OLD | NEW |
| (Empty) |
1 /* | |
2 ** This file contains all sources (including headers) to the LEMON | |
3 ** LALR(1) parser generator. The sources have been combined into a | |
4 ** single file to make it easy to include LEMON in the source tree | |
5 ** and Makefile of another program. | |
6 ** | |
7 ** The author of this program disclaims copyright. | |
8 */ | |
9 #include <stdio.h> | |
10 #include <stdarg.h> | |
11 #include <string.h> | |
12 #include <ctype.h> | |
13 #include <stdlib.h> | |
14 #include <assert.h> | |
15 | |
16 #ifndef __WIN32__ | |
17 # if defined(_WIN32) || defined(WIN32) | |
18 # define __WIN32__ | |
19 # endif | |
20 #endif | |
21 | |
22 #ifdef __WIN32__ | |
23 #ifdef __cplusplus | |
24 extern "C" { | |
25 #endif | |
26 extern int access(const char *path, int mode); | |
27 #ifdef __cplusplus | |
28 } | |
29 #endif | |
30 #else | |
31 #include <unistd.h> | |
32 #endif | |
33 | |
34 /* #define PRIVATE static */ | |
35 #define PRIVATE | |
36 | |
37 #ifdef TEST | |
38 #define MAXRHS 5 /* Set low to exercise exception code */ | |
39 #else | |
40 #define MAXRHS 1000 | |
41 #endif | |
42 | |
43 static int showPrecedenceConflict = 0; | |
44 static char *msort(char*,char**,int(*)(const char*,const char*)); | |
45 | |
46 /* | |
47 ** Compilers are getting increasingly pedantic about type conversions | |
48 ** as C evolves ever closer to Ada.... To work around the latest problems | |
49 ** we have to define the following variant of strlen(). | |
50 */ | |
51 #define lemonStrlen(X) ((int)strlen(X)) | |
52 | |
53 /* | |
54 ** Compilers are starting to complain about the use of sprintf() and strcpy(), | |
55 ** saying they are unsafe. So we define our own versions of those routines too. | |
56 ** | |
57 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and | |
58 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf()
. | |
59 ** The third is a helper routine for vsnprintf() that adds texts to the end of a | |
60 ** buffer, making sure the buffer is always zero-terminated. | |
61 ** | |
62 ** The string formatter is a minimal subset of stdlib sprintf() supporting only | |
63 ** a few simply conversions: | |
64 ** | |
65 ** %d | |
66 ** %s | |
67 ** %.*s | |
68 ** | |
69 */ | |
70 static void lemon_addtext( | |
71 char *zBuf, /* The buffer to which text is added */ | |
72 int *pnUsed, /* Slots of the buffer used so far */ | |
73 const char *zIn, /* Text to add */ | |
74 int nIn, /* Bytes of text to add. -1 to use strlen() */ | |
75 int iWidth /* Field width. Negative to left justify */ | |
76 ){ | |
77 if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){} | |
78 while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; } | |
79 if( nIn==0 ) return; | |
80 memcpy(&zBuf[*pnUsed], zIn, nIn); | |
81 *pnUsed += nIn; | |
82 while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; } | |
83 zBuf[*pnUsed] = 0; | |
84 } | |
85 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){ | |
86 int i, j, k, c; | |
87 int nUsed = 0; | |
88 const char *z; | |
89 char zTemp[50]; | |
90 str[0] = 0; | |
91 for(i=j=0; (c = zFormat[i])!=0; i++){ | |
92 if( c=='%' ){ | |
93 int iWidth = 0; | |
94 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); | |
95 c = zFormat[++i]; | |
96 if( isdigit(c) || (c=='-' && isdigit(zFormat[i+1])) ){ | |
97 if( c=='-' ) i++; | |
98 while( isdigit(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0'; | |
99 if( c=='-' ) iWidth = -iWidth; | |
100 c = zFormat[i]; | |
101 } | |
102 if( c=='d' ){ | |
103 int v = va_arg(ap, int); | |
104 if( v<0 ){ | |
105 lemon_addtext(str, &nUsed, "-", 1, iWidth); | |
106 v = -v; | |
107 }else if( v==0 ){ | |
108 lemon_addtext(str, &nUsed, "0", 1, iWidth); | |
109 } | |
110 k = 0; | |
111 while( v>0 ){ | |
112 k++; | |
113 zTemp[sizeof(zTemp)-k] = (v%10) + '0'; | |
114 v /= 10; | |
115 } | |
116 lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth); | |
117 }else if( c=='s' ){ | |
118 z = va_arg(ap, const char*); | |
119 lemon_addtext(str, &nUsed, z, -1, iWidth); | |
120 }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){ | |
121 i += 2; | |
122 k = va_arg(ap, int); | |
123 z = va_arg(ap, const char*); | |
124 lemon_addtext(str, &nUsed, z, k, iWidth); | |
125 }else if( c=='%' ){ | |
126 lemon_addtext(str, &nUsed, "%", 1, 0); | |
127 }else{ | |
128 fprintf(stderr, "illegal format\n"); | |
129 exit(1); | |
130 } | |
131 j = i+1; | |
132 } | |
133 } | |
134 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); | |
135 return nUsed; | |
136 } | |
137 static int lemon_sprintf(char *str, const char *format, ...){ | |
138 va_list ap; | |
139 int rc; | |
140 va_start(ap, format); | |
141 rc = lemon_vsprintf(str, format, ap); | |
142 va_end(ap); | |
143 return rc; | |
144 } | |
145 static void lemon_strcpy(char *dest, const char *src){ | |
146 while( (*(dest++) = *(src++))!=0 ){} | |
147 } | |
148 static void lemon_strcat(char *dest, const char *src){ | |
149 while( *dest ) dest++; | |
150 lemon_strcpy(dest, src); | |
151 } | |
152 | |
153 | |
154 /* a few forward declarations... */ | |
155 struct rule; | |
156 struct lemon; | |
157 struct action; | |
158 | |
159 static struct action *Action_new(void); | |
160 static struct action *Action_sort(struct action *); | |
161 | |
162 /********** From the file "build.h" ************************************/ | |
163 void FindRulePrecedences(); | |
164 void FindFirstSets(); | |
165 void FindStates(); | |
166 void FindLinks(); | |
167 void FindFollowSets(); | |
168 void FindActions(); | |
169 | |
170 /********* From the file "configlist.h" *********************************/ | |
171 void Configlist_init(void); | |
172 struct config *Configlist_add(struct rule *, int); | |
173 struct config *Configlist_addbasis(struct rule *, int); | |
174 void Configlist_closure(struct lemon *); | |
175 void Configlist_sort(void); | |
176 void Configlist_sortbasis(void); | |
177 struct config *Configlist_return(void); | |
178 struct config *Configlist_basis(void); | |
179 void Configlist_eat(struct config *); | |
180 void Configlist_reset(void); | |
181 | |
182 /********* From the file "error.h" ***************************************/ | |
183 void ErrorMsg(const char *, int,const char *, ...); | |
184 | |
185 /****** From the file "option.h" ******************************************/ | |
186 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, | |
187 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; | |
188 struct s_options { | |
189 enum option_type type; | |
190 const char *label; | |
191 char *arg; | |
192 const char *message; | |
193 }; | |
194 int OptInit(char**,struct s_options*,FILE*); | |
195 int OptNArgs(void); | |
196 char *OptArg(int); | |
197 void OptErr(int); | |
198 void OptPrint(void); | |
199 | |
200 /******** From the file "parse.h" *****************************************/ | |
201 void Parse(struct lemon *lemp); | |
202 | |
203 /********* From the file "plink.h" ***************************************/ | |
204 struct plink *Plink_new(void); | |
205 void Plink_add(struct plink **, struct config *); | |
206 void Plink_copy(struct plink **, struct plink *); | |
207 void Plink_delete(struct plink *); | |
208 | |
209 /********** From the file "report.h" *************************************/ | |
210 void Reprint(struct lemon *); | |
211 void ReportOutput(struct lemon *); | |
212 void ReportTable(struct lemon *, int); | |
213 void ReportHeader(struct lemon *); | |
214 void CompressTables(struct lemon *); | |
215 void ResortStates(struct lemon *); | |
216 | |
217 /********** From the file "set.h" ****************************************/ | |
218 void SetSize(int); /* All sets will be of size N */ | |
219 char *SetNew(void); /* A new set for element 0..N */ | |
220 void SetFree(char*); /* Deallocate a set */ | |
221 int SetAdd(char*,int); /* Add element to a set */ | |
222 int SetUnion(char *,char *); /* A <- A U B, thru element N */ | |
223 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ | |
224 | |
225 /********** From the file "struct.h" *************************************/ | |
226 /* | |
227 ** Principal data structures for the LEMON parser generator. | |
228 */ | |
229 | |
230 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; | |
231 | |
232 /* Symbols (terminals and nonterminals) of the grammar are stored | |
233 ** in the following: */ | |
234 enum symbol_type { | |
235 TERMINAL, | |
236 NONTERMINAL, | |
237 MULTITERMINAL | |
238 }; | |
239 enum e_assoc { | |
240 LEFT, | |
241 RIGHT, | |
242 NONE, | |
243 UNK | |
244 }; | |
245 struct symbol { | |
246 const char *name; /* Name of the symbol */ | |
247 int index; /* Index number for this symbol */ | |
248 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ | |
249 struct rule *rule; /* Linked list of rules of this (if an NT) */ | |
250 struct symbol *fallback; /* fallback token in case this token doesn't parse */ | |
251 int prec; /* Precedence if defined (-1 otherwise) */ | |
252 enum e_assoc assoc; /* Associativity if precedence is defined */ | |
253 char *firstset; /* First-set for all rules of this symbol */ | |
254 Boolean lambda; /* True if NT and can generate an empty string */ | |
255 int useCnt; /* Number of times used */ | |
256 char *destructor; /* Code which executes whenever this symbol is | |
257 ** popped from the stack during error processing */ | |
258 int destLineno; /* Line number for start of destructor */ | |
259 char *datatype; /* The data type of information held by this | |
260 ** object. Only used if type==NONTERMINAL */ | |
261 int dtnum; /* The data type number. In the parser, the value | |
262 ** stack is a union. The .yy%d element of this | |
263 ** union is the correct data type for this object */ | |
264 /* The following fields are used by MULTITERMINALs only */ | |
265 int nsubsym; /* Number of constituent symbols in the MULTI */ | |
266 struct symbol **subsym; /* Array of constituent symbols */ | |
267 }; | |
268 | |
269 /* Each production rule in the grammar is stored in the following | |
