Index: third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp |
diff --git a/third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp b/third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp |
index 177b58af86dbbebe6f631714da4501214ac11b31..e914fe7d19b484c2e66e20603808b1c8eff821df 100644 |
--- a/third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp |
+++ b/third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp |
@@ -38,7 +38,9 @@ |
#include "platform/image-decoders/png/PNGImageReader.h" |
+#include "platform/image-decoders/FastSharedBufferReader.h" |
#include "platform/image-decoders/SegmentReader.h" |
+#include "platform/image-decoders/png/PNGImageDecoder.h" |
#include "png.h" |
#include "wtf/PtrUtil.h" |
#include <memory> |
@@ -72,45 +74,632 @@ void PNGAPI pngFailed(png_structp png, png_const_charp) { |
namespace blink { |
-PNGImageReader::PNGImageReader(PNGImageDecoder* decoder, size_t readOffset) |
+// This is the callback function for unknown PNG chunks, which is used to |
+// extract the animation chunks. |
+static int readAnimationChunk(png_structp pngPtr, png_unknown_chunkp chunk) { |
+ PNGImageReader* reader = (PNGImageReader*)png_get_user_chunk_ptr(pngPtr); |
+ reader->parseAnimationChunk((const char*)chunk->name, chunk->data, |
+ chunk->size); |
+ return 1; |
+} |
+ |
+PNGImageReader::PNGImageReader(PNGImageDecoder* decoder, size_t initialOffset) |
: m_decoder(decoder), |
- m_readOffset(readOffset), |
- m_currentBufferSize(0), |
- m_decodingSizeOnly(false), |
- m_hasAlpha(false) { |
+ m_initialOffset(initialOffset), |
+ m_readOffset(initialOffset), |
+ m_progressiveDecodeOffset(0), |
+ m_idatOffset(0), |
+ m_idatIsPartOfAnimation(false), |
+ m_isAnimated(false), |
+ m_parsedSignature(false), |
+ m_parseCompleted(false) { |
m_png = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, pngFailed, 0); |
m_info = png_create_info_struct(m_png); |
png_set_progressive_read_fn(m_png, m_decoder, pngHeaderAvailable, |
pngRowAvailable, pngComplete); |
+ |
+ // Keep the chunks which are of interest for APNG. This is solely used to |
+ // parse the contents of the acTL and fcTL chunks - the fdAT chunks are |
+ // manually converted to IDAT chunks when frames are decoded. We can omit |
+ // this and pass the data part of the chunk directly to the |
+ // parseAnimationChunk() when we detect an acTL or fcTL chunk, but this is |
+ // more robust since it uses all libpng checks. |
+ // |
+ // We can't solely depend on this method for handling APNG chunks since it |
+ // does not provide an offset for the chunks - and we need that to handle |
+ // decode calls for specific frames. |
+ png_byte apngChunks[] = {"acTL\0fcTL\0"}; |
+ png_set_keep_unknown_chunks(m_png, PNG_HANDLE_CHUNK_NEVER, apngChunks, 2); |
+ png_set_read_user_chunk_fn(m_png, (png_voidp)this, readAnimationChunk); |
} |
PNGImageReader::~PNGImageReader() { |
png_destroy_read_struct(m_png ? &m_png : 0, m_info ? &m_info : 0, 0); |
DCHECK(!m_png && !m_info); |
+} |
+ |
+// This method reads from the FastSharedBufferReader, starting at offset, |
+// and returns |length| bytes in the form of a pointer to a const png_byte*. |
+// This function is used to make it easy to access data from the reader in a |
+// png friendly way, and pass it to libpng for decoding. |
+// |
+// Pre-conditions before using this: |
+// - |reader|.size() >= |readOffset| + |length| |
+// - |buffer|.size() >= |length| |
+// - |length| <= |kBufferSize| |
+// |
+// The reason for the last two precondition is that currently the png signature |
