Index: third_party/sqlite/sqlite-src-3080704/tool/lemon.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/tool/lemon.c b/third_party/sqlite/sqlite-src-3080704/tool/lemon.c |
deleted file mode 100644 |
index 85e94f7007f905754127fd81472f9ff64e631a2d..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/tool/lemon.c |
+++ /dev/null |
@@ -1,5040 +0,0 @@ |
-/* |
-** This file contains all sources (including headers) to the LEMON |
-** LALR(1) parser generator. The sources have been combined into a |
-** single file to make it easy to include LEMON in the source tree |
-** and Makefile of another program. |
-** |
-** The author of this program disclaims copyright. |
-*/ |
-#include <stdio.h> |
-#include <stdarg.h> |
-#include <string.h> |
-#include <ctype.h> |
-#include <stdlib.h> |
-#include <assert.h> |
- |
-#ifndef __WIN32__ |
-# if defined(_WIN32) || defined(WIN32) |
-# define __WIN32__ |
-# endif |
-#endif |
- |
-#ifdef __WIN32__ |
-#ifdef __cplusplus |
-extern "C" { |
-#endif |
-extern int access(const char *path, int mode); |
-#ifdef __cplusplus |
-} |
-#endif |
-#else |
-#include <unistd.h> |
-#endif |
- |
-/* #define PRIVATE static */ |
-#define PRIVATE |
- |
-#ifdef TEST |
-#define MAXRHS 5 /* Set low to exercise exception code */ |
-#else |
-#define MAXRHS 1000 |
-#endif |
- |
-static int showPrecedenceConflict = 0; |
-static char *msort(char*,char**,int(*)(const char*,const char*)); |
- |
-/* |
-** Compilers are getting increasingly pedantic about type conversions |
-** as C evolves ever closer to Ada.... To work around the latest problems |
-** we have to define the following variant of strlen(). |
-*/ |
-#define lemonStrlen(X) ((int)strlen(X)) |
- |
-/* |
-** Compilers are starting to complain about the use of sprintf() and strcpy(), |
-** saying they are unsafe. So we define our own versions of those routines too. |
-** |
-** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and |
-** lemon_addtext(). The first two are replacements for sprintf() and vsprintf(). |
-** The third is a helper routine for vsnprintf() that adds texts to the end of a |
-** buffer, making sure the buffer is always zero-terminated. |
-** |
-** The string formatter is a minimal subset of stdlib sprintf() supporting only |
-** a few simply conversions: |
-** |
-** %d |
-** %s |
-** %.*s |
-** |
-*/ |
-static void lemon_addtext( |
- char *zBuf, /* The buffer to which text is added */ |
- int *pnUsed, /* Slots of the buffer used so far */ |
- const char *zIn, /* Text to add */ |
- int nIn, /* Bytes of text to add. -1 to use strlen() */ |
- int iWidth /* Field width. Negative to left justify */ |
-){ |
- if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){} |
- while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; } |
- if( nIn==0 ) return; |
- memcpy(&zBuf[*pnUsed], zIn, nIn); |
- *pnUsed += nIn; |
- while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; } |
- zBuf[*pnUsed] = 0; |
-} |
-static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){ |
- int i, j, k, c; |
- int nUsed = 0; |
- const char *z; |
- char zTemp[50]; |
- str[0] = 0; |
- for(i=j=0; (c = zFormat[i])!=0; i++){ |
- if( c=='%' ){ |
- int iWidth = 0; |
- lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); |
- c = zFormat[++i]; |
- if( isdigit(c) || (c=='-' && isdigit(zFormat[i+1])) ){ |
- if( c=='-' ) i++; |
- while( isdigit(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0'; |
- if( c=='-' ) iWidth = -iWidth; |
- c = zFormat[i]; |
- } |
- if( c=='d' ){ |
- int v = va_arg(ap, int); |
- if( v<0 ){ |
- lemon_addtext(str, &nUsed, "-", 1, iWidth); |
- v = -v; |
- }else if( v==0 ){ |
- lemon_addtext(str, &nUsed, "0", 1, iWidth); |
- } |
- k = 0; |
- while( v>0 ){ |
- k++; |
- zTemp[sizeof(zTemp)-k] = (v%10) + '0'; |
- v /= 10; |
- } |
- lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth); |
- }else if( c=='s' ){ |
- z = va_arg(ap, const char*); |
- lemon_addtext(str, &nUsed, z, -1, iWidth); |
- }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){ |
- i += 2; |
- k = va_arg(ap, int); |
- z = va_arg(ap, const char*); |
- lemon_addtext(str, &nUsed, z, k, iWidth); |
- }else if( c=='%' ){ |
- lemon_addtext(str, &nUsed, "%", 1, 0); |
- }else{ |
- fprintf(stderr, "illegal format\n"); |
- exit(1); |
- } |
- j = i+1; |
- } |
- } |
- lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); |
- return nUsed; |
-} |
-static int lemon_sprintf(char *str, const char *format, ...){ |
- va_list ap; |
- int rc; |
- va_start(ap, format); |
- rc = lemon_vsprintf(str, format, ap); |
- va_end(ap); |
- return rc; |
-} |
-static void lemon_strcpy(char *dest, const char *src){ |
- while( (*(dest++) = *(src++))!=0 ){} |
-} |
-static void lemon_strcat(char *dest, const char *src){ |
- while( *dest ) dest++; |
- lemon_strcpy(dest, src); |
-} |
- |
- |
-/* a few forward declarations... */ |
-struct rule; |
-struct lemon; |
-struct action; |
- |
-static struct action *Action_new(void); |
-static struct action *Action_sort(struct action *); |
- |
-/********** From the file "build.h" ************************************/ |
-void FindRulePrecedences(); |
-void FindFirstSets(); |
-void FindStates(); |
-void FindLinks(); |
-void FindFollowSets(); |
-void FindActions(); |
- |
-/********* From the file "configlist.h" *********************************/ |
-void Configlist_init(void); |
-struct config *Configlist_add(struct rule *, int); |
-struct config *Configlist_addbasis(struct rule *, int); |
-void Configlist_closure(struct lemon *); |
-void Configlist_sort(void); |
-void Configlist_sortbasis(void); |
-struct config *Configlist_return(void); |
-struct config *Configlist_basis(void); |
-void Configlist_eat(struct config *); |
-void Configlist_reset(void); |
- |
-/********* From the file "error.h" ***************************************/ |
-void ErrorMsg(const char *, int,const char *, ...); |
- |
-/****** From the file "option.h" ******************************************/ |
-enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, |
- OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; |
-struct s_options { |
- enum option_type type; |
- const char *label; |
- char *arg; |
- const char *message; |
-}; |
-int OptInit(char**,struct s_options*,FILE*); |
-int OptNArgs(void); |
-char *OptArg(int); |
-void OptErr(int); |
-void OptPrint(void); |
- |
-/******** From the file "parse.h" *****************************************/ |
-void Parse(struct lemon *lemp); |
- |
-/********* From the file "plink.h" ***************************************/ |
-struct plink *Plink_new(void); |
-void Plink_add(struct plink **, struct config *); |
-void Plink_copy(struct plink **, struct plink *); |
-void Plink_delete(struct plink *); |
- |
-/********** From the file "report.h" *************************************/ |
-void Reprint(struct lemon *); |
-void ReportOutput(struct lemon *); |
-void ReportTable(struct lemon *, int); |
-void ReportHeader(struct lemon *); |
-void CompressTables(struct lemon *); |
-void ResortStates(struct lemon *); |
- |
-/********** From the file "set.h" ****************************************/ |
-void SetSize(int); /* All sets will be of size N */ |
-char *SetNew(void); /* A new set for element 0..N */ |
-void SetFree(char*); /* Deallocate a set */ |
-int SetAdd(char*,int); /* Add element to a set */ |
-int SetUnion(char *,char *); /* A <- A U B, thru element N */ |
-#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ |
- |
-/********** From the file "struct.h" *************************************/ |
-/* |
-** Principal data structures for the LEMON parser generator. |
-*/ |
- |
-typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; |
- |
-/* Symbols (terminals and nonterminals) of the grammar are stored |
-** in the following: */ |
-enum symbol_type { |
- TERMINAL, |
- NONTERMINAL, |
- MULTITERMINAL |
-}; |
-enum e_assoc { |
- LEFT, |
- RIGHT, |
- NONE, |
- UNK |
-}; |
-struct symbol { |
- const char *name; /* Name of the symbol */ |
- int index; /* Index number for this symbol */ |
- enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ |
- struct rule *rule; /* Linked list of rules of this (if an NT) */ |
- struct symbol *fallback; /* fallback token in case this token doesn't parse */ |
- int prec; /* Precedence if defined (-1 otherwise) */ |
- enum e_assoc assoc; /* Associativity if precedence is defined */ |
- char *firstset; /* First-set for all rules of this symbol */ |
- Boolean lambda; /* True if NT and can generate an empty string */ |
- int useCnt; /* Number of times used */ |
- char *destructor; /* Code which executes whenever this symbol is |
- ** popped from the stack during error processing */ |
- int destLineno; /* Line number for start of destructor */ |
- char *datatype; /* The data type of information held by this |
- ** object. Only used if type==NONTERMINAL */ |
- int dtnum; /* The data type number. In the parser, the value |
- ** stack is a union. The .yy%d element of this |
- ** union is the correct data type for this object */ |
- /* The following fields are used by MULTITERMINALs only */ |
- int nsubsym; /* Number of constituent symbols in the MULTI */ |
- struct symbol **subsym; /* Array of constituent symbols */ |
-}; |
- |
-/* Each production rule in the grammar is stored in the following |
-** structure. */ |
-struct rule { |
- struct symbol *lhs; /* Left-hand side of the rule */ |
- const char *lhsalias; /* Alias for the LHS (NULL if none) */ |
- int lhsStart; /* True if left-hand side is the start symbol */ |
- int ruleline; /* Line number for the rule */ |
- int nrhs; /* Number of RHS symbols */ |
- struct symbol **rhs; /* The RHS symbols */ |
- const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ |
- int line; /* Line number at which code begins */ |
- const char *code; /* The code executed when this rule is reduced */ |
- struct symbol *precsym; /* Precedence symbol for this rule */ |
- int index; /* An index number for this rule */ |
- Boolean canReduce; /* True if this rule is ever reduced */ |
- struct rule *nextlhs; /* Next rule with the same LHS */ |
- struct rule *next; /* Next rule in the global list */ |
-}; |
- |
-/* A configuration is a production rule of the grammar together with |
-** a mark (dot) showing how much of that rule has been processed so far. |
-** Configurations also contain a follow-set which is a list of terminal |
-** symbols which are allowed to immediately follow the end of the rule. |
-** Every configuration is recorded as an instance of the following: */ |
-enum cfgstatus { |
- COMPLETE, |
- INCOMPLETE |
-}; |
-struct config { |
- struct rule *rp; /* The rule upon which the configuration is based */ |
- int dot; /* The parse point */ |
- char *fws; /* Follow-set for this configuration only */ |
- struct plink *fplp; /* Follow-set forward propagation links */ |
- struct plink *bplp; /* Follow-set backwards propagation links */ |
- struct state *stp; /* Pointer to state which contains this */ |
- enum cfgstatus status; /* used during followset and shift computations */ |
- struct config *next; /* Next configuration in the state */ |
- struct config *bp; /* The next basis configuration */ |
-}; |
- |
-enum e_action { |
- SHIFT, |
- ACCEPT, |
- REDUCE, |
- ERROR, |
- SSCONFLICT, /* A shift/shift conflict */ |
- SRCONFLICT, /* Was a reduce, but part of a conflict */ |
- RRCONFLICT, /* Was a reduce, but part of a conflict */ |
- SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ |
- RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ |
- NOT_USED /* Deleted by compression */ |
-}; |
- |
-/* Every shift or reduce operation is stored as one of the following */ |
-struct action { |
- struct symbol *sp; /* The look-ahead symbol */ |
- enum e_action type; |
- union { |
- struct state *stp; /* The new state, if a shift */ |
- struct rule *rp; /* The rule, if a reduce */ |
- } x; |
- struct action *next; /* Next action for this state */ |
- struct action *collide; /* Next action with the same hash */ |
-}; |
- |
-/* Each state of the generated parser's finite state machine |
-** is encoded as an instance of the following structure. */ |
-struct state { |
- struct config *bp; /* The basis configurations for this state */ |
- struct config *cfp; /* All configurations in this set */ |
- int statenum; /* Sequential number for this state */ |
- struct action *ap; /* Array of actions for this state */ |
- int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ |
- int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ |
- int iDflt; /* Default action */ |
-}; |
-#define NO_OFFSET (-2147483647) |
- |
-/* A followset propagation link indicates that the contents of one |
-** configuration followset should be propagated to another whenever |
-** the first changes. */ |
-struct plink { |
- struct config *cfp; /* The configuration to which linked */ |
- struct plink *next; /* The next propagate link */ |
-}; |
- |
-/* The state vector for the entire parser generator is recorded as |
-** follows. (LEMON uses no global variables and makes little use of |
-** static variables. Fields in the following structure can be thought |
-** of as begin global variables in the program.) */ |
-struct lemon { |
- struct state **sorted; /* Table of states sorted by state number */ |
- struct rule *rule; /* List of all rules */ |
- int nstate; /* Number of states */ |
- int nrule; /* Number of rules */ |
- int nsymbol; /* Number of terminal and nonterminal symbols */ |
- int nterminal; /* Number of terminal symbols */ |
- struct symbol **symbols; /* Sorted array of pointers to symbols */ |
- int errorcnt; /* Number of errors */ |
- struct symbol *errsym; /* The error symbol */ |
- struct symbol *wildcard; /* Token that matches anything */ |
- char *name; /* Name of the generated parser */ |
- char *arg; /* Declaration of the 3th argument to parser */ |
- char *tokentype; /* Type of terminal symbols in the parser stack */ |
- char *vartype; /* The default type of non-terminal symbols */ |
- char *start; /* Name of the start symbol for the grammar */ |
- char *stacksize; /* Size of the parser stack */ |
- char *include; /* Code to put at the start of the C file */ |
- char *error; /* Code to execute when an error is seen */ |
- char *overflow; /* Code to execute on a stack overflow */ |
- char *failure; /* Code to execute on parser failure */ |
- char *accept; /* Code to execute when the parser excepts */ |
- char *extracode; /* Code appended to the generated file */ |
- char *tokendest; /* Code to execute to destroy token data */ |
- char *vardest; /* Code for the default non-terminal destructor */ |
- char *filename; /* Name of the input file */ |
- char *outname; /* Name of the current output file */ |
- char *tokenprefix; /* A prefix added to token names in the .h file */ |
- int nconflict; /* Number of parsing conflicts */ |
- int tablesize; /* Size of the parse tables */ |
- int basisflag; /* Print only basis configurations */ |
- int has_fallback; /* True if any %fallback is seen in the grammar */ |
- int nolinenosflag; /* True if #line statements should not be printed */ |
- char *argv0; /* Name of the program */ |
-}; |
- |
-#define MemoryCheck(X) if((X)==0){ \ |
- extern void memory_error(); \ |
- memory_error(); \ |
-} |
- |
-/**************** From the file "table.h" *********************************/ |
-/* |
-** All code in this file has been automatically generated |
-** from a specification in the file |
-** "table.q" |
-** by the associative array code building program "aagen". |
-** Do not edit this file! Instead, edit the specification |
-** file, then rerun aagen. |
-*/ |
-/* |
-** Code for processing tables in the LEMON parser generator. |
-*/ |
-/* Routines for handling a strings */ |
- |
-const char *Strsafe(const char *); |
- |
-void Strsafe_init(void); |
-int Strsafe_insert(const char *); |
-const char *Strsafe_find(const char *); |
- |
-/* Routines for handling symbols of the grammar */ |
- |
-struct symbol *Symbol_new(const char *); |
-int Symbolcmpp(const void *, const void *); |
-void Symbol_init(void); |
-int Symbol_insert(struct symbol *, const char *); |
-struct symbol *Symbol_find(const char *); |
-struct symbol *Symbol_Nth(int); |
-int Symbol_count(void); |
-struct symbol **Symbol_arrayof(void); |
- |
-/* Routines to manage the state table */ |
- |
-int Configcmp(const char *, const char *); |
-struct state *State_new(void); |
-void State_init(void); |
-int State_insert(struct state *, struct config *); |
-struct state *State_find(struct config *); |
-struct state **State_arrayof(/* */); |
- |
-/* Routines used for efficiency in Configlist_add */ |
- |
-void Configtable_init(void); |
-int Configtable_insert(struct config *); |
-struct config *Configtable_find(struct config *); |
-void Configtable_clear(int(*)(struct config *)); |
- |
-/****************** From the file "action.c" *******************************/ |
-/* |
-** Routines processing parser actions in the LEMON parser generator. |
-*/ |
- |
-/* Allocate a new parser action */ |
-static struct action *Action_new(void){ |
- static struct action *freelist = 0; |
- struct action *newaction; |
- |
- if( freelist==0 ){ |
- int i; |
- int amt = 100; |
- freelist = (struct action *)calloc(amt, sizeof(struct action)); |
- if( freelist==0 ){ |
- fprintf(stderr,"Unable to allocate memory for a new parser action."); |
- exit(1); |
- } |
- for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
- freelist[amt-1].next = 0; |
- } |
- newaction = freelist; |
- freelist = freelist->next; |
- return newaction; |
-} |
- |
-/* Compare two actions for sorting purposes. Return negative, zero, or |
-** positive if the first action is less than, equal to, or greater than |
-** the first |
-*/ |
-static int actioncmp( |
- struct action *ap1, |
- struct action *ap2 |
-){ |
- int rc; |
- rc = ap1->sp->index - ap2->sp->index; |
- if( rc==0 ){ |
- rc = (int)ap1->type - (int)ap2->type; |
- } |
- if( rc==0 && ap1->type==REDUCE ){ |
- rc = ap1->x.rp->index - ap2->x.rp->index; |
- } |
- if( rc==0 ){ |
- rc = (int) (ap2 - ap1); |
- } |
- return rc; |
-} |
- |
-/* Sort parser actions */ |
-static struct action *Action_sort( |
- struct action *ap |
-){ |
- ap = (struct action *)msort((char *)ap,(char **)&ap->next, |
- (int(*)(const char*,const char*))actioncmp); |
- return ap; |
-} |
- |
-void Action_add( |
- struct action **app, |
- enum e_action type, |
- struct symbol *sp, |
- char *arg |
-){ |
- struct action *newaction; |
- newaction = Action_new(); |
- newaction->next = *app; |
- *app = newaction; |
- newaction->type = type; |
- newaction->sp = sp; |
- if( type==SHIFT ){ |
- newaction->x.stp = (struct state *)arg; |
- }else{ |
- newaction->x.rp = (struct rule *)arg; |
- } |
-} |
-/********************** New code to implement the "acttab" module ***********/ |
