0; |
+ } |
+ fCurrY = fTop - 1; |
+ } |
+ } |
+ |
+ inline void checkY(int y) { |
+ if (y != fCurrY) { |
+ this->flush(); |
+ fCurrY = y; |
+ } |
+ } |
+}; |
+ |
+RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
+ bool isInverse) { |
+ fRealBlitter = realBlitter; |
+ |
+ SkIRect sectBounds; |
+ if (isInverse) { |
+ // We use the clip bounds instead of the ir, since we may be asked to |
+ //draw outside of the rect when we're a inverse filltype |
+ sectBounds = clip.getBounds(); |
+ } else { |
+ if (!sectBounds.intersect(ir, clip.getBounds())) { |
+ sectBounds.setEmpty(); |
+ } |
+ } |
+ |
+ const int left = sectBounds.left(); |
+ const int right = sectBounds.right(); |
+ |
+ fLeft = left; |
+ fWidth = right - left; |
+ fTop = sectBounds.top(); |
+ fCurrY = fTop - 1; |
+ |
+ fRunsToBuffer = realBlitter->requestRowsPreserved(); |
+ fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz()); |
+ fCurrentRun = -1; |
+ |
+ this->advanceRuns(); |
+ |
+ fOffsetX = 0; |
+} |
+ |
+RunBasedAdditiveBlitter::~RunBasedAdditiveBlitter() { |
+ this->flush(); |
+} |
+ |
+SkBlitter* RunBasedAdditiveBlitter::getRealBlitter(bool forceRealBlitter) { |
+ return fRealBlitter; |
+} |
+ |
+void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
+ checkY(y); |
+ x -= fLeft; |
+ |
+ if (x < 0) { |
+ len += x; |
+ antialias -= x; |
+ x = 0; |
+ } |
+ len = SkTMin(len, fWidth - x); |
+ SkASSERT(check(x, len)); |
+ |
+ if (x < fOffsetX) { |
+ fOffsetX = 0; |
+ } |
+ |
+ fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
+ for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
+ for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
+ fRuns.fRuns[x + i + j] = 1; |
+ fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
+ } |
+ fRuns.fRuns[x + i] = 1; |
+ } |
+ for (int i=0; i<len; i++) { |
+ addAlpha(fRuns.fAlpha[x + i], antialias[i]); |
+ } |
+} |
+void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
+ checkY(y); |
+ x -= fLeft; |
+ |
+ if (x < fOffsetX) { |
+ fOffsetX = 0; |
+ } |
+ |
+ if (this->check(x, 1)) { |
+ fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX); |
+ } |
+} |
+ |
+void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
+ checkY(y); |
+ x -= fLeft; |
+ |
+ if (x < fOffsetX) { |
+ fOffsetX = 0; |
+ } |
+ |
+ if (this->check(x, width)) { |
+ fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX); |
+ } |
+} |
+ |
+int RunBasedAdditiveBlitter::getWidth() { return fWidth; } |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+// Return the alpha of a trapezoid whose height is 1 |
+static inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) { |
+ SkASSERT(l1 >= 0 && l2 >= 0); |
+ return ((l1 + l2) >> 9); |
+} |
+ |
+// The alpha of right-triangle (a, a*b), in 16 bits |
+static inline SkFixed partialTriangleToAlpha16(SkFixed a, SkFixed b) { |
+ SkASSERT(a <= SK_Fixed1); |
+ // SkFixedMul_lowprec(SkFixedMul_lowprec(a, a), b) >> 1 |
+ // return ((((a >> 8) * (a >> 8)) >> 8) * (b >> 8)) >> 1; |
+ return (a >> 11) * (a >> 11) * (b >> 11); |
+} |
+ |
+// The alpha of right-triangle (a, a*b) |
+static inline SkAlpha partialTriangleToAlpha(SkFixed a, SkFixed b) { |
+ return partialTriangleToAlpha16(a, b) >> 8; |
+} |
+ |
+static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkFixed partialHeight) { |
+ return (alpha * partialHeight) >> 16; |
+} |
+ |
+static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkAlpha fullAlpha) { |
+ return ((uint16_t)alpha * fullAlpha) >> 8; |
+} |
+ |
+// For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just shifting right. |
+// For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 255. |
+// This is rarely the problem so we'll only use this for blitting rectangles. |
+static inline SkAlpha f2a(SkFixed f) { |
+ SkASSERT(f <= SK_Fixed1); |
+ return getPartialAlpha(0xFF, f); |
+} |
+ |
+// Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1), |
