OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2016 The Android Open Source Project |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #include "SkAntiRun.h" |
| 9 #include "SkBlitter.h" |
| 10 #include "SkEdge.h" |
| 11 #include "SkAnalyticEdge.h" |
| 12 #include "SkEdgeBuilder.h" |
| 13 #include "SkGeometry.h" |
| 14 #include "SkPath.h" |
| 15 #include "SkQuadClipper.h" |
| 16 #include "SkRasterClip.h" |
| 17 #include "SkRegion.h" |
| 18 #include "SkScan.h" |
| 19 #include "SkScanPriv.h" |
| 20 #include "SkTemplates.h" |
| 21 #include "SkTSort.h" |
| 22 #include "SkUtils.h" |
| 23 |
| 24 /////////////////////////////////////////////////////////////////////////////// |
| 25 |
| 26 /* |
| 27 |
| 28 The following is a high-level overview of our analytic anti-aliasing |
| 29 algorithm. We consider a path as a collection of line segments, as |
| 30 quadratic/cubic curves are converted to small line segments. Without loss of |
| 31 generality, let's assume that the draw region is [0, W] x [0, H]. |
| 32 |
| 33 Our algorithm is based on horizontal scan lines (y = c_i) as the previous |
| 34 sampling-based algorithm did. However, our algorithm uses non-equal-spaced |
| 35 scan lines, while the previous method always uses equal-spaced scan lines, |
| 36 such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm, |
| 37 and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous |
| 38 16-supersampling AA algorithm. |
| 39 |
| 40 Our algorithm contains scan lines y = c_i for c_i that is either: |
| 41 |
| 42 1. an integer between [0, H] |
| 43 |
| 44 2. the y value of a line segment endpoint |
| 45 |
| 46 3. the y value of an intersection of two line segments |
| 47 |
| 48 For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes |
| 49 the coverage of this horizontal strip of our path on each pixel. This can be |
| 50 done very efficiently because the strip of our path now only consists of |
| 51 trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes |
| 52 rectangles and triangles as special cases). |
| 53 |
| 54 We now describe how the coverage of single pixel is computed against such a |
| 55 trapezoid. That coverage is essentially the intersection area of a rectangle |
| 56 (e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection |
| 57 could be complicated, as shown in the example region A below: |
| 58 |
| 59 +-----------\----+ |
| 60 | \ C| |
| 61 | \ | |
| 62 \ \ | |
| 63 |\ A \| |
| 64 | \ \ |
| 65 | \ | |
| 66 | B \ | |
| 67 +----\-----------+ |
| 68 |
| 69 However, we don't have to compute the area of A directly. Instead, we can |
| 70 compute the excluded area, which are B and C, quite easily, because they're |
| 71 just triangles. In fact, we can prove that an excluded region (take B as an |
| 72 example) is either itself a simple trapezoid (including rectangles, triangles, |
| 73 and empty regions), or its opposite (the opposite of B is A + C) is a simple |
| 74 trapezoid. In any case, we can compute its area efficiently. |
| 75 |
| 76 In summary, our algorithm has a higher quality because it generates ground- |
| 77 truth coverages analytically. It is also faster because it has much fewer |
| 78 unnessasary horizontal scan lines. For example, given a triangle path, the |
| 79 number of scan lines in our algorithm is only about 3 + H while the |
| 80 16-supersampling algorithm has about 4H scan lines. |
| 81 |
| 82 */ |
| 83 |
| 84 /////////////////////////////////////////////////////////////////////////////// |
| 85 |
| 86 inline void addAlpha(SkAlpha& alpha, SkAlpha delta) { |
| 87 SkASSERT(alpha + (int)delta <= 0xFF); |
| 88 alpha += delta; |
| 89 } |
| 90 |
| 91 class AdditiveBlitter : public SkBlitter { |
| 92 public: |
| 93 virtual ~AdditiveBlitter() {} |
| 94 |
| 95 virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0; |
| 96 |
| 97 virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0
; |
| 98 virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0; |
| 99 virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0; |
| 100 |
| 101 void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]
) override { |
| 102 SkDEBUGFAIL("Please call real blitter's blitAntiH instead."); |
| 103 } |
| 104 |
| 105 void blitV(int x, int y, int height, SkAlpha alpha) override { |
| 106 SkDEBUGFAIL("Please call real blitter's blitV instead."); |
| 107 } |
| 108 |
| 109 void blitH(int x, int y, int width) override { |
| 110 SkDEBUGFAIL("Please call real blitter's blitH instead."); |
| 111 } |
| 112 |
| 113 void blitRect(int x, int y, int width, int height) override { |
| 114 SkDEBUGFAIL("Please call real blitter's blitRect instead."); |
| 115 } |
| 116 |
| 117 void blitAntiRect(int x, int y, int width, int height, |
| 118 SkAlpha leftAlpha, SkAlpha rightAlpha) override { |
| 119 SkDEBUGFAIL("Please call real blitter's blitAntiRect instead."); |
| 120 } |
| 121 |
| 122 virtual int getWidth() = 0; |
| 123 }; |
| 124 |
| 125 // We need this mask blitter because it significantly accelerates small path fil
ling. |
| 126 class MaskAdditiveBlitter : public AdditiveBlitter { |
| 127 public: |
| 128 MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegio
n& clip, |
| 129 bool isInverse); |
| 130 ~MaskAdditiveBlitter() { |
| 131 fRealBlitter->blitMask(fMask, fClipRect); |
| 132 } |
| 133 |
| 134 // Most of the time, we still consider this mask blitter as the real blitter |
| 135 // so we can accelerate blitRect and others. But sometimes we want to return |
| 136 // the absolute real blitter (e.g., when we fall back to the old code path). |
| 137 SkBlitter* getRealBlitter(bool forceRealBlitter) override { |
| 138 return forceRealBlitter ? fRealBlitter : this; |
| 139 } |
| 140 |
| 141 // Virtual function is slow. So don't use this. Directly add alpha to the ma
sk instead. |
| 142 void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| 143 |
| 144 // Allowing following methods are used to blit rectangles during aaa_walk_co
nvex_edges |
| 145 // Since there aren't many rectangles, we can still break the slow speed of
virtual functions. |