-/* |
-** This module implements routines use to construct the yy_action[] table. |
-*/ |
- |
-/* |
-** The state of the yy_action table under construction is an instance of |
-** the following structure. |
-** |
-** The yy_action table maps the pair (state_number, lookahead) into an |
-** action_number. The table is an array of integers pairs. The state_number |
-** determines an initial offset into the yy_action array. The lookahead |
-** value is then added to this initial offset to get an index X into the |
-** yy_action array. If the aAction[X].lookahead equals the value of the |
-** of the lookahead input, then the value of the action_number output is |
-** aAction[X].action. If the lookaheads do not match then the |
-** default action for the state_number is returned. |
-** |
-** All actions associated with a single state_number are first entered |
-** into aLookahead[] using multiple calls to acttab_action(). Then the |
-** actions for that single state_number are placed into the aAction[] |
-** array with a single call to acttab_insert(). The acttab_insert() call |
-** also resets the aLookahead[] array in preparation for the next |
-** state number. |
-*/ |
-struct lookahead_action { |
- int lookahead; /* Value of the lookahead token */ |
- int action; /* Action to take on the given lookahead */ |
-}; |
-typedef struct acttab acttab; |
-struct acttab { |
- int nAction; /* Number of used slots in aAction[] */ |
- int nActionAlloc; /* Slots allocated for aAction[] */ |
- struct lookahead_action |
- *aAction, /* The yy_action[] table under construction */ |
- *aLookahead; /* A single new transaction set */ |
- int mnLookahead; /* Minimum aLookahead[].lookahead */ |
- int mnAction; /* Action associated with mnLookahead */ |
- int mxLookahead; /* Maximum aLookahead[].lookahead */ |
- int nLookahead; /* Used slots in aLookahead[] */ |
- int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ |
-}; |
- |
-/* Return the number of entries in the yy_action table */ |
-#define acttab_size(X) ((X)->nAction) |
- |
-/* The value for the N-th entry in yy_action */ |
-#define acttab_yyaction(X,N) ((X)->aAction[N].action) |
- |
-/* The value for the N-th entry in yy_lookahead */ |
-#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) |
- |
-/* Free all memory associated with the given acttab */ |
-void acttab_free(acttab *p){ |
- free( p->aAction ); |
- free( p->aLookahead ); |
- free( p ); |
-} |
- |
-/* Allocate a new acttab structure */ |
-acttab *acttab_alloc(void){ |
- acttab *p = (acttab *) calloc( 1, sizeof(*p) ); |
- if( p==0 ){ |
- fprintf(stderr,"Unable to allocate memory for a new acttab."); |
- exit(1); |
- } |
- memset(p, 0, sizeof(*p)); |
- return p; |
-} |
- |
-/* Add a new action to the current transaction set. |
-** |
-** This routine is called once for each lookahead for a particular |
-** state. |
-*/ |
-void acttab_action(acttab *p, int lookahead, int action){ |
- if( p->nLookahead>=p->nLookaheadAlloc ){ |
- p->nLookaheadAlloc += 25; |
- p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, |
- sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); |
- if( p->aLookahead==0 ){ |
- fprintf(stderr,"malloc failed\n"); |
- exit(1); |
- } |
- } |
- if( p->nLookahead==0 ){ |
- p->mxLookahead = lookahead; |
- p->mnLookahead = lookahead; |
- p->mnAction = action; |
- }else{ |
- if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; |
- if( p->mnLookahead>lookahead ){ |
- p->mnLookahead = lookahead; |
- p->mnAction = action; |
- } |
- } |
- p->aLookahead[p->nLookahead].lookahead = lookahead; |
- p->aLookahead[p->nLookahead].action = action; |
- p->nLookahead++; |
-} |
- |
-/* |
-** Add the transaction set built up with prior calls to acttab_action() |
-** into the current action table. Then reset the transaction set back |
-** to an empty set in preparation for a new round of acttab_action() calls. |
-** |
-** Return the offset into the action table of the new transaction. |
-*/ |
-int acttab_insert(acttab *p){ |
- int i, j, k, n; |
- assert( p->nLookahead>0 ); |
- |
- /* Make sure we have enough space to hold the expanded action table |
- ** in the worst case. The worst case occurs if the transaction set |
- ** must be appended to the current action table |
- */ |
- n = p->mxLookahead + 1; |
- if( p->nAction + n >= p->nActionAlloc ){ |
- int oldAlloc = p->nActionAlloc; |
- p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; |
- p->aAction = (struct lookahead_action *) realloc( p->aAction, |
- sizeof(p->aAction[0])*p->nActionAlloc); |
- if( p->aAction==0 ){ |
- fprintf(stderr,"malloc failed\n"); |
- exit(1); |
- } |
- for(i=oldAlloc; i<p->nActionAlloc; i++){ |
- p->aAction[i].lookahead = -1; |
- p->aAction[i].action = -1; |
- } |
- } |
- |
- /* Scan the existing action table looking for an offset that is a |
- ** duplicate of the current transaction set. Fall out of the loop |
- ** if and when the duplicate is found. |
- ** |
- ** i is the index in p->aAction[] where p->mnLookahead is inserted. |
- */ |
- for(i=p->nAction-1; i>=0; i--){ |
- if( p->aAction[i].lookahead==p->mnLookahead ){ |
- /* All lookaheads and actions in the aLookahead[] transaction |
- ** must match against the candidate aAction[i] entry. */ |
- if( p->aAction[i].action!=p->mnAction ) continue; |
- for(j=0; j<p->nLookahead; j++){ |
- k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
- if( k<0 || k>=p->nAction ) break; |
- if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; |
- if( p->aLookahead[j].action!=p->aAction[k].action ) break; |
- } |
- if( j<p->nLookahead ) continue; |
- |
- /* No possible lookahead value that is not in the aLookahead[] |
- ** transaction is allowed to match aAction[i] */ |
- n = 0; |
- for(j=0; j<p->nAction; j++){ |
- if( p->aAction[j].lookahead<0 ) continue; |
- if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; |
- } |
- if( n==p->nLookahead ){ |
- break; /* An exact match is found at offset i */ |
- } |
- } |
- } |
- |
- /* If no existing offsets exactly match the current transaction, find an |
- ** an empty offset in the aAction[] table in which we can add the |
- ** aLookahead[] transaction. |
- */ |
- if( i<0 ){ |
- /* Look for holes in the aAction[] table that fit the current |
- ** aLookahead[] transaction. Leave i set to the offset of the hole. |
- ** If no holes are found, i is left at p->nAction, which means the |
- ** transaction will be appended. */ |
- for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){ |
- if( p->aAction[i].lookahead<0 ){ |
- for(j=0; j<p->nLookahead; j++){ |
- k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
- if( k<0 ) break; |
- if( p->aAction[k].lookahead>=0 ) break; |
- } |
- if( j<p->nLookahead ) continue; |
- for(j=0; j<p->nAction; j++){ |
- if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; |
- } |
- if( j==p->nAction ){ |
- break; /* Fits in empty slots */ |
- } |
- } |
- } |
- } |
- /* Insert transaction set at index i. */ |
- for(j=0; j<p->nLookahead; j++){ |
- k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
- p->aAction[k] = p->aLookahead[j]; |
- if( k>=p->nAction ) p->nAction = k+1; |
- } |
- p->nLookahead = 0; |
- |
- /* Return the offset that is added to the lookahead in order to get the |
- ** index into yy_action of the action */ |
- return i - p->mnLookahead; |
-} |
- |
-/********************** From the file "build.c" *****************************/ |
-/* |
-** Routines to construction the finite state machine for the LEMON |
-** parser generator. |
-*/ |
- |
-/* Find a precedence symbol of every rule in the grammar. |
-** |
-** Those rules which have a precedence symbol coded in the input |
-** grammar using the "[symbol]" construct will already have the |
-** rp->precsym field filled. Other rules take as their precedence |
-** symbol the first RHS symbol with a defined precedence. If there |
-** are not RHS symbols with a defined precedence, the precedence |
-** symbol field is left blank. |
-*/ |
-void FindRulePrecedences(struct lemon *xp) |
-{ |
- struct rule *rp; |
- for(rp=xp->rule; rp; rp=rp->next){ |
- if( rp->precsym==0 ){ |
- int i, j; |
- for(i=0; i<rp->nrhs && rp->precsym==0; i++){ |
- struct symbol *sp = rp->rhs[i]; |
- if( sp->type==MULTITERMINAL ){ |
- for(j=0; j<sp->nsubsym; j++){ |
- if( sp->subsym[j]->prec>=0 ){ |
- rp->precsym = sp->subsym[j]; |
- break; |
- } |
- } |
- }else if( sp->prec>=0 ){ |
- rp->precsym = rp->rhs[i]; |
- } |
- } |
- } |
- } |
- return; |
-} |
- |
-/* Find all nonterminals which will generate the empty string. |
-** Then go back and compute the first sets of every nonterminal. |
-** The first set is the set of all terminal symbols which can begin |
-** a string generated by that nonterminal. |
-*/ |
-void FindFirstSets(struct lemon *lemp) |
-{ |
- int i, j; |
- struct rule *rp; |
- int progress; |
- |
- for(i=0; i<lemp->nsymbol; i++){ |
- lemp->symbols[i]->lambda = LEMON_FALSE; |
- } |
- for(i=lemp->nterminal; i<lemp->nsymbol; i++){ |
- lemp->symbols[i]->firstset = SetNew(); |
- } |
- |
- /* First compute all lambdas */ |
- do{ |
- progress = 0; |
- for(rp=lemp->rule; rp; rp=rp->next){ |
- if( rp->lhs->lambda ) continue; |
- for(i=0; i<rp->nrhs; i++){ |
- struct symbol *sp = rp->rhs[i]; |
- assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE ); |
- if( sp->lambda==LEMON_FALSE ) break; |
- } |
- if( i==rp->nrhs ){ |
- rp->lhs->lambda = LEMON_TRUE; |
- progress = 1; |
- } |
- } |
- }while( progress ); |
- |
- /* Now compute all first sets */ |
- do{ |
- struct symbol *s1, *s2; |
- progress = 0; |
- for(rp=lemp->rule; rp; rp=rp->next){ |
- s1 = rp->lhs; |
- for(i=0; i<rp->nrhs; i++){ |
- s2 = rp->rhs[i]; |
- if( s2->type==TERMINAL ){ |
- progress += SetAdd(s1->firstset,s2->index); |
- break; |
- }else if( s2->type==MULTITERMINAL ){ |
- for(j=0; j<s2->nsubsym; j++){ |
- progress += SetAdd(s1->firstset,s2->subsym[j]->index); |
- } |
- break; |
- }else if( s1==s2 ){ |
- if( s1->lambda==LEMON_FALSE ) break; |
- }else{ |
- progress += SetUnion(s1->firstset,s2->firstset); |
- if( s2->lambda==LEMON_FALSE ) break; |
- } |
- } |
- } |
- }while( progress ); |
- return; |
-} |
- |
-/* Compute all LR(0) states for the grammar. Links |
-** are added to between some states so that the LR(1) follow sets |
-** can be computed later. |
-*/ |
-PRIVATE struct state *getstate(struct lemon *); /* forward reference */ |
-void FindStates(struct lemon *lemp) |
-{ |
- struct symbol *sp; |
- struct rule *rp; |
- |
- Configlist_init(); |
- |
- /* Find the start symbol */ |
- if( lemp->start ){ |
- sp = Symbol_find(lemp->start); |
- if( sp==0 ){ |
- ErrorMsg(lemp->filename,0, |
-"The specified start symbol \"%s\" is not \ |
-in a nonterminal of the grammar. \"%s\" will be used as the start \ |
-symbol instead.",lemp->start,lemp->rule->lhs->name); |
- lemp->errorcnt++; |
- sp = lemp->rule->lhs; |
- } |
- }else{ |
- sp = lemp->rule->lhs; |
- } |
- |
- /* Make sure the start symbol doesn't occur on the right-hand side of |
- ** any rule. Report an error if it does. (YACC would generate a new |
- ** start symbol in this case.) */ |
- for(rp=lemp->rule; rp; rp=rp->next){ |
- int i; |
- for(i=0; i<rp->nrhs; i++){ |
- if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ |
- ErrorMsg(lemp->filename,0, |
-"The start symbol \"%s\" occurs on the \ |
-right-hand side of a rule. This will result in a parser which \ |
-does not work properly.",sp->name); |
- lemp->errorcnt++; |
- } |
- } |
- } |
- |
- /* The basis configuration set for the first state |
- ** is all rules which have the start symbol as their |
- ** left-hand side */ |
- for(rp=sp->rule; rp; rp=rp->nextlhs){ |
- struct config *newcfp; |
- rp->lhsStart = 1; |
- newcfp = Configlist_addbasis(rp,0); |
- SetAdd(newcfp->fws,0); |
- } |
- |
- /* Compute the first state. All other states will be |
- ** computed automatically during the computation of the first one. |
- ** The returned pointer to the first state is not used. */ |
- (void)getstate(lemp); |
- return; |
-} |
- |
-/* Return a pointer to a state which is described by the configuration |
-** list which has been built from calls to Configlist_add. |
-*/ |
-PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ |
-PRIVATE struct state *getstate(struct lemon *lemp) |
-{ |
- struct config *cfp, *bp; |
- struct state *stp; |
- |
- /* Extract the sorted basis of the new state. The basis was constructed |
- ** by prior calls to "Configlist_addbasis()". */ |
- Configlist_sortbasis(); |
- bp = Configlist_basis(); |
- |
- /* Get a state with the same basis */ |
- stp = State_find(bp); |
- if( stp ){ |
- /* A state with the same basis already exists! Copy all the follow-set |
- ** propagation links from the state under construction into the |
- ** preexisting state, then return a pointer to the preexisting state */ |
- struct config *x, *y; |
- for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ |
- Plink_copy(&y->bplp,x->bplp); |
- Plink_delete(x->fplp); |
- x->fplp = x->bplp = 0; |
- } |
- cfp = Configlist_return(); |
- Configlist_eat(cfp); |
- }else{ |
- /* This really is a new state. Construct all the details */ |
- Configlist_closure(lemp); /* Compute the configuration closure */ |
- Configlist_sort(); /* Sort the configuration closure */ |
- cfp = Configlist_return(); /* Get a pointer to the config list */ |
- stp = State_new(); /* A new state structure */ |
- MemoryCheck(stp); |
- stp->bp = bp; /* Remember the configuration basis */ |
- stp->cfp = cfp; /* Remember the configuration closure */ |
- stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ |
- stp->ap = 0; /* No actions, yet. */ |
- State_insert(stp,stp->bp); /* Add to the state table */ |
- buildshifts(lemp,stp); /* Recursively compute successor states */ |
- } |
- return stp; |
-} |
- |
-/* |
-** Return true if two symbols are the same. |
-*/ |
-int same_symbol(struct symbol *a, struct symbol *b) |
-{ |
- int i; |
- if( a==b ) return 1; |
- if( a->type!=MULTITERMINAL ) return 0; |
- if( b->type!=MULTITERMINAL ) return 0; |
- if( a->nsubsym!=b->nsubsym ) return 0; |
- for(i=0; i<a->nsubsym; i++){ |
- if( a->subsym[i]!=b->subsym[i] ) return 0; |
- } |
- return 1; |
-} |
- |
-/* Construct all successor states to the given state. A "successor" |
-** state is any state which can be reached by a shift action. |
-*/ |
-PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) |
-{ |
- struct config *cfp; /* For looping thru the config closure of "stp" */ |
- struct config *bcfp; /* For the inner loop on config closure of "stp" */ |
- struct config *newcfg; /* */ |
- struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ |
- struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ |
- struct state *newstp; /* A pointer to a successor state */ |
- |
- /* Each configuration becomes complete after it contibutes to a successor |
- ** state. Initially, all configurations are incomplete */ |
- for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; |
- |
- /* Loop through all configurations of the state "stp" */ |
- for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
- if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ |
- if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ |
- Configlist_reset(); /* Reset the new config set */ |
- sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ |
- |
- /* For every configuration in the state "stp" which has the symbol "sp" |
- ** following its dot, add the same configuration to the basis set under |
- ** construction but with the dot shifted one symbol to the right. */ |
- for(bcfp=cfp; bcfp; bcfp=bcfp->next){ |
- if( bcfp->status==COMPLETE ) continue; /* Already used */ |
- if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ |
- bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ |
- if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ |
- bcfp->status = COMPLETE; /* Mark this config as used */ |
- newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); |
- Plink_add(&newcfg->bplp,bcfp); |
- } |
- |
- /* Get a pointer to the state described by the basis configuration set |
- ** constructed in the preceding loop */ |
- newstp = getstate(lemp); |
- |
- /* The state "newstp" is reached from the state "stp" by a shift action |
- ** on the symbol "sp" */ |
- if( sp->type==MULTITERMINAL ){ |
- int i; |
- for(i=0; i<sp->nsubsym; i++){ |
- Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); |
- } |
- }else{ |
- Action_add(&stp->ap,SHIFT,sp,(char *)newstp); |
- } |
- } |
-} |
- |
-/* |
-** Construct the propagation links |
-*/ |
-void FindLinks(struct lemon *lemp) |
-{ |
- int i; |
- struct config *cfp, *other; |
- struct state *stp; |
- struct plink *plp; |
- |
- /* Housekeeping detail: |
- ** Add to every propagate link a pointer back to the state to |
- ** which the link is attached. */ |
- for(i=0; i<lemp->nstate; i++){ |
- stp = lemp->sorted[i]; |
- for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
- cfp->stp = stp; |
- } |
- } |
- |
- /* Convert all backlinks into forward links. Only the forward |
- ** links are used in the follow-set computation. */ |
- for(i=0; i<lemp->nstate; i++){ |
- stp = lemp->sorted[i]; |
- for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
- for(plp=cfp->bplp; plp; plp=plp->next){ |
- other = plp->cfp; |
- Plink_add(&other->fplp,cfp); |
- } |
- } |
- } |
-} |
- |
-/* Compute all followsets. |
-** |
-** A followset is the set of all symbols which can come immediately |
-** after a configuration. |
-*/ |
-void FindFollowSets(struct lemon *lemp) |
-{ |
- int i; |
- struct config *cfp; |
- struct plink *plp; |
- int progress; |
- int change; |
- |
- for(i=0; i<lemp->nstate; i++){ |
- for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
- cfp->status = INCOMPLETE; |
- } |
- } |
- |
- do{ |
- progress = 0; |
- for(i=0; i<lemp->nstate; i++){ |
- for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
- if( cfp->status==COMPLETE ) continue; |
- for(plp=cfp->fplp; plp; plp=plp->next){ |
- change = SetUnion(plp->cfp->fws,cfp->fws); |
- if( change ){ |
- plp->cfp->status = INCOMPLETE; |
- progress = 1; |
- } |
- } |
- cfp->status = COMPLETE; |
- } |
- } |
- }while( progress ); |
-} |
- |
-static int resolve_conflict(struct action *,struct action *); |
- |
-/* Compute the reduce actions, and resolve conflicts. |
-*/ |
-void FindActions(struct lemon *lemp) |
-{ |
- int i,j; |
- struct config *cfp; |
- struct state *stp; |
- struct symbol *sp; |
- struct rule *rp; |
- |
- /* Add all of the reduce actions |
- ** A reduce action is added for each element of the followset of |
- ** a configuration which has its dot at the extreme right. |
- */ |
- for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ |
- stp = lemp->sorted[i]; |
- for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ |
- if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ |
- for(j=0; j<lemp->nterminal; j++){ |
- if( SetFind(cfp->fws,j) ){ |
- /* Add a reduce action to the state "stp" which will reduce by the |
- ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ |
- Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); |
- } |
- } |
- } |
- } |
- } |
- |
- /* Add the accepting token */ |
- if( lemp->start ){ |
- sp = Symbol_find(lemp->start); |
- if( sp==0 ) sp = lemp->rule->lhs; |
- }else{ |
- sp = lemp->rule->lhs; |
- } |
- /* Add to the first state (which is always the starting state of the |
- ** finite state machine) an action to ACCEPT if the lookahead is the |
- ** start nonterminal. */ |
- Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); |
- |
- /* Resolve conflicts */ |
- for(i=0; i<lemp->nstate; i++){ |
- struct action *ap, *nap; |
- struct state *stp; |
- stp = lemp->sorted[i]; |
- /* assert( stp->ap ); */ |
- stp->ap = Action_sort(stp->ap); |
- for(ap=stp->ap; ap && ap->next; ap=ap->next){ |
- for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ |
- /* The two actions "ap" and "nap" have the same lookahead. |
- ** Figure out which one should be used */ |
- lemp->nconflict += resolve_conflict(ap,nap); |
- } |
- } |
- } |
- |
- /* Report an error for each rule that can never be reduced. */ |
- for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; |
- for(i=0; i<lemp->nstate; i++){ |
- struct action *ap; |
- for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ |
- if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; |
- } |
- } |
- for(rp=lemp->rule; rp; rp=rp->next){ |
- if( rp->canReduce ) continue; |
- ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); |
- lemp->errorcnt++; |
- } |
-} |
- |
-/* Resolve a conflict between the two given actions. If the |
-** conflict can't be resolved, return non-zero. |
-** |
-** NO LONGER TRUE: |
-** To resolve a conflict, first look to see if either action |
-** is on an error rule. In that case, take the action which |
-** is not associated with the error rule. If neither or both |
-** actions are associated with an error rule, then try to |
-** use precedence to resolve the conflict. |
-** |
-** If either action is a SHIFT, then it must be apx. This |
-** function won't work if apx->type==REDUCE and apy->type==SHIFT. |
-*/ |
-static int resolve_conflict( |
- struct action *apx, |
- struct action *apy |
-){ |
- struct symbol *spx, *spy; |
- int errcnt = 0; |
- assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ |
- if( apx->type==SHIFT && apy->type==SHIFT ){ |
- apy->type = SSCONFLICT; |
- errcnt++; |
- } |
- if( apx->type==SHIFT && apy->type==REDUCE ){ |
- spx = apx->sp; |
- spy = apy->x.rp->precsym; |
- if( spy==0 || spx->prec<0 || spy->prec<0 ){ |
- /* Not enough precedence information. */ |
- apy->type = SRCONFLICT; |
- errcnt++; |
- }else if( spx->prec>spy->prec ){ /* higher precedence wins */ |
- apy->type = RD_RESOLVED; |
- }else if( spx->prec<spy->prec ){ |
- apx->type = SH_RESOLVED; |
- }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ |
- apy->type = RD_RESOLVED; /* associativity */ |
- }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ |
- apx->type = SH_RESOLVED; |
- }else{ |
- assert( spx->prec==spy->prec && spx->assoc==NONE ); |
- apx->type = ERROR; |
- } |
- }else if( apx->type==REDUCE && apy->type==REDUCE ){ |
- spx = apx->x.rp->precsym; |
- spy = apy->x.rp->precsym; |
- if( spx==0 || spy==0 || spx->prec<0 || |
- spy->prec<0 || spx->prec==spy->prec ){ |
- apy->type = RRCONFLICT; |
- errcnt++; |
- }else if( spx->prec>spy->prec ){ |
- apy->type = RD_RESOLVED; |
- }else if( spx->prec<spy->prec ){ |
- apx->type = RD_RESOLVED; |
- } |
- }else{ |
- assert( |
- apx->type==SH_RESOLVED || |
- apx->type==RD_RESOLVED || |
- apx->type==SSCONFLICT || |
- apx->type==SRCONFLICT || |
- apx->type==RRCONFLICT || |
- apy->type==SH_RESOLVED || |
- apy->type==RD_RESOLVED || |
- apy->type==SSCONFLICT || |
- apy->type==SRCONFLICT || |
- apy->type==RRCONFLICT |
- ); |
- /* The REDUCE/SHIFT case cannot happen because SHIFTs come before |
- ** REDUCEs on the list. If we reach this point it must be because |
- ** the parser conflict had already been resolved. */ |
- } |
- return errcnt; |
-} |
-/********************* From the file "configlist.c" *************************/ |
-/* |
-** Routines to processing a configuration list and building a state |
-** in the LEMON parser generator. |
-*/ |
- |
-static struct config *freelist = 0; /* List of free configurations */ |
-static struct config *current = 0; /* Top of list of configurations */ |
-static struct config **currentend = 0; /* Last on list of configs */ |
-static struct config *basis = 0; /* Top of list of basis configs */ |
-static struct config **basisend = 0; /* End of list of basis configs */ |
- |
-/* Return a pointer to a new configuration */ |
-PRIVATE struct config *newconfig(){ |
- struct config *newcfg; |
- if( freelist==0 ){ |
- int i; |
- int amt = 3; |
- freelist = (struct config *)calloc( amt, sizeof(struct config) ); |
- if( freelist==0 ){ |
- fprintf(stderr,"Unable to allocate memory for a new configuration."); |
- exit(1); |
- } |
- for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
- freelist[amt-1].next = 0; |
- } |
- newcfg = freelist; |
- freelist = freelist->next; |
- return newcfg; |
-} |
- |
-/* The configuration "old" is no longer used */ |
-PRIVATE void deleteconfig(struct config *old) |
-{ |
- old->next = freelist; |
- freelist = old; |
-} |
- |
-/* Initialized the configuration list builder */ |
-void Configlist_init(){ |
- current = 0; |
- currentend = ¤t; |
- basis = 0; |
- basisend = &basis; |
- Configtable_init(); |
- return; |
-} |
- |
-/* Initialized the configuration list builder */ |
-void Configlist_reset(){ |
- current = 0; |
- currentend = ¤t; |
- basis = 0; |
- basisend = &basis; |
- Configtable_clear(0); |
- return; |
-} |
- |
-/* Add another configuration to the configuration list */ |
-struct config *Configlist_add( |
- struct rule *rp, /* The rule */ |
- int dot /* Index into the RHS of the rule where the dot goes */ |
-){ |
- struct config *cfp, model; |
- |
- assert( currentend!=0 ); |
- model.rp = rp; |
- model.dot = dot; |
- cfp = Configtable_find(&model); |
- if( cfp==0 ){ |
- cfp = newconfig(); |
- cfp->rp = rp; |
- cfp->dot = dot; |
- cfp->fws = SetNew(); |
- cfp->stp = 0; |
- cfp->fplp = cfp->bplp = 0; |
- cfp->next = 0; |
- cfp->bp = 0; |
- *currentend = cfp; |
- currentend = &cfp->next; |
- Configtable_insert(cfp); |
- } |
- return cfp; |
-} |
- |
-/* Add a basis configuration to the configuration list */ |
-struct config *Configlist_addbasis(struct rule *rp, int dot) |
-{ |
- struct config *cfp, model; |
- |
- assert( basisend!=0 ); |
- assert( currentend!=0 ); |
- model.rp = rp; |
- model.dot = dot; |
- cfp = Configtable_find(&model); |
- if( cfp==0 ){ |
- cfp = newconfig(); |
- cfp->rp = rp; |
- cfp->dot = dot; |
- cfp->fws = SetNew(); |
- cfp->stp = 0; |
- cfp->fplp = cfp->bplp = 0; |
- cfp->next = 0; |
- cfp->bp = 0; |
- *currentend = cfp; |
- currentend = &cfp->next; |
- *basisend = cfp; |
- basisend = &cfp->bp; |
- Configtable_insert(cfp); |
- } |
- return cfp; |
-} |
- |
-/* Compute the closure of the configuration list */ |
-void Configlist_closure(struct lemon *lemp) |
-{ |
- struct config *cfp, *newcfp; |
- struct rule *rp, *newrp; |
- struct symbol *sp, *xsp; |
- int i, dot; |
- |
- assert( currentend!=0 ); |
- for(cfp=current; cfp; cfp=cfp->next){ |
- rp = cfp->rp; |
- dot = cfp->dot; |
- if( dot>=rp->nrhs ) continue; |
- sp = rp->rhs[dot]; |
- if( sp->type==NONTERMINAL ){ |
- if( sp->rule==0 && sp!=lemp->errsym ){ |
- ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", |
- sp->name); |
- lemp->errorcnt++; |
- } |
- for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ |
- newcfp = Configlist_add(newrp,0); |
- for(i=dot+1; i<rp->nrhs; i++){ |
- xsp = rp->rhs[i]; |
- if( xsp->type==TERMINAL ){ |
- SetAdd(newcfp->fws,xsp->index); |
- break; |
- }else if( xsp->type==MULTITERMINAL ){ |
- int k; |
- for(k=0; k<xsp->nsubsym; k++){ |
- SetAdd(newcfp->fws, xsp->subsym[k]->index); |
- } |
- break; |
- }else{ |
- SetUnion(newcfp->fws,xsp->firstset); |
- if( xsp->lambda==LEMON_FALSE ) break; |
- } |
- } |
- if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); |
- } |
- } |
- } |
- return; |
-} |
- |
-/* Sort the configuration list */ |
-void Configlist_sort(){ |
- current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp); |
- currentend = 0; |
- return; |
-} |
- |
-/* Sort the basis configuration list */ |
-void Configlist_sortbasis(){ |
- basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp); |
- basisend = 0; |
- return; |
-} |
- |
-/* Return a pointer to the head of the configuration list and |
-** reset the list */ |
-struct config *Configlist_return(){ |
- struct config *old; |
- old = current; |
- current = 0; |
- currentend = 0; |
- return old; |
-} |
- |
-/* Return a pointer to the head of the configuration list and |
-** reset the list */ |
-struct config *Configlist_basis(){ |
- struct config *old; |
- old = basis; |
- basis = 0; |
- basisend = 0; |
- return old; |
-} |
- |
-/* Free all elements of the given configuration list */ |
-void Configlist_eat(struct config *cfp) |
-{ |
- struct config *nextcfp; |
- for(; cfp; cfp=nextcfp){ |
- nextcfp = cfp->next; |
- assert( cfp->fplp==0 ); |
- assert( cfp->bplp==0 ); |
- if( cfp->fws ) SetFree(cfp->fws); |
- deleteconfig(cfp); |
- } |
- return; |
-} |
-/***************** From the file "error.c" *********************************/ |
-/* |
-** Code for printing error message. |
-*/ |
- |
-void ErrorMsg(const char *filename, int lineno, const char *format, ...){ |
- va_list ap; |
- fprintf(stderr, "%s:%d: ", filename, lineno); |
- va_start(ap, format); |
- vfprintf(stderr,format,ap); |
- va_end(ap); |
- fprintf(stderr, "\n"); |
-} |
-/**************** From the file "main.c" ************************************/ |
-/* |
-** Main program file for the LEMON parser generator. |
-*/ |
- |
-/* Report an out-of-memory condition and abort. This function |
-** is used mostly by the "MemoryCheck" macro in struct.h |
-*/ |
-void memory_error(){ |
- fprintf(stderr,"Out of memory. Aborting...\n"); |
- exit(1); |
-} |
- |
-static int nDefine = 0; /* Number of -D options on the command line */ |
-static char **azDefine = 0; /* Name of the -D macros */ |
- |
-/* This routine is called with the argument to each -D command-line option. |
-** Add the macro defined to the azDefine array. |
-*/ |
-static void handle_D_option(char *z){ |
- char **paz; |
- nDefine++; |
- azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); |
- if( azDefine==0 ){ |
- fprintf(stderr,"out of memory\n"); |
- exit(1); |
- } |
- paz = &azDefine[nDefine-1]; |
- *paz = (char *) malloc( lemonStrlen(z)+1 ); |
- if( *paz==0 ){ |
- fprintf(stderr,"out of memory\n"); |
- exit(1); |
- } |
- lemon_strcpy(*paz, z); |
- for(z=*paz; *z && *z!='='; z++){} |
- *z = 0; |
-} |
- |
-static char *user_templatename = NULL; |
-static void handle_T_option(char *z){ |
- user_templatename = (char *) malloc( lemonStrlen(z)+1 ); |
- if( user_templatename==0 ){ |
- memory_error(); |
- } |
- lemon_strcpy(user_templatename, z); |
-} |
- |
-/* The main program. Parse the command line and do it... */ |
-int main(int argc, char **argv) |
-{ |
- static int version = 0; |
- static int rpflag = 0; |
- static int basisflag = 0; |
- static int compress = 0; |
- static int quiet = 0; |
- static int statistics = 0; |
- static int mhflag = 0; |
- static int nolinenosflag = 0; |
- static int noResort = 0; |
- static struct s_options options[] = { |
- {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, |
- {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, |
- {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, |
- {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, |
- {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, |
- {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, |
- {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, |
- {OPT_FLAG, "p", (char*)&showPrecedenceConflict, |
- "Show conflicts resolved by precedence rules"}, |
- {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, |
- {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, |
- {OPT_FLAG, "s", (char*)&statistics, |
- "Print parser stats to standard output."}, |
- {OPT_FLAG, "x", (char*)&version, "Print the version number."}, |
- {OPT_FLAG,0,0,0} |
- }; |
- int i; |
- int exitcode; |
- struct lemon lem; |
- |
- OptInit(argv,options,stderr); |
- if( version ){ |
- printf("Lemon version 1.0\n"); |
- exit(0); |
- } |
- if( OptNArgs()!=1 ){ |
- fprintf(stderr,"Exactly one filename argument is required.\n"); |
- exit(1); |
- } |
- memset(&lem, 0, sizeof(lem)); |
- lem.errorcnt = 0; |
- |
- /* Initialize the machine */ |
- Strsafe_init(); |
- Symbol_init(); |
- State_init(); |
- lem.argv0 = argv[0]; |
- lem.filename = OptArg(0); |
- lem.basisflag = basisflag; |
- lem.nolinenosflag = nolinenosflag; |
- Symbol_new("$"); |
- lem.errsym = Symbol_new("error"); |
- lem.errsym->useCnt = 0; |
- |
- /* Parse the input file */ |
- Parse(&lem); |
- if( lem.errorcnt ) exit(lem.errorcnt); |
- if( lem.nrule==0 ){ |
- fprintf(stderr,"Empty grammar.\n"); |
- exit(1); |
- } |
- |
- /* Count and index the symbols of the grammar */ |
- Symbol_new("{default}"); |
- lem.nsymbol = Symbol_count(); |
- lem.symbols = Symbol_arrayof(); |
- for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; |
- qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); |
- for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; |
- while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; } |
- assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 ); |
- lem.nsymbol = i - 1; |
- for(i=1; isupper(lem.symbols[i]->name[0]); i++); |
- lem.nterminal = i; |
- |
- /* Generate a reprint of the grammar, if requested on the command line */ |
- if( rpflag ){ |
- Reprint(&lem); |
- }else{ |
- /* Initialize the size for all follow and first sets */ |
- SetSize(lem.nterminal+1); |
- |
- /* Find the precedence for every production rule (that has one) */ |
- FindRulePrecedences(&lem); |
- |
- /* Compute the lambda-nonterminals and the first-sets for every |
- ** nonterminal */ |
- FindFirstSets(&lem); |
- |
- /* Compute all LR(0) states. Also record follow-set propagation |
- ** links so that the follow-set can be computed later */ |
- lem.nstate = 0; |
- FindStates(&lem); |
- lem.sorted = State_arrayof(); |
- |
- /* Tie up loose ends on the propagation links */ |
- FindLinks(&lem); |
- |
- /* Compute the follow set of every reducible configuration */ |
- FindFollowSets(&lem); |
- |
- /* Compute the action tables */ |
- FindActions(&lem); |
- |
- /* Compress the action tables */ |
- if( compress==0 ) CompressTables(&lem); |
- |
- /* Reorder and renumber the states so that states with fewer choices |
- ** occur at the end. This is an optimization that helps make the |
- ** generated parser tables smaller. */ |
- if( noResort==0 ) ResortStates(&lem); |
- |
- /* Generate a report of the parser generated. (the "y.output" file) */ |
- if( !quiet ) ReportOutput(&lem); |
- |
- /* Generate the source code for the parser */ |
- ReportTable(&lem, mhflag); |
- |
- /* Produce a header file for use by the scanner. (This step is |
- ** omitted if the "-m" option is used because makeheaders will |
- ** generate the file for us.) */ |
- if( !mhflag ) ReportHeader(&lem); |
- } |
- if( statistics ){ |
- printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n", |
- lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule); |
- printf(" %d states, %d parser table entries, %d conflicts\n", |
- lem.nstate, lem.tablesize, lem.nconflict); |
- } |
- if( lem.nconflict > 0 ){ |
- fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); |
- } |
- |
- /* return 0 on success, 1 on failure. */ |
- exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; |
- exit(exitcode); |
- return (exitcode); |
-} |
-/******************** From the file "msort.c" *******************************/ |
-/* |
-** A generic merge-sort program. |
-** |
-** USAGE: |
-** Let "ptr" be a pointer to some structure which is at the head of |
-** a null-terminated list. Then to sort the list call: |
-** |
-** ptr = msort(ptr,&(ptr->next),cmpfnc); |
-** |
-** In the above, "cmpfnc" is a pointer to a function which compares |
-** two instances of the structure and returns an integer, as in |
-** strcmp. The second argument is a pointer to the pointer to the |
-** second element of the linked list. This address is used to compute |
-** the offset to the "next" field within the structure. The offset to |
-** the "next" field must be constant for all structures in the list. |
-** |
-** The function returns a new pointer which is the head of the list |
-** after sorting. |
-** |
-** ALGORITHM: |
-** Merge-sort. |
-*/ |
- |
-/* |
-** Return a pointer to the next structure in the linked list. |
-*/ |
-#define NEXT(A) (*(char**)(((char*)A)+offset)) |
- |
-/* |
-** Inputs: |
-** a: A sorted, null-terminated linked list. (May be null). |
-** b: A sorted, null-terminated linked list. (May be null). |
-** cmp: A pointer to the comparison function. |
-** offset: Offset in the structure to the "next" field. |
-** |
-** Return Value: |
-** A pointer to the head of a sorted list containing the elements |
-** of both a and b. |
-** |
-** Side effects: |
-** The "next" pointers for elements in the lists a and b are |
-** changed. |
-*/ |
-static char *merge( |
- char *a, |
- char *b, |
- int (*cmp)(const char*,const char*), |
- int offset |
-){ |
- char *ptr, *head; |
- |
- if( a==0 ){ |
- head = b; |
- }else if( b==0 ){ |
- head = a; |
- }else{ |
- if( (*cmp)(a,b)<=0 ){ |
- ptr = a; |
- a = NEXT(a); |
- }else{ |
- ptr = b; |
- b = NEXT(b); |
- } |
- head = ptr; |
- while( a && b ){ |
- if( (*cmp)(a,b)<=0 ){ |
- NEXT(ptr) = a; |
- ptr = a; |
- a = NEXT(a); |
- }else{ |
- NEXT(ptr) = b; |
- ptr = b; |
- b = NEXT(b); |
- } |
- } |
- if( a ) NEXT(ptr) = a; |
- else NEXT(ptr) = b; |
- } |
- return head; |
-} |
- |
-/* |
-** Inputs: |
-** list: Pointer to a singly-linked list of structures. |
-** next: Pointer to pointer to the second element of the list. |
-** cmp: A comparison function. |
-** |
-** Return Value: |
-** A pointer to the head of a sorted list containing the elements |
-** orginally in list. |
-** |
-** Side effects: |
-** The "next" pointers for elements in list are changed. |
-*/ |
-#define LISTSIZE 30 |
-static char *msort( |
- char *list, |
- char **next, |
- int (*cmp)(const char*,const char*) |
-){ |
- unsigned long offset; |
- char *ep; |
- char *set[LISTSIZE]; |
- int i; |
- offset = (unsigned long)next - (unsigned long)list; |
- for(i=0; i<LISTSIZE; i++) set[i] = 0; |
- while( list ){ |