+// approximate (very coarsely) the x coordinate of the intersection. |
+static inline SkFixed approximateIntersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) { |
+ if (l1 > r1) { SkTSwap(l1, r1); } |
+ if (l2 > r2) { SkTSwap(l2, r2); } |
+ return (SkTMax(l1, l2) + SkTMin(r1, r2)) >> 1; |
+} |
+ |
+// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
+static inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r, |
+ SkFixed dY, SkAlpha fullAlpha) { |
+ SkASSERT(l <= r); |
+ SkASSERT(l >> 16 == 0); |
+ int R = SkFixedCeilToInt(r); |
+ if (R == 0) { |
+ return; |
+ } else if (R == 1) { |
+ alphas[0] = getPartialAlpha(((R << 17) - l - r) >> 9, fullAlpha); |
+ } else { |
+ SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
+ SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
+ SkFixed firstH = SkFixedMul_lowprec(first, dY); // vertical edge of the left-most triangle |
+ alphas[0] = SkFixedMul_lowprec(first, firstH) >> 9; // triangle alpha |
+ SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle |
+ for (int i = 1; i < R - 1; i++) { |
+ alphas[i] = alpha16 >> 8; |
+ alpha16 += dY; |
+ } |
+ alphas[R - 1] = fullAlpha - partialTriangleToAlpha(last, dY); |
+ } |
+} |
+ |
+// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
+static inline void computeAlphaBelowLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed dY, SkAlpha fullAlpha) { |
+ SkASSERT(l <= r); |
+ SkASSERT(l >> 16 == 0); |
+ int R = SkFixedCeilToInt(r); |
+ if (R == 0) { |
+ return; |
+ } else if (R == 1) { |
+ alphas[0] = getPartialAlpha(trapezoidToAlpha(l, r), fullAlpha); |
+ } else { |
+ SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
+ SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
+ SkFixed lastH = SkFixedMul_lowprec(last, dY); // vertical edge of the right-most triangle |
+ alphas[R-1] = SkFixedMul_lowprec(last, lastH) >> 9; // triangle alpha |
+ SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle |
+ for (int i = R - 2; i > 0; i--) { |
+ alphas[i] = alpha16 >> 8; |
+ alpha16 += dY; |
+ } |
+ alphas[0] = fullAlpha - partialTriangleToAlpha(first, dY); |
+ } |
+} |
+ |
+// Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha |
+static inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x, |
+ SkAlpha alpha, SkAlpha fullAlpha, SkAlpha* maskRow, |
+ bool isUsingMask) { |
+ if (isUsingMask) { |
+ if (fullAlpha == 0xFF) { |
+ maskRow[x] = alpha; |
+ } else { |
+ addAlpha(maskRow[x], getPartialAlpha(alpha, fullAlpha)); |
+ } |
+ } else { |
+ if (fullAlpha == 0xFF) { |
+ blitter->getRealBlitter()->blitV(x, y, 1, alpha); |
+ } else { |
+ blitter->blitAntiH(x, y, getPartialAlpha(alpha, fullAlpha)); |
+ } |
+ } |
+} |
+ |
+static inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x, |
+ SkAlpha a1, SkAlpha a2, SkAlpha fullAlpha, SkAlpha* maskRow, |
+ bool isUsingMask) { |
+ if (isUsingMask) { |
+ addAlpha(maskRow[x], a1); |
+ addAlpha(maskRow[x + 1], a2); |
+ } else { |
+ if (fullAlpha == 0xFF) { |
+ blitter->getRealBlitter()->blitV(x, y, 1, a1); |
+ blitter->getRealBlitter()->blitV(x + 1, y, 1, a2); |
+ } else { |
+ blitter->blitAntiH(x, y, a1); |
+ blitter->blitAntiH(x + 1, y, a2); |
+ } |
+ } |
+} |
+ |
+// It's important that this is inline. Otherwise it'll be much slower. |
+static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, int x, int len, |
+ SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMask) { |
+ if (isUsingMask) { |
+ for (int i=0; i<len; i++) { |
+ addAlpha(maskRow[x + i], fullAlpha); |
+ } |
+ } else { |
+ if (fullAlpha == 0xFF) { |
+ blitter->getRealBlitter()->blitH(x, y, len); |
+ } else { |
+ blitter->blitAntiH(x, y, len, fullAlpha); |
+ } |
+ } |
+} |
+ |
+static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y, |
+ SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr, |
+ SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, SkAlpha* maskRow, |