+// plus IHDR chunk (8B + 25B = 33B) is the largest chunk that is read using this |
+// method. If the data is not consecutive, it is stored in |buffer|, which must |
+// have the size of (at least) |length|, but there's no need for it to be larger |
+// than |kBufferSize|. |
+static constexpr size_t kBufferSize = 33; |
+const png_byte* readAsConstPngBytep(const FastSharedBufferReader& reader, |
+ size_t readOffset, |
+ size_t length, |
+ char* buffer) { |
+ DCHECK(length <= kBufferSize); |
+ return reinterpret_cast<const png_byte*>( |
+ reader.getConsecutiveData(readOffset, length, buffer)); |
+} |
+ |
+// This is used as a value for the byteLength of a frameInfo struct to |
+// indicate that it is the first frame, and we still need to set byteLength |
+// to the correct value as soon as the parser knows it. 1 is a safe value |
+// since the byteLength field of a frame is at least 12, in the case of an |
+// empty fdAT or IDAT chunk. |
+static constexpr size_t kFirstFrameIndicator = 1; |
+ |
+void PNGImageReader::decode(SegmentReader& data, size_t index) { |
+ if (index >= m_frameInfo.size()) |
+ return; |
+ |
+ // By defining |reader| here, we're making sure it gets correctly destroyed |
+ // when libpng throws an error and jumps back to a setjmp. When |reader| is |
+ // created *after* the setjmp definition, it would not be properly destroyed |
+ // since regular stack unwinding does not occur [1]. The result of this would |
+ // be that the reference count of the data pointer is not properly decreased, |
+ // which will result in memory leaks. |
+ // |
+ // Since both non-animated and animated PNGs use |reader|, this is the most |
+ // convenient place to define it, with the above in mind. |
+ // |
+ // [1] https://en.wikipedia.org/wiki/Setjmp.h#Caveats_and_limitations |
+ const FastSharedBufferReader reader(&data); |
+ |
+ // For non animated PNGs, resume decoding where we left off in parse(), at |
+ // the beginning of the IDAT chunk. Recreating a png struct would either |
+ // result in wasted work, by reprocessing all header bytes, or decoding the |
+ // wrong data. |
+ if (!m_isAnimated) { |
+ if (setjmp(JMPBUF(m_png))) { |
+ m_decoder->setFailed(); |
+ return; |
+ } |
+ m_progressiveDecodeOffset += processData( |
+ reader, m_frameInfo[0].startOffset + m_progressiveDecodeOffset, 0); |
+ return; |
+ } |
+ |
+ // When a non-first frame is decoded, and the previous decode call was a |
+ // progressive decode of frame 0 which did not completely finish, set |
+ // |m_progressiveDecodeOffset| to 0. This ensures that when a later call to |
+ // decode frame 0 comes in, it will correctly decode the frame from the |
+ // beginning. It is better to re-decode from the start than to try continuing |
+ // where we left off, because: |
+ // - A row may have been partially decoded, but it is hard to find where |
+ // that row starts in the data. But we need to continue decoding from the |
+ // beginning of the row, otherwise the pixels will be shifted and the final |
+ // row won't be complete. |
+ // - The |m_png| struct will be reset for this decode call, so it needs to |
+ // be recreated when decoding for frame 0 continues. Since the header chunks |
+ // need to be re-processed anyway, the added benefit of continuing |
+ // progressive decoding may be very slim. Especially since this is already |
+ // an edge case. |
+ if (index > 0 && m_progressiveDecodeOffset > 0) |
+ m_progressiveDecodeOffset = 0; |
+ |
+ // Progressive decoding is only done if both of the following are true: |
+ // - It is the first frame, thus |index| == 0, AND |