| 146 void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| 147 void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| 148 void blitV(int x, int y, int height, SkAlpha alpha) override; |
| 149 void blitRect(int x, int y, int width, int height) override; |
| 150 void blitAntiRect(int x, int y, int width, int height, |
| 151 SkAlpha leftAlpha, SkAlpha rightAlpha) override; |
| 152 |
| 153 int getWidth() override { return fClipRect.width(); } |
| 154 |
| 155 static bool canHandleRect(const SkIRect& bounds) { |
| 156 int width = bounds.width(); |
| 157 int64_t rb = SkAlign4(width); |
| 158 // use 64bits to detect overflow |
| 159 int64_t storage = rb * bounds.height(); |
| 160 |
| 161 return (width <= MaskAdditiveBlitter::kMAX_WIDTH) && |
| 162 (storage <= MaskAdditiveBlitter::kMAX_STORAGE); |
| 163 } |
| 164 |
| 165 // Return a pointer where pointer[x] corresonds to the alpha of (x, y) |
| 166 inline uint8_t* getRow(int y) { |
| 167 if (y != fY) { |
| 168 fY = y; |
| 169 fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - f
Mask.fBounds.fLeft; |
| 170 } |
| 171 return fRow; |
| 172 } |
| 173 |
| 174 private: |
| 175 // so we don't try to do very wide things, where the RLE blitter would be fa
ster |
| 176 static const int kMAX_WIDTH = 32; |
| 177 static const int kMAX_STORAGE = 1024; |
| 178 |
| 179 SkBlitter* fRealBlitter; |
| 180 SkMask fMask; |
| 181 SkIRect fClipRect; |
| 182 // we add 2 because we can write 1 extra byte at either end due to precision
error |
| 183 uint32_t fStorage[(kMAX_STORAGE >> 2) + 2]; |
| 184 |
| 185 uint8_t* fRow; |
| 186 int fY; |
| 187 }; |
| 188 |
| 189 MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect&
ir, const SkRegion& clip, |
| 190 bool isInverse) { |
| 191 SkASSERT(canHandleRect(ir)); |
| 192 SkASSERT(!isInverse); |
| 193 |
| 194 fRealBlitter = realBlitter; |
| 195 |
| 196 fMask.fImage = (uint8_t*)fStorage + 1; // There's 1 extra byte at either
end of fStorage |
| 197 fMask.fBounds = ir; |
| 198 fMask.fRowBytes = ir.width(); |
| 199 fMask.fFormat = SkMask::kA8_Format; |
| 200 |
| 201 fY = ir.fTop - 1; |
| 202 fRow = nullptr; |
| 203 |
| 204 fClipRect = ir; |
| 205 if (!fClipRect.intersect(clip.getBounds())) { |
| 206 SkASSERT(0); |
| 207 fClipRect.setEmpty(); |
| 208 } |
| 209 |
| 210 memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2); |
| 211 } |
| 212 |
| 213 void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int
len) { |
| 214 SkFAIL("Don't use this; directly add alphas to the mask."); |
| 215 } |
| 216 |
| 217 void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| 218 SkASSERT(x >= fMask.fBounds.fLeft -1); |
| 219 addAlpha(this->getRow(y)[x], alpha); |
| 220 } |
| 221 |
| 222 void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha
) { |
| 223 SkASSERT(x >= fMask.fBounds.fLeft -1); |
| 224 uint8_t* row = this->getRow(y); |
| 225 for (int i=0; i<width; i++) { |
| 226 addAlpha(row[x + i], alpha); |
| 227 } |
| 228 } |
| 229 |
| 230 void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 231 if (alpha == 0) { |
| 232 return; |
| 233 } |
| 234 SkASSERT(x >= fMask.fBounds.fLeft -1); |
| 235 // This must be called as if this is a real blitter. |
| 236 // So we directly set alpha rather than adding it. |
| 237 uint8_t* row = this->getRow(y); |
| 238 for (int i=0; i<height; i++) { |
| 239 row[x] = alpha; |
| 240 row += fMask.fRowBytes; |
| 241 } |
| 242 } |
| 243 |
| 244 void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) { |
| 245 SkASSERT(x >= fMask.fBounds.fLeft -1); |
| 246 // This must be called as if this is a real blitter. |
| 247 // So we directly set alpha rather than adding it. |
| 248 uint8_t* row = this->getRow(y); |
| 249 for (int i=0; i<height; i++) { |
| 250 memset(row + x, 0xFF, width); |
| 251 row += fMask.fRowBytes; |
| 252 } |
| 253 } |
| 254 |
| 255 void MaskAdditiveBlitter::blitAntiRect(int x, int y, int width, int height, |
| 256 SkAlpha leftAlpha, SkAlpha rightAlpha) { |
| 257 blitV(x, y, height, leftAlpha); |
| 258 blitV(x + 1 + width, y, height, rightAlpha); |
| 259 blitRect(x + 1, y, width, height); |
| 260 } |
| 261 |
| 262 class RunBasedAdditiveBlitter : public AdditiveBlitter { |
| 263 public: |
| 264 RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkR
egion& clip, |
| 265 bool isInverse); |
| 266 ~RunBasedAdditiveBlitter(); |
| 267 |
| 268 SkBlitter* getRealBlitter(bool forceRealBlitter) override; |
| 269 |
| 270 void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| 271 void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| 272 void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| 273 |
| 274 int getWidth() override; |
| 275 |
| 276 private: |
| 277 SkBlitter* fRealBlitter; |
| 278 |
| 279 /// Current y coordinate |
| 280 int fCurrY; |
| 281 /// Widest row of region to be blitted |
| 282 int fWidth; |
| 283 /// Leftmost x coordinate in any row |
| 284 int fLeft; |
| 285 /// Initial y coordinate (top of bounds). |
| 286 int fTop; |
| 287 |
| 288 // The next three variables are used to track a circular buffer that |
| 289 // contains the values used in SkAlphaRuns. These variables should only |
| 290 // ever be updated in advanceRuns(), and fRuns should always point to |
| 291 // a valid SkAlphaRuns... |
| 292 int fRunsToBuffer; |
| 293 void* fRunsBuffer; |
| 294 int fCurrentRun; |
| 295 SkAlphaRuns fRuns; |
| 296 |
| 297 int fOffsetX; |
| 298 |
| 299 inline bool check(int x, int width) { |
| 300 #ifdef SK_DEBUG |
| 301 if (x < 0 || x + width > fWidth) { |
| 302 SkDebugf("Ignore x = %d, width = %d\n", x, width); |
| 303 } |
| 304 #endif |
| 305 return (x >= 0 && x + width <= fWidth); |
| 306 } |
| 307 |
| 308 // extra one to store the zero at the end |
| 309 inline int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof
(int16_t); } |
| 310 |
| 311 // This function updates the fRuns variable to point to the next buffer spac
e |
| 312 // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrent
Run |
| 313 // and resets fRuns to point to an empty scanline. |
| 314 inline void advanceRuns() { |
| 315 const size_t kRunsSz = this->getRunsSz(); |
| 316 fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer; |
| 317 fRuns.fRuns = reinterpret_cast<int16_t*>( |