+ bool isUsingMask) { |
+ int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr); |
+ int len = R - L; |
+ |
+ if (len == 1) { |
+ SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll); |
+ blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask); |
+ return; |
+ } |
+ |
+ // SkDebugf("y = %d, len = %d, ul = %f, ur = %f, ll = %f, lr = %f\n", y, len, |
+ // SkFixedToFloat(ul), SkFixedToFloat(ur), SkFixedToFloat(ll), SkFixedToFloat(lr)); |
+ |
+ const int kQuickLen = 31; |
+ // This is faster than SkAutoSMalloc<1024> |
+ char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)]; |
+ SkAlpha* alphas; |
+ |
+ if (len <= kQuickLen) { |
+ alphas = (SkAlpha*)quickMemory; |
+ } else { |
+ alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))]; |
+ } |
+ |
+ SkAlpha* tempAlphas = alphas + len + 1; |
+ int16_t* runs = (int16_t*)(alphas + (len + 1) * 2); |
+ |
+ for (int i = 0; i < len; i++) { |
+ runs[i] = 1; |
+ alphas[i] = fullAlpha; |
+ } |
+ runs[len] = 0; |
+ |
+ int uL = SkFixedFloorToInt(ul); |
+ int lL = SkFixedCeilToInt(ll); |
+ if (uL + 2 == lL) { // We only need to compute two triangles, accelerate this special case |
+ SkFixed first = (uL << 16) + SK_Fixed1 - ul; |
+ SkFixed second = ll - ul - first; |
+ SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, lDY); |
+ SkAlpha a2 = partialTriangleToAlpha(second, lDY); |
+ alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0; |
+ alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0; |
+ } else { |
+ computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL << 16), |
+ lDY, fullAlpha); |
+ for (int i = uL; i < lL; i++) { |
+ if (alphas[i - L] > tempAlphas[i - L]) { |
+ alphas[i - L] -= tempAlphas[i - L]; |
+ } else { |
+ alphas[i - L] = 0; |
+ } |
+ } |
+ } |
+ |
+ int uR = SkFixedFloorToInt(ur); |
+ int lR = SkFixedCeilToInt(lr); |
+ if (uR + 2 == lR) { // We only need to compute two triangles, accelerate this special case |
+ SkFixed first = (uR << 16) + SK_Fixed1 - ur; |
+ SkFixed second = lr - ur - first; |
+ SkAlpha a1 = partialTriangleToAlpha(first, rDY); |
+ SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, rDY); |
+ alphas[len-2] = alphas[len-2] > a1 ? alphas[len-2] - a1 : 0; |
+ alphas[len-1] = alphas[len-1] > a2 ? alphas[len-1] - a2 : 0; |
+ } else { |
+ computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR << 16), |
+ rDY, fullAlpha); |
+ for (int i = uR; i < lR; i++) { |
+ if (alphas[i - L] > tempAlphas[i - L]) { |
+ alphas[i - L] -= tempAlphas[i - L]; |
+ } else { |
+ alphas[i - L] = 0; |
+ } |
+ } |
+ } |
+ |
+ if (isUsingMask) { |
+ for (int i=0; i<len; i++) { |
+ addAlpha(maskRow[L + i], alphas[i]); |
+ } |
+ } else { |
+ if (fullAlpha == 0xFF) { // Real blitter is faster than RunBasedAdditiveBlitter |
+ blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs); |
+ } else { |
+ blitter->blitAntiH(L, y, alphas, len); |
+ } |
+ } |
+ |
+ if (len > kQuickLen) { |
+ delete [] alphas; |
+ } |
+} |
+ |
+static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y, |
+ SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr, |
+ SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, |
+ SkAlpha* maskRow, bool isUsingMask) { |
+ SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value |
+ |
+ if (ul > ur) { |
+#ifdef SK_DEBUG |
+ SkDebugf("ul = %f > ur = %f!\n", SkFixedToFloat(ul), SkFixedToFloat(ur)); |
+#endif |
+ return; |
+ } |
+ |
+ // Edge crosses. Approximate it. This should only happend due to precision limit, |
+ // so the approximation could be very coarse. |
+ if (ll > lr) { |
+#ifdef SK_DEBUG |
+ SkDebugf("approximate intersection: %d %f %f\n", y, |
+ SkFixedToFloat(ll), SkFixedToFloat(lr)); |
+#endif |
+ ll = lr = approximateIntersection(ul, ll, ur, lr); |
+ } |
+ |
+ if (ul == ur && ll == lr) { |
+ return; // empty trapzoid |
+ } |
+ |