270 ** structure. */ | |
271 struct rule { | |
272 struct symbol *lhs; /* Left-hand side of the rule */ | |
273 const char *lhsalias; /* Alias for the LHS (NULL if none) */ | |
274 int lhsStart; /* True if left-hand side is the start symbol */ | |
275 int ruleline; /* Line number for the rule */ | |
276 int nrhs; /* Number of RHS symbols */ | |
277 struct symbol **rhs; /* The RHS symbols */ | |
278 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ | |
279 int line; /* Line number at which code begins */ | |
280 const char *code; /* The code executed when this rule is reduced */ | |
281 struct symbol *precsym; /* Precedence symbol for this rule */ | |
282 int index; /* An index number for this rule */ | |
283 Boolean canReduce; /* True if this rule is ever reduced */ | |
284 struct rule *nextlhs; /* Next rule with the same LHS */ | |
285 struct rule *next; /* Next rule in the global list */ | |
286 }; | |
287 | |
288 /* A configuration is a production rule of the grammar together with | |
289 ** a mark (dot) showing how much of that rule has been processed so far. | |
290 ** Configurations also contain a follow-set which is a list of terminal | |
291 ** symbols which are allowed to immediately follow the end of the rule. | |
292 ** Every configuration is recorded as an instance of the following: */ | |
293 enum cfgstatus { | |
294 COMPLETE, | |
295 INCOMPLETE | |
296 }; | |
297 struct config { | |
298 struct rule *rp; /* The rule upon which the configuration is based */ | |
299 int dot; /* The parse point */ | |
300 char *fws; /* Follow-set for this configuration only */ | |
301 struct plink *fplp; /* Follow-set forward propagation links */ | |
302 struct plink *bplp; /* Follow-set backwards propagation links */ | |
303 struct state *stp; /* Pointer to state which contains this */ | |
304 enum cfgstatus status; /* used during followset and shift computations */ | |
305 struct config *next; /* Next configuration in the state */ | |
306 struct config *bp; /* The next basis configuration */ | |
307 }; | |
308 | |
309 enum e_action { | |
310 SHIFT, | |
311 ACCEPT, | |
312 REDUCE, | |
313 ERROR, | |
314 SSCONFLICT, /* A shift/shift conflict */ | |
315 SRCONFLICT, /* Was a reduce, but part of a conflict */ | |
316 RRCONFLICT, /* Was a reduce, but part of a conflict */ | |
317 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ | |
318 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ | |
319 NOT_USED /* Deleted by compression */ | |
320 }; | |
321 | |
322 /* Every shift or reduce operation is stored as one of the following */ | |
323 struct action { | |
324 struct symbol *sp; /* The look-ahead symbol */ | |
325 enum e_action type; | |
326 union { | |
327 struct state *stp; /* The new state, if a shift */ | |
328 struct rule *rp; /* The rule, if a reduce */ | |
329 } x; | |
330 struct action *next; /* Next action for this state */ | |
331 struct action *collide; /* Next action with the same hash */ | |
332 }; | |
333 | |
334 /* Each state of the generated parser's finite state machine | |
335 ** is encoded as an instance of the following structure. */ | |
336 struct state { | |
337 struct config *bp; /* The basis configurations for this state */ | |
338 struct config *cfp; /* All configurations in this set */ | |
339 int statenum; /* Sequential number for this state */ | |
340 struct action *ap; /* Array of actions for this state */ | |
341 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ | |
342 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ | |
343 int iDflt; /* Default action */ | |
344 }; | |
345 #define NO_OFFSET (-2147483647) | |
346 | |
347 /* A followset propagation link indicates that the contents of one | |
348 ** configuration followset should be propagated to another whenever | |
349 ** the first changes. */ | |
350 struct plink { | |
351 struct config *cfp; /* The configuration to which linked */ | |
352 struct plink *next; /* The next propagate link */ | |
353 }; | |
354 | |
355 /* The state vector for the entire parser generator is recorded as | |
356 ** follows. (LEMON uses no global variables and makes little use of | |
357 ** static variables. Fields in the following structure can be thought | |
358 ** of as begin global variables in the program.) */ | |
359 struct lemon { | |
360 struct state **sorted; /* Table of states sorted by state number */ | |
361 struct rule *rule; /* List of all rules */ | |
362 int nstate; /* Number of states */ | |
363 int nrule; /* Number of rules */ | |
364 int nsymbol; /* Number of terminal and nonterminal symbols */ | |
365 int nterminal; /* Number of terminal symbols */ | |
366 struct symbol **symbols; /* Sorted array of pointers to symbols */ | |
367 int errorcnt; /* Number of errors */ | |
368 struct symbol *errsym; /* The error symbol */ | |
369 struct symbol *wildcard; /* Token that matches anything */ | |
370 char *name; /* Name of the generated parser */ | |
371 char *arg; /* Declaration of the 3th argument to parser */ | |
372 char *tokentype; /* Type of terminal symbols in the parser stack */ | |
373 char *vartype; /* The default type of non-terminal symbols */ | |
374 char *start; /* Name of the start symbol for the grammar */ | |
375 char *stacksize; /* Size of the parser stack */ | |
376 char *include; /* Code to put at the start of the C file */ | |
377 char *error; /* Code to execute when an error is seen */ | |
378 char *overflow; /* Code to execute on a stack overflow */ | |
379 char *failure; /* Code to execute on parser failure */ | |
380 char *accept; /* Code to execute when the parser excepts */ | |
381 char *extracode; /* Code appended to the generated file */ | |
382 char *tokendest; /* Code to execute to destroy token data */ | |
383 char *vardest; /* Code for the default non-terminal destructor */ | |
384 char *filename; /* Name of the input file */ | |
385 char *outname; /* Name of the current output file */ | |
386 char *tokenprefix; /* A prefix added to token names in the .h file */ | |
387 int nconflict; /* Number of parsing conflicts */ | |
388 int tablesize; /* Size of the parse tables */ | |
389 int basisflag; /* Print only basis configurations */ | |
390 int has_fallback; /* True if any %fallback is seen in the grammar */ | |
391 int nolinenosflag; /* True if #line statements should not be printed */ | |
392 char *argv0; /* Name of the program */ | |
393 }; | |
394 | |
395 #define MemoryCheck(X) if((X)==0){ \ | |
396 extern void memory_error(); \ | |
397 memory_error(); \ | |
398 } | |
399 | |
400 /**************** From the file "table.h" *********************************/ | |
401 /* | |
402 ** All code in this file has been automatically generated | |
403 ** from a specification in the file | |
404 ** "table.q" | |
405 ** by the associative array code building program "aagen". | |
406 ** Do not edit this file! Instead, edit the specification | |
407 ** file, then rerun aagen. | |
408 */ | |
409 /* | |
410 ** Code for processing tables in the LEMON parser generator. | |
411 */ | |
412 /* Routines for handling a strings */ | |
413 | |
414 const char *Strsafe(const char *); | |
415 | |
416 void Strsafe_init(void); | |
417 int Strsafe_insert(const char *); | |
418 const char *Strsafe_find(const char *); | |
419 | |
420 /* Routines for handling symbols of the grammar */ | |
421 | |
422 struct symbol *Symbol_new(const char *); | |
423 int Symbolcmpp(const void *, const void *); | |
424 void Symbol_init(void); | |
425 int Symbol_insert(struct symbol *, const char *); | |
426 struct symbol *Symbol_find(const char *); | |
427 struct symbol *Symbol_Nth(int); | |
428 int Symbol_count(void); | |
429 struct symbol **Symbol_arrayof(void); | |
430 | |
431 /* Routines to manage the state table */ | |
432 | |
433 int Configcmp(const char *, const char *); | |
434 struct state *State_new(void); | |
435 void State_init(void); | |
436 int State_insert(struct state *, struct config *); | |
437 struct state *State_find(struct config *); | |
438 struct state **State_arrayof(/* */); | |
439 | |
440 /* Routines used for efficiency in Configlist_add */ | |
441 | |
442 void Configtable_init(void); | |
443 int Configtable_insert(struct config *); | |
444 struct config *Configtable_find(struct config *); | |
445 void Configtable_clear(int(*)(struct config *)); | |
446 | |
447 /****************** From the file "action.c" *******************************/ | |
448 /* | |
449 ** Routines processing parser actions in the LEMON parser generator. | |
450 */ | |
451 | |
452 /* Allocate a new parser action */ | |
453 static struct action *Action_new(void){ | |
454 static struct action *freelist = 0; | |
455 struct action *newaction; | |
456 | |
457 if( freelist==0 ){ | |
458 int i; | |
459 int amt = 100; | |
460 freelist = (struct action *)calloc(amt, sizeof(struct action)); | |
461 if( freelist==0 ){ | |
462 fprintf(stderr,"Unable to allocate memory for a new parser action."); | |
463 exit(1); | |
464 } | |
465 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; | |
466 freelist[amt-1].next = 0; | |
467 } | |
468 newaction = freelist; | |
469 freelist = freelist->next; | |
470 return newaction; | |
471 } | |
472 | |
473 /* Compare two actions for sorting purposes. Return negative, zero, or | |
474 ** positive if the first action is less than, equal to, or greater than | |
475 ** the first | |
476 */ | |
477 static int actioncmp( | |
478 struct action *ap1, | |
479 struct action *ap2 | |
480 ){ | |
481 int rc; | |
482 rc = ap1->sp->index - ap2->sp->index; | |
483 if( rc==0 ){ | |
484 rc = (int)ap1->type - (int)ap2->type; | |
485 } | |
486 if( rc==0 && ap1->type==REDUCE ){ | |
487 rc = ap1->x.rp->index - ap2->x.rp->index; | |
488 } | |
489 if( rc==0 ){ | |
490 rc = (int) (ap2 - ap1); | |
491 } | |
492 return rc; | |
493 } | |
494 | |
495 /* Sort parser actions */ | |
496 static struct action *Action_sort( | |
497 struct action *ap | |
498 ){ | |
499 ap = (struct action *)msort((char *)ap,(char **)&ap->next, | |