| 318 reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz); |
| 319 fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1); |
| 320 fRuns.reset(fWidth); |
| 321 } |
| 322 |
| 323 // Blitting 0xFF and 0 is much faster so we snap alphas close to them |
| 324 inline SkAlpha snapAlpha(SkAlpha alpha) { |
| 325 return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha; |
| 326 } |
| 327 |
| 328 inline void flush() { |
| 329 if (fCurrY >= fTop) { |
| 330 SkASSERT(fCurrentRun < fRunsToBuffer); |
| 331 for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) { |
| 332 // It seems that blitting 255 or 0 is much faster than blitting
254 or 1 |
| 333 fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]); |
| 334 } |
| 335 if (!fRuns.empty()) { |
| 336 // SkDEBUGCODE(fRuns.dump();) |
| 337 fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns
); |
| 338 this->advanceRuns(); |
| 339 fOffsetX = 0; |
| 340 } |
| 341 fCurrY = fTop - 1; |
| 342 } |
| 343 } |
| 344 |
| 345 inline void checkY(int y) { |
| 346 if (y != fCurrY) { |
| 347 this->flush(); |
| 348 fCurrY = y; |
| 349 } |
| 350 } |
| 351 }; |
| 352 |
| 353 RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, const S
kIRect& ir, const SkRegion& clip, |
| 354 bool isInverse) { |
| 355 fRealBlitter = realBlitter; |
| 356 |
| 357 SkIRect sectBounds; |
| 358 if (isInverse) { |
| 359 // We use the clip bounds instead of the ir, since we may be asked to |
| 360 //draw outside of the rect when we're a inverse filltype |
| 361 sectBounds = clip.getBounds(); |
| 362 } else { |
| 363 if (!sectBounds.intersect(ir, clip.getBounds())) { |
| 364 sectBounds.setEmpty(); |
| 365 } |
| 366 } |
| 367 |
| 368 const int left = sectBounds.left(); |
| 369 const int right = sectBounds.right(); |
| 370 |
| 371 fLeft = left; |
| 372 fWidth = right - left; |
| 373 fTop = sectBounds.top(); |
| 374 fCurrY = fTop - 1; |
| 375 |
| 376 fRunsToBuffer = realBlitter->requestRowsPreserved(); |
| 377 fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz()
); |
| 378 fCurrentRun = -1; |
| 379 |
| 380 this->advanceRuns(); |
| 381 |
| 382 fOffsetX = 0; |
| 383 } |
| 384 |
| 385 RunBasedAdditiveBlitter::~RunBasedAdditiveBlitter() { |
| 386 this->flush(); |
| 387 } |
| 388 |
| 389 SkBlitter* RunBasedAdditiveBlitter::getRealBlitter(bool forceRealBlitter) { |
| 390 return fRealBlitter; |
| 391 } |
| 392 |
| 393 void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[],
int len) { |
| 394 checkY(y); |
| 395 x -= fLeft; |
| 396 |
| 397 if (x < 0) { |
| 398 len += x; |
| 399 antialias -= x; |
| 400 x = 0; |
| 401 } |
| 402 len = SkTMin(len, fWidth - x); |
| 403 SkASSERT(check(x, len)); |
| 404 |
| 405 if (x < fOffsetX) { |
| 406 fOffsetX = 0; |
| 407 } |
| 408 |
| 409 fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
| 410 for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
| 411 for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
| 412 fRuns.fRuns[x + i + j] = 1; |
| 413 fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
| 414 } |
| 415 fRuns.fRuns[x + i] = 1; |
| 416 } |
| 417 for (int i=0; i<len; i++) { |
| 418 addAlpha(fRuns.fAlpha[x + i], antialias[i]); |
| 419 } |
| 420 } |
| 421 void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| 422 checkY(y); |
| 423 x -= fLeft; |
| 424 |
| 425 if (x < fOffsetX) { |
| 426 fOffsetX = 0; |
| 427 } |
| 428 |
| 429 if (this->check(x, 1)) { |
| 430 fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX); |
| 431 } |
| 432 } |
| 433 |
| 434 void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha a
lpha) { |
| 435 checkY(y); |
| 436 x -= fLeft; |
| 437 |
| 438 if (x < fOffsetX) { |
| 439 fOffsetX = 0; |
| 440 } |
| 441 |
| 442 if (this->check(x, width)) { |
| 443 fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX); |
| 444 } |
| 445 } |
| 446 |
| 447 int RunBasedAdditiveBlitter::getWidth() { return fWidth; } |
| 448 |
| 449 /////////////////////////////////////////////////////////////////////////////// |
| 450 |
| 451 // Return the alpha of a trapezoid whose height is 1 |
| 452 static inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) { |
| 453 SkASSERT(l1 >= 0 && l2 >= 0); |
| 454 return ((l1 + l2) >> 9); |
| 455 } |
| 456 |
| 457 // The alpha of right-triangle (a, a*b), in 16 bits |
| 458 static inline SkFixed partialTriangleToAlpha16(SkFixed a, SkFixed b) { |
| 459 SkASSERT(a <= SK_Fixed1); |
| 460 // SkFixedMul_lowprec(SkFixedMul_lowprec(a, a), b) >> 1 |
| 461 // return ((((a >> 8) * (a >> 8)) >> 8) * (b >> 8)) >> 1; |
| 462 return (a >> 11) * (a >> 11) * (b >> 11); |
| 463 } |
| 464 |
| 465 // The alpha of right-triangle (a, a*b) |
| 466 static inline SkAlpha partialTriangleToAlpha(SkFixed a, SkFixed b) { |
| 467 return partialTriangleToAlpha16(a, b) >> 8; |
| 468 } |
| 469 |
| 470 static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkFixed partialHeight) { |
| 471 return (alpha * partialHeight) >> 16; |
| 472 } |
| 473 |
| 474 static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkAlpha fullAlpha) { |
| 475 return ((uint16_t)alpha * fullAlpha) >> 8; |
| 476 } |
| 477 |
| 478 // For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just s
hifting right. |
| 479 // For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 2
55. |
| 480 // This is rarely the problem so we'll only use this for blitting rectangles. |
| 481 static inline SkAlpha f2a(SkFixed f) { |
| 482 SkASSERT(f <= SK_Fixed1); |
| 483 return getPartialAlpha(0xFF, f); |
| 484 } |
| 485 |
| 486 // Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1), |
| 487 // approximate (very coarsely) the x coordinate of the intersection. |
| 488 static inline SkFixed approximateIntersection(SkFixed l1, SkFixed r1, SkFixed l2
, SkFixed r2) { |
| 489 if (l1 > r1) { SkTSwap(l1, r1); } |
| 490 if (l2 > r2) { SkTSwap(l2, r2); } |
| 491 return (SkTMax(l1, l2) + SkTMin(r1, r2)) >> 1; |
| 492 } |
| 493 |
| 494 // Here we always send in l < SK_Fixed1, and the first alpha we want to compute
is alphas[0] |
| 495 static inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r, |
| 496 SkFixed dY, SkAlpha fullAlpha) { |
| 497 SkASSERT(l <= r); |