+ // - The byteLength of the first frame is not yet known, *or* it is known |
+ // but we're only partway in a progressive decode, started earlier. |
+ bool firstFrameLengthKnown = firstFrameFullyReceived(); |
+ bool progressiveDecodingAlreadyStarted = m_progressiveDecodeOffset > 0; |
+ bool progressiveDecode = (index == 0 && (!firstFrameLengthKnown || |
+ progressiveDecodingAlreadyStarted)); |
+ bool decodeAsNewPNG = |
+ !progressiveDecode || !progressiveDecodingAlreadyStarted; |
+ |
+ // Initialize a new png struct for this frame. For a progressive decode of |
+ // the first frame, we only need to do this once. |
+ // @FIXME(joostouwerling) check if the existing png struct can be reused. |
+ if (decodeAsNewPNG) |
+ resetPNGStruct(); |
+ |
+ // Before processing any PNG bytes, set setjmp with the current |m_png| |
+ // struct. This has to be done after resetPNGStruct(), which will have |
+ // replaced |m_png|. |
+ if (setjmp(JMPBUF(m_png))) { |
+ m_decoder->setFailed(); |
+ return; |
+ } |
+ |
+ // Process the png header chunks with a modified size, reflecting the size of |
+ // this frame. This only needs to be done once for a progressive decode of |
+ // the first frame. |
+ if (decodeAsNewPNG) |
+ startFrameDecoding(reader, index); |
+ |
+ bool decodedFrameCompletely; |
+ if (progressiveDecode) { |
+ decodedFrameCompletely = progressivelyDecodeFirstFrame(reader); |
+ // If progressive decoding processed all data for this frame, reset |
+ // |m_progressiveDecodeOffset|, so |progressiveDecodingAlreadyStarted| |
+ // will be false for later calls to decode frame 0. |
+ if (decodedFrameCompletely) |
+ m_progressiveDecodeOffset = 0; |
+ } else { |
+ decodeFrame(reader, index); |
+ // For a non-progressive decode, we already have all the data we are |
+ // going to get, so consider the frame complete. |
+ decodedFrameCompletely = true; |
+ } |
+ |
+ // Send the IEND chunk if the frame is completely decoded, so the complete |
+ // callback in |m_decoder| will be called. |
+ if (decodedFrameCompletely) |
+ endFrameDecoding(); |
+} |
+ |
+void PNGImageReader::resetPNGStruct() { |
+ // Each frame is processed as if it were a complete, single frame png image. |
+ // To accomplish this, destroy the current |m_png| and |m_info| structs and |
+ // create new ones. CRC errors are ignored, so fdAT chunks can be processed |
+ // as IDATs without recalculating the CRC value. |
+ png_destroy_read_struct(m_png ? &m_png : 0, m_info ? &m_info : 0, 0); |
+ m_png = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, pngFailed, 0); |
+ m_info = png_create_info_struct(m_png); |
+ png_set_crc_action(m_png, PNG_CRC_QUIET_USE, PNG_CRC_QUIET_USE); |
+ png_set_progressive_read_fn(m_png, m_decoder, pngHeaderAvailable, |
+ pngRowAvailable, pngComplete); |
+} |
+ |
+void PNGImageReader::startFrameDecoding(const FastSharedBufferReader& reader, |
+ size_t index) { |
+ // If the frame is the size of the whole image, we don't need to modify any |
+ // data in the IHDR chunk. This means it suffices to re-process all header |
+ // data up to the first frame, for mimicking a png image. |
+ const IntRect& frameRect = m_frameInfo[index].frameRect; |
+ if (frameRect.location() == IntPoint() && |
+ frameRect.size() == m_decoder->size()) { |
+ processData(reader, m_initialOffset, m_idatOffset); |
+ return; |
+ } |
+ |
+ // Process the IHDR chunk, but change the width and height so it reflects |
+ // the frame's width and height. Image Decoder will apply the x,y offset. |
+ // This step is omitted if the width and height are equal to the image size, |