- ep = list; |
- list = NEXT(list); |
- NEXT(ep) = 0; |
- for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ |
- ep = merge(ep,set[i],cmp,offset); |
- set[i] = 0; |
- } |
- set[i] = ep; |
- } |
- ep = 0; |
- for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); |
- return ep; |
-} |
-/************************ From the file "option.c" **************************/ |
-static char **argv; |
-static struct s_options *op; |
-static FILE *errstream; |
- |
-#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) |
- |
-/* |
-** Print the command line with a carrot pointing to the k-th character |
-** of the n-th field. |
-*/ |
-static void errline(int n, int k, FILE *err) |
-{ |
- int spcnt, i; |
- if( argv[0] ) fprintf(err,"%s",argv[0]); |
- spcnt = lemonStrlen(argv[0]) + 1; |
- for(i=1; i<n && argv[i]; i++){ |
- fprintf(err," %s",argv[i]); |
- spcnt += lemonStrlen(argv[i])+1; |
- } |
- spcnt += k; |
- for(; argv[i]; i++) fprintf(err," %s",argv[i]); |
- if( spcnt<20 ){ |
- fprintf(err,"\n%*s^-- here\n",spcnt,""); |
- }else{ |
- fprintf(err,"\n%*shere --^\n",spcnt-7,""); |
- } |
-} |
- |
-/* |
-** Return the index of the N-th non-switch argument. Return -1 |
-** if N is out of range. |
-*/ |
-static int argindex(int n) |
-{ |
- int i; |
- int dashdash = 0; |
- if( argv!=0 && *argv!=0 ){ |
- for(i=1; argv[i]; i++){ |
- if( dashdash || !ISOPT(argv[i]) ){ |
- if( n==0 ) return i; |
- n--; |
- } |
- if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
- } |
- } |
- return -1; |
-} |
- |
-static char emsg[] = "Command line syntax error: "; |
- |
-/* |
-** Process a flag command line argument. |
-*/ |
-static int handleflags(int i, FILE *err) |
-{ |
- int v; |
- int errcnt = 0; |
- int j; |
- for(j=0; op[j].label; j++){ |
- if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break; |
- } |
- v = argv[i][0]=='-' ? 1 : 0; |
- if( op[j].label==0 ){ |
- if( err ){ |
- fprintf(err,"%sundefined option.\n",emsg); |
- errline(i,1,err); |
- } |
- errcnt++; |
- }else if( op[j].type==OPT_FLAG ){ |
- *((int*)op[j].arg) = v; |
- }else if( op[j].type==OPT_FFLAG ){ |
- (*(void(*)(int))(op[j].arg))(v); |
- }else if( op[j].type==OPT_FSTR ){ |
- (*(void(*)(char *))(op[j].arg))(&argv[i][2]); |
- }else{ |
- if( err ){ |
- fprintf(err,"%smissing argument on switch.\n",emsg); |
- errline(i,1,err); |
- } |
- errcnt++; |
- } |
- return errcnt; |
-} |
- |
-/* |
-** Process a command line switch which has an argument. |
-*/ |
-static int handleswitch(int i, FILE *err) |
-{ |
- int lv = 0; |
- double dv = 0.0; |
- char *sv = 0, *end; |
- char *cp; |
- int j; |
- int errcnt = 0; |
- cp = strchr(argv[i],'='); |
- assert( cp!=0 ); |
- *cp = 0; |
- for(j=0; op[j].label; j++){ |
- if( strcmp(argv[i],op[j].label)==0 ) break; |
- } |
- *cp = '='; |
- if( op[j].label==0 ){ |
- if( err ){ |
- fprintf(err,"%sundefined option.\n",emsg); |
- errline(i,0,err); |
- } |
- errcnt++; |
- }else{ |
- cp++; |
- switch( op[j].type ){ |
- case OPT_FLAG: |
- case OPT_FFLAG: |
- if( err ){ |
- fprintf(err,"%soption requires an argument.\n",emsg); |
- errline(i,0,err); |
- } |
- errcnt++; |
- break; |
- case OPT_DBL: |
- case OPT_FDBL: |
- dv = strtod(cp,&end); |
- if( *end ){ |
- if( err ){ |
- fprintf(err,"%sillegal character in floating-point argument.\n",emsg); |
- errline(i,((unsigned long)end)-(unsigned long)argv[i],err); |
- } |
- errcnt++; |
- } |
- break; |
- case OPT_INT: |
- case OPT_FINT: |
- lv = strtol(cp,&end,0); |
- if( *end ){ |
- if( err ){ |
- fprintf(err,"%sillegal character in integer argument.\n",emsg); |
- errline(i,((unsigned long)end)-(unsigned long)argv[i],err); |
- } |
- errcnt++; |
- } |
- break; |
- case OPT_STR: |
- case OPT_FSTR: |
- sv = cp; |
- break; |
- } |
- switch( op[j].type ){ |
- case OPT_FLAG: |
- case OPT_FFLAG: |
- break; |
- case OPT_DBL: |
- *(double*)(op[j].arg) = dv; |
- break; |
- case OPT_FDBL: |
- (*(void(*)(double))(op[j].arg))(dv); |
- break; |
- case OPT_INT: |
- *(int*)(op[j].arg) = lv; |
- break; |
- case OPT_FINT: |
- (*(void(*)(int))(op[j].arg))((int)lv); |
- break; |
- case OPT_STR: |
- *(char**)(op[j].arg) = sv; |
- break; |
- case OPT_FSTR: |
- (*(void(*)(char *))(op[j].arg))(sv); |
- break; |
- } |
- } |
- return errcnt; |
-} |
- |
-int OptInit(char **a, struct s_options *o, FILE *err) |
-{ |
- int errcnt = 0; |
- argv = a; |
- op = o; |
- errstream = err; |
- if( argv && *argv && op ){ |
- int i; |
- for(i=1; argv[i]; i++){ |
- if( argv[i][0]=='+' || argv[i][0]=='-' ){ |
- errcnt += handleflags(i,err); |
- }else if( strchr(argv[i],'=') ){ |
- errcnt += handleswitch(i,err); |
- } |
- } |
- } |
- if( errcnt>0 ){ |
- fprintf(err,"Valid command line options for \"%s\" are:\n",*a); |
- OptPrint(); |
- exit(1); |
- } |
- return 0; |
-} |
- |
-int OptNArgs(){ |
- int cnt = 0; |
- int dashdash = 0; |
- int i; |
- if( argv!=0 && argv[0]!=0 ){ |
- for(i=1; argv[i]; i++){ |
- if( dashdash || !ISOPT(argv[i]) ) cnt++; |
- if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
- } |
- } |
- return cnt; |
-} |
- |
-char *OptArg(int n) |
-{ |
- int i; |
- i = argindex(n); |
- return i>=0 ? argv[i] : 0; |
-} |
- |
-void OptErr(int n) |
-{ |
- int i; |
- i = argindex(n); |
- if( i>=0 ) errline(i,0,errstream); |
-} |
- |
-void OptPrint(){ |
- int i; |
- int max, len; |
- max = 0; |
- for(i=0; op[i].label; i++){ |
- len = lemonStrlen(op[i].label) + 1; |
- switch( op[i].type ){ |
- case OPT_FLAG: |
- case OPT_FFLAG: |
- break; |
- case OPT_INT: |
- case OPT_FINT: |
- len += 9; /* length of "<integer>" */ |
- break; |
- case OPT_DBL: |
- case OPT_FDBL: |
- len += 6; /* length of "<real>" */ |
- break; |
- case OPT_STR: |
- case OPT_FSTR: |
- len += 8; /* length of "<string>" */ |
- break; |
- } |
- if( len>max ) max = len; |
- } |
- for(i=0; op[i].label; i++){ |
- switch( op[i].type ){ |
- case OPT_FLAG: |
- case OPT_FFLAG: |
- fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); |
- break; |
- case OPT_INT: |
- case OPT_FINT: |
- fprintf(errstream," %s=<integer>%*s %s\n",op[i].label, |
- (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message); |
- break; |
- case OPT_DBL: |
- case OPT_FDBL: |
- fprintf(errstream," %s=<real>%*s %s\n",op[i].label, |
- (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message); |
- break; |
- case OPT_STR: |
- case OPT_FSTR: |
- fprintf(errstream," %s=<string>%*s %s\n",op[i].label, |
- (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message); |
- break; |
- } |
- } |
-} |
-/*********************** From the file "parse.c" ****************************/ |
-/* |
-** Input file parser for the LEMON parser generator. |
-*/ |
- |
-/* The state of the parser */ |
-enum e_state { |
- INITIALIZE, |
- WAITING_FOR_DECL_OR_RULE, |
- WAITING_FOR_DECL_KEYWORD, |
- WAITING_FOR_DECL_ARG, |
- WAITING_FOR_PRECEDENCE_SYMBOL, |
- WAITING_FOR_ARROW, |
- IN_RHS, |
- LHS_ALIAS_1, |
- LHS_ALIAS_2, |
- LHS_ALIAS_3, |
- RHS_ALIAS_1, |
- RHS_ALIAS_2, |
- PRECEDENCE_MARK_1, |
- PRECEDENCE_MARK_2, |
- RESYNC_AFTER_RULE_ERROR, |
- RESYNC_AFTER_DECL_ERROR, |
- WAITING_FOR_DESTRUCTOR_SYMBOL, |
- WAITING_FOR_DATATYPE_SYMBOL, |
- WAITING_FOR_FALLBACK_ID, |
- WAITING_FOR_WILDCARD_ID, |
- WAITING_FOR_CLASS_ID, |
- WAITING_FOR_CLASS_TOKEN |
-}; |
-struct pstate { |
- char *filename; /* Name of the input file */ |
- int tokenlineno; /* Linenumber at which current token starts */ |
- int errorcnt; /* Number of errors so far */ |
- char *tokenstart; /* Text of current token */ |
- struct lemon *gp; /* Global state vector */ |
- enum e_state state; /* The state of the parser */ |
- struct symbol *fallback; /* The fallback token */ |
- struct symbol *tkclass; /* Token class symbol */ |
- struct symbol *lhs; /* Left-hand side of current rule */ |
- const char *lhsalias; /* Alias for the LHS */ |
- int nrhs; /* Number of right-hand side symbols seen */ |
- struct symbol *rhs[MAXRHS]; /* RHS symbols */ |
- const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ |
- struct rule *prevrule; /* Previous rule parsed */ |
- const char *declkeyword; /* Keyword of a declaration */ |
- char **declargslot; /* Where the declaration argument should be put */ |
- int insertLineMacro; /* Add #line before declaration insert */ |
- int *decllinenoslot; /* Where to write declaration line number */ |
- enum e_assoc declassoc; /* Assign this association to decl arguments */ |
- int preccounter; /* Assign this precedence to decl arguments */ |
- struct rule *firstrule; /* Pointer to first rule in the grammar */ |
- struct rule *lastrule; /* Pointer to the most recently parsed rule */ |
-}; |
- |
-/* Parse a single token */ |
-static void parseonetoken(struct pstate *psp) |
-{ |
- const char *x; |
- x = Strsafe(psp->tokenstart); /* Save the token permanently */ |
-#if 0 |
- printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, |
- x,psp->state); |
-#endif |
- switch( psp->state ){ |
- case INITIALIZE: |
- psp->prevrule = 0; |
- psp->preccounter = 0; |
- psp->firstrule = psp->lastrule = 0; |
- psp->gp->nrule = 0; |
- /* Fall thru to next case */ |
- case WAITING_FOR_DECL_OR_RULE: |
- if( x[0]=='%' ){ |
- psp->state = WAITING_FOR_DECL_KEYWORD; |
- }else if( islower(x[0]) ){ |
- psp->lhs = Symbol_new(x); |
- psp->nrhs = 0; |
- psp->lhsalias = 0; |
- psp->state = WAITING_FOR_ARROW; |
- }else if( x[0]=='{' ){ |
- if( psp->prevrule==0 ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
-"There is no prior rule upon which to attach the code \ |
-fragment which begins on this line."); |
- psp->errorcnt++; |
- }else if( psp->prevrule->code!=0 ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
-"Code fragment beginning on this line is not the first \ |
-to follow the previous rule."); |
- psp->errorcnt++; |
- }else{ |
- psp->prevrule->line = psp->tokenlineno; |
- psp->prevrule->code = &x[1]; |
- } |
- }else if( x[0]=='[' ){ |
- psp->state = PRECEDENCE_MARK_1; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Token \"%s\" should be either \"%%\" or a nonterminal name.", |
- x); |
- psp->errorcnt++; |
- } |
- break; |
- case PRECEDENCE_MARK_1: |
- if( !isupper(x[0]) ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "The precedence symbol must be a terminal."); |
- psp->errorcnt++; |
- }else if( psp->prevrule==0 ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "There is no prior rule to assign precedence \"[%s]\".",x); |
- psp->errorcnt++; |
- }else if( psp->prevrule->precsym!=0 ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
-"Precedence mark on this line is not the first \ |
-to follow the previous rule."); |
- psp->errorcnt++; |
- }else{ |
- psp->prevrule->precsym = Symbol_new(x); |
- } |
- psp->state = PRECEDENCE_MARK_2; |
- break; |
- case PRECEDENCE_MARK_2: |
- if( x[0]!=']' ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Missing \"]\" on precedence mark."); |
- psp->errorcnt++; |
- } |
- psp->state = WAITING_FOR_DECL_OR_RULE; |
- break; |
- case WAITING_FOR_ARROW: |
- if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
- psp->state = IN_RHS; |
- }else if( x[0]=='(' ){ |
- psp->state = LHS_ALIAS_1; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Expected to see a \":\" following the LHS symbol \"%s\".", |
- psp->lhs->name); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_RULE_ERROR; |
- } |
- break; |
- case LHS_ALIAS_1: |
- if( isalpha(x[0]) ){ |
- psp->lhsalias = x; |
- psp->state = LHS_ALIAS_2; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "\"%s\" is not a valid alias for the LHS \"%s\"\n", |
- x,psp->lhs->name); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_RULE_ERROR; |
- } |
- break; |
- case LHS_ALIAS_2: |
- if( x[0]==')' ){ |
- psp->state = LHS_ALIAS_3; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_RULE_ERROR; |
- } |
- break; |
- case LHS_ALIAS_3: |
- if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
- psp->state = IN_RHS; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Missing \"->\" following: \"%s(%s)\".", |
- psp->lhs->name,psp->lhsalias); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_RULE_ERROR; |
- } |
- break; |
- case IN_RHS: |
- if( x[0]=='.' ){ |
- struct rule *rp; |
- rp = (struct rule *)calloc( sizeof(struct rule) + |
- sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); |
- if( rp==0 ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Can't allocate enough memory for this rule."); |
- psp->errorcnt++; |
- psp->prevrule = 0; |
- }else{ |
- int i; |
- rp->ruleline = psp->tokenlineno; |
- rp->rhs = (struct symbol**)&rp[1]; |
- rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); |
- for(i=0; i<psp->nrhs; i++){ |
- rp->rhs[i] = psp->rhs[i]; |
- rp->rhsalias[i] = psp->alias[i]; |
- } |
- rp->lhs = psp->lhs; |
- rp->lhsalias = psp->lhsalias; |
- rp->nrhs = psp->nrhs; |
- rp->code = 0; |
- rp->precsym = 0; |
- rp->index = psp->gp->nrule++; |
- rp->nextlhs = rp->lhs->rule; |
- rp->lhs->rule = rp; |
- rp->next = 0; |
- if( psp->firstrule==0 ){ |
- psp->firstrule = psp->lastrule = rp; |
- }else{ |
- psp->lastrule->next = rp; |
- psp->lastrule = rp; |
- } |
- psp->prevrule = rp; |
- } |
- psp->state = WAITING_FOR_DECL_OR_RULE; |
- }else if( isalpha(x[0]) ){ |
- if( psp->nrhs>=MAXRHS ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Too many symbols on RHS of rule beginning at \"%s\".", |
- x); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_RULE_ERROR; |
- }else{ |
- psp->rhs[psp->nrhs] = Symbol_new(x); |
- psp->alias[psp->nrhs] = 0; |
- psp->nrhs++; |
- } |
- }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ |
- struct symbol *msp = psp->rhs[psp->nrhs-1]; |
- if( msp->type!=MULTITERMINAL ){ |
- struct symbol *origsp = msp; |
- msp = (struct symbol *) calloc(1,sizeof(*msp)); |
- memset(msp, 0, sizeof(*msp)); |
- msp->type = MULTITERMINAL; |
- msp->nsubsym = 1; |
- msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); |
- msp->subsym[0] = origsp; |
- msp->name = origsp->name; |
- psp->rhs[psp->nrhs-1] = msp; |
- } |
- msp->nsubsym++; |
- msp->subsym = (struct symbol **) realloc(msp->subsym, |
- sizeof(struct symbol*)*msp->nsubsym); |
- msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); |
- if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Cannot form a compound containing a non-terminal"); |
- psp->errorcnt++; |
- } |
- }else if( x[0]=='(' && psp->nrhs>0 ){ |
- psp->state = RHS_ALIAS_1; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Illegal character on RHS of rule: \"%s\".",x); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_RULE_ERROR; |
- } |
- break; |
- case RHS_ALIAS_1: |
- if( isalpha(x[0]) ){ |
- psp->alias[psp->nrhs-1] = x; |
- psp->state = RHS_ALIAS_2; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", |
- x,psp->rhs[psp->nrhs-1]->name); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_RULE_ERROR; |
- } |
- break; |
- case RHS_ALIAS_2: |
- if( x[0]==')' ){ |
- psp->state = IN_RHS; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_RULE_ERROR; |
- } |
- break; |
- case WAITING_FOR_DECL_KEYWORD: |
- if( isalpha(x[0]) ){ |
- psp->declkeyword = x; |
- psp->declargslot = 0; |
- psp->decllinenoslot = 0; |
- psp->insertLineMacro = 1; |
- psp->state = WAITING_FOR_DECL_ARG; |
- if( strcmp(x,"name")==0 ){ |
- psp->declargslot = &(psp->gp->name); |
- psp->insertLineMacro = 0; |
- }else if( strcmp(x,"include")==0 ){ |
- psp->declargslot = &(psp->gp->include); |
- }else if( strcmp(x,"code")==0 ){ |
- psp->declargslot = &(psp->gp->extracode); |
- }else if( strcmp(x,"token_destructor")==0 ){ |
- psp->declargslot = &psp->gp->tokendest; |
- }else if( strcmp(x,"default_destructor")==0 ){ |
- psp->declargslot = &psp->gp->vardest; |
- }else if( strcmp(x,"token_prefix")==0 ){ |
- psp->declargslot = &psp->gp->tokenprefix; |
- psp->insertLineMacro = 0; |
- }else if( strcmp(x,"syntax_error")==0 ){ |
- psp->declargslot = &(psp->gp->error); |
- }else if( strcmp(x,"parse_accept")==0 ){ |
- psp->declargslot = &(psp->gp->accept); |
- }else if( strcmp(x,"parse_failure")==0 ){ |
- psp->declargslot = &(psp->gp->failure); |
- }else if( strcmp(x,"stack_overflow")==0 ){ |
- psp->declargslot = &(psp->gp->overflow); |
- }else if( strcmp(x,"extra_argument")==0 ){ |
- psp->declargslot = &(psp->gp->arg); |
- psp->insertLineMacro = 0; |
- }else if( strcmp(x,"token_type")==0 ){ |
- psp->declargslot = &(psp->gp->tokentype); |
- psp->insertLineMacro = 0; |
- }else if( strcmp(x,"default_type")==0 ){ |
- psp->declargslot = &(psp->gp->vartype); |
- psp->insertLineMacro = 0; |
- }else if( strcmp(x,"stack_size")==0 ){ |
- psp->declargslot = &(psp->gp->stacksize); |
- psp->insertLineMacro = 0; |
- }else if( strcmp(x,"start_symbol")==0 ){ |
- psp->declargslot = &(psp->gp->start); |
- psp->insertLineMacro = 0; |
- }else if( strcmp(x,"left")==0 ){ |
- psp->preccounter++; |
- psp->declassoc = LEFT; |
- psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
- }else if( strcmp(x,"right")==0 ){ |
- psp->preccounter++; |
- psp->declassoc = RIGHT; |
- psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
- }else if( strcmp(x,"nonassoc")==0 ){ |
- psp->preccounter++; |
- psp->declassoc = NONE; |
- psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
- }else if( strcmp(x,"destructor")==0 ){ |
- psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; |
- }else if( strcmp(x,"type")==0 ){ |
- psp->state = WAITING_FOR_DATATYPE_SYMBOL; |
- }else if( strcmp(x,"fallback")==0 ){ |
- psp->fallback = 0; |
- psp->state = WAITING_FOR_FALLBACK_ID; |
- }else if( strcmp(x,"wildcard")==0 ){ |
- psp->state = WAITING_FOR_WILDCARD_ID; |
- }else if( strcmp(x,"token_class")==0 ){ |
- psp->state = WAITING_FOR_CLASS_ID; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Unknown declaration keyword: \"%%%s\".",x); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_DECL_ERROR; |
- } |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Illegal declaration keyword: \"%s\".",x); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_DECL_ERROR; |
- } |
- break; |
- case WAITING_FOR_DESTRUCTOR_SYMBOL: |
- if( !isalpha(x[0]) ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Symbol name missing after %%destructor keyword"); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_DECL_ERROR; |
- }else{ |
- struct symbol *sp = Symbol_new(x); |
- psp->declargslot = &sp->destructor; |
- psp->decllinenoslot = &sp->destLineno; |
- psp->insertLineMacro = 1; |
- psp->state = WAITING_FOR_DECL_ARG; |
- } |
- break; |
- case WAITING_FOR_DATATYPE_SYMBOL: |
- if( !isalpha(x[0]) ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Symbol name missing after %%type keyword"); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_DECL_ERROR; |
- }else{ |
- struct symbol *sp = Symbol_find(x); |
- if((sp) && (sp->datatype)){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Symbol %%type \"%s\" already defined", x); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_DECL_ERROR; |