| 498 SkASSERT(l >> 16 == 0); |
| 499 int R = SkFixedCeilToInt(r); |
| 500 if (R == 0) { |
| 501 return; |
| 502 } else if (R == 1) { |
| 503 alphas[0] = getPartialAlpha(((R << 17) - l - r) >> 9, fullAlpha); |
| 504 } else { |
| 505 SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-mos
t triangle |
| 506 SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the rig
ht-most triangle |
| 507 SkFixed firstH = SkFixedMul_lowprec(first, dY); // vertical edge of the
left-most triangle |
| 508 alphas[0] = SkFixedMul_lowprec(first, firstH) >> 9; // triangle alpha |
| 509 SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle |
| 510 for (int i = 1; i < R - 1; i++) { |
| 511 alphas[i] = alpha16 >> 8; |
| 512 alpha16 += dY; |
| 513 } |
| 514 alphas[R - 1] = fullAlpha - partialTriangleToAlpha(last, dY); |
| 515 } |
| 516 } |
| 517 |
| 518 // Here we always send in l < SK_Fixed1, and the first alpha we want to compute
is alphas[0] |
| 519 static inline void computeAlphaBelowLine(SkAlpha* alphas, SkFixed l, SkFixed r,
SkFixed dY, SkAlpha fullAlpha) { |
| 520 SkASSERT(l <= r); |
| 521 SkASSERT(l >> 16 == 0); |
| 522 int R = SkFixedCeilToInt(r); |
| 523 if (R == 0) { |
| 524 return; |
| 525 } else if (R == 1) { |
| 526 alphas[0] = getPartialAlpha(trapezoidToAlpha(l, r), fullAlpha); |
| 527 } else { |
| 528 SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-mos
t triangle |
| 529 SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the rig
ht-most triangle |
| 530 SkFixed lastH = SkFixedMul_lowprec(last, dY); // vertical edge of the ri
ght-most triangle |
| 531 alphas[R-1] = SkFixedMul_lowprec(last, lastH) >> 9; // triangle alpha |
| 532 SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle |
| 533 for (int i = R - 2; i > 0; i--) { |
| 534 alphas[i] = alpha16 >> 8; |
| 535 alpha16 += dY; |
| 536 } |
| 537 alphas[0] = fullAlpha - partialTriangleToAlpha(first, dY); |
| 538 } |
| 539 } |
| 540 |
| 541 // Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha |
| 542 static inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x, |
| 543 SkAlpha alpha, SkAlpha fullAlpha, SkAlpha* maskRow
, |
| 544 bool isUsingMask) { |
| 545 if (isUsingMask) { |
| 546 if (fullAlpha == 0xFF) { |
| 547 maskRow[x] = alpha; |
| 548 } else { |
| 549 addAlpha(maskRow[x], getPartialAlpha(alpha, fullAlpha)); |
| 550 } |
| 551 } else { |
| 552 if (fullAlpha == 0xFF) { |
| 553 blitter->getRealBlitter()->blitV(x, y, 1, alpha); |
| 554 } else { |
| 555 blitter->blitAntiH(x, y, getPartialAlpha(alpha, fullAlpha)); |
| 556 } |
| 557 } |
| 558 } |
| 559 |
| 560 static inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x, |
| 561 SkAlpha a1, SkAlpha a2, SkAlpha fullAlpha, SkAlpha*
maskRow, |
| 562 bool isUsingMask) { |
| 563 if (isUsingMask) { |
| 564 addAlpha(maskRow[x], a1); |
| 565 addAlpha(maskRow[x + 1], a2); |
| 566 } else { |
| 567 if (fullAlpha == 0xFF) { |
| 568 blitter->getRealBlitter()->blitV(x, y, 1, a1); |
| 569 blitter->getRealBlitter()->blitV(x + 1, y, 1, a2); |
| 570 } else { |
| 571 blitter->blitAntiH(x, y, a1); |
| 572 blitter->blitAntiH(x + 1, y, a2); |
| 573 } |
| 574 } |
| 575 } |
| 576 |
| 577 // It's important that this is inline. Otherwise it'll be much slower. |
| 578 static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, in
t x, int len, |
| 579 SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMas
k) { |
| 580 if (isUsingMask) { |
| 581 for (int i=0; i<len; i++) { |
| 582 addAlpha(maskRow[x + i], fullAlpha); |
| 583 } |
| 584 } else { |
| 585 if (fullAlpha == 0xFF) { |
| 586 blitter->getRealBlitter()->blitH(x, y, len); |
| 587 } else { |
| 588 blitter->blitAntiH(x, y, len, fullAlpha); |
| 589 } |
| 590 } |
| 591 } |
| 592 |
| 593 static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y, |
| 594 SkFixed ul, SkFixed ur, SkFixed ll, SkFixed l
r, |
| 595 SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha,
SkAlpha* maskRow, |
| 596 bool isUsingMask) { |
| 597 int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr); |
| 598 int len = R - L; |
| 599 |
| 600 if (len == 1) { |
| 601 SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll); |
| 602 blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask)
; |
| 603 return; |
| 604 } |
| 605 |
| 606 // SkDebugf("y = %d, len = %d, ul = %f, ur = %f, ll = %f, lr = %f\n", y, len
, |
| 607 // SkFixedToFloat(ul), SkFixedToFloat(ur), SkFixedToFloat(ll), SkFix
edToFloat(lr)); |
| 608 |
| 609 const int kQuickLen = 31; |
| 610 // This is faster than SkAutoSMalloc<1024> |
| 611 char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)]; |
| 612 SkAlpha* alphas; |
| 613 |
| 614 if (len <= kQuickLen) { |
| 615 alphas = (SkAlpha*)quickMemory; |
| 616 } else { |
| 617 alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))
]; |
| 618 } |
| 619 |
| 620 SkAlpha* tempAlphas = alphas + len + 1; |
| 621 int16_t* runs = (int16_t*)(alphas + (len + 1) * 2); |
| 622 |
| 623 for (int i = 0; i < len; i++) { |
| 624 runs[i] = 1; |
| 625 alphas[i] = fullAlpha; |
| 626 } |
| 627 runs[len] = 0; |
| 628 |
| 629 int uL = SkFixedFloorToInt(ul); |
| 630 int lL = SkFixedCeilToInt(ll); |
| 631 if (uL + 2 == lL) { // We only need to compute two triangles, accelerate thi
s special case |
| 632 SkFixed first = (uL << 16) + SK_Fixed1 - ul; |
| 633 SkFixed second = ll - ul - first; |
| 634 SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, lDY); |
| 635 SkAlpha a2 = partialTriangleToAlpha(second, lDY); |
| 636 alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0; |
| 637 alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0; |
| 638 } else { |
| 639 computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL <<
16), |
| 640 lDY, fullAlpha); |
| 641 for (int i = uL; i < lL; i++) { |
| 642 if (alphas[i - L] > tempAlphas[i - L]) { |
| 643 alphas[i - L] -= tempAlphas[i - L]; |
| 644 } else { |
| 645 alphas[i - L] = 0; |
| 646 } |
| 647 } |
| 648 } |
| 649 |
| 650 int uR = SkFixedFloorToInt(ur); |
| 651 int lR = SkFixedCeilToInt(lr); |
| 652 if (uR + 2 == lR) { // We only need to compute two triangles, accelerate thi
s special case |
| 653 SkFixed first = (uR << 16) + SK_Fixed1 - ur; |