+ // which is done in the block above. |
+ char readBuffer[kBufferSize]; |
+ |
+ // |headerSize| is equal to |kBufferSize|, but adds more semantic insight. |
+ constexpr size_t headerSize = 33; |
+ png_byte header[headerSize]; |
+ const png_byte* chunk = |
+ readAsConstPngBytep(reader, m_initialOffset, headerSize, readBuffer); |
+ memcpy(header, chunk, headerSize); |
+ |
+ // Write the unclipped width and height. Clipping happens in the decoder. |
+ png_save_uint_32(header + 16, frameRect.width()); |
+ png_save_uint_32(header + 20, frameRect.height()); |
+ png_process_data(m_png, m_info, header, headerSize); |
+ |
+ // Process the rest of the header chunks. Start after the PNG signature and |
+ // IHDR chunk, 33B, and process up to the first data chunk. The number of |
+ // bytes up to the first data chunk is stored in |m_idatOffset|. |
+ processData(reader, m_initialOffset + headerSize, m_idatOffset - headerSize); |
+} |
- m_readOffset = 0; |
+// Determine if the bytes 4 to 7 of |chunk| indicate that it is a |tag| chunk. |
+// - The length of |chunk| must be >= 8 |
+// - The length of |tag| must be = 4 |
+static inline bool isChunk(const png_byte* chunk, const char* tag) { |
+ return memcmp(chunk + 4, tag, 4) == 0; |
} |
-bool PNGImageReader::decode(const SegmentReader& data, bool sizeOnly) { |
- m_decodingSizeOnly = sizeOnly; |
+bool PNGImageReader::progressivelyDecodeFirstFrame( |
+ const FastSharedBufferReader& reader) { |
+ char readBuffer[8]; // large enough to identify a chunk. |
+ size_t offset = m_frameInfo[0].startOffset; |
+ |
+ // Loop while there is enough data to do progressive decoding. |
+ while (reader.size() >= offset + 8) { |
+ // At the beginning of each loop, the offset is at the start of a chunk. |
+ const png_byte* chunk = readAsConstPngBytep(reader, offset, 8, readBuffer); |
+ const png_uint_32 length = png_get_uint_32(chunk); |
+ |
+ // When an fcTL or IEND chunk is encountered, the frame data has ended. |
+ // Return true, since all frame data is decoded. |
+ if (isChunk(chunk, "fcTL") || isChunk(chunk, "IEND")) |
+ return true; |
+ |
+ // If this chunk was already decoded, move on to the next. |
+ if (m_progressiveDecodeOffset >= offset + length + 12) { |
+ offset += length + 12; |
+ continue; |
+ } |
+ |
+ // At this point, three scenarios are possible: |
+ // 1) Some bytes of this chunk were already decoded in a previous call, |
+ // so we need to continue from there. |
+ // 2) This is an fdAT chunk, so we need to convert it to an IDAT chunk |
+ // before we can decode it. |
+ // 3) This is any other chunk, most likely an IDAT chunk. |
+ // |
+ // In each scenario, we want to decode as much data as possible. In each |
+ // one, do the scenario specific work and set |offset| to where decoding |
+ // needs to continue. From there, decode until the end of the chunk, if |
+ // possible. If the whole chunk is decoded, continue to the next loop. |
+ // Otherwise, store how far we've come in |m_progressiveDecodeOffset| and |
+ // return false to indicate to the caller that the frame is partially |
+ // decoded. |
+ |
+ size_t endOffsetChunk = offset + length + 12; |
+ |
+ // Scenario 1: |m_progressiveDecodeOffset| is ahead of the chunk tag. |
+ if (m_progressiveDecodeOffset >= offset + 8) { |
+ offset = m_progressiveDecodeOffset; |
+ |
+ // Scenario 2: we need to convert the fdAT to an IDAT chunk. For an |
+ // explanation of the numbers, see the comments in decodeFrame(). |
+ } else if (isChunk(chunk, "fdAT")) { |
+ png_byte chunkIDAT[] = {0, 0, 0, 0, 'I', 'D', 'A', 'T'}; |
+ png_save_uint_32(chunkIDAT, length - 4); |