- }else{ |
- if (!sp){ |
- sp = Symbol_new(x); |
- } |
- psp->declargslot = &sp->datatype; |
- psp->insertLineMacro = 0; |
- psp->state = WAITING_FOR_DECL_ARG; |
- } |
- } |
- break; |
- case WAITING_FOR_PRECEDENCE_SYMBOL: |
- if( x[0]=='.' ){ |
- psp->state = WAITING_FOR_DECL_OR_RULE; |
- }else if( isupper(x[0]) ){ |
- struct symbol *sp; |
- sp = Symbol_new(x); |
- if( sp->prec>=0 ){ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Symbol \"%s\" has already be given a precedence.",x); |
- psp->errorcnt++; |
- }else{ |
- sp->prec = psp->preccounter; |
- sp->assoc = psp->declassoc; |
- } |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Can't assign a precedence to \"%s\".",x); |
- psp->errorcnt++; |
- } |
- break; |
- case WAITING_FOR_DECL_ARG: |
- if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){ |
- const char *zOld, *zNew; |
- char *zBuf, *z; |
- int nOld, n, nLine, nNew, nBack; |
- int addLineMacro; |
- char zLine[50]; |
- zNew = x; |
- if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; |
- nNew = lemonStrlen(zNew); |
- if( *psp->declargslot ){ |
- zOld = *psp->declargslot; |
- }else{ |
- zOld = ""; |
- } |
- nOld = lemonStrlen(zOld); |
- n = nOld + nNew + 20; |
- addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && |
- (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); |
- if( addLineMacro ){ |
- for(z=psp->filename, nBack=0; *z; z++){ |
- if( *z=='\\' ) nBack++; |
- } |
- lemon_sprintf(zLine, "#line %d ", psp->tokenlineno); |
- nLine = lemonStrlen(zLine); |
- n += nLine + lemonStrlen(psp->filename) + nBack; |
- } |
- *psp->declargslot = (char *) realloc(*psp->declargslot, n); |
- zBuf = *psp->declargslot + nOld; |
- if( addLineMacro ){ |
- if( nOld && zBuf[-1]!='\n' ){ |
- *(zBuf++) = '\n'; |
- } |
- memcpy(zBuf, zLine, nLine); |
- zBuf += nLine; |
- *(zBuf++) = '"'; |
- for(z=psp->filename; *z; z++){ |
- if( *z=='\\' ){ |
- *(zBuf++) = '\\'; |
- } |
- *(zBuf++) = *z; |
- } |
- *(zBuf++) = '"'; |
- *(zBuf++) = '\n'; |
- } |
- if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ |
- psp->decllinenoslot[0] = psp->tokenlineno; |
- } |
- memcpy(zBuf, zNew, nNew); |
- zBuf += nNew; |
- *zBuf = 0; |
- psp->state = WAITING_FOR_DECL_OR_RULE; |
- }else{ |
- ErrorMsg(psp->filename,psp->tokenlineno, |
- "Illegal argument to %%%s: %s",psp->declkeyword,x); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_DECL_ERROR; |
- } |
- break; |
- case WAITING_FOR_FALLBACK_ID: |
- if( x[0]=='.' ){ |
- psp->state = WAITING_FOR_DECL_OR_RULE; |
- }else if( !isupper(x[0]) ){ |
- ErrorMsg(psp->filename, psp->tokenlineno, |
- "%%fallback argument \"%s\" should be a token", x); |
- psp->errorcnt++; |
- }else{ |
- struct symbol *sp = Symbol_new(x); |
- if( psp->fallback==0 ){ |
- psp->fallback = sp; |
- }else if( sp->fallback ){ |
- ErrorMsg(psp->filename, psp->tokenlineno, |
- "More than one fallback assigned to token %s", x); |
- psp->errorcnt++; |
- }else{ |
- sp->fallback = psp->fallback; |
- psp->gp->has_fallback = 1; |
- } |
- } |
- break; |
- case WAITING_FOR_WILDCARD_ID: |
- if( x[0]=='.' ){ |
- psp->state = WAITING_FOR_DECL_OR_RULE; |
- }else if( !isupper(x[0]) ){ |
- ErrorMsg(psp->filename, psp->tokenlineno, |
- "%%wildcard argument \"%s\" should be a token", x); |
- psp->errorcnt++; |
- }else{ |
- struct symbol *sp = Symbol_new(x); |
- if( psp->gp->wildcard==0 ){ |
- psp->gp->wildcard = sp; |
- }else{ |
- ErrorMsg(psp->filename, psp->tokenlineno, |
- "Extra wildcard to token: %s", x); |
- psp->errorcnt++; |
- } |
- } |
- break; |
- case WAITING_FOR_CLASS_ID: |
- if( !islower(x[0]) ){ |
- ErrorMsg(psp->filename, psp->tokenlineno, |
- "%%token_class must be followed by an identifier: ", x); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_DECL_ERROR; |
- }else if( Symbol_find(x) ){ |
- ErrorMsg(psp->filename, psp->tokenlineno, |
- "Symbol \"%s\" already used", x); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_DECL_ERROR; |
- }else{ |
- psp->tkclass = Symbol_new(x); |
- psp->tkclass->type = MULTITERMINAL; |
- psp->state = WAITING_FOR_CLASS_TOKEN; |
- } |
- break; |
- case WAITING_FOR_CLASS_TOKEN: |
- if( x[0]=='.' ){ |
- psp->state = WAITING_FOR_DECL_OR_RULE; |
- }else if( isupper(x[0]) || ((x[0]=='|' || x[0]=='/') && isupper(x[1])) ){ |
- struct symbol *msp = psp->tkclass; |
- msp->nsubsym++; |
- msp->subsym = (struct symbol **) realloc(msp->subsym, |
- sizeof(struct symbol*)*msp->nsubsym); |
- if( !isupper(x[0]) ) x++; |
- msp->subsym[msp->nsubsym-1] = Symbol_new(x); |
- }else{ |
- ErrorMsg(psp->filename, psp->tokenlineno, |
- "%%token_class argument \"%s\" should be a token", x); |
- psp->errorcnt++; |
- psp->state = RESYNC_AFTER_DECL_ERROR; |
- } |
- break; |
- case RESYNC_AFTER_RULE_ERROR: |
-/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
-** break; */ |
- case RESYNC_AFTER_DECL_ERROR: |
- if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
- if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; |
- break; |
- } |
-} |
- |
-/* Run the preprocessor over the input file text. The global variables |
-** azDefine[0] through azDefine[nDefine-1] contains the names of all defined |
-** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and |
-** comments them out. Text in between is also commented out as appropriate. |
-*/ |
-static void preprocess_input(char *z){ |
- int i, j, k, n; |
- int exclude = 0; |
- int start = 0; |
- int lineno = 1; |
- int start_lineno = 1; |
- for(i=0; z[i]; i++){ |
- if( z[i]=='\n' ) lineno++; |
- if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; |
- if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){ |
- if( exclude ){ |
- exclude--; |
- if( exclude==0 ){ |
- for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; |
- } |
- } |
- for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
- }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6])) |
- || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){ |
- if( exclude ){ |
- exclude++; |
- }else{ |
- for(j=i+7; isspace(z[j]); j++){} |
- for(n=0; z[j+n] && !isspace(z[j+n]); n++){} |
- exclude = 1; |
- for(k=0; k<nDefine; k++){ |
- if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){ |
- exclude = 0; |
- break; |
- } |
- } |
- if( z[i+3]=='n' ) exclude = !exclude; |
- if( exclude ){ |
- start = i; |
- start_lineno = lineno; |
- } |
- } |
- for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
- } |
- } |
- if( exclude ){ |
- fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno); |
- exit(1); |
- } |
-} |
- |
-/* In spite of its name, this function is really a scanner. It read |
-** in the entire input file (all at once) then tokenizes it. Each |
-** token is passed to the function "parseonetoken" which builds all |
-** the appropriate data structures in the global state vector "gp". |
-*/ |
-void Parse(struct lemon *gp) |
-{ |
- struct pstate ps; |
- FILE *fp; |
- char *filebuf; |
- int filesize; |
- int lineno; |
- int c; |
- char *cp, *nextcp; |
- int startline = 0; |
- |
- memset(&ps, '\0', sizeof(ps)); |
- ps.gp = gp; |
- ps.filename = gp->filename; |
- ps.errorcnt = 0; |
- ps.state = INITIALIZE; |
- |
- /* Begin by reading the input file */ |
- fp = fopen(ps.filename,"rb"); |
- if( fp==0 ){ |
- ErrorMsg(ps.filename,0,"Can't open this file for reading."); |
- gp->errorcnt++; |
- return; |
- } |
- fseek(fp,0,2); |
- filesize = ftell(fp); |
- rewind(fp); |
- filebuf = (char *)malloc( filesize+1 ); |
- if( filesize>100000000 || filebuf==0 ){ |
- ErrorMsg(ps.filename,0,"Input file too large."); |
- gp->errorcnt++; |
- fclose(fp); |
- return; |
- } |
- if( fread(filebuf,1,filesize,fp)!=filesize ){ |
- ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", |
- filesize); |
- free(filebuf); |
- gp->errorcnt++; |
- fclose(fp); |
- return; |
- } |
- fclose(fp); |
- filebuf[filesize] = 0; |
- |
- /* Make an initial pass through the file to handle %ifdef and %ifndef */ |
- preprocess_input(filebuf); |
- |
- /* Now scan the text of the input file */ |
- lineno = 1; |
- for(cp=filebuf; (c= *cp)!=0; ){ |
- if( c=='\n' ) lineno++; /* Keep track of the line number */ |
- if( isspace(c) ){ cp++; continue; } /* Skip all white space */ |
- if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ |
- cp+=2; |
- while( (c= *cp)!=0 && c!='\n' ) cp++; |
- continue; |
- } |
- if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ |
- cp+=2; |
- while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ |
- if( c=='\n' ) lineno++; |
- cp++; |
- } |
- if( c ) cp++; |
- continue; |
- } |
- ps.tokenstart = cp; /* Mark the beginning of the token */ |
- ps.tokenlineno = lineno; /* Linenumber on which token begins */ |
- if( c=='\"' ){ /* String literals */ |
- cp++; |
- while( (c= *cp)!=0 && c!='\"' ){ |
- if( c=='\n' ) lineno++; |
- cp++; |
- } |
- if( c==0 ){ |
- ErrorMsg(ps.filename,startline, |
-"String starting on this line is not terminated before the end of the file."); |
- ps.errorcnt++; |
- nextcp = cp; |
- }else{ |
- nextcp = cp+1; |
- } |
- }else if( c=='{' ){ /* A block of C code */ |
- int level; |
- cp++; |
- for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ |
- if( c=='\n' ) lineno++; |
- else if( c=='{' ) level++; |
- else if( c=='}' ) level--; |
- else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ |
- int prevc; |
- cp = &cp[2]; |
- prevc = 0; |
- while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ |
- if( c=='\n' ) lineno++; |
- prevc = c; |
- cp++; |
- } |
- }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ |
- cp = &cp[2]; |
- while( (c= *cp)!=0 && c!='\n' ) cp++; |
- if( c ) lineno++; |
- }else if( c=='\'' || c=='\"' ){ /* String a character literals */ |
- int startchar, prevc; |
- startchar = c; |
- prevc = 0; |
- for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ |
- if( c=='\n' ) lineno++; |
- if( prevc=='\\' ) prevc = 0; |
- else prevc = c; |
- } |
- } |
- } |
- if( c==0 ){ |
- ErrorMsg(ps.filename,ps.tokenlineno, |
-"C code starting on this line is not terminated before the end of the file."); |
- ps.errorcnt++; |
- nextcp = cp; |
- }else{ |
- nextcp = cp+1; |
- } |
- }else if( isalnum(c) ){ /* Identifiers */ |
- while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++; |
- nextcp = cp; |
- }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ |
- cp += 3; |
- nextcp = cp; |
- }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){ |
- cp += 2; |
- while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++; |
- nextcp = cp; |
- }else{ /* All other (one character) operators */ |
- cp++; |
- nextcp = cp; |
- } |
- c = *cp; |
- *cp = 0; /* Null terminate the token */ |
- parseonetoken(&ps); /* Parse the token */ |
- *cp = c; /* Restore the buffer */ |
- cp = nextcp; |
- } |
- free(filebuf); /* Release the buffer after parsing */ |
- gp->rule = ps.firstrule; |
- gp->errorcnt = ps.errorcnt; |
-} |
-/*************************** From the file "plink.c" *********************/ |
-/* |
-** Routines processing configuration follow-set propagation links |
-** in the LEMON parser generator. |
-*/ |
-static struct plink *plink_freelist = 0; |
- |
-/* Allocate a new plink */ |
-struct plink *Plink_new(){ |
- struct plink *newlink; |
- |
- if( plink_freelist==0 ){ |
- int i; |
- int amt = 100; |
- plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); |
- if( plink_freelist==0 ){ |
- fprintf(stderr, |
- "Unable to allocate memory for a new follow-set propagation link.\n"); |
- exit(1); |
- } |
- for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; |
- plink_freelist[amt-1].next = 0; |
- } |
- newlink = plink_freelist; |
- plink_freelist = plink_freelist->next; |
- return newlink; |
-} |
- |
-/* Add a plink to a plink list */ |
-void Plink_add(struct plink **plpp, struct config *cfp) |
-{ |
- struct plink *newlink; |
- newlink = Plink_new(); |
- newlink->next = *plpp; |
- *plpp = newlink; |
- newlink->cfp = cfp; |
-} |
- |
-/* Transfer every plink on the list "from" to the list "to" */ |
-void Plink_copy(struct plink **to, struct plink *from) |
-{ |
- struct plink *nextpl; |
- while( from ){ |
- nextpl = from->next; |
- from->next = *to; |
- *to = from; |
- from = nextpl; |
- } |
-} |
- |
-/* Delete every plink on the list */ |
-void Plink_delete(struct plink *plp) |
-{ |
- struct plink *nextpl; |
- |
- while( plp ){ |
- nextpl = plp->next; |
- plp->next = plink_freelist; |
- plink_freelist = plp; |
- plp = nextpl; |
- } |
-} |
-/*********************** From the file "report.c" **************************/ |
-/* |
-** Procedures for generating reports and tables in the LEMON parser generator. |
-*/ |
- |
-/* Generate a filename with the given suffix. Space to hold the |
-** name comes from malloc() and must be freed by the calling |
-** function. |
-*/ |
-PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) |
-{ |
- char *name; |
- char *cp; |
- |
- name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); |
- if( name==0 ){ |
- fprintf(stderr,"Can't allocate space for a filename.\n"); |
- exit(1); |
- } |
- lemon_strcpy(name,lemp->filename); |
- cp = strrchr(name,'.'); |
- if( cp ) *cp = 0; |
- lemon_strcat(name,suffix); |
- return name; |
-} |
- |
-/* Open a file with a name based on the name of the input file, |
-** but with a different (specified) suffix, and return a pointer |
-** to the stream */ |
-PRIVATE FILE *file_open( |
- struct lemon *lemp, |
- const char *suffix, |
- const char *mode |
-){ |
- FILE *fp; |
- |
- if( lemp->outname ) free(lemp->outname); |
- lemp->outname = file_makename(lemp, suffix); |
- fp = fopen(lemp->outname,mode); |
- if( fp==0 && *mode=='w' ){ |
- fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); |
- lemp->errorcnt++; |
- return 0; |
- } |
- return fp; |
-} |
- |
-/* Duplicate the input file without comments and without actions |
-** on rules */ |
-void Reprint(struct lemon *lemp) |
-{ |
- struct rule *rp; |
- struct symbol *sp; |
- int i, j, maxlen, len, ncolumns, skip; |
- printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); |
- maxlen = 10; |
- for(i=0; i<lemp->nsymbol; i++){ |
- sp = lemp->symbols[i]; |
- len = lemonStrlen(sp->name); |
- if( len>maxlen ) maxlen = len; |
- } |
- ncolumns = 76/(maxlen+5); |
- if( ncolumns<1 ) ncolumns = 1; |
- skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; |
- for(i=0; i<skip; i++){ |
- printf("//"); |
- for(j=i; j<lemp->nsymbol; j+=skip){ |
- sp = lemp->symbols[j]; |
- assert( sp->index==j ); |
- printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); |
- } |
- printf("\n"); |
- } |
- for(rp=lemp->rule; rp; rp=rp->next){ |
- printf("%s",rp->lhs->name); |
- /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ |
- printf(" ::="); |
- for(i=0; i<rp->nrhs; i++){ |
- sp = rp->rhs[i]; |
- if( sp->type==MULTITERMINAL ){ |
- printf(" %s", sp->subsym[0]->name); |
- for(j=1; j<sp->nsubsym; j++){ |
- printf("|%s", sp->subsym[j]->name); |
- } |
- }else{ |
- printf(" %s", sp->name); |
- } |
- /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ |
- } |
- printf("."); |
- if( rp->precsym ) printf(" [%s]",rp->precsym->name); |
- /* if( rp->code ) printf("\n %s",rp->code); */ |
- printf("\n"); |
- } |
-} |
- |
-void ConfigPrint(FILE *fp, struct config *cfp) |
-{ |
- struct rule *rp; |
- struct symbol *sp; |
- int i, j; |
- rp = cfp->rp; |
- fprintf(fp,"%s ::=",rp->lhs->name); |
- for(i=0; i<=rp->nrhs; i++){ |
- if( i==cfp->dot ) fprintf(fp," *"); |
- if( i==rp->nrhs ) break; |
- sp = rp->rhs[i]; |
- if( sp->type==MULTITERMINAL ){ |
- fprintf(fp," %s", sp->subsym[0]->name); |
- for(j=1; j<sp->nsubsym; j++){ |
- fprintf(fp,"|%s",sp->subsym[j]->name); |
- } |
- }else{ |
- fprintf(fp," %s", sp->name); |
- } |
- } |
-} |
- |
-/* #define TEST */ |
-#if 0 |
-/* Print a set */ |
-PRIVATE void SetPrint(out,set,lemp) |
-FILE *out; |
-char *set; |
-struct lemon *lemp; |
-{ |
- int i; |
- char *spacer; |
- spacer = ""; |
- fprintf(out,"%12s[",""); |
- for(i=0; i<lemp->nterminal; i++){ |
- if( SetFind(set,i) ){ |
- fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); |
- spacer = " "; |
- } |
- } |
- fprintf(out,"]\n"); |
-} |
- |
-/* Print a plink chain */ |
-PRIVATE void PlinkPrint(out,plp,tag) |
-FILE *out; |
-struct plink *plp; |
-char *tag; |
-{ |
- while( plp ){ |
- fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); |
- ConfigPrint(out,plp->cfp); |
- fprintf(out,"\n"); |
- plp = plp->next; |
- } |
-} |
-#endif |
- |
-/* Print an action to the given file descriptor. Return FALSE if |
-** nothing was actually printed. |
-*/ |
-int PrintAction(struct action *ap, FILE *fp, int indent){ |
- int result = 1; |
- switch( ap->type ){ |
- case SHIFT: |
- fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum); |
- break; |
- case REDUCE: |
- fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index); |
- break; |
- case ACCEPT: |
- fprintf(fp,"%*s accept",indent,ap->sp->name); |
- break; |
- case ERROR: |
- fprintf(fp,"%*s error",indent,ap->sp->name); |
- break; |
- case SRCONFLICT: |
- case RRCONFLICT: |
- fprintf(fp,"%*s reduce %-3d ** Parsing conflict **", |
- indent,ap->sp->name,ap->x.rp->index); |
- break; |
- case SSCONFLICT: |
- fprintf(fp,"%*s shift %-3d ** Parsing conflict **", |
- indent,ap->sp->name,ap->x.stp->statenum); |
- break; |
- case SH_RESOLVED: |
- if( showPrecedenceConflict ){ |
- fprintf(fp,"%*s shift %-3d -- dropped by precedence", |
- indent,ap->sp->name,ap->x.stp->statenum); |
- }else{ |
- result = 0; |
- } |
- break; |
- case RD_RESOLVED: |
- if( showPrecedenceConflict ){ |
- fprintf(fp,"%*s reduce %-3d -- dropped by precedence", |
- indent,ap->sp->name,ap->x.rp->index); |
- }else{ |
- result = 0; |
- } |
- break; |
- case NOT_USED: |
- result = 0; |
- break; |
- } |
- return result; |
-} |
- |
-/* Generate the "y.output" log file */ |
-void ReportOutput(struct lemon *lemp) |
-{ |
- int i; |
- struct state *stp; |
- struct config *cfp; |
- struct action *ap; |
- FILE *fp; |
- |
- fp = file_open(lemp,".out","wb"); |
- if( fp==0 ) return; |
- for(i=0; i<lemp->nstate; i++){ |
- stp = lemp->sorted[i]; |
- fprintf(fp,"State %d:\n",stp->statenum); |
- if( lemp->basisflag ) cfp=stp->bp; |
- else cfp=stp->cfp; |
- while( cfp ){ |
- char buf[20]; |
- if( cfp->dot==cfp->rp->nrhs ){ |
- lemon_sprintf(buf,"(%d)",cfp->rp->index); |
- fprintf(fp," %5s ",buf); |
- }else{ |
- fprintf(fp," "); |
- } |
- ConfigPrint(fp,cfp); |
- fprintf(fp,"\n"); |
-#if 0 |
- SetPrint(fp,cfp->fws,lemp); |
- PlinkPrint(fp,cfp->fplp,"To "); |
- PlinkPrint(fp,cfp->bplp,"From"); |
-#endif |
- if( lemp->basisflag ) cfp=cfp->bp; |
- else cfp=cfp->next; |
- } |
- fprintf(fp,"\n"); |
- for(ap=stp->ap; ap; ap=ap->next){ |
- if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); |
- } |
- fprintf(fp,"\n"); |
- } |
- fprintf(fp, "----------------------------------------------------\n"); |
- fprintf(fp, "Symbols:\n"); |
- for(i=0; i<lemp->nsymbol; i++){ |
- int j; |