+ // We're going to use the left line ul-ll and the rite line ur-lr |
+ // to exclude the area that's not covered by the path. |
+ // Swapping (ul, ll) or (ur, lr) won't affect that exclusion |
+ // so we'll do that for simplicity. |
+ if (ul > ll) { SkTSwap(ul, ll); } |
+ if (ur > lr) { SkTSwap(ur, lr); } |
+ |
+ SkFixed joinLeft = SkFixedCeilToFixed(ll); |
+ SkFixed joinRite = SkFixedFloorToFixed(ur); |
+ if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that we can blit |
+ if (joinLeft < joinRite) { |
+ blit_full_alpha(blitter, y, joinLeft >> 16, (joinRite - joinLeft) >> 16, fullAlpha, |
+ maskRow, isUsingMask); |
+ } |
+ if (ul < joinLeft) { |
+ int len = SkFixedCeilToInt(joinLeft - ul); |
+ if (len == 1) { |
+ SkAlpha alpha = trapezoidToAlpha(joinLeft - ul, joinLeft - ll); |
+ blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRow, isUsingMask); |
+ } else if (len == 2) { |
+ SkFixed first = joinLeft - SK_Fixed1 - ul; |
+ SkFixed second = ll - ul - first; |
+ SkAlpha a1 = partialTriangleToAlpha(first, lDY); |
+ SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, lDY); |
+ blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow, isUsingMask); |
+ } else { |
+ blit_aaa_trapezoid_row(blitter, y, ul, joinLeft, ll, joinLeft, lDY, SK_MaxS32, |
+ fullAlpha, maskRow, isUsingMask); |
+ } |
+ } |
+ if (lr > joinRite) { |
+ int len = SkFixedCeilToInt(lr - joinRite); |
+ if (len == 1) { |
+ SkAlpha alpha = trapezoidToAlpha(ur - joinRite, lr - joinRite); |
+ blit_single_alpha(blitter, y, joinRite >> 16, alpha, fullAlpha, maskRow, |
+ isUsingMask); |
+ } else if (len == 2) { |
+ SkFixed first = joinRite + SK_Fixed1 - ur; |
+ SkFixed second = lr - ur - first; |
+ SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, rDY); |
+ SkAlpha a2 = partialTriangleToAlpha(second, rDY); |
+ blit_two_alphas(blitter, y, joinRite >> 16, a1, a2, fullAlpha, maskRow, |
+ isUsingMask); |
+ } else { |
+ blit_aaa_trapezoid_row(blitter, y, joinRite, ur, joinRite, lr, SK_MaxS32, rDY, |
+ fullAlpha, maskRow, isUsingMask); |
+ } |
+ } |
+ } else { |
+ blit_aaa_trapezoid_row(blitter, y, ul, ur, ll, lr, lDY, rDY, fullAlpha, maskRow, |
+ isUsingMask); |
+ } |
+} |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) { |
+ int valuea = a.fUpperY; |
+ int valueb = b.fUpperY; |
+ |
+ if (valuea == valueb) { |
+ valuea = a.fX; |
+ valueb = b.fX; |
+ } |
+ |
+ if (valuea == valueb) { |
+ valuea = a.fDX; |
+ valueb = b.fDX; |
+ } |
+ |
+ return valuea < valueb; |
+} |
+ |
+static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) { |
+ SkTQSort(list, list + count - 1); |
+ |
+ // now make the edges linked in sorted order |
+ for (int i = 1; i < count; i++) { |
+ list[i - 1]->fNext = list[i]; |
+ list[i]->fPrev = list[i - 1]; |
+ } |
+ |
+ *last = list[count - 1]; |
+ return list[0]; |
+} |
+ |
+#ifdef SK_DEBUG |
+ static void validate_sort(const SkAnalyticEdge* edge) { |
+ SkFixed y = SkIntToFixed(-32768); |
+ |
+ while (edge->fUpperY != SK_MaxS32) { |
+ edge->validate(); |
+ SkASSERT(y <= edge->fUpperY); |
+ |
+ y = edge->fUpperY; |
+ edge = (SkAnalyticEdge*)edge->fNext; |
+ } |
+ } |
+#else |
+ #define validate_sort(edge) |
+#endif |
+ |
+// return true if we're done with this edge |
+static bool update_edge(SkAnalyticEdge* edge, SkFixed last_y) { |
+ if (last_y >= edge->fLowerY) { |
+ if (edge->fCurveCount < 0) { |
+ if (static_cast<SkAnalyticCubicEdge*>(edge)->updateCubic()) { |
+ return false; |
+ } |
+ } else if (edge->fCurveCount > 0) { |
+ if (static_cast<SkAnalyticQuadraticEdge*>(edge)->updateQuadratic()) { |
+ return false; |
+ } |
+ } |
+ return true; |
+ } |
+ SkASSERT(false); |
+ return false; |
+} |
+ |
+// For an edge, we consider it smooth if the Dx doesn't change much, and Dy is large enough |
+// For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQDy/fCDy are |
+// relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy |
+static inline bool isSmoothEnough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, int stop_y) { |
+ if (thisEdge->fCurveCount < 0) { |
+ const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->fCEdge; |
+ int ddshift = cEdge.fCurveShift; |
+ return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift && |
+ SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift && |
+ // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift |
+ (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >= SK_Fixed1; |
+ } else if (thisEdge->fCurveCount > 0) { |
+ const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thisEdge)->fQEdge; |
+ return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) && |
+ SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) && |
+ // current Dy is (fQDy - fQDDy) >> shift |
+ (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift |
+ >= SK_Fixed1; |
+ } |
+ return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should be small |
+ nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be large |
+} |
+ |
+// Check if the leftE and riteE are changing smoothly in terms of fDX. |
+// If yes, we can later skip the fractional y and directly jump to integer y. |
+static inline bool isSmoothEnough(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE, |
+ SkAnalyticEdge* currE, int stop_y) { |
+ if (currE->fUpperY >= stop_y << 16) { |
+ return false; // We're at the end so we won't skip anything |
+ } |
+ if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) { |
+ return isSmoothEnough(leftE, currE, stop_y); // Only leftE is changing |
+ } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) { |
+ return isSmoothEnough(riteE, currE, stop_y); // Only riteE is changing |
+ } |
+ |
+ // Now both edges are changing, find the second next edge |
+ SkAnalyticEdge* nextCurrE = currE->fNext; |
+ if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end |
+ return false; |
+ } |
+ if (*nextCurrE < *currE) { |
+ SkTSwap(currE, nextCurrE); |
+ } |
+ return isSmoothEnough(leftE, currE, stop_y) && isSmoothEnough(riteE, nextCurrE, stop_y); |
+} |
+ |
+static inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitter* blitter, |
+ int start_y, int stop_y, SkFixed leftBound, SkFixed riteBound, |
+ bool isUsingMask) { |
+ validate_sort((SkAnalyticEdge*)prevHead->fNext); |
+ |
+ SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext; |
+ SkAnalyticEdge* riteE = (SkAnalyticEdge*) leftE->fNext; |
+ SkAnalyticEdge* currE = (SkAnalyticEdge*) riteE->fNext; |
+ |
+ SkFixed y = SkTMax(leftE->fUpperY, riteE->fUpperY); |
+ |
+ #ifdef SK_DEBUG |
+ int frac_y_cnt = 0; |
+ int total_y_cnt = 0; |
+ #endif |
+ |
+ for (;;) { |
+ // We have to check fLowerY first because some edges might be alone (e.g., there's only |
+ // a left edge but no right edge in a given y scan line) due to precision limit. |
+ while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
+ if (update_edge(leftE, y)) { |
+ if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
+ goto END_WALK; |
+ } |
+ leftE = currE; |
+ currE = (SkAnalyticEdge*)currE->fNext; |
+ } |
+ } |
+ while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
+ if (update_edge(riteE, y)) { |
+ if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
+ goto END_WALK; |
+ } |
+ riteE = currE; |
+ currE = (SkAnalyticEdge*)currE->fNext; |
+ } |
+ } |
+ |
+ SkASSERT(leftE); |
+ SkASSERT(riteE); |
+ |
+ // check our bottom clip |
+ if (SkFixedFloorToInt(y) >= stop_y) { |
+ break; |
+ } |
+ |
+ SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y); |
+ SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y); |
+ |
+ leftE->goY(y); |
+ riteE->goY(y); |
+ |
+ if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX && |
+ leftE->fDX > riteE->fDX)) { |
+ SkTSwap(leftE, riteE); |
+ } |
+ |
+ SkFixed local_bot_fixed = SkMin32(leftE->fLowerY, riteE->fLowerY); |