500 (int(*)(const char*,const char*))actioncmp); | |
501 return ap; | |
502 } | |
503 | |
504 void Action_add( | |
505 struct action **app, | |
506 enum e_action type, | |
507 struct symbol *sp, | |
508 char *arg | |
509 ){ | |
510 struct action *newaction; | |
511 newaction = Action_new(); | |
512 newaction->next = *app; | |
513 *app = newaction; | |
514 newaction->type = type; | |
515 newaction->sp = sp; | |
516 if( type==SHIFT ){ | |
517 newaction->x.stp = (struct state *)arg; | |
518 }else{ | |
519 newaction->x.rp = (struct rule *)arg; | |
520 } | |
521 } | |
522 /********************** New code to implement the "acttab" module ***********/ | |
523 /* | |
524 ** This module implements routines use to construct the yy_action[] table. | |
525 */ | |
526 | |
527 /* | |
528 ** The state of the yy_action table under construction is an instance of | |
529 ** the following structure. | |
530 ** | |
531 ** The yy_action table maps the pair (state_number, lookahead) into an | |
532 ** action_number. The table is an array of integers pairs. The state_number | |
533 ** determines an initial offset into the yy_action array. The lookahead | |
534 ** value is then added to this initial offset to get an index X into the | |
535 ** yy_action array. If the aAction[X].lookahead equals the value of the | |
536 ** of the lookahead input, then the value of the action_number output is | |
537 ** aAction[X].action. If the lookaheads do not match then the | |
538 ** default action for the state_number is returned. | |
539 ** | |
540 ** All actions associated with a single state_number are first entered | |
541 ** into aLookahead[] using multiple calls to acttab_action(). Then the | |
542 ** actions for that single state_number are placed into the aAction[] | |
543 ** array with a single call to acttab_insert(). The acttab_insert() call | |
544 ** also resets the aLookahead[] array in preparation for the next | |
545 ** state number. | |
546 */ | |
547 struct lookahead_action { | |
548 int lookahead; /* Value of the lookahead token */ | |
549 int action; /* Action to take on the given lookahead */ | |
550 }; | |
551 typedef struct acttab acttab; | |
552 struct acttab { | |
553 int nAction; /* Number of used slots in aAction[] */ | |
554 int nActionAlloc; /* Slots allocated for aAction[] */ | |
555 struct lookahead_action | |
556 *aAction, /* The yy_action[] table under construction */ | |
557 *aLookahead; /* A single new transaction set */ | |
558 int mnLookahead; /* Minimum aLookahead[].lookahead */ | |
559 int mnAction; /* Action associated with mnLookahead */ | |
560 int mxLookahead; /* Maximum aLookahead[].lookahead */ | |
561 int nLookahead; /* Used slots in aLookahead[] */ | |
562 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ | |
563 }; | |
564 | |
565 /* Return the number of entries in the yy_action table */ | |
566 #define acttab_size(X) ((X)->nAction) | |
567 | |
568 /* The value for the N-th entry in yy_action */ | |
569 #define acttab_yyaction(X,N) ((X)->aAction[N].action) | |
570 | |
571 /* The value for the N-th entry in yy_lookahead */ | |
572 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) | |
573 | |
574 /* Free all memory associated with the given acttab */ | |
575 void acttab_free(acttab *p){ | |
576 free( p->aAction ); | |
577 free( p->aLookahead ); | |
578 free( p ); | |
579 } | |
580 | |
581 /* Allocate a new acttab structure */ | |
582 acttab *acttab_alloc(void){ | |
583 acttab *p = (acttab *) calloc( 1, sizeof(*p) ); | |
584 if( p==0 ){ | |
585 fprintf(stderr,"Unable to allocate memory for a new acttab."); | |
586 exit(1); | |
587 } | |
588 memset(p, 0, sizeof(*p)); | |
589 return p; | |
590 } | |
591 | |
592 /* Add a new action to the current transaction set. | |
593 ** | |
594 ** This routine is called once for each lookahead for a particular | |
595 ** state. | |
596 */ | |
597 void acttab_action(acttab *p, int lookahead, int action){ | |
598 if( p->nLookahead>=p->nLookaheadAlloc ){ | |
599 p->nLookaheadAlloc += 25; | |
600 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, | |
601 sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); | |
602 if( p->aLookahead==0 ){ | |
603 fprintf(stderr,"malloc failed\n"); | |
604 exit(1); | |
605 } | |
606 } | |
607 if( p->nLookahead==0 ){ | |
608 p->mxLookahead = lookahead; | |
609 p->mnLookahead = lookahead; | |
610 p->mnAction = action; | |
611 }else{ | |
612 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; | |
613 if( p->mnLookahead>lookahead ){ | |
614 p->mnLookahead = lookahead; | |
615 p->mnAction = action; | |
616 } | |
617 } | |
618 p->aLookahead[p->nLookahead].lookahead = lookahead; | |
619 p->aLookahead[p->nLookahead].action = action; | |
620 p->nLookahead++; | |
621 } | |
622 | |
623 /* | |
624 ** Add the transaction set built up with prior calls to acttab_action() | |
625 ** into the current action table. Then reset the transaction set back | |
626 ** to an empty set in preparation for a new round of acttab_action() calls. | |
627 ** | |
628 ** Return the offset into the action table of the new transaction. | |
629 */ | |
630 int acttab_insert(acttab *p){ | |
631 int i, j, k, n; | |
632 assert( p->nLookahead>0 ); | |
633 | |
634 /* Make sure we have enough space to hold the expanded action table | |
635 ** in the worst case. The worst case occurs if the transaction set | |
636 ** must be appended to the current action table | |
637 */ | |
638 n = p->mxLookahead + 1; | |
639 if( p->nAction + n >= p->nActionAlloc ){ | |
640 int oldAlloc = p->nActionAlloc; | |
641 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; | |
642 p->aAction = (struct lookahead_action *) realloc( p->aAction, | |
643 sizeof(p->aAction[0])*p->nActionAlloc); | |
644 if( p->aAction==0 ){ | |
645 fprintf(stderr,"malloc failed\n"); | |
646 exit(1); | |
647 } | |
648 for(i=oldAlloc; i<p->nActionAlloc; i++){ | |
649 p->aAction[i].lookahead = -1; | |
650 p->aAction[i].action = -1; | |
651 } | |
652 } | |
653 | |
654 /* Scan the existing action table looking for an offset that is a | |
655 ** duplicate of the current transaction set. Fall out of the loop | |
656 ** if and when the duplicate is found. | |
657 ** | |
658 ** i is the index in p->aAction[] where p->mnLookahead is inserted. | |
659 */ | |
660 for(i=p->nAction-1; i>=0; i--){ | |
661 if( p->aAction[i].lookahead==p->mnLookahead ){ | |
662 /* All lookaheads and actions in the aLookahead[] transaction | |
663 ** must match against the candidate aAction[i] entry. */ | |
664 if( p->aAction[i].action!=p->mnAction ) continue; | |
665 for(j=0; j<p->nLookahead; j++){ | |
666 k = p->aLookahead[j].lookahead - p->mnLookahead + i; | |
667 if( k<0 || k>=p->nAction ) break; | |
668 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; | |
669 if( p->aLookahead[j].action!=p->aAction[k].action ) break; | |
670 } | |
671 if( j<p->nLookahead ) continue; | |
672 | |
673 /* No possible lookahead value that is not in the aLookahead[] | |
674 ** transaction is allowed to match aAction[i] */ | |
675 n = 0; | |
676 for(j=0; j<p->nAction; j++){ | |
677 if( p->aAction[j].lookahead<0 ) continue; | |
678 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; | |
679 } | |
680 if( n==p->nLookahead ){ | |
681 break; /* An exact match is found at offset i */ | |
682 } | |
683 } | |
684 } | |
685 | |
686 /* If no existing offsets exactly match the current transaction, find an | |
687 ** an empty offset in the aAction[] table in which we can add the | |
688 ** aLookahead[] transaction. | |
689 */ | |
690 if( i<0 ){ | |
691 /* Look for holes in the aAction[] table that fit the current | |
692 ** aLookahead[] transaction. Leave i set to the offset of the hole. | |
693 ** If no holes are found, i is left at p->nAction, which means the | |
694 ** transaction will be appended. */ | |
695 for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){ | |
696 if( p->aAction[i].lookahead<0 ){ | |
697 for(j=0; j<p->nLookahead; j++){ | |
698 k = p->aLookahead[j].lookahead - p->mnLookahead + i; | |
699 if( k<0 ) break; | |
700 if( p->aAction[k].lookahead>=0 ) break; | |
701 } | |
702 if( j<p->nLookahead ) continue; | |
703 for(j=0; j<p->nAction; j++){ | |
704 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; | |
705 } | |
706 if( j==p->nAction ){ | |
707 break; /* Fits in empty slots */ | |
708 } | |
709 } | |
710 } | |
711 } | |
712 /* Insert transaction set at index i. */ | |
713 for(j=0; j<p->nLookahead; j++){ | |
714 k = p->aLookahead[j].lookahead - p->mnLookahead + i; | |
715 p->aAction[k] = p->aLookahead[j]; | |
716 if( k>=p->nAction ) p->nAction = k+1; | |
717 } | |
718 p->nLookahead = 0; | |
719 | |
720 /* Return the offset that is added to the lookahead in order to get the | |
721 ** index into yy_action of the action */ | |
722 return i - p->mnLookahead; | |
723 } | |
724 | |
725 /********************** From the file "build.c" *****************************/ | |
726 /* | |
727 ** Routines to construction the finite state machine for the LEMON | |
728 ** parser generator. | |
729 */ | |
730 | |
731 /* Find a precedence symbol of every rule in the grammar. | |
732 ** | |
733 ** Those rules which have a precedence symbol coded in the input | |
734 ** grammar using the "[symbol]" construct will already have the | |
735 ** rp->precsym field filled. Other rules take as their precedence | |
736 ** symbol the first RHS symbol with a defined precedence. If there | |
737 ** are not RHS symbols with a defined precedence, the precedence | |
738 ** symbol field is left blank. | |
739 */ | |
740 void FindRulePrecedences(struct lemon *xp) | |
741 { | |
742 struct rule *rp; | |
743 for(rp=xp->rule; rp; rp=rp->next){ | |
744 if( rp->precsym==0 ){ | |
745 int i, j; | |
746 for(i=0; i<rp->nrhs && rp->precsym==0; i++){ | |
747 struct symbol *sp = rp->rhs[i]; | |
748 if( sp->type==MULTITERMINAL ){ | |
749 for(j=0; j<sp->nsubsym; j++){ | |
750 if( sp->subsym[j]->prec>=0 ){ | |