+ png_process_data(m_png, m_info, chunkIDAT, 8); |
+ // Skip the sequence number |
+ offset += 12; |
+ |
+ // Scenario 3: for any other chunk type, process the first 8 bytes. |
+ } else { |
+ png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8); |
+ offset += 8; |
+ } |
+ |
+ size_t bytesLeftInChunk = endOffsetChunk - offset; |
+ size_t bytesDecoded = processData(reader, offset, bytesLeftInChunk); |
+ m_progressiveDecodeOffset = offset + bytesDecoded; |
+ if (bytesDecoded < bytesLeftInChunk) |
+ return false; |
+ offset += bytesDecoded; |
+ } |
+ |
+ return false; |
+} |
+ |
+void PNGImageReader::decodeFrame(const FastSharedBufferReader& reader, |
+ size_t index) { |
+ // From the frame info that was gathered during parsing, it is known at |
+ // what offset the frame data starts and how many bytes are in the stream |
+ // before the frame ends. Using this, we process all chunks that fall in |
+ // this interval. We catch every fdAT chunk and transform it to an IDAT |
+ // chunk, so libpng will decode it like a non-animated PNG image. |
+ size_t offset = m_frameInfo[index].startOffset; |
+ size_t endOffset = offset + m_frameInfo[index].byteLength; |
+ char readBuffer[8]; |
+ |
+ while (offset < endOffset) { |
+ const png_byte* chunk = readAsConstPngBytep(reader, offset, 8, readBuffer); |
+ const png_uint_32 length = png_get_uint_32(chunk); |
+ if (isChunk(chunk, "fdAT")) { |
+ // An fdAT chunk is build up as follows: |
+ // - |length| (4B) |
+ // - fdAT tag (4B) |
+ // - sequence number (4B) |
+ // - frame data (|length| - 4B) |
+ // - CRC (4B) |
+ // Thus, to reformat this into an IDAT chunk, we need to: |
+ // - write |length| - 4 as the new length, since the sequence number |
+ // must be removed. |
+ // - change the tag to IDAT. |
+ // - omit the sequence number from the data part of the chunk. |
+ png_byte chunkIDAT[] = {0, 0, 0, 0, 'I', 'D', 'A', 'T'}; |
+ png_save_uint_32(chunkIDAT, length - 4); |
+ png_process_data(m_png, m_info, chunkIDAT, 8); |
+ // The frame data and the CRC span |length| bytes, so skip the |
+ // sequence number and process |length| bytes to decode the frame. |
+ processData(reader, offset + 12, length); |
+ } else { |
+ png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8); |
+ processData(reader, offset + 8, length + 4); |
+ } |
+ offset += 12 + length; |
+ } |
+} |
+ |
+void PNGImageReader::endFrameDecoding() { |
+ png_byte IEND[12] = {0, 0, 0, 0, 'I', 'E', 'N', 'D', 174, 66, 96, 130}; |
+ png_process_data(m_png, m_info, IEND, 12); |
+} |
+ |
+bool PNGImageReader::parse(SegmentReader& data, PNGParseQuery query) { |
+ if (m_parseCompleted) |
+ return true; |
+ |
+ // |reader| is defined here to prevent memory leaks. For a detailed |
+ // explanation, see the definition of |reader| in PNGImageReader::decode. In |
+ // this case, both parseSize() and this method use |reader|. |
+ const FastSharedBufferReader reader(&data); |
+ |
+ // If the size has not been parsed, do that first, since it's necessary |
+ // for both the Size and MetaData query. If parseSize returns false, |
+ // it failed because of a lack of data so we can return false at this point. |
+ if (!m_decoder->isDecodedSizeAvailable() && !parseSize(reader)) |
+ return false; |
+ |
+ if (query == PNGParseQuery::PNGSizeQuery) |
+ return m_decoder->isDecodedSizeAvailable(); |
+ |
+ // For non animated images (identified by no acTL chunk before the IDAT), |
+ // we create one frame. This saves some processing time since we don't need |
+ // to go over the stream to find chunks. |
+ if (!m_isAnimated) { |