| 654 SkFixed second = lr - ur - first; |
| 655 SkAlpha a1 = partialTriangleToAlpha(first, rDY); |
| 656 SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, rDY); |
| 657 alphas[len-2] = alphas[len-2] > a1 ? alphas[len-2] - a1 : 0; |
| 658 alphas[len-1] = alphas[len-1] > a2 ? alphas[len-1] - a2 : 0; |
| 659 } else { |
| 660 computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR <<
16), |
| 661 rDY, fullAlpha); |
| 662 for (int i = uR; i < lR; i++) { |
| 663 if (alphas[i - L] > tempAlphas[i - L]) { |
| 664 alphas[i - L] -= tempAlphas[i - L]; |
| 665 } else { |
| 666 alphas[i - L] = 0; |
| 667 } |
| 668 } |
| 669 } |
| 670 |
| 671 if (isUsingMask) { |
| 672 for (int i=0; i<len; i++) { |
| 673 addAlpha(maskRow[L + i], alphas[i]); |
| 674 } |
| 675 } else { |
| 676 if (fullAlpha == 0xFF) { // Real blitter is faster than RunBasedAdditive
Blitter |
| 677 blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs); |
| 678 } else { |
| 679 blitter->blitAntiH(L, y, alphas, len); |
| 680 } |
| 681 } |
| 682 |
| 683 if (len > kQuickLen) { |
| 684 delete [] alphas; |
| 685 } |
| 686 } |
| 687 |
| 688 static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y, |
| 689 SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr, |
| 690 SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, |
| 691 SkAlpha* maskRow, bool isUsingMask) { |
| 692 SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value |
| 693 |
| 694 if (ul > ur) { |
| 695 #ifdef SK_DEBUG |
| 696 SkDebugf("ul = %f > ur = %f!\n", SkFixedToFloat(ul), SkFixedToFloat(ur))
; |
| 697 #endif |
| 698 return; |
| 699 } |
| 700 |
| 701 // Edge crosses. Approximate it. This should only happend due to precision l
imit, |
| 702 // so the approximation could be very coarse. |
| 703 if (ll > lr) { |
| 704 #ifdef SK_DEBUG |
| 705 SkDebugf("approximate intersection: %d %f %f\n", y, |
| 706 SkFixedToFloat(ll), SkFixedToFloat(lr)); |
| 707 #endif |
| 708 ll = lr = approximateIntersection(ul, ll, ur, lr); |
| 709 } |
| 710 |
| 711 if (ul == ur && ll == lr) { |
| 712 return; // empty trapzoid |
| 713 } |
| 714 |
| 715 // We're going to use the left line ul-ll and the rite line ur-lr |
| 716 // to exclude the area that's not covered by the path. |
| 717 // Swapping (ul, ll) or (ur, lr) won't affect that exclusion |
| 718 // so we'll do that for simplicity. |
| 719 if (ul > ll) { SkTSwap(ul, ll); } |
| 720 if (ur > lr) { SkTSwap(ur, lr); } |
| 721 |
| 722 SkFixed joinLeft = SkFixedCeilToFixed(ll); |
| 723 SkFixed joinRite = SkFixedFloorToFixed(ur); |
| 724 if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that
we can blit |
| 725 if (joinLeft < joinRite) { |
| 726 blit_full_alpha(blitter, y, joinLeft >> 16, (joinRite - joinLeft) >>
16, fullAlpha, |
| 727 maskRow, isUsingMask); |
| 728 } |
| 729 if (ul < joinLeft) { |
| 730 int len = SkFixedCeilToInt(joinLeft - ul); |
| 731 if (len == 1) { |
| 732 SkAlpha alpha = trapezoidToAlpha(joinLeft - ul, joinLeft - ll); |
| 733 blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRo
w, isUsingMask); |
| 734 } else if (len == 2) { |
| 735 SkFixed first = joinLeft - SK_Fixed1 - ul; |
| 736 SkFixed second = ll - ul - first; |
| 737 SkAlpha a1 = partialTriangleToAlpha(first, lDY); |
| 738 SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, lDY); |
| 739 blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow
, isUsingMask); |
| 740 } else { |
| 741 blit_aaa_trapezoid_row(blitter, y, ul, joinLeft, ll, joinLeft, l
DY, SK_MaxS32, |
| 742 fullAlpha, maskRow, isUsingMask); |
| 743 } |
| 744 } |
| 745 if (lr > joinRite) { |
| 746 int len = SkFixedCeilToInt(lr - joinRite); |
| 747 if (len == 1) { |
| 748 SkAlpha alpha = trapezoidToAlpha(ur - joinRite, lr - joinRite); |
| 749 blit_single_alpha(blitter, y, joinRite >> 16, alpha, fullAlpha,
maskRow, |
| 750 isUsingMask); |
| 751 } else if (len == 2) { |
| 752 SkFixed first = joinRite + SK_Fixed1 - ur; |
| 753 SkFixed second = lr - ur - first; |
| 754 SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, rDY); |
| 755 SkAlpha a2 = partialTriangleToAlpha(second, rDY); |
| 756 blit_two_alphas(blitter, y, joinRite >> 16, a1, a2, fullAlpha, m
askRow, |
| 757 isUsingMask); |
| 758 } else { |
| 759 blit_aaa_trapezoid_row(blitter, y, joinRite, ur, joinRite, lr, S
K_MaxS32, rDY, |
| 760 fullAlpha, maskRow, isUsingMask); |
| 761 } |
| 762 } |
| 763 } else { |
| 764 blit_aaa_trapezoid_row(blitter, y, ul, ur, ll, lr, lDY, rDY, fullAlpha,
maskRow, |
| 765 isUsingMask); |
| 766 } |
| 767 } |
| 768 |
| 769 /////////////////////////////////////////////////////////////////////////////// |
| 770 |
| 771 static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) { |
| 772 int valuea = a.fUpperY; |
| 773 int valueb = b.fUpperY; |
| 774 |
| 775 if (valuea == valueb) { |
| 776 valuea = a.fX; |
| 777 valueb = b.fX; |
| 778 } |
| 779 |
| 780 if (valuea == valueb) { |
| 781 valuea = a.fDX; |
| 782 valueb = b.fDX; |
| 783 } |
| 784 |
| 785 return valuea < valueb; |
| 786 } |
| 787 |
| 788 static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticE
dge** last) { |
| 789 SkTQSort(list, list + count - 1); |
| 790 |
| 791 // now make the edges linked in sorted order |
| 792 for (int i = 1; i < count; i++) { |
| 793 list[i - 1]->fNext = list[i]; |
| 794 list[i]->fPrev = list[i - 1]; |
| 795 } |
| 796 |
| 797 *last = list[count - 1]; |
| 798 return list[0]; |
| 799 } |
| 800 |
| 801 #ifdef SK_DEBUG |
| 802 static void validate_sort(const SkAnalyticEdge* edge) { |
| 803 SkFixed y = SkIntToFixed(-32768); |
| 804 |
| 805 while (edge->fUpperY != SK_MaxS32) { |
| 806 edge->validate(); |
| 807 SkASSERT(y <= edge->fUpperY); |
| 808 |
| 809 y = edge->fUpperY; |
| 810 edge = (SkAnalyticEdge*)edge->fNext; |
| 811 } |
| 812 } |
| 813 #else |
| 814 #define validate_sort(edge) |
| 815 #endif |
| 816 |
| 817 // return true if we're done with this edge |
| 818 static bool update_edge(SkAnalyticEdge* edge, SkFixed last_y) { |
| 819 if (last_y >= edge->fLowerY) { |
| 820 if (edge->fCurveCount < 0) { |
| 821 if (static_cast<SkAnalyticCubicEdge*>(edge)->updateCubic()) { |
| 822 return false; |
| 823 } |