+ // Skip the fractional y if edges are changing smoothly |
+ if (isSmoothEnough(leftE, riteE, currE, stop_y)) { |
+ local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed); |
+ } |
+ local_bot_fixed = SkMin32(local_bot_fixed, SkIntToFixed(stop_y + 1)); |
+ |
+ SkFixed left = leftE->fX; |
+ SkFixed dLeft = leftE->fDX; |
+ SkFixed rite = riteE->fX; |
+ SkFixed dRite = riteE->fDX; |
+ if (0 == (dLeft | dRite)) { |
+ int fullLeft = SkFixedCeilToInt(left); |
+ int fullRite = SkFixedFloorToInt(rite); |
+ SkFixed partialLeft = SkIntToFixed(fullLeft) - left; |
+ SkFixed partialRite = rite - SkIntToFixed(fullRite); |
+ int fullTop = SkFixedCeilToInt(y); |
+ int fullBot = SkFixedFloorToInt(local_bot_fixed); |
+ SkFixed partialTop = SkIntToFixed(fullTop) - y; |
+ SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot); |
+ if (fullTop > fullBot) { // The rectangle is within one pixel height... |
+ partialTop -= (SK_Fixed1 - partialBot); |
+ partialBot = 0; |
+ } |
+ |
+ if (fullRite >= fullLeft) { |
+ // Blit all full-height rows from fullTop to fullBot |
+ if (fullBot > fullTop) { |
+ blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, fullTop, |
+ fullRite - fullLeft, fullBot - fullTop, |
+ f2a(partialLeft), f2a(partialRite)); |
+ } |
+ |
+ if (partialTop > 0) { // blit first partial row |
+ if (partialLeft > 0) { |
+ blitter->blitAntiH(fullLeft - 1, fullTop - 1, |
+ f2a(SkFixedMul_lowprec(partialTop, partialLeft))); |
+ } |
+ if (partialRite > 0) { |
+ blitter->blitAntiH(fullRite, fullTop - 1, |
+ f2a(SkFixedMul_lowprec(partialTop, partialRite))); |
+ } |
+ blitter->blitAntiH(fullLeft, fullTop - 1, fullRite - fullLeft, |
+ f2a(partialTop)); |
+ } |
+ |
+ if (partialBot > 0) { // blit last partial row |
+ if (partialLeft > 0) { |
+ blitter->blitAntiH(fullLeft - 1, fullBot, |
+ f2a(SkFixedMul_lowprec(partialBot, partialLeft))); |
+ } |
+ if (partialRite > 0) { |
+ blitter->blitAntiH(fullRite, fullBot, |
+ f2a(SkFixedMul_lowprec(partialBot, partialRite))); |
+ } |
+ blitter->blitAntiH(fullLeft, fullBot, fullRite - fullLeft, f2a(partialBot)); |
+ } |
+ } else { // left and rite are within the same pixel |
+ if (partialTop > 0) { |
+ blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop - 1, 1, |
+ f2a(SkFixedMul_lowprec(partialTop, rite - left))); |
+ } |
+ if (partialBot > 0) { |
+ blitter->getRealBlitter()->blitV(fullLeft - 1, fullBot, 1, |
+ f2a(SkFixedMul_lowprec(partialBot, rite - left))); |
+ } |
+ if (fullBot >= fullTop) { |
+ blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop, fullBot - fullTop, |
+ f2a(rite - left)); |
+ } |
+ } |
+ |
+ y = local_bot_fixed; |
+ } else { |
+ // The following constant are used to snap X |
+ // We snap X mainly for speedup (no tiny triangle) and |
+ // avoiding edge cases caused by precision errors |
+ const SkFixed kSnapDigit = SK_Fixed1 >> 4; |
+ const SkFixed kSnapHalf = kSnapDigit >> 1; |
+ const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1)); |
+ left += kSnapHalf; rite += kSnapHalf; // For fast rounding |
+ |
+ // Number of blit_trapezoid_row calls we'll have |
+ int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y); |
+ #ifdef SK_DEBUG |
+ total_y_cnt += count; |
+ frac_y_cnt += ((int)(y & 0xFFFF0000) != y); |
+ if ((int)(y & 0xFFFF0000) != y) { |
+ SkDebugf("frac_y = %f\n", SkFixedToFloat(y)); |
+ } |
+ #endif |
+ |
+ // If we're using mask blitter, we advance the mask row in this function |
+ // to save some "if" condition checks. |
+ SkAlpha* maskRow = nullptr; |
+ if (isUsingMask) { |
+ maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
+ } |
+ |
+ // Instead of writing one loop that handles both partial-row blit_trapezoid_row |
+ // and full-row trapezoid_row together, we use the following 3-stage flow to |
+ // handle partial-row blit and full-row blit separately. It will save us much time |