+ if (m_frameInfo.isEmpty()) { |
+ FrameInfo frame; |
+ // This needs to be plus 8 since the first 8 bytes of the IDAT chunk |
+ // are already processed in parseSize(). |
+ frame.startOffset = m_readOffset + 8; |
+ frame.frameRect = IntRect(IntPoint(), m_decoder->size()); |
+ frame.duration = 0; |
+ frame.alphaBlend = kAPNGAlphaBlendBgcolor; |
+ frame.disposalMethod = kAPNGDisposeKeep; |
+ m_frameInfo.append(frame); |
+ // When the png is not animated, no extra parsing is necessary. |
+ m_parseCompleted = true; |
+ } |
+ return true; |
+ } |
+ |
+ char readBuffer[kBufferSize]; |
- // We need to do the setjmp here. Otherwise bad things will happen. |
if (setjmp(JMPBUF(m_png))) |
return m_decoder->setFailed(); |
+ // At this point, the query is FrameMetaDataQuery. Loop over the data and |
+ // register all frames we can find. A frame is registered on the next fcTL |
+ // chunk or when the IEND chunk is found. This ensures that only complete |
+ // frames are reported, unless there is an error in the stream. |
+ while (reader.size() >= m_readOffset + 8) { |
+ const png_byte* chunk = |
+ readAsConstPngBytep(reader, m_readOffset, 8, readBuffer); |
+ const size_t length = png_get_uint_32(chunk); |
+ |
+ // When we find an IDAT chunk (when the IDAT is part of the animation), |
+ // or an fdAT chunk, and the readOffset field of the newFrame is 0, |
+ // we have found the beginning of a new block of frame data. |
+ const bool isFrameData = |
+ isChunk(chunk, "fdAT") || |
+ (isChunk(chunk, "IDAT") && m_idatIsPartOfAnimation); |
+ if (m_newFrame.startOffset == 0 && isFrameData) { |
+ m_newFrame.startOffset = m_readOffset; |
+ |
+ // When the |frameInfo| vector is empty, the first frame needs to be |
+ // reported as soon as possible, even before all frame data is in |
+ // |data|, so the first frame can be decoded progressively. |
+ if (m_frameInfo.isEmpty()) { |
+ m_newFrame.byteLength = kFirstFrameIndicator; |
+ m_frameInfo.append(m_newFrame); |
+ } |
+ |
+ // An fcTL or IEND marks the end of the previous frame. Thus, the |
+ // FrameInfo data in m_newFrame is submitted to the m_frameInfo vector. |
+ // |
+ // Furthermore, an fcTL chunk indicates a new frame is coming, |
+ // so the m_newFrame variable is prepared accordingly by setting the |
+ // readOffset field to 0, which indicates that the frame control info |
+ // is available but that we haven't seen any frame data yet. |
+ } else if (isChunk(chunk, "fcTL") || isChunk(chunk, "IEND")) { |
+ if (m_newFrame.startOffset != 0) { |
+ m_newFrame.byteLength = m_readOffset - m_newFrame.startOffset; |
+ if (m_frameInfo[0].byteLength == kFirstFrameIndicator) |
+ m_frameInfo[0].byteLength = m_newFrame.byteLength; |
+ else |
+ m_frameInfo.append(m_newFrame); |
+ |
+ m_newFrame.startOffset = 0; |
+ } |
+ |
+ if (reader.size() < m_readOffset + 12 + length) |
+ return false; |
+ |
+ if (isChunk(chunk, "IEND")) { |
+ // The PNG image ends at the IEND chunk, so all parsing is completed. |
+ m_parseCompleted = true; |
+ return true; |
+ } |
+ |
+ // At this point, we're dealing with an fcTL chunk, since the above |
+ // statement already returns on IEND chunks. |
+ |
+ // If the fcTL chunk is not 26 bytes long, we can't process it. |
+ if (length != 26) |
+ return m_decoder->setFailed(); |
+ |
+ chunk = readAsConstPngBytep(reader, m_readOffset + 8, length, readBuffer); |
+ parseFrameInfo(chunk); |
+ } |
+ m_readOffset += 12 + length; |
+ } |
+ return false; |
+} |
+ |
+// If |length| == 0, read until the stream ends. |
+// @return: number of bytes processed. |