| 824 } else if (edge->fCurveCount > 0) { |
| 825 if (static_cast<SkAnalyticQuadraticEdge*>(edge)->updateQuadratic())
{ |
| 826 return false; |
| 827 } |
| 828 } |
| 829 return true; |
| 830 } |
| 831 SkASSERT(false); |
| 832 return false; |
| 833 } |
| 834 |
| 835 // For an edge, we consider it smooth if the Dx doesn't change much, and Dy is l
arge enough |
| 836 // For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQ
Dy/fCDy are |
| 837 // relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy |
| 838 static inline bool isSmoothEnough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* next
Edge, int stop_y) { |
| 839 if (thisEdge->fCurveCount < 0) { |
| 840 const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->
fCEdge; |
| 841 int ddshift = cEdge.fCurveShift; |
| 842 return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift && |
| 843 SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift && |
| 844 // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift |
| 845 (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >=
SK_Fixed1; |
| 846 } else if (thisEdge->fCurveCount > 0) { |
| 847 const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thi
sEdge)->fQEdge; |
| 848 return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) && |
| 849 SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) && |
| 850 // current Dy is (fQDy - fQDDy) >> shift |
| 851 (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift |
| 852 >= SK_Fixed1; |
| 853 } |
| 854 return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should
be small |
| 855 nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be
large |
| 856 } |
| 857 |
| 858 // Check if the leftE and riteE are changing smoothly in terms of fDX. |
| 859 // If yes, we can later skip the fractional y and directly jump to integer y. |
| 860 static inline bool isSmoothEnough(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE, |
| 861 SkAnalyticEdge* currE, int stop_y) { |
| 862 if (currE->fUpperY >= stop_y << 16) { |
| 863 return false; // We're at the end so we won't skip anything |
| 864 } |
| 865 if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) { |
| 866 return isSmoothEnough(leftE, currE, stop_y); // Only leftE is changing |
| 867 } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) { |
| 868 return isSmoothEnough(riteE, currE, stop_y); // Only riteE is changing |
| 869 } |
| 870 |
| 871 // Now both edges are changing, find the second next edge |
| 872 SkAnalyticEdge* nextCurrE = currE->fNext; |
| 873 if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end |
| 874 return false; |
| 875 } |
| 876 if (*nextCurrE < *currE) { |
| 877 SkTSwap(currE, nextCurrE); |
| 878 } |
| 879 return isSmoothEnough(leftE, currE, stop_y) && isSmoothEnough(riteE, nextCur
rE, stop_y); |
| 880 } |
| 881 |
| 882 static inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitt
er* blitter, |
| 883 int start_y, int stop_y, SkFixed leftBound, SkFixed r
iteBound, |
| 884 bool isUsingMask) { |
| 885 validate_sort((SkAnalyticEdge*)prevHead->fNext); |
| 886 |
| 887 SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext; |
| 888 SkAnalyticEdge* riteE = (SkAnalyticEdge*) leftE->fNext; |
| 889 SkAnalyticEdge* currE = (SkAnalyticEdge*) riteE->fNext; |
| 890 |
| 891 SkFixed y = SkTMax(leftE->fUpperY, riteE->fUpperY); |
| 892 |
| 893 #ifdef SK_DEBUG |
| 894 int frac_y_cnt = 0; |
| 895 int total_y_cnt = 0; |
| 896 #endif |
| 897 |
| 898 for (;;) { |
| 899 // We have to check fLowerY first because some edges might be alone (e.g
., there's only |
| 900 // a left edge but no right edge in a given y scan line) due to precisio
n limit. |
| 901 while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multipl
e short edges |
| 902 if (update_edge(leftE, y)) { |
| 903 if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
| 904 goto END_WALK; |
| 905 } |
| 906 leftE = currE; |
| 907 currE = (SkAnalyticEdge*)currE->fNext; |
| 908 } |
| 909 } |
| 910 while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multipl
e short edges |
| 911 if (update_edge(riteE, y)) { |
| 912 if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
| 913 goto END_WALK; |
| 914 } |
| 915 riteE = currE; |
| 916 currE = (SkAnalyticEdge*)currE->fNext; |
| 917 } |
| 918 } |
| 919 |
| 920 SkASSERT(leftE); |
| 921 SkASSERT(riteE); |
| 922 |
| 923 // check our bottom clip |
| 924 if (SkFixedFloorToInt(y) >= stop_y) { |
| 925 break; |
| 926 } |
| 927 |
| 928 SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y); |
| 929 SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y); |
| 930 |
| 931 leftE->goY(y); |
| 932 riteE->goY(y); |
| 933 |
| 934 if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX && |
| 935 leftE->fDX > riteE->fDX)) { |
| 936 SkTSwap(leftE, riteE); |
| 937 } |
| 938 |
| 939 SkFixed local_bot_fixed = SkMin32(leftE->fLowerY, riteE->fLowerY); |
| 940 // Skip the fractional y if edges are changing smoothly |
| 941 if (isSmoothEnough(leftE, riteE, currE, stop_y)) { |
| 942 local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed); |
| 943 } |
| 944 local_bot_fixed = SkMin32(local_bot_fixed, SkIntToFixed(stop_y + 1)); |
| 945 |
| 946 SkFixed left = leftE->fX; |
| 947 SkFixed dLeft = leftE->fDX; |
| 948 SkFixed rite = riteE->fX; |
| 949 SkFixed dRite = riteE->fDX; |
| 950 if (0 == (dLeft | dRite)) { |
| 951 int fullLeft = SkFixedCeilToInt(left); |
| 952 int fullRite = SkFixedFloorToInt(rite); |
| 953 SkFixed partialLeft = SkIntToFixed(fullLeft) - left; |
| 954 SkFixed partialRite = rite - SkIntToFixed(fullRite); |
| 955 int fullTop = SkFixedCeilToInt(y); |
| 956 int fullBot = SkFixedFloorToInt(local_bot_fixed); |
| 957 SkFixed partialTop = SkIntToFixed(fullTop) - y; |
| 958 SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot); |
| 959 if (fullTop > fullBot) { // The rectangle is within one pixel height
... |
| 960 partialTop -= (SK_Fixed1 - partialBot); |
| 961 partialBot = 0; |
| 962 } |
| 963 |
| 964 if (fullRite >= fullLeft) { |
| 965 // Blit all full-height rows from fullTop to fullBot |
| 966 if (fullBot > fullTop) { |
| 967 blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, fullTo