751 rp->precsym = sp->subsym[j]; | |
752 break; | |
753 } | |
754 } | |
755 }else if( sp->prec>=0 ){ | |
756 rp->precsym = rp->rhs[i]; | |
757 } | |
758 } | |
759 } | |
760 } | |
761 return; | |
762 } | |
763 | |
764 /* Find all nonterminals which will generate the empty string. | |
765 ** Then go back and compute the first sets of every nonterminal. | |
766 ** The first set is the set of all terminal symbols which can begin | |
767 ** a string generated by that nonterminal. | |
768 */ | |
769 void FindFirstSets(struct lemon *lemp) | |
770 { | |
771 int i, j; | |
772 struct rule *rp; | |
773 int progress; | |
774 | |
775 for(i=0; i<lemp->nsymbol; i++){ | |
776 lemp->symbols[i]->lambda = LEMON_FALSE; | |
777 } | |
778 for(i=lemp->nterminal; i<lemp->nsymbol; i++){ | |
779 lemp->symbols[i]->firstset = SetNew(); | |
780 } | |
781 | |
782 /* First compute all lambdas */ | |
783 do{ | |
784 progress = 0; | |
785 for(rp=lemp->rule; rp; rp=rp->next){ | |
786 if( rp->lhs->lambda ) continue; | |
787 for(i=0; i<rp->nrhs; i++){ | |
788 struct symbol *sp = rp->rhs[i]; | |
789 assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE ); | |
790 if( sp->lambda==LEMON_FALSE ) break; | |
791 } | |
792 if( i==rp->nrhs ){ | |
793 rp->lhs->lambda = LEMON_TRUE; | |
794 progress = 1; | |
795 } | |
796 } | |
797 }while( progress ); | |
798 | |
799 /* Now compute all first sets */ | |
800 do{ | |
801 struct symbol *s1, *s2; | |
802 progress = 0; | |
803 for(rp=lemp->rule; rp; rp=rp->next){ | |
804 s1 = rp->lhs; | |
805 for(i=0; i<rp->nrhs; i++){ | |
806 s2 = rp->rhs[i]; | |
807 if( s2->type==TERMINAL ){ | |
808 progress += SetAdd(s1->firstset,s2->index); | |
809 break; | |
810 }else if( s2->type==MULTITERMINAL ){ | |
811 for(j=0; j<s2->nsubsym; j++){ | |
812 progress += SetAdd(s1->firstset,s2->subsym[j]->index); | |
813 } | |
814 break; | |
815 }else if( s1==s2 ){ | |
816 if( s1->lambda==LEMON_FALSE ) break; | |
817 }else{ | |
818 progress += SetUnion(s1->firstset,s2->firstset); | |
819 if( s2->lambda==LEMON_FALSE ) break; | |
820 } | |
821 } | |
822 } | |
823 }while( progress ); | |
824 return; | |
825 } | |
826 | |
827 /* Compute all LR(0) states for the grammar. Links | |
828 ** are added to between some states so that the LR(1) follow sets | |
829 ** can be computed later. | |
830 */ | |
831 PRIVATE struct state *getstate(struct lemon *); /* forward reference */ | |
832 void FindStates(struct lemon *lemp) | |
833 { | |
834 struct symbol *sp; | |
835 struct rule *rp; | |
836 | |
837 Configlist_init(); | |
838 | |
839 /* Find the start symbol */ | |
840 if( lemp->start ){ | |
841 sp = Symbol_find(lemp->start); | |
842 if( sp==0 ){ | |
843 ErrorMsg(lemp->filename,0, | |
844 "The specified start symbol \"%s\" is not \ | |
845 in a nonterminal of the grammar. \"%s\" will be used as the start \ | |
846 symbol instead.",lemp->start,lemp->rule->lhs->name); | |
847 lemp->errorcnt++; | |
848 sp = lemp->rule->lhs; | |
849 } | |
850 }else{ | |
851 sp = lemp->rule->lhs; | |
852 } | |
853 | |
854 /* Make sure the start symbol doesn't occur on the right-hand side of | |
855 ** any rule. Report an error if it does. (YACC would generate a new | |
856 ** start symbol in this case.) */ | |
857 for(rp=lemp->rule; rp; rp=rp->next){ | |
858 int i; | |
859 for(i=0; i<rp->nrhs; i++){ | |
860 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ | |
861 ErrorMsg(lemp->filename,0, | |
862 "The start symbol \"%s\" occurs on the \ | |
863 right-hand side of a rule. This will result in a parser which \ | |
864 does not work properly.",sp->name); | |
865 lemp->errorcnt++; | |
866 } | |
867 } | |
868 } | |
869 | |
870 /* The basis configuration set for the first state | |
871 ** is all rules which have the start symbol as their | |
872 ** left-hand side */ | |
873 for(rp=sp->rule; rp; rp=rp->nextlhs){ | |
874 struct config *newcfp; | |
875 rp->lhsStart = 1; | |
876 newcfp = Configlist_addbasis(rp,0); | |
877 SetAdd(newcfp->fws,0); | |
878 } | |
879 | |
880 /* Compute the first state. All other states will be | |
881 ** computed automatically during the computation of the first one. | |
882 ** The returned pointer to the first state is not used. */ | |
883 (void)getstate(lemp); | |
884 return; | |
885 } | |
886 | |
887 /* Return a pointer to a state which is described by the configuration | |
888 ** list which has been built from calls to Configlist_add. | |
889 */ | |
890 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ | |
891 PRIVATE struct state *getstate(struct lemon *lemp) | |
892 { | |
893 struct config *cfp, *bp; | |
894 struct state *stp; | |
895 | |
896 /* Extract the sorted basis of the new state. The basis was constructed | |
897 ** by prior calls to "Configlist_addbasis()". */ | |
898 Configlist_sortbasis(); | |
899 bp = Configlist_basis(); | |
900 | |
901 /* Get a state with the same basis */ | |
902 stp = State_find(bp); | |
903 if( stp ){ | |
904 /* A state with the same basis already exists! Copy all the follow-set | |
905 ** propagation links from the state under construction into the | |
906 ** preexisting state, then return a pointer to the preexisting state */ | |
907 struct config *x, *y; | |
908 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ | |
909 Plink_copy(&y->bplp,x->bplp); | |
910 Plink_delete(x->fplp); | |
911 x->fplp = x->bplp = 0; | |
912 } | |
913 cfp = Configlist_return(); | |
914 Configlist_eat(cfp); | |
915 }else{ | |
916 /* This really is a new state. Construct all the details */ | |
917 Configlist_closure(lemp); /* Compute the configuration closure */ | |
918 Configlist_sort(); /* Sort the configuration closure */ | |
919 cfp = Configlist_return(); /* Get a pointer to the config list */ | |
920 stp = State_new(); /* A new state structure */ | |
921 MemoryCheck(stp); | |
922 stp->bp = bp; /* Remember the configuration basis */ | |
923 stp->cfp = cfp; /* Remember the configuration closure */ | |
924 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ | |
925 stp->ap = 0; /* No actions, yet. */ | |
926 State_insert(stp,stp->bp); /* Add to the state table */ | |
927 buildshifts(lemp,stp); /* Recursively compute successor states */ | |
928 } | |
929 return stp; | |
930 } | |
931 | |
932 /* | |
933 ** Return true if two symbols are the same. | |
934 */ | |
935 int same_symbol(struct symbol *a, struct symbol *b) | |
936 { | |
937 int i; | |
938 if( a==b ) return 1; | |
939 if( a->type!=MULTITERMINAL ) return 0; | |
940 if( b->type!=MULTITERMINAL ) return 0; | |
941 if( a->nsubsym!=b->nsubsym ) return 0; | |
942 for(i=0; i<a->nsubsym; i++){ | |
943 if( a->subsym[i]!=b->subsym[i] ) return 0; | |
944 } | |
945 return 1; | |
946 } | |
947 | |
948 /* Construct all successor states to the given state. A "successor" | |
949 ** state is any state which can be reached by a shift action. | |
950 */ | |
951 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) | |
952 { | |
953 struct config *cfp; /* For looping thru the config closure of "stp" */ | |
954 struct config *bcfp; /* For the inner loop on config closure of "stp" */ | |
955 struct config *newcfg; /* */ | |
956 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ | |
957 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ | |
958 struct state *newstp; /* A pointer to a successor state */ | |
959 | |
960 /* Each configuration becomes complete after it contibutes to a successor | |
961 ** state. Initially, all configurations are incomplete */ | |
962 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; | |
963 | |
964 /* Loop through all configurations of the state "stp" */ | |
965 for(cfp=stp->cfp; cfp; cfp=cfp->next){ | |
966 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ | |
967 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ | |
968 Configlist_reset(); /* Reset the new config set */ | |
969 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ | |
970 | |
971 /* For every configuration in the state "stp" which has the symbol "sp" | |
972 ** following its dot, add the same configuration to the basis set under | |
973 ** construction but with the dot shifted one symbol to the right. */ | |
974 for(bcfp=cfp; bcfp; bcfp=bcfp->next){ | |
975 if( bcfp->status==COMPLETE ) continue; /* Already used */ | |
976 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ | |
977 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ | |
978 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ | |
979 bcfp->status = COMPLETE; /* Mark this config as used */ | |
980 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); | |
981 Plink_add(&newcfg->bplp,bcfp); | |
982 } | |
983 | |
984 /* Get a pointer to the state described by the basis configuration set | |
985 ** constructed in the preceding loop */ | |
986 newstp = getstate(lemp); | |
987 | |
988 /* The state "newstp" is reached from the state "stp" by a shift action | |
989 ** on the symbol "sp" */ | |
990 if( sp->type==MULTITERMINAL ){ | |
991 int i; | |
992 for(i=0; i<sp->nsubsym; i++){ | |
993 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); | |
994 } | |
995 }else{ | |
996 Action_add(&stp->ap,SHIFT,sp,(char *)newstp); | |
997 } | |
998 } | |
999 } | |
1000 | |
1001 /* | |
1002 ** Construct the propagation links | |
1003 */ | |
1004 void FindLinks(struct lemon *lemp) | |
1005 { | |
1006 int i; | |
1007 struct config *cfp, *other; | |
1008 struct state *stp; | |
1009 struct plink *plp; | |
1010 | |
1011 /* Housekeeping detail: | |
1012 ** Add to every propagate link a pointer back to the state to | |
1013 ** which the link is attached. */ | |
1014 for(i=0; i<lemp->nstate; i++){ | |
1015 stp = lemp->sorted[i]; | |
1016 for(cfp=stp->cfp; cfp; cfp=cfp->next){ | |
1017 cfp->stp = stp; | |
1018 } | |
1019 } | |
1020 | |
1021 /* Convert all backlinks into forward links. Only the forward | |
1022 ** links are used in the follow-set computation. */ | |
1023 for(i=0; i<lemp->nstate; i++){ | |
1024 stp = lemp->sorted[i]; | |
1025 for(cfp=stp->cfp; cfp; cfp=cfp->next){ | |