+ // on changing y, left, and rite. |
+ if (count > 1) { |
+ if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on the top |
+ count--; |
+ SkFixed nextY = SkFixedCeilToFixed(y + 1); |
+ SkFixed dY = nextY - y; |
+ SkFixed nextLeft = left + SkFixedMul_lowprec(dLeft, dY); |
+ SkFixed nextRite = rite + SkFixedMul_lowprec(dRite, dY); |
+ blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask, |
+ nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY, |
+ getPartialAlpha(0xFF, dY), maskRow, isUsingMask); |
+ left = nextLeft; rite = nextRite; y = nextY; |
+ } |
+ |
+ while (count > 1) { // Full rows in the middle |
+ count--; |
+ if (isUsingMask) { |
+ maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
+ } |
+ SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, nextRite = rite + dRite; |
+ blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask, |
+ nextLeft & kSnapMask, nextRite & kSnapMask, |
+ leftE->fDY, riteE->fDY, 0xFF, maskRow, isUsingMask); |
+ left = nextLeft; rite = nextRite; y = nextY; |
+ } |
+ } |
+ |
+ if (isUsingMask) { |
+ maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
+ } |
+ |
+ SkFixed dY = local_bot_fixed - y; // partial-row on the bottom |
+ SkASSERT(dY <= SK_Fixed1); |
+ // Smooth jumping to integer y may make the last nextLeft/nextRite out of bound. |
+ // Take them back into the bound here. |
+ SkFixed nextLeft = SkTMax(left + SkFixedMul_lowprec(dLeft, dY), leftBound); |
+ SkFixed nextRite = SkTMin(rite + SkFixedMul_lowprec(dRite, dY), riteBound); |
+ blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask, |
+ nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY, |
+ getPartialAlpha(0xFF, dY), maskRow, isUsingMask); |
+ left = nextLeft; rite = nextRite; y = local_bot_fixed; |
+ left -= kSnapHalf; rite -= kSnapHalf; |
+ } |
+ |
+ leftE->fX = left; |
+ riteE->fX = rite; |
+ leftE->fY = riteE->fY = y; |
+ } |
+ |
+END_WALK: |
+ ; |
+ #ifdef SK_DEBUG |
+ SkDebugf("frac_y_cnt = %d, total_y_cnt = %d\n", frac_y_cnt, total_y_cnt); |
+ #endif |
+} |
+ |
+void SkScan::aaa_fill_path(const SkPath& path, const SkIRect* clipRect, AdditiveBlitter* blitter, |
+ int start_y, int stop_y, const SkRegion& clipRgn, bool isUsingMask) { |
+ SkASSERT(blitter); |
+ |
+ if (path.isInverseFillType() || !path.isConvex()) { |
+ // fall back to supersampling AA |
+ SkScan::AntiFillPath(path, clipRgn, blitter->getRealBlitter(true), false); |
+ return; |
+ } |
+ |
+ SkEdgeBuilder builder; |
+ |
+ // If we're convex, then we need both edges, even the right edge is past the clip |
+ const bool canCullToTheRight = !path.isConvex(); |
+ |
+ SkASSERT(GlobalAAConfig::getInstance().fUseAnalyticAA); |
+ int count = builder.build(path, clipRect, 0, canCullToTheRight, true); |
+ SkASSERT(count >= 0); |
+ |
+ SkAnalyticEdge** list = (SkAnalyticEdge**)builder.analyticEdgeList(); |
+ |
+ SkIRect rect = clipRgn.getBounds(); |
+ if (0 == count) { |
+ if (path.isInverseFillType()) { |
+ /* |
+ * Since we are in inverse-fill, our caller has already drawn above |
+ * our top (start_y) and will draw below our bottom (stop_y). Thus |
+ * we need to restrict our drawing to the intersection of the clip |
+ * and those two limits. |
+ */ |
+ if (rect.fTop < start_y) { |
+ rect.fTop = start_y; |
+ } |
+ if (rect.fBottom > stop_y) { |
+ rect.fBottom = stop_y; |
+ } |
+ if (!rect.isEmpty()) { |
+ blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.height()); |
+ } |
+ } |
+ return; |
+ } |
+ |
+ SkAnalyticEdge headEdge, tailEdge, *last; |
+ // this returns the first and last edge after they're sorted into a dlink list |
+ SkAnalyticEdge* edge = sort_edges(list, count, &last); |
+ |
+ headEdge.fPrev = nullptr; |
+ headEdge.fNext = edge; |
+ headEdge.fUpperY = headEdge.fLowerY = SK_MinS32; |
+ headEdge.fX = SK_MinS32; |
+ headEdge.fDX = 0; |
+ headEdge.fDY = SK_MaxS32; |
+ headEdge.fUpperX = SK_MinS32; |