+size_t PNGImageReader::processData(const FastSharedBufferReader& reader, |
+ size_t offset, |
+ size_t length) { |
const char* segment; |
- while (size_t segmentLength = data.getSomeData(segment, m_readOffset)) { |
- m_readOffset += segmentLength; |
- m_currentBufferSize = m_readOffset; |
+ size_t totalProcessedBytes = 0; |
+ while (reader.size() > offset) { |
+ size_t segmentLength = reader.getSomeData(segment, offset); |
+ if (length > 0 && segmentLength + totalProcessedBytes > length) |
+ segmentLength = length - totalProcessedBytes; |
+ |
png_process_data(m_png, m_info, |
- reinterpret_cast<png_bytep>(const_cast<char*>(segment)), |
+ reinterpret_cast<png_byte*>(const_cast<char*>(segment)), |
segmentLength); |
- if (sizeOnly ? m_decoder->isDecodedSizeAvailable() |
- : m_decoder->frameIsCompleteAtIndex(0)) |
+ offset += segmentLength; |
+ totalProcessedBytes += segmentLength; |
+ if (totalProcessedBytes == length) |
+ return length; |
+ } |
+ return totalProcessedBytes; |
+} |
+ |
+// This methods reads through the stream until it has parsed the image size. |
+// @return true when it succeeds in parsing the size. |
+// false when: |
+// A) not enough data is provided |
+// B) decoding by libpng fails. In the this case, it will also call |
+// setFailed on m_decoder. |
+bool PNGImageReader::parseSize(const FastSharedBufferReader& reader) { |
+ char readBuffer[kBufferSize]; |
+ |
+ if (setjmp(JMPBUF(m_png))) |
+ return m_decoder->setFailed(); |
+ |
+ // Process the PNG signature and the IHDR with libpng, such that this code |
+ // does not need to parse the contents. This also enables the reader to use |
+ // the existing headerAvailable callback in the decoder. |
+ // |
+ // When we already have decoded the signature, we don't need to do it again. |
+ // By setting a flag for this we allow for byte by byte parsing. |
+ if (!m_parsedSignature) { |
+ if (reader.size() < m_readOffset + 8) |
+ return false; |
+ |
+ const png_byte* chunk = |
+ readAsConstPngBytep(reader, m_readOffset, 8, readBuffer); |
+ png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8); |
+ m_readOffset += 8; |
+ m_parsedSignature = true; |
+ // Initialize the newFrame by setting the readOffset to 0. |
+ m_newFrame.startOffset = 0; |
+ } |
+ |
+ // This loop peeks at the chunk tag until the IDAT chunk is found. When |
+ // a different tag is encountered, pass it on to libpng for general parsing. |
+ // We can peek at chunks by looking at the first 8 bytes, which contain the |
+ // length and the chunk tag. |
+ // |
+ // When an fcTL (frame control) is encountered before the IDAT, the frame |
+ // data in the IDAT chunk is part of the animation. This case is flagged |
+ // and the frame info is stored by parsing the fcTL chunk. |
+ while (reader.size() >= m_readOffset + 8) { |
+ const png_byte* chunk = |
+ readAsConstPngBytep(reader, m_readOffset, 8, readBuffer); |
+ const png_uint_32 length = png_get_uint_32(chunk); |
+ |
+ // If we encounter the IDAT chunk, we're done with the png header |
+ // chunks. Indicate this to libpng by sending the beginning of the IDAT |
+ // chunk, which will trigger libpng to call the headerAvailable |
+ // callback on m_decoder. This provides the size to the decoder. |
+ if (isChunk(chunk, "IDAT")) { |
+ m_idatOffset = m_readOffset; |
+ png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8); |
return true; |
+ } |
+ |
+ // Consider the PNG image animated if an acTL chunk of the correct |
+ // length is present. Parsing the acTL content is done by |
+ // parseAnimationControl, called by libpng's png_process_data. |
+ if (isChunk(chunk, "acTL") && length == 8) |