1026 for(plp=cfp->bplp; plp; plp=plp->next){ | |
1027 other = plp->cfp; | |
1028 Plink_add(&other->fplp,cfp); | |
1029 } | |
1030 } | |
1031 } | |
1032 } | |
1033 | |
1034 /* Compute all followsets. | |
1035 ** | |
1036 ** A followset is the set of all symbols which can come immediately | |
1037 ** after a configuration. | |
1038 */ | |
1039 void FindFollowSets(struct lemon *lemp) | |
1040 { | |
1041 int i; | |
1042 struct config *cfp; | |
1043 struct plink *plp; | |
1044 int progress; | |
1045 int change; | |
1046 | |
1047 for(i=0; i<lemp->nstate; i++){ | |
1048 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ | |
1049 cfp->status = INCOMPLETE; | |
1050 } | |
1051 } | |
1052 | |
1053 do{ | |
1054 progress = 0; | |
1055 for(i=0; i<lemp->nstate; i++){ | |
1056 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ | |
1057 if( cfp->status==COMPLETE ) continue; | |
1058 for(plp=cfp->fplp; plp; plp=plp->next){ | |
1059 change = SetUnion(plp->cfp->fws,cfp->fws); | |
1060 if( change ){ | |
1061 plp->cfp->status = INCOMPLETE; | |
1062 progress = 1; | |
1063 } | |
1064 } | |
1065 cfp->status = COMPLETE; | |
1066 } | |
1067 } | |
1068 }while( progress ); | |
1069 } | |
1070 | |
1071 static int resolve_conflict(struct action *,struct action *); | |
1072 | |
1073 /* Compute the reduce actions, and resolve conflicts. | |
1074 */ | |
1075 void FindActions(struct lemon *lemp) | |
1076 { | |
1077 int i,j; | |
1078 struct config *cfp; | |
1079 struct state *stp; | |
1080 struct symbol *sp; | |
1081 struct rule *rp; | |
1082 | |
1083 /* Add all of the reduce actions | |
1084 ** A reduce action is added for each element of the followset of | |
1085 ** a configuration which has its dot at the extreme right. | |
1086 */ | |
1087 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ | |
1088 stp = lemp->sorted[i]; | |
1089 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ | |
1090 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ | |
1091 for(j=0; j<lemp->nterminal; j++){ | |
1092 if( SetFind(cfp->fws,j) ){ | |
1093 /* Add a reduce action to the state "stp" which will reduce by the | |
1094 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ | |
1095 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); | |
1096 } | |
1097 } | |
1098 } | |
1099 } | |
1100 } | |
1101 | |
1102 /* Add the accepting token */ | |
1103 if( lemp->start ){ | |
1104 sp = Symbol_find(lemp->start); | |
1105 if( sp==0 ) sp = lemp->rule->lhs; | |
1106 }else{ | |
1107 sp = lemp->rule->lhs; | |
1108 } | |
1109 /* Add to the first state (which is always the starting state of the | |
1110 ** finite state machine) an action to ACCEPT if the lookahead is the | |
1111 ** start nonterminal. */ | |
1112 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); | |
1113 | |
1114 /* Resolve conflicts */ | |
1115 for(i=0; i<lemp->nstate; i++){ | |
1116 struct action *ap, *nap; | |
1117 struct state *stp; | |
1118 stp = lemp->sorted[i]; | |
1119 /* assert( stp->ap ); */ | |
1120 stp->ap = Action_sort(stp->ap); | |
1121 for(ap=stp->ap; ap && ap->next; ap=ap->next){ | |
1122 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ | |
1123 /* The two actions "ap" and "nap" have the same lookahead. | |
1124 ** Figure out which one should be used */ | |
1125 lemp->nconflict += resolve_conflict(ap,nap); | |
1126 } | |
1127 } | |
1128 } | |
1129 | |
1130 /* Report an error for each rule that can never be reduced. */ | |
1131 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; | |
1132 for(i=0; i<lemp->nstate; i++){ | |
1133 struct action *ap; | |
1134 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ | |
1135 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; | |
1136 } | |
1137 } | |
1138 for(rp=lemp->rule; rp; rp=rp->next){ | |
1139 if( rp->canReduce ) continue; | |
1140 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); | |
1141 lemp->errorcnt++; | |
1142 } | |
1143 } | |
1144 | |
1145 /* Resolve a conflict between the two given actions. If the | |
1146 ** conflict can't be resolved, return non-zero. | |
1147 ** | |
1148 ** NO LONGER TRUE: | |
1149 ** To resolve a conflict, first look to see if either action | |
1150 ** is on an error rule. In that case, take the action which | |
1151 ** is not associated with the error rule. If neither or both | |
1152 ** actions are associated with an error rule, then try to | |
1153 ** use precedence to resolve the conflict. | |
1154 ** | |
1155 ** If either action is a SHIFT, then it must be apx. This | |
1156 ** function won't work if apx->type==REDUCE and apy->type==SHIFT. | |
1157 */ | |
1158 static int resolve_conflict( | |
1159 struct action *apx, | |
1160 struct action *apy | |
1161 ){ | |
1162 struct symbol *spx, *spy; | |
1163 int errcnt = 0; | |
1164 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ | |
1165 if( apx->type==SHIFT && apy->type==SHIFT ){ | |
1166 apy->type = SSCONFLICT; | |
1167 errcnt++; | |
1168 } | |
1169 if( apx->type==SHIFT && apy->type==REDUCE ){ | |
1170 spx = apx->sp; | |
1171 spy = apy->x.rp->precsym; | |
1172 if( spy==0 || spx->prec<0 || spy->prec<0 ){ | |
1173 /* Not enough precedence information. */ | |
1174 apy->type = SRCONFLICT; | |
1175 errcnt++; | |
1176 }else if( spx->prec>spy->prec ){ /* higher precedence wins */ | |
1177 apy->type = RD_RESOLVED; | |
1178 }else if( spx->prec<spy->prec ){ | |
1179 apx->type = SH_RESOLVED; | |
1180 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ | |
1181 apy->type = RD_RESOLVED; /* associativity */ | |
1182 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ | |
1183 apx->type = SH_RESOLVED; | |
1184 }else{ | |
1185 assert( spx->prec==spy->prec && spx->assoc==NONE ); | |
1186 apx->type = ERROR; | |
1187 } | |
1188 }else if( apx->type==REDUCE && apy->type==REDUCE ){ | |
1189 spx = apx->x.rp->precsym; | |
1190 spy = apy->x.rp->precsym; | |
1191 if( spx==0 || spy==0 || spx->prec<0 || | |
1192 spy->prec<0 || spx->prec==spy->prec ){ | |
1193 apy->type = RRCONFLICT; | |
1194 errcnt++; | |
1195 }else if( spx->prec>spy->prec ){ | |
1196 apy->type = RD_RESOLVED; | |
1197 }else if( spx->prec<spy->prec ){ | |
1198 apx->type = RD_RESOLVED; | |
1199 } | |
1200 }else{ | |
1201 assert( | |
1202 apx->type==SH_RESOLVED || | |
1203 apx->type==RD_RESOLVED || | |
1204 apx->type==SSCONFLICT || | |
1205 apx->type==SRCONFLICT || | |
1206 apx->type==RRCONFLICT || | |
1207 apy->type==SH_RESOLVED || | |
1208 apy->type==RD_RESOLVED || | |
1209 apy->type==SSCONFLICT || | |
1210 apy->type==SRCONFLICT || | |
1211 apy->type==RRCONFLICT | |
1212 ); | |
1213 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before | |
1214 ** REDUCEs on the list. If we reach this point it must be because | |
1215 ** the parser conflict had already been resolved. */ | |
1216 } | |
1217 return errcnt; | |
1218 } | |
1219 /********************* From the file "configlist.c" *************************/ | |
1220 /* | |
1221 ** Routines to processing a configuration list and building a state | |
1222 ** in the LEMON parser generator. | |
1223 */ | |
1224 | |
1225 static struct config *freelist = 0; /* List of free configurations */ | |
1226 static struct config *current = 0; /* Top of list of configurations */ | |
1227 static struct config **currentend = 0; /* Last on list of configs */ | |
1228 static struct config *basis = 0; /* Top of list of basis configs */ | |
1229 static struct config **basisend = 0; /* End of list of basis configs */ | |
1230 | |
1231 /* Return a pointer to a new configuration */ | |
1232 PRIVATE struct config *newconfig(){ | |
1233 struct config *newcfg; | |
1234 if( freelist==0 ){ | |
1235 int i; | |
1236 int amt = 3; | |
1237 freelist = (struct config *)calloc( amt, sizeof(struct config) ); | |
1238 if( freelist==0 ){ | |
1239 fprintf(stderr,"Unable to allocate memory for a new configuration."); | |
1240 exit(1); | |
1241 } | |
1242 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; | |
1243 freelist[amt-1].next = 0; | |
1244 } | |
1245 newcfg = freelist; | |
1246 freelist = freelist->next; | |
1247 return newcfg; | |
1248 } | |
1249 | |
1250 /* The configuration "old" is no longer used */ | |
1251 PRIVATE void deleteconfig(struct config *old) | |
1252 { | |
1253 old->next = freelist; | |
1254 freelist = old; | |
1255 } | |
1256 | |
1257 /* Initialized the configuration list builder */ | |
1258 void Configlist_init(){ | |
1259 current = 0; | |
1260 currentend = ¤t; | |
1261 basis = 0; | |
1262 basisend = &basis; | |
1263 Configtable_init(); | |
1264 return; | |
1265 } | |
1266 | |
1267 /* Initialized the configuration list builder */ | |
1268 void Configlist_reset(){ | |
1269 current = 0; | |
1270 currentend = ¤t; | |
1271 basis = 0; | |
1272 basisend = &basis; | |
1273 Configtable_clear(0); | |
1274 return; | |
1275 } | |
1276 | |
1277 /* Add another configuration to the configuration list */ | |
1278 struct config *Configlist_add( | |
1279 struct rule *rp, /* The rule */ | |
1280 int dot /* Index into the RHS of the rule where the dot goes */ | |
1281 ){ | |
1282 struct config *cfp, model; | |
1283 | |
1284 assert( currentend!=0 ); | |
1285 model.rp = rp; | |
1286 model.dot = dot; | |
1287 cfp = Configtable_find(&model); | |
1288 if( cfp==0 ){ | |
1289 cfp = newconfig(); | |
1290 cfp->rp = rp; | |
1291 cfp->dot = dot; | |
1292 cfp->fws = SetNew(); | |
1293 cfp->stp = 0; | |
1294 cfp->fplp = cfp->bplp = 0; | |
1295 cfp->next = 0; | |
1296 cfp->bp = 0; | |
1297 *currentend = cfp; | |
1298 currentend = &cfp->next; | |
1299 Configtable_insert(cfp); | |
1300 } | |
1301 return cfp; | |
1302 } | |
1303 | |
1304 /* Add a basis configuration to the configuration list */ | |
1305 struct config *Configlist_addbasis(struct rule *rp, int dot) | |
1306 { | |
1307 struct config *cfp, model; | |
1308 | |
1309 assert( basisend!=0 ); | |
1310 assert( currentend!=0 ); | |
1311 model.rp = rp; | |
1312 model.dot = dot; | |
1313 cfp = Configtable_find(&model); | |
1314 if( cfp==0 ){ | |
1315 cfp = newconfig(); | |
1316 cfp->rp = rp; | |
1317 cfp->dot = dot; | |