- struct symbol *sp; |
- |
- sp = lemp->symbols[i]; |
- fprintf(fp, " %3d: %s", i, sp->name); |
- if( sp->type==NONTERMINAL ){ |
- fprintf(fp, ":"); |
- if( sp->lambda ){ |
- fprintf(fp, " <lambda>"); |
- } |
- for(j=0; j<lemp->nterminal; j++){ |
- if( sp->firstset && SetFind(sp->firstset, j) ){ |
- fprintf(fp, " %s", lemp->symbols[j]->name); |
- } |
- } |
- } |
- fprintf(fp, "\n"); |
- } |
- fclose(fp); |
- return; |
-} |
- |
-/* Search for the file "name" which is in the same directory as |
-** the exacutable */ |
-PRIVATE char *pathsearch(char *argv0, char *name, int modemask) |
-{ |
- const char *pathlist; |
- char *pathbufptr; |
- char *pathbuf; |
- char *path,*cp; |
- char c; |
- |
-#ifdef __WIN32__ |
- cp = strrchr(argv0,'\\'); |
-#else |
- cp = strrchr(argv0,'/'); |
-#endif |
- if( cp ){ |
- c = *cp; |
- *cp = 0; |
- path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); |
- if( path ) lemon_sprintf(path,"%s/%s",argv0,name); |
- *cp = c; |
- }else{ |
- pathlist = getenv("PATH"); |
- if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; |
- pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); |
- path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); |
- if( (pathbuf != 0) && (path!=0) ){ |
- pathbufptr = pathbuf; |
- lemon_strcpy(pathbuf, pathlist); |
- while( *pathbuf ){ |
- cp = strchr(pathbuf,':'); |
- if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; |
- c = *cp; |
- *cp = 0; |
- lemon_sprintf(path,"%s/%s",pathbuf,name); |
- *cp = c; |
- if( c==0 ) pathbuf[0] = 0; |
- else pathbuf = &cp[1]; |
- if( access(path,modemask)==0 ) break; |
- } |
- free(pathbufptr); |
- } |
- } |
- return path; |
-} |
- |
-/* Given an action, compute the integer value for that action |
-** which is to be put in the action table of the generated machine. |
-** Return negative if no action should be generated. |
-*/ |
-PRIVATE int compute_action(struct lemon *lemp, struct action *ap) |
-{ |
- int act; |
- switch( ap->type ){ |
- case SHIFT: act = ap->x.stp->statenum; break; |
- case REDUCE: act = ap->x.rp->index + lemp->nstate; break; |
- case ERROR: act = lemp->nstate + lemp->nrule; break; |
- case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break; |
- default: act = -1; break; |
- } |
- return act; |
-} |
- |
-#define LINESIZE 1000 |
-/* The next cluster of routines are for reading the template file |
-** and writing the results to the generated parser */ |
-/* The first function transfers data from "in" to "out" until |
-** a line is seen which begins with "%%". The line number is |
-** tracked. |
-** |
-** if name!=0, then any word that begin with "Parse" is changed to |
-** begin with *name instead. |
-*/ |
-PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) |
-{ |
- int i, iStart; |
- char line[LINESIZE]; |
- while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ |
- (*lineno)++; |
- iStart = 0; |
- if( name ){ |
- for(i=0; line[i]; i++){ |
- if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 |
- && (i==0 || !isalpha(line[i-1])) |
- ){ |
- if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); |
- fprintf(out,"%s",name); |
- i += 4; |
- iStart = i+1; |
- } |
- } |
- } |
- fprintf(out,"%s",&line[iStart]); |
- } |
-} |
- |
-/* The next function finds the template file and opens it, returning |
-** a pointer to the opened file. */ |
-PRIVATE FILE *tplt_open(struct lemon *lemp) |
-{ |
- static char templatename[] = "lempar.c"; |
- char buf[1000]; |
- FILE *in; |
- char *tpltname; |
- char *cp; |
- |
- /* first, see if user specified a template filename on the command line. */ |
- if (user_templatename != 0) { |
- if( access(user_templatename,004)==-1 ){ |
- fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", |
- user_templatename); |
- lemp->errorcnt++; |
- return 0; |
- } |
- in = fopen(user_templatename,"rb"); |
- if( in==0 ){ |
- fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename); |
- lemp->errorcnt++; |
- return 0; |
- } |
- return in; |
- } |
- |
- cp = strrchr(lemp->filename,'.'); |
- if( cp ){ |
- lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); |
- }else{ |
- lemon_sprintf(buf,"%s.lt",lemp->filename); |
- } |
- if( access(buf,004)==0 ){ |
- tpltname = buf; |
- }else if( access(templatename,004)==0 ){ |
- tpltname = templatename; |
- }else{ |
- tpltname = pathsearch(lemp->argv0,templatename,0); |
- } |
- if( tpltname==0 ){ |
- fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", |
- templatename); |
- lemp->errorcnt++; |
- return 0; |
- } |
- in = fopen(tpltname,"rb"); |
- if( in==0 ){ |
- fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); |
- lemp->errorcnt++; |
- return 0; |
- } |
- return in; |
-} |
- |
-/* Print a #line directive line to the output file. */ |
-PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) |
-{ |
- fprintf(out,"#line %d \"",lineno); |
- while( *filename ){ |
- if( *filename == '\\' ) putc('\\',out); |
- putc(*filename,out); |
- filename++; |
- } |
- fprintf(out,"\"\n"); |
-} |
- |
-/* Print a string to the file and keep the linenumber up to date */ |
-PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) |
-{ |
- if( str==0 ) return; |
- while( *str ){ |
- putc(*str,out); |
- if( *str=='\n' ) (*lineno)++; |
- str++; |
- } |
- if( str[-1]!='\n' ){ |
- putc('\n',out); |
- (*lineno)++; |
- } |
- if (!lemp->nolinenosflag) { |
- (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
- } |
- return; |
-} |
- |
-/* |
-** The following routine emits code for the destructor for the |
-** symbol sp |
-*/ |
-void emit_destructor_code( |
- FILE *out, |
- struct symbol *sp, |
- struct lemon *lemp, |
- int *lineno |
-){ |
- char *cp = 0; |
- |
- if( sp->type==TERMINAL ){ |
- cp = lemp->tokendest; |
- if( cp==0 ) return; |
- fprintf(out,"{\n"); (*lineno)++; |
- }else if( sp->destructor ){ |
- cp = sp->destructor; |
- fprintf(out,"{\n"); (*lineno)++; |
- if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); } |
- }else if( lemp->vardest ){ |
- cp = lemp->vardest; |
- if( cp==0 ) return; |
- fprintf(out,"{\n"); (*lineno)++; |
- }else{ |
- assert( 0 ); /* Cannot happen */ |
- } |
- for(; *cp; cp++){ |
- if( *cp=='$' && cp[1]=='$' ){ |
- fprintf(out,"(yypminor->yy%d)",sp->dtnum); |
- cp++; |
- continue; |
- } |
- if( *cp=='\n' ) (*lineno)++; |
- fputc(*cp,out); |
- } |
- fprintf(out,"\n"); (*lineno)++; |
- if (!lemp->nolinenosflag) { |
- (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
- } |
- fprintf(out,"}\n"); (*lineno)++; |
- return; |
-} |
- |
-/* |
-** Return TRUE (non-zero) if the given symbol has a destructor. |
-*/ |
-int has_destructor(struct symbol *sp, struct lemon *lemp) |
-{ |
- int ret; |
- if( sp->type==TERMINAL ){ |
- ret = lemp->tokendest!=0; |
- }else{ |
- ret = lemp->vardest!=0 || sp->destructor!=0; |
- } |
- return ret; |
-} |
- |
-/* |
-** Append text to a dynamically allocated string. If zText is 0 then |
-** reset the string to be empty again. Always return the complete text |
-** of the string (which is overwritten with each call). |
-** |
-** n bytes of zText are stored. If n==0 then all of zText up to the first |
-** \000 terminator is stored. zText can contain up to two instances of |
-** %d. The values of p1 and p2 are written into the first and second |
-** %d. |
-** |
-** If n==-1, then the previous character is overwritten. |
-*/ |
-PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ |
- static char empty[1] = { 0 }; |
- static char *z = 0; |
- static int alloced = 0; |
- static int used = 0; |
- int c; |
- char zInt[40]; |
- if( zText==0 ){ |
- used = 0; |
- return z; |
- } |
- if( n<=0 ){ |
- if( n<0 ){ |
- used += n; |
- assert( used>=0 ); |
- } |
- n = lemonStrlen(zText); |
- } |
- if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ |
- alloced = n + sizeof(zInt)*2 + used + 200; |
- z = (char *) realloc(z, alloced); |
- } |
- if( z==0 ) return empty; |
- while( n-- > 0 ){ |
- c = *(zText++); |
- if( c=='%' && n>0 && zText[0]=='d' ){ |
- lemon_sprintf(zInt, "%d", p1); |
- p1 = p2; |
- lemon_strcpy(&z[used], zInt); |
- used += lemonStrlen(&z[used]); |
- zText++; |
- n--; |
- }else{ |
- z[used++] = c; |
- } |
- } |
- z[used] = 0; |
- return z; |
-} |
- |
-/* |
-** zCode is a string that is the action associated with a rule. Expand |
-** the symbols in this string so that the refer to elements of the parser |
-** stack. |
-*/ |
-PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){ |
- char *cp, *xp; |
- int i; |
- char lhsused = 0; /* True if the LHS element has been used */ |
- char used[MAXRHS]; /* True for each RHS element which is used */ |
- |
- for(i=0; i<rp->nrhs; i++) used[i] = 0; |
- lhsused = 0; |
- |
- if( rp->code==0 ){ |
- static char newlinestr[2] = { '\n', '\0' }; |
- rp->code = newlinestr; |
- rp->line = rp->ruleline; |
- } |
- |
- append_str(0,0,0,0); |
- |
- /* This const cast is wrong but harmless, if we're careful. */ |
- for(cp=(char *)rp->code; *cp; cp++){ |
- if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){ |
- char saved; |
- for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++); |
- saved = *xp; |
- *xp = 0; |
- if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ |
- append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0); |
- cp = xp; |
- lhsused = 1; |
- }else{ |
- for(i=0; i<rp->nrhs; i++){ |
- if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ |
- if( cp!=rp->code && cp[-1]=='@' ){ |
- /* If the argument is of the form @X then substituted |
- ** the token number of X, not the value of X */ |
- append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); |
- }else{ |
- struct symbol *sp = rp->rhs[i]; |
- int dtnum; |
- if( sp->type==MULTITERMINAL ){ |
- dtnum = sp->subsym[0]->dtnum; |
- }else{ |
- dtnum = sp->dtnum; |
- } |
- append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); |
- } |
- cp = xp; |
- used[i] = 1; |
- break; |
- } |
- } |
- } |
- *xp = saved; |
- } |
- append_str(cp, 1, 0, 0); |
- } /* End loop */ |
- |
- /* Check to make sure the LHS has been used */ |
- if( rp->lhsalias && !lhsused ){ |
- ErrorMsg(lemp->filename,rp->ruleline, |
- "Label \"%s\" for \"%s(%s)\" is never used.", |
- rp->lhsalias,rp->lhs->name,rp->lhsalias); |
- lemp->errorcnt++; |
- } |
- |
- /* Generate destructor code for RHS symbols which are not used in the |
- ** reduce code */ |
- for(i=0; i<rp->nrhs; i++){ |
- if( rp->rhsalias[i] && !used[i] ){ |
- ErrorMsg(lemp->filename,rp->ruleline, |
- "Label %s for \"%s(%s)\" is never used.", |
- rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); |
- lemp->errorcnt++; |
- }else if( rp->rhsalias[i]==0 ){ |
- if( has_destructor(rp->rhs[i],lemp) ){ |
- append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, |
- rp->rhs[i]->index,i-rp->nrhs+1); |
- }else{ |
- /* No destructor defined for this term */ |
- } |
- } |
- } |
- if( rp->code ){ |
- cp = append_str(0,0,0,0); |
- rp->code = Strsafe(cp?cp:""); |
- } |
-} |
- |
-/* |
-** Generate code which executes when the rule "rp" is reduced. Write |
-** the code to "out". Make sure lineno stays up-to-date. |
-*/ |
-PRIVATE void emit_code( |
- FILE *out, |
- struct rule *rp, |
- struct lemon *lemp, |
- int *lineno |
-){ |
- const char *cp; |
- |
- /* Generate code to do the reduce action */ |
- if( rp->code ){ |
- if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); } |
- fprintf(out,"{%s",rp->code); |
- for(cp=rp->code; *cp; cp++){ |
- if( *cp=='\n' ) (*lineno)++; |
- } /* End loop */ |
- fprintf(out,"}\n"); (*lineno)++; |
- if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); } |
- } /* End if( rp->code ) */ |
- |
- return; |
-} |
- |
-/* |
-** Print the definition of the union used for the parser's data stack. |
-** This union contains fields for every possible data type for tokens |
-** and nonterminals. In the process of computing and printing this |
-** union, also set the ".dtnum" field of every terminal and nonterminal |
-** symbol. |
-*/ |
-void print_stack_union( |
- FILE *out, /* The output stream */ |
- struct lemon *lemp, /* The main info structure for this parser */ |
- int *plineno, /* Pointer to the line number */ |
- int mhflag /* True if generating makeheaders output */ |
-){ |
- int lineno = *plineno; /* The line number of the output */ |
- char **types; /* A hash table of datatypes */ |
- int arraysize; /* Size of the "types" array */ |
- int maxdtlength; /* Maximum length of any ".datatype" field. */ |
- char *stddt; /* Standardized name for a datatype */ |
- int i,j; /* Loop counters */ |
- unsigned hash; /* For hashing the name of a type */ |
- const char *name; /* Name of the parser */ |
- |
- /* Allocate and initialize types[] and allocate stddt[] */ |
- arraysize = lemp->nsymbol * 2; |
- types = (char**)calloc( arraysize, sizeof(char*) ); |
- if( types==0 ){ |
- fprintf(stderr,"Out of memory.\n"); |
- exit(1); |
- } |
- for(i=0; i<arraysize; i++) types[i] = 0; |
- maxdtlength = 0; |
- if( lemp->vartype ){ |
- maxdtlength = lemonStrlen(lemp->vartype); |
- } |
- for(i=0; i<lemp->nsymbol; i++){ |
- int len; |
- struct symbol *sp = lemp->symbols[i]; |
- if( sp->datatype==0 ) continue; |
- len = lemonStrlen(sp->datatype); |
- if( len>maxdtlength ) maxdtlength = len; |
- } |
- stddt = (char*)malloc( maxdtlength*2 + 1 ); |
- if( stddt==0 ){ |
- fprintf(stderr,"Out of memory.\n"); |
- exit(1); |
- } |
- |
- /* Build a hash table of datatypes. The ".dtnum" field of each symbol |
- ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is |
- ** used for terminal symbols. If there is no %default_type defined then |
- ** 0 is also used as the .dtnum value for nonterminals which do not specify |
- ** a datatype using the %type directive. |
- */ |
- for(i=0; i<lemp->nsymbol; i++){ |
- struct symbol *sp = lemp->symbols[i]; |
- char *cp; |
- if( sp==lemp->errsym ){ |
- sp->dtnum = arraysize+1; |
- continue; |
- } |
- if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ |
- sp->dtnum = 0; |
- continue; |
- } |
- cp = sp->datatype; |
- if( cp==0 ) cp = lemp->vartype; |
- j = 0; |
- while( isspace(*cp) ) cp++; |
- while( *cp ) stddt[j++] = *cp++; |
- while( j>0 && isspace(stddt[j-1]) ) j--; |
- stddt[j] = 0; |
- if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ |
- sp->dtnum = 0; |
- continue; |
- } |
- hash = 0; |
- for(j=0; stddt[j]; j++){ |
- hash = hash*53 + stddt[j]; |
- } |
- hash = (hash & 0x7fffffff)%arraysize; |
- while( types[hash] ){ |
- if( strcmp(types[hash],stddt)==0 ){ |
- sp->dtnum = hash + 1; |
- break; |
- } |
- hash++; |
- if( hash>=(unsigned)arraysize ) hash = 0; |
- } |
- if( types[hash]==0 ){ |
- sp->dtnum = hash + 1; |
- types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); |
- if( types[hash]==0 ){ |
- fprintf(stderr,"Out of memory.\n"); |
- exit(1); |
- } |
- lemon_strcpy(types[hash],stddt); |
- } |
- } |
- |
- /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ |
- name = lemp->name ? lemp->name : "Parse"; |
- lineno = *plineno; |
- if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } |
- fprintf(out,"#define %sTOKENTYPE %s\n",name, |
- lemp->tokentype?lemp->tokentype:"void*"); lineno++; |
- if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } |
- fprintf(out,"typedef union {\n"); lineno++; |
- fprintf(out," int yyinit;\n"); lineno++; |
- fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; |
- for(i=0; i<arraysize; i++){ |
- if( types[i]==0 ) continue; |
- fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; |
- free(types[i]); |
- } |
- if( lemp->errsym->useCnt ){ |
- fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; |
- } |
- free(stddt); |
- free(types); |
- fprintf(out,"} YYMINORTYPE;\n"); lineno++; |
- *plineno = lineno; |
-} |
- |
-/* |
-** Return the name of a C datatype able to represent values between |
-** lwr and upr, inclusive. |
-*/ |
-static const char *minimum_size_type(int lwr, int upr){ |
- if( lwr>=0 ){ |
- if( upr<=255 ){ |
- return "unsigned char"; |
- }else if( upr<65535 ){ |
- return "unsigned short int"; |
- }else{ |
- return "unsigned int"; |
- } |
- }else if( lwr>=-127 && upr<=127 ){ |
- return "signed char"; |
- }else if( lwr>=-32767 && upr<32767 ){ |
- return "short"; |
- }else{ |
- return "int"; |
- } |
-} |
- |
-/* |
-** Each state contains a set of token transaction and a set of |
-** nonterminal transactions. Each of these sets makes an instance |
-** of the following structure. An array of these structures is used |
-** to order the creation of entries in the yy_action[] table. |
-*/ |
-struct axset { |
- struct state *stp; /* A pointer to a state */ |
- int isTkn; /* True to use tokens. False for non-terminals */ |
- int nAction; /* Number of actions */ |
- int iOrder; /* Original order of action sets */ |
-}; |
- |
-/* |
-** Compare to axset structures for sorting purposes |
-*/ |
-static int axset_compare(const void *a, const void *b){ |
- struct axset *p1 = (struct axset*)a; |
- struct axset *p2 = (struct axset*)b; |
- int c; |
- c = p2->nAction - p1->nAction; |
- if( c==0 ){ |
- c = p2->iOrder - p1->iOrder; |
- } |
- assert( c!=0 || p1==p2 ); |
- return c; |
-} |
- |
-/* |
-** Write text on "out" that describes the rule "rp". |
-*/ |
-static void writeRuleText(FILE *out, struct rule *rp){ |
- int j; |
- fprintf(out,"%s ::=", rp->lhs->name); |
- for(j=0; j<rp->nrhs; j++){ |
- struct symbol *sp = rp->rhs[j]; |
- if( sp->type!=MULTITERMINAL ){ |
- fprintf(out," %s", sp->name); |
- }else{ |
- int k; |
- fprintf(out," %s", sp->subsym[0]->name); |
- for(k=1; k<sp->nsubsym; k++){ |
- fprintf(out,"|%s",sp->subsym[k]->name); |
- } |
- } |
- } |
-} |
- |
- |
-/* Generate C source code for the parser */ |
-void ReportTable( |
- struct lemon *lemp, |
- int mhflag /* Output in makeheaders format if true */ |
-){ |
- FILE *out, *in; |
- char line[LINESIZE]; |
- int lineno; |
- struct state *stp; |
- struct action *ap; |
- struct rule *rp; |
- struct acttab *pActtab; |
- int i, j, n; |
- const char *name; |
- int mnTknOfst, mxTknOfst; |
- int mnNtOfst, mxNtOfst; |
- struct axset *ax; |
- |
- in = tplt_open(lemp); |
- if( in==0 ) return; |
- out = file_open(lemp,".c","wb"); |
- if( out==0 ){ |
- fclose(in); |
- return; |
- } |
- lineno = 1; |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate the include code, if any */ |
- tplt_print(out,lemp,lemp->include,&lineno); |
- if( mhflag ){ |
- char *name = file_makename(lemp, ".h"); |
- fprintf(out,"#include \"%s\"\n", name); lineno++; |
- free(name); |
- } |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate #defines for all tokens */ |
- if( mhflag ){ |
- const char *prefix; |
- fprintf(out,"#if INTERFACE\n"); lineno++; |
- if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
- else prefix = ""; |
- for(i=1; i<lemp->nterminal; i++){ |
- fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
- lineno++; |
- } |
- fprintf(out,"#endif\n"); lineno++; |