+ edge->fPrev = &headEdge; |
+ |
+ tailEdge.fPrev = last; |
+ tailEdge.fNext = nullptr; |
+ tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32; |
+ headEdge.fX = SK_MaxS32; |
+ headEdge.fDX = 0; |
+ headEdge.fDY = SK_MaxS32; |
+ headEdge.fUpperX = SK_MaxS32; |
+ last->fNext = &tailEdge; |
+ |
+ // now edge is the head of the sorted linklist |
+ |
+ if (clipRect && start_y < clipRect->fTop) { |
+ start_y = clipRect->fTop; |
+ } |
+ if (clipRect && stop_y > clipRect->fBottom) { |
+ stop_y = clipRect->fBottom; |
+ } |
+ |
+ if (!path.isInverseFillType() && path.isConvex()) { |
+ SkASSERT(count >= 2); // convex walker does not handle missing right edges |
+ aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y, |
+ rect.fLeft << 16, rect.fRight << 16, isUsingMask); |
+ } else { |
+ SkFAIL("Concave AAA is not yet implemented!"); |
+ } |
+} |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter) { |
+ if (origClip.isEmpty()) { |
+ return; |
+ } |
+ |
+ const bool isInverse = path.isInverseFillType(); |
+ SkIRect ir; |
+ path.getBounds().roundOut(&ir); |
+ if (ir.isEmpty()) { |
+ if (isInverse) { |
+ blitter->blitRegion(origClip); |
+ } |
+ return; |
+ } |
+ |
+ SkIRect clippedIR; |
+ if (isInverse) { |
+ // If the path is an inverse fill, it's going to fill the entire |
+ // clip, and we care whether the entire clip exceeds our limits. |
+ clippedIR = origClip.getBounds(); |
+ } else { |
+ if (!clippedIR.intersect(ir, origClip.getBounds())) { |
+ return; |
+ } |
+ } |
+ |
+ // Our antialiasing can't handle a clip larger than 32767, so we restrict |
+ // the clip to that limit here. (the runs[] uses int16_t for its index). |
+ // |
+ // A more general solution (one that could also eliminate the need to |
+ // disable aa based on ir bounds (see overflows_short_shift) would be |
+ // to tile the clip/target... |
+ SkRegion tmpClipStorage; |
+ const SkRegion* clipRgn = &origClip; |
+ { |
+ static const int32_t kMaxClipCoord = 32767; |
+ const SkIRect& bounds = origClip.getBounds(); |
+ if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) { |
+ SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord }; |
+ tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op); |
+ clipRgn = &tmpClipStorage; |
+ } |
+ } |
+ // for here down, use clipRgn, not origClip |
+ |
+ SkScanClipper clipper(blitter, clipRgn, ir); |
+ const SkIRect* clipRect = clipper.getClipRect(); |
+ |
+ if (clipper.getBlitter() == nullptr) { // clipped out |
+ if (isInverse) { |
+ blitter->blitRegion(*clipRgn); |
+ } |
+ return; |
+ } |
+ |
+ // now use the (possibly wrapped) blitter |
+ blitter = clipper.getBlitter(); |
+ |
+ if (isInverse) { |
+ // Currently, we use the old path to render the inverse path, |
+ // so we don't need this. |
+ // sk_blit_above(blitter, ir, *clipRgn); |
+ } |
+ |
+ SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop); |
+ |
+ if (MaskAdditiveBlitter::canHandleRect(ir) && !isInverse) { |
+ MaskAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse); |
+ aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, true); |
+ } else { |
+ RunBasedAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse); |
+ aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, false); |
+ } |
+ |
+ if (isInverse) { |
+ // Currently, we use the old path to render the inverse path, |
+ // so we don't need this. |
+ // sk_blit_below(blitter, ir, *clipRgn); |
+ } |
+} |
+ |
+// This almost copies SkScan::AntiFillPath |
+void SkScan::AAAFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) { |
+ if (clip.isEmpty()) { |
+ return; |
+ } |
+ |
+ if (clip.isBW()) { |
+ AAAFillPath(path, clip.bwRgn(), blitter); |
+ } else { |
+ SkRegion tmp; |
+ SkAAClipBlitter aaBlitter; |
+ |
+ tmp.setRect(clip.getBounds()); |
+ aaBlitter.init(blitter, &clip.aaRgn()); |
+ AAAFillPath(path, tmp, &aaBlitter); |
+ } |
+} |