+ m_isAnimated = true; |
+ |
+ // We don't need to check for |length| here, because the decoder will |
+ // fail later on for invalid fcTL chunks. |
+ else if (isChunk(chunk, "fcTL")) |
+ m_idatIsPartOfAnimation = true; |
+ |
+ // 12 is the length, tag and crc part of the chunk, which are all 4B. |
+ if (reader.size() < m_readOffset + length + 12) |
+ break; |
+ |
+ png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8); |
+ processData(reader, m_readOffset + 8, length + 4); |
+ m_readOffset += length + 12; |
} |
+ // If we end up here, not enough data was available for the IDAT chunk |
+ // So libpng would not have called headerAvailable yet. |
return false; |
} |
-} // namespace blink |
+void PNGImageReader::parseAnimationChunk(const char tag[], |
+ const void* dataChunk, |
+ size_t length) { |
+ const png_byte* data = static_cast<const png_byte*>(dataChunk); |
+ |
+ // The number of frames as indicated in the animation control chunk (acTL) |
+ // is ignored, and the number of frames that are actually present is used. |
+ // For now, when the number of indicated frames is different from the |
+ // number of supplied frames, the number of supplied frames is what is |
+ // provided to the decoder. Therefore, it does not add any benefit of |
+ // looking at the value of the indicated framecount. A note here is that |
+ // there may be optimisations available, for example, prescaling vectors. |
+ if (strcmp(tag, "acTL") == 0 && length == 8) { |
+ png_uint_32 repetitionCount = png_get_uint_32(data + 4); |
+ m_decoder->setRepetitionCount(repetitionCount); |
+ |
+ // For fcTL, decoding fails if it does not have the correct length. It is |
+ // impossible to make a guess about the frame if not all data is available. |
+ // Use longjmp to get back to parse(), which is necessary since this method |
+ // is called by a libpng callback. |
+ } else if (strcmp(tag, "fcTL") == 0) { |
+ if (length != 26) |
+ longjmp(JMPBUF(m_png), 1); |
+ parseFrameInfo(data); |
+ } |
+} |
+ |
+bool PNGImageReader::firstFrameFullyReceived() const { |
+ DCHECK_GT(m_frameInfo.size(), 0u); |
+ return m_frameInfo[0].byteLength != kFirstFrameIndicator; |
+} |
+ |
+void PNGImageReader::clearDecodeState(size_t frameIndex) { |
+ if (frameIndex == 0) |
+ m_progressiveDecodeOffset = 0; |
+} |
+ |
+size_t PNGImageReader::frameCount() const { |
+ return m_frameInfo.size(); |
+} |
+ |
+const PNGImageReader::FrameInfo& PNGImageReader::frameInfo(size_t index) const { |
+ DCHECK(index < m_frameInfo.size()); |
+ return m_frameInfo[index]; |
+} |
+ |
+// Extract the frame control info and store it in m_newFrame. The length check |
+// on the data chunk has been done in parseAnimationChunk. |
+// The fcTL specification used can be found at: |
+// https://wiki.mozilla.org/APNG_Specification#.60fcTL.60:_The_Frame_Control_Chunk |
+void PNGImageReader::parseFrameInfo(const png_byte* data) { |
+ png_uint_32 width, height, xOffset, yOffset; |
+ png_uint_16 delayNumerator, delayDenominator; |
+ width = png_get_uint_32(data + 4); |
+ height = png_get_uint_32(data + 8); |
+ xOffset = png_get_uint_32(data + 12); |
+ yOffset = png_get_uint_32(data + 16); |
+ delayNumerator = png_get_uint_16(data + 20); |
+ delayDenominator = png_get_uint_16(data + 22); |
+ |
+ m_newFrame.duration = (delayDenominator == 0) |
+ ? delayNumerator * 10 |
+ : delayNumerator * 1000 / delayDenominator; |
+ m_newFrame.frameRect = IntRect(xOffset, yOffset, width, height); |
+ m_newFrame.disposalMethod = data[24]; |
+ m_newFrame.alphaBlend = data[25]; |
+} |
+ |
+}; // namespace blink |