- } |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate the defines */ |
- fprintf(out,"#define YYCODETYPE %s\n", |
- minimum_size_type(0, lemp->nsymbol+1)); lineno++; |
- fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; |
- fprintf(out,"#define YYACTIONTYPE %s\n", |
- minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++; |
- if( lemp->wildcard ){ |
- fprintf(out,"#define YYWILDCARD %d\n", |
- lemp->wildcard->index); lineno++; |
- } |
- print_stack_union(out,lemp,&lineno,mhflag); |
- fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; |
- if( lemp->stacksize ){ |
- fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; |
- }else{ |
- fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; |
- } |
- fprintf(out, "#endif\n"); lineno++; |
- if( mhflag ){ |
- fprintf(out,"#if INTERFACE\n"); lineno++; |
- } |
- name = lemp->name ? lemp->name : "Parse"; |
- if( lemp->arg && lemp->arg[0] ){ |
- int i; |
- i = lemonStrlen(lemp->arg); |
- while( i>=1 && isspace(lemp->arg[i-1]) ) i--; |
- while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; |
- fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; |
- fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; |
- fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", |
- name,lemp->arg,&lemp->arg[i]); lineno++; |
- fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", |
- name,&lemp->arg[i],&lemp->arg[i]); lineno++; |
- }else{ |
- fprintf(out,"#define %sARG_SDECL\n",name); lineno++; |
- fprintf(out,"#define %sARG_PDECL\n",name); lineno++; |
- fprintf(out,"#define %sARG_FETCH\n",name); lineno++; |
- fprintf(out,"#define %sARG_STORE\n",name); lineno++; |
- } |
- if( mhflag ){ |
- fprintf(out,"#endif\n"); lineno++; |
- } |
- fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++; |
- fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; |
- if( lemp->errsym->useCnt ){ |
- fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; |
- fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; |
- } |
- if( lemp->has_fallback ){ |
- fprintf(out,"#define YYFALLBACK 1\n"); lineno++; |
- } |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate the action table and its associates: |
- ** |
- ** yy_action[] A single table containing all actions. |
- ** yy_lookahead[] A table containing the lookahead for each entry in |
- ** yy_action. Used to detect hash collisions. |
- ** yy_shift_ofst[] For each state, the offset into yy_action for |
- ** shifting terminals. |
- ** yy_reduce_ofst[] For each state, the offset into yy_action for |
- ** shifting non-terminals after a reduce. |
- ** yy_default[] Default action for each state. |
- */ |
- |
- /* Compute the actions on all states and count them up */ |
- ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0])); |
- if( ax==0 ){ |
- fprintf(stderr,"malloc failed\n"); |
- exit(1); |
- } |
- for(i=0; i<lemp->nstate; i++){ |
- stp = lemp->sorted[i]; |
- ax[i*2].stp = stp; |
- ax[i*2].isTkn = 1; |
- ax[i*2].nAction = stp->nTknAct; |
- ax[i*2+1].stp = stp; |
- ax[i*2+1].isTkn = 0; |
- ax[i*2+1].nAction = stp->nNtAct; |
- } |
- mxTknOfst = mnTknOfst = 0; |
- mxNtOfst = mnNtOfst = 0; |
- |
- /* Compute the action table. In order to try to keep the size of the |
- ** action table to a minimum, the heuristic of placing the largest action |
- ** sets first is used. |
- */ |
- for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i; |
- qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare); |
- pActtab = acttab_alloc(); |
- for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){ |
- stp = ax[i].stp; |
- if( ax[i].isTkn ){ |
- for(ap=stp->ap; ap; ap=ap->next){ |
- int action; |
- if( ap->sp->index>=lemp->nterminal ) continue; |
- action = compute_action(lemp, ap); |
- if( action<0 ) continue; |
- acttab_action(pActtab, ap->sp->index, action); |
- } |
- stp->iTknOfst = acttab_insert(pActtab); |
- if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; |
- if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; |
- }else{ |
- for(ap=stp->ap; ap; ap=ap->next){ |
- int action; |
- if( ap->sp->index<lemp->nterminal ) continue; |
- if( ap->sp->index==lemp->nsymbol ) continue; |
- action = compute_action(lemp, ap); |
- if( action<0 ) continue; |
- acttab_action(pActtab, ap->sp->index, action); |
- } |
- stp->iNtOfst = acttab_insert(pActtab); |
- if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; |
- if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; |
- } |
- } |
- free(ax); |
- |
- /* Output the yy_action table */ |
- n = acttab_size(pActtab); |
- fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; |
- fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; |
- for(i=j=0; i<n; i++){ |
- int action = acttab_yyaction(pActtab, i); |
- if( action<0 ) action = lemp->nstate + lemp->nrule + 2; |
- if( j==0 ) fprintf(out," /* %5d */ ", i); |
- fprintf(out, " %4d,", action); |
- if( j==9 || i==n-1 ){ |
- fprintf(out, "\n"); lineno++; |
- j = 0; |
- }else{ |
- j++; |
- } |
- } |
- fprintf(out, "};\n"); lineno++; |
- |
- /* Output the yy_lookahead table */ |
- fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; |
- for(i=j=0; i<n; i++){ |
- int la = acttab_yylookahead(pActtab, i); |
- if( la<0 ) la = lemp->nsymbol; |
- if( j==0 ) fprintf(out," /* %5d */ ", i); |
- fprintf(out, " %4d,", la); |
- if( j==9 || i==n-1 ){ |
- fprintf(out, "\n"); lineno++; |
- j = 0; |
- }else{ |
- j++; |
- } |
- } |
- fprintf(out, "};\n"); lineno++; |
- |
- /* Output the yy_shift_ofst[] table */ |
- fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++; |
- n = lemp->nstate; |
- while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; |
- fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; |
- fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; |
- fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; |
- fprintf(out, "static const %s yy_shift_ofst[] = {\n", |
- minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++; |
- for(i=j=0; i<n; i++){ |
- int ofst; |
- stp = lemp->sorted[i]; |
- ofst = stp->iTknOfst; |
- if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1; |
- if( j==0 ) fprintf(out," /* %5d */ ", i); |
- fprintf(out, " %4d,", ofst); |
- if( j==9 || i==n-1 ){ |
- fprintf(out, "\n"); lineno++; |
- j = 0; |
- }else{ |
- j++; |
- } |
- } |
- fprintf(out, "};\n"); lineno++; |
- |
- /* Output the yy_reduce_ofst[] table */ |
- fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; |
- n = lemp->nstate; |
- while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; |
- fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; |
- fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; |
- fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; |
- fprintf(out, "static const %s yy_reduce_ofst[] = {\n", |
- minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++; |
- for(i=j=0; i<n; i++){ |
- int ofst; |
- stp = lemp->sorted[i]; |
- ofst = stp->iNtOfst; |
- if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; |
- if( j==0 ) fprintf(out," /* %5d */ ", i); |
- fprintf(out, " %4d,", ofst); |
- if( j==9 || i==n-1 ){ |
- fprintf(out, "\n"); lineno++; |
- j = 0; |
- }else{ |
- j++; |
- } |
- } |
- fprintf(out, "};\n"); lineno++; |
- |
- /* Output the default action table */ |
- fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; |
- n = lemp->nstate; |
- for(i=j=0; i<n; i++){ |
- stp = lemp->sorted[i]; |
- if( j==0 ) fprintf(out," /* %5d */ ", i); |
- fprintf(out, " %4d,", stp->iDflt); |
- if( j==9 || i==n-1 ){ |
- fprintf(out, "\n"); lineno++; |
- j = 0; |
- }else{ |
- j++; |
- } |
- } |
- fprintf(out, "};\n"); lineno++; |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate the table of fallback tokens. |
- */ |
- if( lemp->has_fallback ){ |
- int mx = lemp->nterminal - 1; |
- while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } |
- for(i=0; i<=mx; i++){ |
- struct symbol *p = lemp->symbols[i]; |
- if( p->fallback==0 ){ |
- fprintf(out, " 0, /* %10s => nothing */\n", p->name); |
- }else{ |
- fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, |
- p->name, p->fallback->name); |
- } |
- lineno++; |
- } |
- } |
- tplt_xfer(lemp->name, in, out, &lineno); |
- |
- /* Generate a table containing the symbolic name of every symbol |
- */ |
- for(i=0; i<lemp->nsymbol; i++){ |
- lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name); |
- fprintf(out," %-15s",line); |
- if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } |
- } |
- if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate a table containing a text string that describes every |
- ** rule in the rule set of the grammar. This information is used |
- ** when tracing REDUCE actions. |
- */ |
- for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ |
- assert( rp->index==i ); |
- fprintf(out," /* %3d */ \"", i); |
- writeRuleText(out, rp); |
- fprintf(out,"\",\n"); lineno++; |
- } |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate code which executes every time a symbol is popped from |
- ** the stack while processing errors or while destroying the parser. |
- ** (In other words, generate the %destructor actions) |
- */ |
- if( lemp->tokendest ){ |
- int once = 1; |
- for(i=0; i<lemp->nsymbol; i++){ |
- struct symbol *sp = lemp->symbols[i]; |
- if( sp==0 || sp->type!=TERMINAL ) continue; |
- if( once ){ |
- fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; |
- once = 0; |
- } |
- fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
- } |
- for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); |
- if( i<lemp->nsymbol ){ |
- emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
- fprintf(out," break;\n"); lineno++; |
- } |
- } |
- if( lemp->vardest ){ |
- struct symbol *dflt_sp = 0; |
- int once = 1; |
- for(i=0; i<lemp->nsymbol; i++){ |
- struct symbol *sp = lemp->symbols[i]; |
- if( sp==0 || sp->type==TERMINAL || |
- sp->index<=0 || sp->destructor!=0 ) continue; |
- if( once ){ |
- fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++; |
- once = 0; |
- } |
- fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
- dflt_sp = sp; |
- } |
- if( dflt_sp!=0 ){ |
- emit_destructor_code(out,dflt_sp,lemp,&lineno); |
- } |
- fprintf(out," break;\n"); lineno++; |
- } |
- for(i=0; i<lemp->nsymbol; i++){ |
- struct symbol *sp = lemp->symbols[i]; |
- if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; |
- fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
- |
- /* Combine duplicate destructors into a single case */ |
- for(j=i+1; j<lemp->nsymbol; j++){ |
- struct symbol *sp2 = lemp->symbols[j]; |
- if( sp2 && sp2->type!=TERMINAL && sp2->destructor |
- && sp2->dtnum==sp->dtnum |
- && strcmp(sp->destructor,sp2->destructor)==0 ){ |
- fprintf(out," case %d: /* %s */\n", |
- sp2->index, sp2->name); lineno++; |
- sp2->destructor = 0; |
- } |
- } |
- |
- emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
- fprintf(out," break;\n"); lineno++; |
- } |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate code which executes whenever the parser stack overflows */ |
- tplt_print(out,lemp,lemp->overflow,&lineno); |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate the table of rule information |
- ** |
- ** Note: This code depends on the fact that rules are number |
- ** sequentually beginning with 0. |
- */ |
- for(rp=lemp->rule; rp; rp=rp->next){ |
- fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; |
- } |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate code which execution during each REDUCE action */ |
- for(rp=lemp->rule; rp; rp=rp->next){ |
- translate_code(lemp, rp); |
- } |
- /* First output rules other than the default: rule */ |
- for(rp=lemp->rule; rp; rp=rp->next){ |
- struct rule *rp2; /* Other rules with the same action */ |
- if( rp->code==0 ) continue; |
- if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */ |
- fprintf(out," case %d: /* ", rp->index); |
- writeRuleText(out, rp); |
- fprintf(out, " */\n"); lineno++; |
- for(rp2=rp->next; rp2; rp2=rp2->next){ |
- if( rp2->code==rp->code ){ |
- fprintf(out," case %d: /* ", rp2->index); |
- writeRuleText(out, rp2); |
- fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++; |
- rp2->code = 0; |
- } |
- } |
- emit_code(out,rp,lemp,&lineno); |
- fprintf(out," break;\n"); lineno++; |
- rp->code = 0; |
- } |
- /* Finally, output the default: rule. We choose as the default: all |
- ** empty actions. */ |
- fprintf(out," default:\n"); lineno++; |
- for(rp=lemp->rule; rp; rp=rp->next){ |
- if( rp->code==0 ) continue; |
- assert( rp->code[0]=='\n' && rp->code[1]==0 ); |
- fprintf(out," /* (%d) ", rp->index); |
- writeRuleText(out, rp); |
- fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++; |
- } |
- fprintf(out," break;\n"); lineno++; |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate code which executes if a parse fails */ |
- tplt_print(out,lemp,lemp->failure,&lineno); |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate code which executes when a syntax error occurs */ |
- tplt_print(out,lemp,lemp->error,&lineno); |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Generate code which executes when the parser accepts its input */ |
- tplt_print(out,lemp,lemp->accept,&lineno); |
- tplt_xfer(lemp->name,in,out,&lineno); |
- |
- /* Append any addition code the user desires */ |
- tplt_print(out,lemp,lemp->extracode,&lineno); |
- |
- fclose(in); |
- fclose(out); |
- return; |
-} |
- |
-/* Generate a header file for the parser */ |
-void ReportHeader(struct lemon *lemp) |
-{ |
- FILE *out, *in; |
- const char *prefix; |
- char line[LINESIZE]; |
- char pattern[LINESIZE]; |
- int i; |
- |
- if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
- else prefix = ""; |
- in = file_open(lemp,".h","rb"); |
- if( in ){ |
- int nextChar; |
- for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ |
- lemon_sprintf(pattern,"#define %s%-30s %3d\n", |
- prefix,lemp->symbols[i]->name,i); |
- if( strcmp(line,pattern) ) break; |
- } |
- nextChar = fgetc(in); |
- fclose(in); |
- if( i==lemp->nterminal && nextChar==EOF ){ |
- /* No change in the file. Don't rewrite it. */ |
- return; |
- } |
- } |
- out = file_open(lemp,".h","wb"); |
- if( out ){ |
- for(i=1; i<lemp->nterminal; i++){ |
- fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i); |
- } |
- fclose(out); |
- } |
- return; |
-} |
- |
-/* Reduce the size of the action tables, if possible, by making use |
-** of defaults. |
-** |
-** In this version, we take the most frequent REDUCE action and make |
-** it the default. Except, there is no default if the wildcard token |
-** is a possible look-ahead. |
-*/ |
-void CompressTables(struct lemon *lemp) |
-{ |
- struct state *stp; |
- struct action *ap, *ap2; |
- struct rule *rp, *rp2, *rbest; |
- int nbest, n; |
- int i; |
- int usesWildcard; |
- |
- for(i=0; i<lemp->nstate; i++){ |
- stp = lemp->sorted[i]; |
- nbest = 0; |
- rbest = 0; |
- usesWildcard = 0; |
- |
- for(ap=stp->ap; ap; ap=ap->next){ |
- if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ |
- usesWildcard = 1; |
- } |
- if( ap->type!=REDUCE ) continue; |
- rp = ap->x.rp; |
- if( rp->lhsStart ) continue; |
- if( rp==rbest ) continue; |
- n = 1; |
- for(ap2=ap->next; ap2; ap2=ap2->next){ |
- if( ap2->type!=REDUCE ) continue; |
- rp2 = ap2->x.rp; |
- if( rp2==rbest ) continue; |
- if( rp2==rp ) n++; |
- } |
- if( n>nbest ){ |
- nbest = n; |
- rbest = rp; |
- } |
- } |
- |
- /* Do not make a default if the number of rules to default |
- ** is not at least 1 or if the wildcard token is a possible |
- ** lookahead. |
- */ |
- if( nbest<1 || usesWildcard ) continue; |
- |
- |
- /* Combine matching REDUCE actions into a single default */ |
- for(ap=stp->ap; ap; ap=ap->next){ |
- if( ap->type==REDUCE && ap->x.rp==rbest ) break; |
- } |
- assert( ap ); |
- ap->sp = Symbol_new("{default}"); |
- for(ap=ap->next; ap; ap=ap->next){ |
- if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; |
- } |
- stp->ap = Action_sort(stp->ap); |
- } |
-} |
- |
- |
-/* |
-** Compare two states for sorting purposes. The smaller state is the |
-** one with the most non-terminal actions. If they have the same number |
-** of non-terminal actions, then the smaller is the one with the most |
-** token actions. |
-*/ |
-static int stateResortCompare(const void *a, const void *b){ |
- const struct state *pA = *(const struct state**)a; |
- const struct state *pB = *(const struct state**)b; |
- int n; |
- |
- n = pB->nNtAct - pA->nNtAct; |
- if( n==0 ){ |
- n = pB->nTknAct - pA->nTknAct; |
- if( n==0 ){ |
- n = pB->statenum - pA->statenum; |
- } |
- } |
- assert( n!=0 ); |
- return n; |
-} |
- |
- |
-/* |
-** Renumber and resort states so that states with fewer choices |
-** occur at the end. Except, keep state 0 as the first state. |
-*/ |
-void ResortStates(struct lemon *lemp) |
-{ |
- int i; |
- struct state *stp; |
- struct action *ap; |
- |
- for(i=0; i<lemp->nstate; i++){ |
- stp = lemp->sorted[i]; |
- stp->nTknAct = stp->nNtAct = 0; |
- stp->iDflt = lemp->nstate + lemp->nrule; |
- stp->iTknOfst = NO_OFFSET; |
- stp->iNtOfst = NO_OFFSET; |
- for(ap=stp->ap; ap; ap=ap->next){ |
- if( compute_action(lemp,ap)>=0 ){ |
- if( ap->sp->index<lemp->nterminal ){ |
- stp->nTknAct++; |
- }else if( ap->sp->index<lemp->nsymbol ){ |
- stp->nNtAct++; |
- }else{ |
- stp->iDflt = compute_action(lemp, ap); |
- } |
- } |
- } |
- } |
- qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), |
- stateResortCompare); |
- for(i=0; i<lemp->nstate; i++){ |
- lemp->sorted[i]->statenum = i; |
- } |
-} |
- |
- |
-/***************** From the file "set.c" ************************************/ |
-/* |
-** Set manipulation routines for the LEMON parser generator. |
-*/ |
- |
-static int size = 0; |
- |
-/* Set the set size */ |
-void SetSize(int n) |
-{ |
- size = n+1; |
-} |
- |
-/* Allocate a new set */ |
-char *SetNew(){ |
- char *s; |
- s = (char*)calloc( size, 1); |
- if( s==0 ){ |
- extern void memory_error(); |
- memory_error(); |
- } |
- return s; |
-} |
- |
-/* Deallocate a set */ |
-void SetFree(char *s) |
-{ |
- free(s); |
-} |
- |
-/* Add a new element to the set. Return TRUE if the element was added |
-** and FALSE if it was already there. */ |
-int SetAdd(char *s, int e) |
-{ |
- int rv; |
- assert( e>=0 && e<size ); |
- rv = s[e]; |
- s[e] = 1; |
- return !rv; |
-} |
- |
-/* Add every element of s2 to s1. Return TRUE if s1 changes. */ |
-int SetUnion(char *s1, char *s2) |
-{ |
- int i, progress; |
- progress = 0; |
- for(i=0; i<size; i++){ |
- if( s2[i]==0 ) continue; |
- if( s1[i]==0 ){ |
- progress = 1; |
- s1[i] = 1; |
- } |
- } |
- return progress; |
-} |
-/********************** From the file "table.c" ****************************/ |
-/* |
-** All code in this file has been automatically generated |
-** from a specification in the file |
-** "table.q" |
-** by the associative array code building program "aagen". |