1318 cfp->fws = SetNew(); | |
1319 cfp->stp = 0; | |
1320 cfp->fplp = cfp->bplp = 0; | |
1321 cfp->next = 0; | |
1322 cfp->bp = 0; | |
1323 *currentend = cfp; | |
1324 currentend = &cfp->next; | |
1325 *basisend = cfp; | |
1326 basisend = &cfp->bp; | |
1327 Configtable_insert(cfp); | |
1328 } | |
1329 return cfp; | |
1330 } | |
1331 | |
1332 /* Compute the closure of the configuration list */ | |
1333 void Configlist_closure(struct lemon *lemp) | |
1334 { | |
1335 struct config *cfp, *newcfp; | |
1336 struct rule *rp, *newrp; | |
1337 struct symbol *sp, *xsp; | |
1338 int i, dot; | |
1339 | |
1340 assert( currentend!=0 ); | |
1341 for(cfp=current; cfp; cfp=cfp->next){ | |
1342 rp = cfp->rp; | |
1343 dot = cfp->dot; | |
1344 if( dot>=rp->nrhs ) continue; | |
1345 sp = rp->rhs[dot]; | |
1346 if( sp->type==NONTERMINAL ){ | |
1347 if( sp->rule==0 && sp!=lemp->errsym ){ | |
1348 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", | |
1349 sp->name); | |
1350 lemp->errorcnt++; | |
1351 } | |
1352 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ | |
1353 newcfp = Configlist_add(newrp,0); | |
1354 for(i=dot+1; i<rp->nrhs; i++){ | |
1355 xsp = rp->rhs[i]; | |
1356 if( xsp->type==TERMINAL ){ | |
1357 SetAdd(newcfp->fws,xsp->index); | |
1358 break; | |
1359 }else if( xsp->type==MULTITERMINAL ){ | |
1360 int k; | |
1361 for(k=0; k<xsp->nsubsym; k++){ | |
1362 SetAdd(newcfp->fws, xsp->subsym[k]->index); | |
1363 } | |
1364 break; | |
1365 }else{ | |
1366 SetUnion(newcfp->fws,xsp->firstset); | |
1367 if( xsp->lambda==LEMON_FALSE ) break; | |
1368 } | |
1369 } | |
1370 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); | |
1371 } | |
1372 } | |
1373 } | |
1374 return; | |
1375 } | |
1376 | |
1377 /* Sort the configuration list */ | |
1378 void Configlist_sort(){ | |
1379 current = (struct config *)msort((char *)current,(char **)&(current->next),Con
figcmp); | |
1380 currentend = 0; | |
1381 return; | |
1382 } | |
1383 | |
1384 /* Sort the basis configuration list */ | |
1385 void Configlist_sortbasis(){ | |
1386 basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configc
mp); | |
1387 basisend = 0; | |
1388 return; | |
1389 } | |
1390 | |
1391 /* Return a pointer to the head of the configuration list and | |
1392 ** reset the list */ | |
1393 struct config *Configlist_return(){ | |
1394 struct config *old; | |
1395 old = current; | |
1396 current = 0; | |
1397 currentend = 0; | |
1398 return old; | |
1399 } | |
1400 | |
1401 /* Return a pointer to the head of the configuration list and | |
1402 ** reset the list */ | |
1403 struct config *Configlist_basis(){ | |
1404 struct config *old; | |
1405 old = basis; | |
1406 basis = 0; | |
1407 basisend = 0; | |
1408 return old; | |
1409 } | |
1410 | |
1411 /* Free all elements of the given configuration list */ | |
1412 void Configlist_eat(struct config *cfp) | |
1413 { | |
1414 struct config *nextcfp; | |
1415 for(; cfp; cfp=nextcfp){ | |
1416 nextcfp = cfp->next; | |
1417 assert( cfp->fplp==0 ); | |
1418 assert( cfp->bplp==0 ); | |
1419 if( cfp->fws ) SetFree(cfp->fws); | |
1420 deleteconfig(cfp); | |
1421 } | |
1422 return; | |
1423 } | |
1424 /***************** From the file "error.c" *********************************/ | |
1425 /* | |
1426 ** Code for printing error message. | |
1427 */ | |
1428 | |
1429 void ErrorMsg(const char *filename, int lineno, const char *format, ...){ | |
1430 va_list ap; | |
1431 fprintf(stderr, "%s:%d: ", filename, lineno); | |
1432 va_start(ap, format); | |
1433 vfprintf(stderr,format,ap); | |
1434 va_end(ap); | |
1435 fprintf(stderr, "\n"); | |
1436 } | |
1437 /**************** From the file "main.c" ************************************/ | |
1438 /* | |
1439 ** Main program file for the LEMON parser generator. | |
1440 */ | |
1441 | |
1442 /* Report an out-of-memory condition and abort. This function | |
1443 ** is used mostly by the "MemoryCheck" macro in struct.h | |
1444 */ | |
1445 void memory_error(){ | |
1446 fprintf(stderr,"Out of memory. Aborting...\n"); | |
1447 exit(1); | |
1448 } | |
1449 | |
1450 static int nDefine = 0; /* Number of -D options on the command line */ | |
1451 static char **azDefine = 0; /* Name of the -D macros */ | |
1452 | |
1453 /* This routine is called with the argument to each -D command-line option. | |
1454 ** Add the macro defined to the azDefine array. | |
1455 */ | |
1456 static void handle_D_option(char *z){ | |
1457 char **paz; | |
1458 nDefine++; | |
1459 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); | |
1460 if( azDefine==0 ){ | |
1461 fprintf(stderr,"out of memory\n"); | |
1462 exit(1); | |
1463 } | |
1464 paz = &azDefine[nDefine-1]; | |
1465 *paz = (char *) malloc( lemonStrlen(z)+1 ); | |
1466 if( *paz==0 ){ | |
1467 fprintf(stderr,"out of memory\n"); | |
1468 exit(1); | |
1469 } | |
1470 lemon_strcpy(*paz, z); | |
1471 for(z=*paz; *z && *z!='='; z++){} | |
1472 *z = 0; | |
1473 } | |
1474 | |
1475 static char *user_templatename = NULL; | |
1476 static void handle_T_option(char *z){ | |
1477 user_templatename = (char *) malloc( lemonStrlen(z)+1 ); | |
1478 if( user_templatename==0 ){ | |
1479 memory_error(); | |
1480 } | |
1481 lemon_strcpy(user_templatename, z); | |
1482 } | |
1483 | |
1484 /* The main program. Parse the command line and do it... */ | |
1485 int main(int argc, char **argv) | |
1486 { | |
1487 static int version = 0; | |
1488 static int rpflag = 0; | |
1489 static int basisflag = 0; | |
1490 static int compress = 0; | |
1491 static int quiet = 0; | |
1492 static int statistics = 0; | |
1493 static int mhflag = 0; | |
1494 static int nolinenosflag = 0; | |
1495 static int noResort = 0; | |
1496 static struct s_options options[] = { | |
1497 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, | |
1498 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, | |
1499 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, | |
1500 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, | |
1501 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, | |
1502 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, | |
1503 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, | |
1504 {OPT_FLAG, "p", (char*)&showPrecedenceConflict, | |
1505 "Show conflicts resolved by precedence rules"}, | |
1506 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, | |
1507 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, | |
1508 {OPT_FLAG, "s", (char*)&statistics, | |
1509 "Print parser stats to standard output."}, | |
1510 {OPT_FLAG, "x", (char*)&version, "Print the version number."}, | |
1511 {OPT_FLAG,0,0,0} | |
1512 }; | |
1513 int i; | |
1514 int exitcode; | |
1515 struct lemon lem; | |
1516 | |
1517 OptInit(argv,options,stderr); | |
1518 if( version ){ | |
1519 printf("Lemon version 1.0\n"); | |
1520 exit(0); | |
1521 } | |
1522 if( OptNArgs()!=1 ){ | |
1523 fprintf(stderr,"Exactly one filename argument is required.\n"); | |
1524 exit(1); | |
1525 } | |
1526 memset(&lem, 0, sizeof(lem)); | |
1527 lem.errorcnt = 0; | |
1528 | |
1529 /* Initialize the machine */ | |
1530 Strsafe_init(); | |
1531 Symbol_init(); | |
1532 State_init(); | |
1533 lem.argv0 = argv[0]; | |
1534 lem.filename = OptArg(0); | |
1535 lem.basisflag = basisflag; | |
1536 lem.nolinenosflag = nolinenosflag; | |
1537 Symbol_new("$"); | |
1538 lem.errsym = Symbol_new("error"); | |
1539 lem.errsym->useCnt = 0; | |
1540 | |
1541 /* Parse the input file */ | |
1542 Parse(&lem); | |
1543 if( lem.errorcnt ) exit(lem.errorcnt); | |
1544 if( lem.nrule==0 ){ | |
1545 fprintf(stderr,"Empty grammar.\n"); | |
1546 exit(1); | |
1547 } | |
1548 | |
1549 /* Count and index the symbols of the grammar */ | |
1550 Symbol_new("{default}"); | |
1551 lem.nsymbol = Symbol_count(); | |
1552 lem.symbols = Symbol_arrayof(); | |
1553 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; | |
1554 qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); | |
1555 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; | |
1556 while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; } | |
1557 assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 ); | |
1558 lem.nsymbol = i - 1; | |
1559 for(i=1; isupper(lem.symbols[i]->name[0]); i++); | |
1560 lem.nterminal = i; | |
1561 | |
1562 /* Generate a reprint of the grammar, if requested on the command line */ | |
1563 if( rpflag ){ | |
1564 Reprint(&lem); | |
1565 }else{ | |
1566 /* Initialize the size for all follow and first sets */ | |
1567 SetSize(lem.nterminal+1); | |
1568 | |
1569 /* Find the precedence for every production rule (that has one) */ | |
1570 FindRulePrecedences(&lem); | |
1571 | |
1572 /* Compute the lambda-nonterminals and the first-sets for every | |
1573 ** nonterminal */ | |
1574 FindFirstSets(&lem); | |
1575 | |
1576 /* Compute all LR(0) states. Also record follow-set propagation | |
1577 ** links so that the follow-set can be computed later */ | |
1578 lem.nstate = 0; | |
1579 FindStates(&lem); | |
1580 lem.sorted = State_arrayof(); | |
1581 | |
1582 /* Tie up loose ends on the propagation links */ | |
1583 FindLinks(&lem); | |
1584 | |
1585 /* Compute the follow set of every reducible configuration */ | |
1586 FindFollowSets(&lem); | |
1587 | |
1588 /* Compute the action tables */ | |
1589 FindActions(&lem); | |
1590 | |
1591 /* Compress the action tables */ | |
1592 if( compress==0 ) CompressTables(&lem); | |
1593 | |
1594 /* Reorder and renumber the states so that states with fewer choices | |
1595 ** occur at the end. This is an optimization that helps make the | |
1596 ** generated parser tables smaller. */ | |
1597 if( noResort==0 ) ResortStates(&lem); | |
1598 | |
1599 /* Generate a report of the parser generated. (the "y.output" file) */ | |
1600 if( !quiet ) ReportOutput(&lem); | |
1601 | |
1602 /* Generate the source code for the parser */ | |
1603 ReportTable(&lem, mhflag); | |
1604 | |
1605 /* Produce a header file for use by the scanner. (This step is | |
1606 ** omitted if the "-m" option is used because makeheaders will | |