p, |
| 968 fullRite - fullLeft,
fullBot - fullTop, |
| 969 f2a(partialLeft), f2
a(partialRite)); |
| 970 } |
| 971 |
| 972 if (partialTop > 0) { // blit first partial row |
| 973 if (partialLeft > 0) { |
| 974 blitter->blitAntiH(fullLeft - 1, fullTop - 1, |
| 975 f2a(SkFixedMul_lowprec(partialTop, partialLeft))
); |
| 976 } |
| 977 if (partialRite > 0) { |
| 978 blitter->blitAntiH(fullRite, fullTop - 1, |
| 979 f2a(SkFixedMul_lowprec(partialTop, partialRite))
); |
| 980 } |
| 981 blitter->blitAntiH(fullLeft, fullTop - 1, fullRite - fullLef
t, |
| 982 f2a(partialTop)); |
| 983 } |
| 984 |
| 985 if (partialBot > 0) { // blit last partial row |
| 986 if (partialLeft > 0) { |
| 987 blitter->blitAntiH(fullLeft - 1, fullBot, |
| 988 f2a(SkFixedMul_lowprec(partialBot, pa
rtialLeft))); |
| 989 } |
| 990 if (partialRite > 0) { |
| 991 blitter->blitAntiH(fullRite, fullBot, |
| 992 f2a(SkFixedMul_lowprec(partialBot, pa
rtialRite))); |
| 993 } |
| 994 blitter->blitAntiH(fullLeft, fullBot, fullRite - fullLeft, f
2a(partialBot)); |
| 995 } |
| 996 } else { // left and rite are within the same pixel |
| 997 if (partialTop > 0) { |
| 998 blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop - 1,
1, |
| 999 f2a(SkFixedMul_lowprec(partialTop, rite - left))); |
| 1000 } |
| 1001 if (partialBot > 0) { |
| 1002 blitter->getRealBlitter()->blitV(fullLeft - 1, fullBot, 1, |
| 1003 f2a(SkFixedMul_lowprec(partialBot, rite - left))); |
| 1004 } |
| 1005 if (fullBot >= fullTop) { |
| 1006 blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop, full
Bot - fullTop, |
| 1007 f2a(rite - left)); |
| 1008 } |
| 1009 } |
| 1010 |
| 1011 y = local_bot_fixed; |
| 1012 } else { |
| 1013 // The following constant are used to snap X |
| 1014 // We snap X mainly for speedup (no tiny triangle) and |
| 1015 // avoiding edge cases caused by precision errors |
| 1016 const SkFixed kSnapDigit = SK_Fixed1 >> 4; |
| 1017 const SkFixed kSnapHalf = kSnapDigit >> 1; |
| 1018 const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1)); |
| 1019 left += kSnapHalf; rite += kSnapHalf; // For fast rounding |
| 1020 |
| 1021 // Number of blit_trapezoid_row calls we'll have |
| 1022 int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y)
; |
| 1023 #ifdef SK_DEBUG |
| 1024 total_y_cnt += count; |
| 1025 frac_y_cnt += ((int)(y & 0xFFFF0000) != y); |
| 1026 if ((int)(y & 0xFFFF0000) != y) { |
| 1027 SkDebugf("frac_y = %f\n", SkFixedToFloat(y)); |
| 1028 } |
| 1029 #endif |
| 1030 |
| 1031 // If we're using mask blitter, we advance the mask row in this func
tion |
| 1032 // to save some "if" condition checks. |
| 1033 SkAlpha* maskRow = nullptr; |
| 1034 if (isUsingMask) { |
| 1035 maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >
> 16); |
| 1036 } |
| 1037 |
| 1038 // Instead of writing one loop that handles both partial-row blit_tr
apezoid_row |
| 1039 // and full-row trapezoid_row together, we use the following 3-stage
flow to |
| 1040 // handle partial-row blit and full-row blit separately. It will sav
e us much time |
| 1041 // on changing y, left, and rite. |
| 1042 if (count > 1) { |
| 1043 if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on th
e top |
| 1044 count--; |
| 1045 SkFixed nextY = SkFixedCeilToFixed(y + 1); |
| 1046 SkFixed dY = nextY - y; |
| 1047 SkFixed nextLeft = left + SkFixedMul_lowprec(dLeft, dY); |
| 1048 SkFixed nextRite = rite + SkFixedMul_lowprec(dRite, dY); |
| 1049 blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite
& kSnapMask, |
| 1050 nextLeft & kSnapMask, nextRite & kSnapMask, leftE->f
DY, riteE->fDY, |
| 1051 getPartialAlpha(0xFF, dY), maskRow, isUsingMask); |
| 1052 left = nextLeft; rite = nextRite; y = nextY; |
| 1053 } |
| 1054 |
| 1055 while (count > 1) { // Full rows in the middle |
| 1056 count--; |
| 1057 if (isUsingMask) { |
| 1058 maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->ge
tRow(y >> 16); |
| 1059 } |
| 1060 SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, next
Rite = rite + dRite; |
| 1061 blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite
& kSnapMask, |
| 1062 nextLeft & kSnapMask, nextRite & kSnapMask, |
| 1063 leftE->fDY, riteE->fDY, 0xFF, maskRow, isUsingMask); |
| 1064 left = nextLeft; rite = nextRite; y = nextY; |
| 1065 } |
| 1066 } |
| 1067 |
| 1068 if (isUsingMask) { |
| 1069 maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >
> 16); |
| 1070 } |
| 1071 |
| 1072 SkFixed dY = local_bot_fixed - y; // partial-row on the bottom |
| 1073 SkASSERT(dY <= SK_Fixed1); |
| 1074 // Smooth jumping to integer y may make the last nextLeft/nextRite o
ut of bound. |
| 1075 // Take them back into the bound here. |
| 1076 SkFixed nextLeft = SkTMax(left + SkFixedMul_lowprec(dLeft, dY), left
Bound); |
| 1077 SkFixed nextRite = SkTMin(rite + SkFixedMul_lowprec(dRite, dY), rite
Bound); |
| 1078 blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapM
ask, |
| 1079 nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, rite
E->fDY, |
| 1080 getPartialAlpha(0xFF, dY), maskRow, isUsingMask); |
| 1081 left = nextLeft; rite = nextRite; y = local_bot_fixed; |
| 1082 left -= kSnapHalf; rite -= kSnapHalf; |
| 1083 } |
| 1084 |
| 1085 leftE->fX = left; |
| 1086 riteE->fX = rite; |
| 1087 leftE->fY = riteE->fY = y; |
| 1088 } |
| 1089 |
| 1090 END_WALK: |
| 1091 ; |
| 1092 #ifdef SK_DEBUG |
| 1093 SkDebugf("frac_y_cnt = %d, total_y_cnt = %d\n", frac_y_cnt, total_y_cnt); |
| 1094 #endif |
| 1095 } |
| 1096 |
| 1097 void SkScan::aaa_fill_path(const SkPath& path, const SkIRect* clipRect, Additive
Blitter* blitter, |
| 1098 int start_y, int stop_y, const SkRegion& clipRgn, bool isUsin
gMask) { |
| 1099 SkASSERT(blitter); |
| 1100 |
| 1101 if (path.isInverseFillType() || !path.isConvex()) { |
| 1102 // fall back to supersampling AA |
| 1103 SkScan::AntiFillPath(path, clipRgn, blitter->getRealBlitter(true), false
); |
| 1104 return; |
| 1105 } |
| 1106 |
| 1107 SkEdgeBuilder builder; |
| 1108 |
| 1109 // If we're convex, then we need both edges, even the right edge is past the
clip |
| 1110 const bool canCullToTheRight = !path.isConvex(); |
| 1111 |