-** Do not edit this file! Instead, edit the specification |
-** file, then rerun aagen. |
-*/ |
-/* |
-** Code for processing tables in the LEMON parser generator. |
-*/ |
- |
-PRIVATE unsigned strhash(const char *x) |
-{ |
- unsigned h = 0; |
- while( *x ) h = h*13 + *(x++); |
- return h; |
-} |
- |
-/* Works like strdup, sort of. Save a string in malloced memory, but |
-** keep strings in a table so that the same string is not in more |
-** than one place. |
-*/ |
-const char *Strsafe(const char *y) |
-{ |
- const char *z; |
- char *cpy; |
- |
- if( y==0 ) return 0; |
- z = Strsafe_find(y); |
- if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){ |
- lemon_strcpy(cpy,y); |
- z = cpy; |
- Strsafe_insert(z); |
- } |
- MemoryCheck(z); |
- return z; |
-} |
- |
-/* There is one instance of the following structure for each |
-** associative array of type "x1". |
-*/ |
-struct s_x1 { |
- int size; /* The number of available slots. */ |
- /* Must be a power of 2 greater than or */ |
- /* equal to 1 */ |
- int count; /* Number of currently slots filled */ |
- struct s_x1node *tbl; /* The data stored here */ |
- struct s_x1node **ht; /* Hash table for lookups */ |
-}; |
- |
-/* There is one instance of this structure for every data element |
-** in an associative array of type "x1". |
-*/ |
-typedef struct s_x1node { |
- const char *data; /* The data */ |
- struct s_x1node *next; /* Next entry with the same hash */ |
- struct s_x1node **from; /* Previous link */ |
-} x1node; |
- |
-/* There is only one instance of the array, which is the following */ |
-static struct s_x1 *x1a; |
- |
-/* Allocate a new associative array */ |
-void Strsafe_init(){ |
- if( x1a ) return; |
- x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); |
- if( x1a ){ |
- x1a->size = 1024; |
- x1a->count = 0; |
- x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*)); |
- if( x1a->tbl==0 ){ |
- free(x1a); |
- x1a = 0; |
- }else{ |
- int i; |
- x1a->ht = (x1node**)&(x1a->tbl[1024]); |
- for(i=0; i<1024; i++) x1a->ht[i] = 0; |
- } |
- } |
-} |
-/* Insert a new record into the array. Return TRUE if successful. |
-** Prior data with the same key is NOT overwritten */ |
-int Strsafe_insert(const char *data) |
-{ |
- x1node *np; |
- unsigned h; |
- unsigned ph; |
- |
- if( x1a==0 ) return 0; |
- ph = strhash(data); |
- h = ph & (x1a->size-1); |
- np = x1a->ht[h]; |
- while( np ){ |
- if( strcmp(np->data,data)==0 ){ |
- /* An existing entry with the same key is found. */ |
- /* Fail because overwrite is not allows. */ |
- return 0; |
- } |
- np = np->next; |
- } |
- if( x1a->count>=x1a->size ){ |
- /* Need to make the hash table bigger */ |
- int i,size; |
- struct s_x1 array; |
- array.size = size = x1a->size*2; |
- array.count = x1a->count; |
- array.tbl = (x1node*)calloc(size, sizeof(x1node) + sizeof(x1node*)); |
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
- array.ht = (x1node**)&(array.tbl[size]); |
- for(i=0; i<size; i++) array.ht[i] = 0; |
- for(i=0; i<x1a->count; i++){ |
- x1node *oldnp, *newnp; |
- oldnp = &(x1a->tbl[i]); |
- h = strhash(oldnp->data) & (size-1); |
- newnp = &(array.tbl[i]); |
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
- newnp->next = array.ht[h]; |
- newnp->data = oldnp->data; |
- newnp->from = &(array.ht[h]); |
- array.ht[h] = newnp; |
- } |
- free(x1a->tbl); |
- *x1a = array; |
- } |
- /* Insert the new data */ |
- h = ph & (x1a->size-1); |
- np = &(x1a->tbl[x1a->count++]); |
- np->data = data; |
- if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); |
- np->next = x1a->ht[h]; |
- x1a->ht[h] = np; |
- np->from = &(x1a->ht[h]); |
- return 1; |
-} |
- |
-/* Return a pointer to data assigned to the given key. Return NULL |
-** if no such key. */ |
-const char *Strsafe_find(const char *key) |
-{ |
- unsigned h; |
- x1node *np; |
- |
- if( x1a==0 ) return 0; |
- h = strhash(key) & (x1a->size-1); |
- np = x1a->ht[h]; |
- while( np ){ |
- if( strcmp(np->data,key)==0 ) break; |
- np = np->next; |
- } |
- return np ? np->data : 0; |
-} |
- |
-/* Return a pointer to the (terminal or nonterminal) symbol "x". |
-** Create a new symbol if this is the first time "x" has been seen. |
-*/ |
-struct symbol *Symbol_new(const char *x) |
-{ |
- struct symbol *sp; |
- |
- sp = Symbol_find(x); |
- if( sp==0 ){ |
- sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); |
- MemoryCheck(sp); |
- sp->name = Strsafe(x); |
- sp->type = isupper(*x) ? TERMINAL : NONTERMINAL; |
- sp->rule = 0; |
- sp->fallback = 0; |
- sp->prec = -1; |
- sp->assoc = UNK; |
- sp->firstset = 0; |
- sp->lambda = LEMON_FALSE; |
- sp->destructor = 0; |
- sp->destLineno = 0; |
- sp->datatype = 0; |
- sp->useCnt = 0; |
- Symbol_insert(sp,sp->name); |
- } |
- sp->useCnt++; |
- return sp; |
-} |
- |
-/* Compare two symbols for sorting purposes. Return negative, |
-** zero, or positive if a is less then, equal to, or greater |
-** than b. |
-** |
-** Symbols that begin with upper case letters (terminals or tokens) |
-** must sort before symbols that begin with lower case letters |
-** (non-terminals). And MULTITERMINAL symbols (created using the |
-** %token_class directive) must sort at the very end. Other than |
-** that, the order does not matter. |
-** |
-** We find experimentally that leaving the symbols in their original |
-** order (the order they appeared in the grammar file) gives the |
-** smallest parser tables in SQLite. |
-*/ |
-int Symbolcmpp(const void *_a, const void *_b) |
-{ |
- const struct symbol *a = *(const struct symbol **) _a; |
- const struct symbol *b = *(const struct symbol **) _b; |
- int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1; |
- int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1; |
- return i1==i2 ? a->index - b->index : i1 - i2; |
-} |
- |
-/* There is one instance of the following structure for each |
-** associative array of type "x2". |
-*/ |
-struct s_x2 { |
- int size; /* The number of available slots. */ |
- /* Must be a power of 2 greater than or */ |
- /* equal to 1 */ |
- int count; /* Number of currently slots filled */ |
- struct s_x2node *tbl; /* The data stored here */ |
- struct s_x2node **ht; /* Hash table for lookups */ |
-}; |
- |
-/* There is one instance of this structure for every data element |
-** in an associative array of type "x2". |
-*/ |
-typedef struct s_x2node { |
- struct symbol *data; /* The data */ |
- const char *key; /* The key */ |
- struct s_x2node *next; /* Next entry with the same hash */ |
- struct s_x2node **from; /* Previous link */ |
-} x2node; |
- |
-/* There is only one instance of the array, which is the following */ |
-static struct s_x2 *x2a; |
- |
-/* Allocate a new associative array */ |
-void Symbol_init(){ |
- if( x2a ) return; |
- x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); |
- if( x2a ){ |
- x2a->size = 128; |
- x2a->count = 0; |
- x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*)); |
- if( x2a->tbl==0 ){ |
- free(x2a); |
- x2a = 0; |
- }else{ |
- int i; |
- x2a->ht = (x2node**)&(x2a->tbl[128]); |
- for(i=0; i<128; i++) x2a->ht[i] = 0; |
- } |
- } |
-} |
-/* Insert a new record into the array. Return TRUE if successful. |
-** Prior data with the same key is NOT overwritten */ |
-int Symbol_insert(struct symbol *data, const char *key) |
-{ |
- x2node *np; |
- unsigned h; |
- unsigned ph; |
- |
- if( x2a==0 ) return 0; |
- ph = strhash(key); |
- h = ph & (x2a->size-1); |
- np = x2a->ht[h]; |
- while( np ){ |
- if( strcmp(np->key,key)==0 ){ |
- /* An existing entry with the same key is found. */ |
- /* Fail because overwrite is not allows. */ |
- return 0; |
- } |
- np = np->next; |
- } |
- if( x2a->count>=x2a->size ){ |
- /* Need to make the hash table bigger */ |
- int i,size; |
- struct s_x2 array; |
- array.size = size = x2a->size*2; |
- array.count = x2a->count; |
- array.tbl = (x2node*)calloc(size, sizeof(x2node) + sizeof(x2node*)); |
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
- array.ht = (x2node**)&(array.tbl[size]); |
- for(i=0; i<size; i++) array.ht[i] = 0; |
- for(i=0; i<x2a->count; i++){ |
- x2node *oldnp, *newnp; |
- oldnp = &(x2a->tbl[i]); |
- h = strhash(oldnp->key) & (size-1); |
- newnp = &(array.tbl[i]); |
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
- newnp->next = array.ht[h]; |
- newnp->key = oldnp->key; |
- newnp->data = oldnp->data; |
- newnp->from = &(array.ht[h]); |
- array.ht[h] = newnp; |
- } |
- free(x2a->tbl); |
- *x2a = array; |
- } |
- /* Insert the new data */ |
- h = ph & (x2a->size-1); |
- np = &(x2a->tbl[x2a->count++]); |
- np->key = key; |
- np->data = data; |
- if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); |
- np->next = x2a->ht[h]; |
- x2a->ht[h] = np; |
- np->from = &(x2a->ht[h]); |
- return 1; |
-} |
- |
-/* Return a pointer to data assigned to the given key. Return NULL |
-** if no such key. */ |
-struct symbol *Symbol_find(const char *key) |
-{ |
- unsigned h; |
- x2node *np; |
- |
- if( x2a==0 ) return 0; |
- h = strhash(key) & (x2a->size-1); |
- np = x2a->ht[h]; |
- while( np ){ |
- if( strcmp(np->key,key)==0 ) break; |
- np = np->next; |
- } |
- return np ? np->data : 0; |
-} |
- |
-/* Return the n-th data. Return NULL if n is out of range. */ |
-struct symbol *Symbol_Nth(int n) |
-{ |
- struct symbol *data; |
- if( x2a && n>0 && n<=x2a->count ){ |
- data = x2a->tbl[n-1].data; |
- }else{ |
- data = 0; |
- } |
- return data; |
-} |
- |
-/* Return the size of the array */ |
-int Symbol_count() |
-{ |
- return x2a ? x2a->count : 0; |
-} |
- |
-/* Return an array of pointers to all data in the table. |
-** The array is obtained from malloc. Return NULL if memory allocation |
-** problems, or if the array is empty. */ |
-struct symbol **Symbol_arrayof() |
-{ |
- struct symbol **array; |
- int i,size; |
- if( x2a==0 ) return 0; |
- size = x2a->count; |
- array = (struct symbol **)calloc(size, sizeof(struct symbol *)); |
- if( array ){ |
- for(i=0; i<size; i++) array[i] = x2a->tbl[i].data; |
- } |
- return array; |
-} |
- |
-/* Compare two configurations */ |
-int Configcmp(const char *_a,const char *_b) |
-{ |
- const struct config *a = (struct config *) _a; |
- const struct config *b = (struct config *) _b; |
- int x; |
- x = a->rp->index - b->rp->index; |
- if( x==0 ) x = a->dot - b->dot; |
- return x; |
-} |
- |
-/* Compare two states */ |
-PRIVATE int statecmp(struct config *a, struct config *b) |
-{ |
- int rc; |
- for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ |
- rc = a->rp->index - b->rp->index; |
- if( rc==0 ) rc = a->dot - b->dot; |
- } |
- if( rc==0 ){ |
- if( a ) rc = 1; |
- if( b ) rc = -1; |
- } |
- return rc; |
-} |
- |
-/* Hash a state */ |
-PRIVATE unsigned statehash(struct config *a) |
-{ |
- unsigned h=0; |
- while( a ){ |
- h = h*571 + a->rp->index*37 + a->dot; |
- a = a->bp; |
- } |
- return h; |
-} |
- |
-/* Allocate a new state structure */ |
-struct state *State_new() |
-{ |
- struct state *newstate; |
- newstate = (struct state *)calloc(1, sizeof(struct state) ); |
- MemoryCheck(newstate); |
- return newstate; |
-} |
- |
-/* There is one instance of the following structure for each |
-** associative array of type "x3". |
-*/ |
-struct s_x3 { |
- int size; /* The number of available slots. */ |
- /* Must be a power of 2 greater than or */ |
- /* equal to 1 */ |
- int count; /* Number of currently slots filled */ |
- struct s_x3node *tbl; /* The data stored here */ |
- struct s_x3node **ht; /* Hash table for lookups */ |
-}; |
- |
-/* There is one instance of this structure for every data element |
-** in an associative array of type "x3". |
-*/ |
-typedef struct s_x3node { |
- struct state *data; /* The data */ |
- struct config *key; /* The key */ |
- struct s_x3node *next; /* Next entry with the same hash */ |
- struct s_x3node **from; /* Previous link */ |
-} x3node; |
- |
-/* There is only one instance of the array, which is the following */ |
-static struct s_x3 *x3a; |
- |
-/* Allocate a new associative array */ |
-void State_init(){ |
- if( x3a ) return; |
- x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); |
- if( x3a ){ |
- x3a->size = 128; |
- x3a->count = 0; |
- x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*)); |
- if( x3a->tbl==0 ){ |
- free(x3a); |
- x3a = 0; |
- }else{ |
- int i; |
- x3a->ht = (x3node**)&(x3a->tbl[128]); |
- for(i=0; i<128; i++) x3a->ht[i] = 0; |
- } |
- } |
-} |
-/* Insert a new record into the array. Return TRUE if successful. |
-** Prior data with the same key is NOT overwritten */ |
-int State_insert(struct state *data, struct config *key) |
-{ |
- x3node *np; |
- unsigned h; |
- unsigned ph; |
- |
- if( x3a==0 ) return 0; |
- ph = statehash(key); |
- h = ph & (x3a->size-1); |
- np = x3a->ht[h]; |
- while( np ){ |
- if( statecmp(np->key,key)==0 ){ |
- /* An existing entry with the same key is found. */ |
- /* Fail because overwrite is not allows. */ |
- return 0; |
- } |
- np = np->next; |
- } |
- if( x3a->count>=x3a->size ){ |
- /* Need to make the hash table bigger */ |
- int i,size; |
- struct s_x3 array; |
- array.size = size = x3a->size*2; |
- array.count = x3a->count; |
- array.tbl = (x3node*)calloc(size, sizeof(x3node) + sizeof(x3node*)); |
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
- array.ht = (x3node**)&(array.tbl[size]); |
- for(i=0; i<size; i++) array.ht[i] = 0; |
- for(i=0; i<x3a->count; i++){ |
- x3node *oldnp, *newnp; |
- oldnp = &(x3a->tbl[i]); |
- h = statehash(oldnp->key) & (size-1); |
- newnp = &(array.tbl[i]); |
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
- newnp->next = array.ht[h]; |
- newnp->key = oldnp->key; |
- newnp->data = oldnp->data; |
- newnp->from = &(array.ht[h]); |
- array.ht[h] = newnp; |
- } |
- free(x3a->tbl); |
- *x3a = array; |
- } |
- /* Insert the new data */ |
- h = ph & (x3a->size-1); |
- np = &(x3a->tbl[x3a->count++]); |
- np->key = key; |
- np->data = data; |
- if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); |
- np->next = x3a->ht[h]; |
- x3a->ht[h] = np; |
- np->from = &(x3a->ht[h]); |
- return 1; |
-} |
- |
-/* Return a pointer to data assigned to the given key. Return NULL |
-** if no such key. */ |
-struct state *State_find(struct config *key) |
-{ |
- unsigned h; |
- x3node *np; |
- |
- if( x3a==0 ) return 0; |
- h = statehash(key) & (x3a->size-1); |
- np = x3a->ht[h]; |
- while( np ){ |
- if( statecmp(np->key,key)==0 ) break; |
- np = np->next; |
- } |
- return np ? np->data : 0; |
-} |
- |
-/* Return an array of pointers to all data in the table. |
-** The array is obtained from malloc. Return NULL if memory allocation |
-** problems, or if the array is empty. */ |
-struct state **State_arrayof() |
-{ |
- struct state **array; |
- int i,size; |
- if( x3a==0 ) return 0; |
- size = x3a->count; |
- array = (struct state **)calloc(size, sizeof(struct state *)); |
- if( array ){ |
- for(i=0; i<size; i++) array[i] = x3a->tbl[i].data; |
- } |
- return array; |
-} |
- |
-/* Hash a configuration */ |
-PRIVATE unsigned confighash(struct config *a) |
-{ |
- unsigned h=0; |
- h = h*571 + a->rp->index*37 + a->dot; |
- return h; |
-} |
- |
-/* There is one instance of the following structure for each |
-** associative array of type "x4". |
-*/ |
-struct s_x4 { |
- int size; /* The number of available slots. */ |
- /* Must be a power of 2 greater than or */ |
- /* equal to 1 */ |
- int count; /* Number of currently slots filled */ |
- struct s_x4node *tbl; /* The data stored here */ |
- struct s_x4node **ht; /* Hash table for lookups */ |
-}; |
- |
-/* There is one instance of this structure for every data element |
-** in an associative array of type "x4". |
-*/ |
-typedef struct s_x4node { |
- struct config *data; /* The data */ |
- struct s_x4node *next; /* Next entry with the same hash */ |
- struct s_x4node **from; /* Previous link */ |
-} x4node; |
- |
-/* There is only one instance of the array, which is the following */ |
-static struct s_x4 *x4a; |
- |
-/* Allocate a new associative array */ |
-void Configtable_init(){ |
- if( x4a ) return; |
- x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); |
- if( x4a ){ |
- x4a->size = 64; |
- x4a->count = 0; |
- x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*)); |
- if( x4a->tbl==0 ){ |
- free(x4a); |
- x4a = 0; |
- }else{ |
- int i; |
- x4a->ht = (x4node**)&(x4a->tbl[64]); |
- for(i=0; i<64; i++) x4a->ht[i] = 0; |
- } |
- } |
-} |
-/* Insert a new record into the array. Return TRUE if successful. |
-** Prior data with the same key is NOT overwritten */ |
-int Configtable_insert(struct config *data) |
-{ |
- x4node *np; |
- unsigned h; |
- unsigned ph; |
- |
- if( x4a==0 ) return 0; |
- ph = confighash(data); |
- h = ph & (x4a->size-1); |
- np = x4a->ht[h]; |
- while( np ){ |
- if( Configcmp((const char *) np->data,(const char *) data)==0 ){ |
- /* An existing entry with the same key is found. */ |
- /* Fail because overwrite is not allows. */ |
- return 0; |
- } |
- np = np->next; |
- } |
- if( x4a->count>=x4a->size ){ |
- /* Need to make the hash table bigger */ |
- int i,size; |
- struct s_x4 array; |
- array.size = size = x4a->size*2; |
- array.count = x4a->count; |
- array.tbl = (x4node*)calloc(size, sizeof(x4node) + sizeof(x4node*)); |
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
- array.ht = (x4node**)&(array.tbl[size]); |
- for(i=0; i<size; i++) array.ht[i] = 0; |
- for(i=0; i<x4a->count; i++){ |
- x4node *oldnp, *newnp; |
- oldnp = &(x4a->tbl[i]); |
- h = confighash(oldnp->data) & (size-1); |
- newnp = &(array.tbl[i]); |
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
- newnp->next = array.ht[h]; |
- newnp->data = oldnp->data; |
- newnp->from = &(array.ht[h]); |
- array.ht[h] = newnp; |
- } |
- free(x4a->tbl); |
- *x4a = array; |
- } |
- /* Insert the new data */ |
- h = ph & (x4a->size-1); |
- np = &(x4a->tbl[x4a->count++]); |
- np->data = data; |
- if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); |
- np->next = x4a->ht[h]; |
- x4a->ht[h] = np; |
- np->from = &(x4a->ht[h]); |
- return 1; |
-} |
- |
-/* Return a pointer to data assigned to the given key. Return NULL |
-** if no such key. */ |
-struct config *Configtable_find(struct config *key) |
-{ |
- int h; |
- x4node *np; |
- |
- if( x4a==0 ) return 0; |
- h = confighash(key) & (x4a->size-1); |
- np = x4a->ht[h]; |
- while( np ){ |
- if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; |
- np = np->next; |
- } |
- return np ? np->data : 0; |
-} |
- |
-/* Remove all data from the table. Pass each data to the function "f" |
-** as it is removed. ("f" may be null to avoid this step.) */ |
-void Configtable_clear(int(*f)(struct config *)) |
-{ |
- int i; |
- if( x4a==0 || x4a->count==0 ) return; |
- if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); |
- for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; |
- x4a->count = 0; |
- return; |
-} |