1607 ** generate the file for us.) */ | |
1608 if( !mhflag ) ReportHeader(&lem); | |
1609 } | |
1610 if( statistics ){ | |
1611 printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n", | |
1612 lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule); | |
1613 printf(" %d states, %d parser table entries, %d conflicts\
n", | |
1614 lem.nstate, lem.tablesize, lem.nconflict); | |
1615 } | |
1616 if( lem.nconflict > 0 ){ | |
1617 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); | |
1618 } | |
1619 | |
1620 /* return 0 on success, 1 on failure. */ | |
1621 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; | |
1622 exit(exitcode); | |
1623 return (exitcode); | |
1624 } | |
1625 /******************** From the file "msort.c" *******************************/ | |
1626 /* | |
1627 ** A generic merge-sort program. | |
1628 ** | |
1629 ** USAGE: | |
1630 ** Let "ptr" be a pointer to some structure which is at the head of | |
1631 ** a null-terminated list. Then to sort the list call: | |
1632 ** | |
1633 ** ptr = msort(ptr,&(ptr->next),cmpfnc); | |
1634 ** | |
1635 ** In the above, "cmpfnc" is a pointer to a function which compares | |
1636 ** two instances of the structure and returns an integer, as in | |
1637 ** strcmp. The second argument is a pointer to the pointer to the | |
1638 ** second element of the linked list. This address is used to compute | |
1639 ** the offset to the "next" field within the structure. The offset to | |
1640 ** the "next" field must be constant for all structures in the list. | |
1641 ** | |
1642 ** The function returns a new pointer which is the head of the list | |
1643 ** after sorting. | |
1644 ** | |
1645 ** ALGORITHM: | |
1646 ** Merge-sort. | |
1647 */ | |
1648 | |
1649 /* | |
1650 ** Return a pointer to the next structure in the linked list. | |
1651 */ | |
1652 #define NEXT(A) (*(char**)(((char*)A)+offset)) | |
1653 | |
1654 /* | |
1655 ** Inputs: | |
1656 ** a: A sorted, null-terminated linked list. (May be null). | |
1657 ** b: A sorted, null-terminated linked list. (May be null). | |
1658 ** cmp: A pointer to the comparison function. | |
1659 ** offset: Offset in the structure to the "next" field. | |
1660 ** | |
1661 ** Return Value: | |
1662 ** A pointer to the head of a sorted list containing the elements | |
1663 ** of both a and b. | |
1664 ** | |
1665 ** Side effects: | |
1666 ** The "next" pointers for elements in the lists a and b are | |
1667 ** changed. | |
1668 */ | |
1669 static char *merge( | |
1670 char *a, | |
1671 char *b, | |
1672 int (*cmp)(const char*,const char*), | |
1673 int offset | |
1674 ){ | |
1675 char *ptr, *head; | |
1676 | |
1677 if( a==0 ){ | |
1678 head = b; | |
1679 }else if( b==0 ){ | |
1680 head = a; | |
1681 }else{ | |
1682 if( (*cmp)(a,b)<=0 ){ | |
1683 ptr = a; | |
1684 a = NEXT(a); | |
1685 }else{ | |
1686 ptr = b; | |
1687 b = NEXT(b); | |
1688 } | |
1689 head = ptr; | |
1690 while( a && b ){ | |
1691 if( (*cmp)(a,b)<=0 ){ | |
1692 NEXT(ptr) = a; | |
1693 ptr = a; | |
1694 a = NEXT(a); | |
1695 }else{ | |
1696 NEXT(ptr) = b; | |
1697 ptr = b; | |
1698 b = NEXT(b); | |
1699 } | |
1700 } | |
1701 if( a ) NEXT(ptr) = a; | |
1702 else NEXT(ptr) = b; | |
1703 } | |
1704 return head; | |
1705 } | |
1706 | |
1707 /* | |
1708 ** Inputs: | |
1709 ** list: Pointer to a singly-linked list of structures. | |
1710 ** next: Pointer to pointer to the second element of the list. | |
1711 ** cmp: A comparison function. | |
1712 ** | |
1713 ** Return Value: | |
1714 ** A pointer to the head of a sorted list containing the elements | |
1715 ** orginally in list. | |
1716 ** | |
1717 ** Side effects: | |
1718 ** The "next" pointers for elements in list are changed. | |
1719 */ | |
1720 #define LISTSIZE 30 | |
1721 static char *msort( | |
1722 char *list, | |
1723 char **next, | |
1724 int (*cmp)(const char*,const char*) | |
1725 ){ | |
1726 unsigned long offset; | |
1727 char *ep; | |
1728 char *set[LISTSIZE]; | |
1729 int i; | |
1730 offset = (unsigned long)next - (unsigned long)list; | |
1731 for(i=0; i<LISTSIZE; i++) set[i] = 0; | |
1732 while( list ){ | |
1733 ep = list; | |
1734 list = NEXT(list); | |
1735 NEXT(ep) = 0; | |
1736 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ | |
1737 ep = merge(ep,set[i],cmp,offset); | |
1738 set[i] = 0; | |
1739 } | |
1740 set[i] = ep; | |
1741 } | |
1742 ep = 0; | |
1743 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); | |
1744 return ep; | |
1745 } | |
1746 /************************ From the file "option.c" **************************/ | |
1747 static char **argv; | |
1748 static struct s_options *op; | |
1749 static FILE *errstream; | |
1750 | |
1751 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) | |
1752 | |
1753 /* | |
1754 ** Print the command line with a carrot pointing to the k-th character | |
1755 ** of the n-th field. | |
1756 */ | |
1757 static void errline(int n, int k, FILE *err) | |
1758 { | |
1759 int spcnt, i; | |
1760 if( argv[0] ) fprintf(err,"%s",argv[0]); | |
1761 spcnt = lemonStrlen(argv[0]) + 1; | |
1762 for(i=1; i<n && argv[i]; i++){ | |
1763 fprintf(err," %s",argv[i]); | |
1764 spcnt += lemonStrlen(argv[i])+1; | |
1765 } | |
1766 spcnt += k; | |
1767 for(; argv[i]; i++) fprintf(err," %s",argv[i]); | |
1768 if( spcnt<20 ){ | |
1769 fprintf(err,"\n%*s^-- here\n",spcnt,""); | |
1770 }else{ | |
1771 fprintf(err,"\n%*shere --^\n",spcnt-7,""); | |
1772 } | |
1773 } | |
1774 | |
1775 /* | |
1776 ** Return the index of the N-th non-switch argument. Return -1 | |
1777 ** if N is out of range. | |
1778 */ | |
1779 static int argindex(int n) | |
1780 { | |
1781 int i; | |
1782 int dashdash = 0; | |
1783 if( argv!=0 && *argv!=0 ){ | |
1784 for(i=1; argv[i]; i++){ | |
1785 if( dashdash || !ISOPT(argv[i]) ){ | |
1786 if( n==0 ) return i; | |
1787 n--; | |
1788 } | |
1789 if( strcmp(argv[i],"--")==0 ) dashdash = 1; | |
1790 } | |
1791 } | |
1792 return -1; | |
1793 } | |
1794 | |
1795 static char emsg[] = "Command line syntax error: "; | |
1796 | |
1797 /* | |
1798 ** Process a flag command line argument. | |
1799 */ | |
1800 static int handleflags(int i, FILE *err) | |
1801 { | |
1802 int v; | |
1803 int errcnt = 0; | |
1804 int j; | |
1805 for(j=0; op[j].label; j++){ | |
1806 if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break; | |
1807 } | |
1808 v = argv[i][0]=='-' ? 1 : 0; | |
1809 if( op[j].label==0 ){ | |
1810 if( err ){ | |
1811 fprintf(err,"%sundefined option.\n",emsg); | |
1812 errline(i,1,err); | |
1813 } | |
1814 errcnt++; | |
1815 }else if( op[j].type==OPT_FLAG ){ | |
1816 *((int*)op[j].arg) = v; | |
1817 }else if( op[j].type==OPT_FFLAG ){ | |
1818 (*(void(*)(int))(op[j].arg))(v); | |
1819 }else if( op[j].type==OPT_FSTR ){ | |
1820 (*(void(*)(char *))(op[j].arg))(&argv[i][2]); | |
1821 }else{ | |
1822 if( err ){ | |
1823 fprintf(err,"%smissing argument on switch.\n",emsg); | |
1824 errline(i,1,err); | |
1825 } | |
1826 errcnt++; | |
1827 } | |
1828 return errcnt; | |
1829 } | |
1830 | |
1831 /* | |
1832 ** Process a command line switch which has an argument. | |
1833 */ | |
1834 static int handleswitch(int i, FILE *err) | |
1835 { | |
1836 int lv = 0; | |
1837 double dv = 0.0; | |
1838 char *sv = 0, *end; | |
1839 char *cp; | |
1840 int j; | |
1841 int errcnt = 0; | |
1842 cp = strchr(argv[i],'='); | |
1843 assert( cp!=0 ); | |
1844 *cp = 0; | |
1845 for(j=0; op[j].label; j++){ | |
1846 if( strcmp(argv[i],op[j].label)==0 ) break; | |
1847 } | |
1848 *cp = '='; | |
1849 if( op[j].label==0 ){ | |
1850 if( err ){ | |
1851 fprintf(err,"%sundefined option.\n",emsg); | |
1852 errline(i,0,err); | |
1853 } | |
1854 errcnt++; | |
1855 }else{ | |
1856 cp++; | |
1857 switch( op[j].type ){ | |
1858 case OPT_FLAG: | |
1859 case OPT_FFLAG: | |
1860 if( err ){ | |
1861 fprintf(err,"%soption requires an argument.\n",emsg); | |
1862 errline(i,0,err); | |
1863 } | |
1864 errcnt++; | |
1865 break; | |
1866 case OPT_DBL: | |
1867 case OPT_FDBL: | |
1868 dv = strtod(cp,&end); | |
1869 if( *end ){ | |
1870 if( err ){ | |
1871 fprintf(err,"%sillegal character in floating-point argument.\n",emsg
); | |
1872 errline(i,((unsigned long)end)-(unsigned long)argv[i],err); | |
1873 } | |
1874 errcnt++; | |
1875 } | |
1876 break; | |
1877 case OPT_INT: | |
1878 case OPT_FINT: | |
1879 lv = strtol(cp,&end,0); | |
1880 if( *end ){ | |
1881 if( err ){ | |
1882 fprintf(err,"%sillegal character in integer argument.\n",emsg); | |
1883 errline(i,((unsigned long)end)-(unsigned long)argv[i],err); | |
1884 } | |
1885 errcnt++; | |
1886 } | |
1887 break; | |
1888 case OPT_STR: | |
1889 case OPT_FSTR: | |
1890 sv = cp; | |
1891 break; | |
1892 } | |
1893 switch( op[j].type ){ | |
1894 case OPT_FLAG: | |
1895 case OPT_FFLAG: | |
1896 break; | |
1897 case OPT_DBL: | |
1898 *(double*)(op[j].arg) = dv; | |
1899 break; | |
1900 case OPT_FDBL: | |
1901 (*(void(*)(double))(op[j].arg))(dv); | |
1902 break; | |
1903 case OPT_INT: | |
1904 *(int*)(op[j].arg) = lv; | |
1905 break; | |
1906 case OPT_FINT: | |
1907 (*(void(*)(int))(op[j].arg))((int)lv); | |
1908 break; | |
1909 case OPT_STR: | |
1910 *(char**)(op[j].arg) = sv; | |
1911 break; | |
1912 case OPT_FSTR: | |
1913 (*(void(*)(char *))(op[j].arg))(sv); | |
1914 break; | |
1915 } | |
1916 } | |
1917 return errcnt; | |
1918 } | |
1919 | |
1920 int OptInit(char **a, struct s_options *o, FILE *err) | |
1921 { | |
1922 int errcnt = 0; | |
1923 argv = a; | |
1924 op = o; | |
1925 errstream = err; | |
1926 if( argv && *argv && op ){ | |
1927 int i; | |
1928 for(i=1; argv[i]; i++){ | |
1929 if( argv[i][0]=='+' || argv[i][0]=='-' ){ | |
1930 errcnt += handleflags(i,err); | |
1931 }else if( strchr(argv[i],'=') ){ | |
1932 errcnt += handleswitch(i,err); | |
1933 } | |
1934 } | |
1935 } | |
1936 if( errcnt>0 ){ | |
1937 fprintf(err,"Valid command line options for \"%s\" are:\n",*a); | |
1938 OptPrint(); | |
1939 exit(1); | |
1940 } | |
1941 return 0; | |
1942 } | |
1943 | |
1944 int OptNArgs(){ | |