| 1112 SkASSERT(GlobalAAConfig::getInstance().fUseAnalyticAA); |
| 1113 int count = builder.build(path, clipRect, 0, canCullToTheRight, true); |
| 1114 SkASSERT(count >= 0); |
| 1115 |
| 1116 SkAnalyticEdge** list = (SkAnalyticEdge**)builder.analyticEdgeList(); |
| 1117 |
| 1118 SkIRect rect = clipRgn.getBounds(); |
| 1119 if (0 == count) { |
| 1120 if (path.isInverseFillType()) { |
| 1121 /* |
| 1122 * Since we are in inverse-fill, our caller has already drawn above |
| 1123 * our top (start_y) and will draw below our bottom (stop_y). Thus |
| 1124 * we need to restrict our drawing to the intersection of the clip |
| 1125 * and those two limits. |
| 1126 */ |
| 1127 if (rect.fTop < start_y) { |
| 1128 rect.fTop = start_y; |
| 1129 } |
| 1130 if (rect.fBottom > stop_y) { |
| 1131 rect.fBottom = stop_y; |
| 1132 } |
| 1133 if (!rect.isEmpty()) { |
| 1134 blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.heig
ht()); |
| 1135 } |
| 1136 } |
| 1137 return; |
| 1138 } |
| 1139 |
| 1140 SkAnalyticEdge headEdge, tailEdge, *last; |
| 1141 // this returns the first and last edge after they're sorted into a dlink li
st |
| 1142 SkAnalyticEdge* edge = sort_edges(list, count, &last); |
| 1143 |
| 1144 headEdge.fPrev = nullptr; |
| 1145 headEdge.fNext = edge; |
| 1146 headEdge.fUpperY = headEdge.fLowerY = SK_MinS32; |
| 1147 headEdge.fX = SK_MinS32; |
| 1148 headEdge.fDX = 0; |
| 1149 headEdge.fDY = SK_MaxS32; |
| 1150 headEdge.fUpperX = SK_MinS32; |
| 1151 edge->fPrev = &headEdge; |
| 1152 |
| 1153 tailEdge.fPrev = last; |
| 1154 tailEdge.fNext = nullptr; |
| 1155 tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32; |
| 1156 headEdge.fX = SK_MaxS32; |
| 1157 headEdge.fDX = 0; |
| 1158 headEdge.fDY = SK_MaxS32; |
| 1159 headEdge.fUpperX = SK_MaxS32; |
| 1160 last->fNext = &tailEdge; |
| 1161 |
| 1162 // now edge is the head of the sorted linklist |
| 1163 |
| 1164 if (clipRect && start_y < clipRect->fTop) { |
| 1165 start_y = clipRect->fTop; |
| 1166 } |
| 1167 if (clipRect && stop_y > clipRect->fBottom) { |
| 1168 stop_y = clipRect->fBottom; |
| 1169 } |
| 1170 |
| 1171 if (!path.isInverseFillType() && path.isConvex()) { |
| 1172 SkASSERT(count >= 2); // convex walker does not handle missing right e
dges |
| 1173 aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y, |
| 1174 rect.fLeft << 16, rect.fRight << 16, isUsingMask); |
| 1175 } else { |
| 1176 SkFAIL("Concave AAA is not yet implemented!"); |
| 1177 } |
| 1178 } |
| 1179 |
| 1180 /////////////////////////////////////////////////////////////////////////////// |
| 1181 |
| 1182 void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter
* blitter) { |
| 1183 if (origClip.isEmpty()) { |
| 1184 return; |
| 1185 } |
| 1186 |
| 1187 const bool isInverse = path.isInverseFillType(); |
| 1188 SkIRect ir; |
| 1189 path.getBounds().roundOut(&ir); |
| 1190 if (ir.isEmpty()) { |
| 1191 if (isInverse) { |
| 1192 blitter->blitRegion(origClip); |
| 1193 } |
| 1194 return; |
| 1195 } |
| 1196 |
| 1197 SkIRect clippedIR; |
| 1198 if (isInverse) { |
| 1199 // If the path is an inverse fill, it's going to fill the entire |
| 1200 // clip, and we care whether the entire clip exceeds our limits. |
| 1201 clippedIR = origClip.getBounds(); |
| 1202 } else { |
| 1203 if (!clippedIR.intersect(ir, origClip.getBounds())) { |
| 1204 return; |
| 1205 } |
| 1206 } |
| 1207 |
| 1208 // Our antialiasing can't handle a clip larger than 32767, so we restrict |
| 1209 // the clip to that limit here. (the runs[] uses int16_t for its index). |
| 1210 // |
| 1211 // A more general solution (one that could also eliminate the need to |
| 1212 // disable aa based on ir bounds (see overflows_short_shift) would be |
| 1213 // to tile the clip/target... |
| 1214 SkRegion tmpClipStorage; |
| 1215 const SkRegion* clipRgn = &origClip; |
| 1216 { |
| 1217 static const int32_t kMaxClipCoord = 32767; |
| 1218 const SkIRect& bounds = origClip.getBounds(); |
| 1219 if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) { |
| 1220 SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord }; |
| 1221 tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op); |
| 1222 clipRgn = &tmpClipStorage; |
| 1223 } |
| 1224 } |
| 1225 // for here down, use clipRgn, not origClip |
| 1226 |
| 1227 SkScanClipper clipper(blitter, clipRgn, ir); |
| 1228 const SkIRect* clipRect = clipper.getClipRect(); |
| 1229 |
| 1230 if (clipper.getBlitter() == nullptr) { // clipped out |
| 1231 if (isInverse) { |
| 1232 blitter->blitRegion(*clipRgn); |
| 1233 } |
| 1234 return; |
| 1235 } |
| 1236 |
| 1237 // now use the (possibly wrapped) blitter |
| 1238 blitter = clipper.getBlitter(); |
| 1239 |
| 1240 if (isInverse) { |
| 1241 // Currently, we use the old path to render the inverse path, |
| 1242 // so we don't need this. |
| 1243 // sk_blit_above(blitter, ir, *clipRgn); |
| 1244 } |
| 1245 |
| 1246 SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop); |
| 1247 |
| 1248 if (MaskAdditiveBlitter::canHandleRect(ir) && !isInverse) { |
| 1249 MaskAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse); |
| 1250 aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *cl
ipRgn, true); |
| 1251 } else { |
| 1252 RunBasedAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse
); |
| 1253 aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *cl
ipRgn, false); |
| 1254 } |
| 1255 |
| 1256 if (isInverse) { |
| 1257 // Currently, we use the old path to render the inverse path, |
| 1258 // so we don't need this. |
| 1259 // sk_blit_below(blitter, ir, *clipRgn); |
| 1260 } |
| 1261 } |
| 1262 |
| 1263 // This almost copies SkScan::AntiFillPath |
| 1264 void SkScan::AAAFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter
* blitter) { |
| 1265 if (clip.isEmpty()) { |
| 1266 return; |
| 1267 } |
| 1268 |
| 1269 if (clip.isBW()) { |
| 1270 AAAFillPath(path, clip.bwRgn(), blitter); |
| 1271 } else { |
| 1272 SkRegion tmp; |
| 1273 SkAAClipBlitter aaBlitter; |
| 1274 |
| 1275 tmp.setRect(clip.getBounds()); |
| 1276 aaBlitter.init(blitter, &clip.aaRgn()); |
| 1277 AAAFillPath(path, tmp, &aaBlitter); |
| 1278 } |
| 1279 } |
OLD | NEW |