1945 int cnt = 0; | |
1946 int dashdash = 0; | |
1947 int i; | |
1948 if( argv!=0 && argv[0]!=0 ){ | |
1949 for(i=1; argv[i]; i++){ | |
1950 if( dashdash || !ISOPT(argv[i]) ) cnt++; | |
1951 if( strcmp(argv[i],"--")==0 ) dashdash = 1; | |
1952 } | |
1953 } | |
1954 return cnt; | |
1955 } | |
1956 | |
1957 char *OptArg(int n) | |
1958 { | |
1959 int i; | |
1960 i = argindex(n); | |
1961 return i>=0 ? argv[i] : 0; | |
1962 } | |
1963 | |
1964 void OptErr(int n) | |
1965 { | |
1966 int i; | |
1967 i = argindex(n); | |
1968 if( i>=0 ) errline(i,0,errstream); | |
1969 } | |
1970 | |
1971 void OptPrint(){ | |
1972 int i; | |
1973 int max, len; | |
1974 max = 0; | |
1975 for(i=0; op[i].label; i++){ | |
1976 len = lemonStrlen(op[i].label) + 1; | |
1977 switch( op[i].type ){ | |
1978 case OPT_FLAG: | |
1979 case OPT_FFLAG: | |
1980 break; | |
1981 case OPT_INT: | |
1982 case OPT_FINT: | |
1983 len += 9; /* length of "<integer>" */ | |
1984 break; | |
1985 case OPT_DBL: | |
1986 case OPT_FDBL: | |
1987 len += 6; /* length of "<real>" */ | |
1988 break; | |
1989 case OPT_STR: | |
1990 case OPT_FSTR: | |
1991 len += 8; /* length of "<string>" */ | |
1992 break; | |
1993 } | |
1994 if( len>max ) max = len; | |
1995 } | |
1996 for(i=0; op[i].label; i++){ | |
1997 switch( op[i].type ){ | |
1998 case OPT_FLAG: | |
1999 case OPT_FFLAG: | |
2000 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); | |
2001 break; | |
2002 case OPT_INT: | |
2003 case OPT_FINT: | |
2004 fprintf(errstream," %s=<integer>%*s %s\n",op[i].label, | |
2005 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message); | |
2006 break; | |
2007 case OPT_DBL: | |
2008 case OPT_FDBL: | |
2009 fprintf(errstream," %s=<real>%*s %s\n",op[i].label, | |
2010 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message); | |
2011 break; | |
2012 case OPT_STR: | |
2013 case OPT_FSTR: | |
2014 fprintf(errstream," %s=<string>%*s %s\n",op[i].label, | |
2015 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message); | |
2016 break; | |
2017 } | |
2018 } | |
2019 } | |
2020 /*********************** From the file "parse.c" ****************************/ | |
2021 /* | |
2022 ** Input file parser for the LEMON parser generator. | |
2023 */ | |
2024 | |
2025 /* The state of the parser */ | |
2026 enum e_state { | |
2027 INITIALIZE, | |
2028 WAITING_FOR_DECL_OR_RULE, | |
2029 WAITING_FOR_DECL_KEYWORD, | |
2030 WAITING_FOR_DECL_ARG, | |
2031 WAITING_FOR_PRECEDENCE_SYMBOL, | |
2032 WAITING_FOR_ARROW, | |
2033 IN_RHS, | |
2034 LHS_ALIAS_1, | |
2035 LHS_ALIAS_2, | |
2036 LHS_ALIAS_3, | |
2037 RHS_ALIAS_1, | |
2038 RHS_ALIAS_2, | |
2039 PRECEDENCE_MARK_1, | |
2040 PRECEDENCE_MARK_2, | |
2041 RESYNC_AFTER_RULE_ERROR, | |
2042 RESYNC_AFTER_DECL_ERROR, | |
2043 WAITING_FOR_DESTRUCTOR_SYMBOL, | |
2044 WAITING_FOR_DATATYPE_SYMBOL, | |
2045 WAITING_FOR_FALLBACK_ID, | |
2046 WAITING_FOR_WILDCARD_ID, | |
2047 WAITING_FOR_CLASS_ID, | |
2048 WAITING_FOR_CLASS_TOKEN | |
2049 }; | |
2050 struct pstate { | |
2051 char *filename; /* Name of the input file */ | |
2052 int tokenlineno; /* Linenumber at which current token starts */ | |
2053 int errorcnt; /* Number of errors so far */ | |
2054 char *tokenstart; /* Text of current token */ | |
2055 struct lemon *gp; /* Global state vector */ | |
2056 enum e_state state; /* The state of the parser */ | |
2057 struct symbol *fallback; /* The fallback token */ | |
2058 struct symbol *tkclass; /* Token class symbol */ | |
2059 struct symbol *lhs; /* Left-hand side of current rule */ | |
2060 const char *lhsalias; /* Alias for the LHS */ | |
2061 int nrhs; /* Number of right-hand side symbols seen */ | |
2062 struct symbol *rhs[MAXRHS]; /* RHS symbols */ | |
2063 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ | |
2064 struct rule *prevrule; /* Previous rule parsed */ | |
2065 const char *declkeyword; /* Keyword of a declaration */ | |
2066 char **declargslot; /* Where the declaration argument should be put */ | |
2067 int insertLineMacro; /* Add #line before declaration insert */ | |
2068 int *decllinenoslot; /* Where to write declaration line number */ | |
2069 enum e_assoc declassoc; /* Assign this association to decl arguments */ | |
2070 int preccounter; /* Assign this precedence to decl arguments */ | |
2071 struct rule *firstrule; /* Pointer to first rule in the grammar */ | |
2072 struct rule *lastrule; /* Pointer to the most recently parsed rule */ | |
2073 }; | |
2074 | |
2075 /* Parse a single token */ | |
2076 static void parseonetoken(struct pstate *psp) | |
2077 { | |
2078 const char *x; | |
2079 x = Strsafe(psp->tokenstart); /* Save the token permanently */ | |
2080 #if 0 | |
2081 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, | |
2082 x,psp->state); | |
2083 #endif | |
2084 switch( psp->state ){ | |
2085 case INITIALIZE: | |
2086 psp->prevrule = 0; | |
2087 psp->preccounter = 0; | |
2088 psp->firstrule = psp->lastrule = 0; | |
2089 psp->gp->nrule = 0; | |
2090 /* Fall thru to next case */ | |
2091 case WAITING_FOR_DECL_OR_RULE: | |
2092 if( x[0]=='%' ){ | |
2093 psp->state = WAITING_FOR_DECL_KEYWORD; | |
2094 }else if( islower(x[0]) ){ | |
2095 psp->lhs = Symbol_new(x); | |
2096 psp->nrhs = 0; | |
2097 psp->lhsalias = 0; | |
2098 psp->state = WAITING_FOR_ARROW; | |
2099 }else if( x[0]=='{' ){ | |
2100 if( psp->prevrule==0 ){ | |
2101 ErrorMsg(psp->filename,psp->tokenlineno, | |
2102 "There is no prior rule upon which to attach the code \ | |
2103 fragment which begins on this line."); | |
2104 psp->errorcnt++; | |
2105 }else if( psp->prevrule->code!=0 ){ | |
2106 ErrorMsg(psp->filename,psp->tokenlineno, | |
2107 "Code fragment beginning on this line is not the first \ | |
2108 to follow the previous rule."); | |
2109 psp->errorcnt++; | |
2110 }else{ | |
2111 psp->prevrule->line = psp->tokenlineno; | |
2112 psp->prevrule->code = &x[1]; | |
2113 } | |
2114 }else if( x[0]=='[' ){ | |
2115 psp->state = PRECEDENCE_MARK_1; | |
2116 }else{ | |
2117 ErrorMsg(psp->filename,psp->tokenlineno, | |
2118 "Token \"%s\" should be either \"%%\" or a nonterminal name.", | |
2119 x); | |
2120 psp->errorcnt++; | |
2121 } | |
2122 break; | |
2123 case PRECEDENCE_MARK_1: | |
2124 if( !isupper(x[0]) ){ | |
2125 ErrorMsg(psp->filename,psp->tokenlineno, | |
2126 "The precedence symbol must be a terminal."); | |
2127 psp->errorcnt++; | |
2128 }else if( psp->prevrule==0 ){ | |
2129 ErrorMsg(psp->filename,psp->tokenlineno, | |
2130 "There is no prior rule to assign precedence \"[%s]\".",x); | |
2131 psp->errorcnt++; | |
2132 }else if( psp->prevrule->precsym!=0 ){ | |
2133 ErrorMsg(psp->filename,psp->tokenlineno, | |
2134 "Precedence mark on this line is not the first \ | |
2135 to follow the previous rule."); | |
2136 psp->errorcnt++; | |
2137 }else{ | |
2138 psp->prevrule->precsym = Symbol_new(x); | |
2139 } | |
2140 psp->state = PRECEDENCE_MARK_2; | |
2141 break; | |
2142 case PRECEDENCE_MARK_2: | |
2143 if( x[0]!=']' ){ | |
2144 ErrorMsg(psp->filename,psp->tokenlineno, | |
2145 "Missing \"]\" on precedence mark."); | |
2146 psp->errorcnt++; | |
2147 } | |
2148 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2149 break; | |
2150 case WAITING_FOR_ARROW: | |
2151 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ | |
2152 psp->state = IN_RHS; | |
2153 }else if( x[0]=='(' ){ | |
2154 psp->state = LHS_ALIAS_1; | |
2155 }else{ | |
2156 ErrorMsg(psp->filename,psp->tokenlineno, | |
2157 "Expected to see a \":\" following the LHS symbol \"%s\".", | |
2158 psp->lhs->name); | |
2159 psp->errorcnt++; | |
2160 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2161 } | |
2162 break; | |
2163 case LHS_ALIAS_1: | |
2164 if( isalpha(x[0]) ){ | |
2165 psp->lhsalias = x; | |
2166 psp->state = LHS_ALIAS_2; | |
2167 }else{ | |
2168 ErrorMsg(psp->filename,psp->tokenlineno, | |
2169 "\"%s\" is not a valid alias for the LHS \"%s\"\n", | |
2170 x,psp->lhs->name); | |
2171 psp->errorcnt++; | |
2172 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2173 } | |
2174 break; | |
2175 case LHS_ALIAS_2: | |
2176 if( x[0]==')' ){ | |
2177 psp->state = LHS_ALIAS_3; | |
2178 }else{ | |
2179 ErrorMsg(psp->filename,psp->tokenlineno, | |
2180 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); | |
2181 psp->errorcnt++; | |
2182 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2183 } | |
2184 break; | |
2185 case LHS_ALIAS_3: | |
2186 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ | |
2187 psp->state = IN_RHS; | |
2188 }else{ | |
2189 ErrorMsg(psp->filename,psp->tokenlineno, | |
2190 "Missing \"->\" following: \"%s(%s)\".", | |
2191 psp->lhs->name,psp->lhsalias); | |
2192 psp->errorcnt++; | |
2193 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2194 } | |
2195 break; | |
2196 case IN_RHS: | |
2197 if( x[0]=='.' ){ | |
2198 struct rule *rp; | |
2199 rp = (struct rule *)calloc( sizeof(struct rule) + | |
2200 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); | |
2201 if( rp==0 ){ | |
2202 ErrorMsg(psp->filename,psp->tokenlineno, | |
2203 "Can't allocate enough memory for this rule."); | |
2204 psp->errorcnt++; | |
2205 psp->prevrule = 0; | |
2206 }else{ | |
2207 int i; | |
2208 rp->ruleline = psp->tokenlineno; | |
2209 rp->rhs = (struct symbol**)&rp[1]; | |
2210 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); | |
2211 for(i=0; i<psp->nrhs; i++){ | |
2212 rp->rhs[i] = psp->rhs[i]; | |
2213 rp->rhsalias[i] = psp->alias[i]; | |
2214 } | |
2215 rp->lhs = psp->lhs; | |
2216 rp->lhsalias = psp->lhsalias; | |
2217 rp->nrhs = psp->nrhs; | |
2218 rp->code = 0; | |
2219 rp->precsym = 0; | |
2220 rp->index = psp->gp->nrule++; | |
2221 rp->nextlhs = rp->lhs->rule; | |
2222 rp->lhs->rule = rp; | |
2223 rp->next = 0; | |
2224 if( psp->firstrule==0 ){ | |
2225 psp->firstrule = psp->lastrule = rp; | |
2226 }else{ | |
2227 psp->lastrule->next = rp; | |
2228 psp->lastrule = rp; | |
2229 } | |
2230 psp->prevrule = rp; | |
2231 } | |
2232 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2233 }else if( isalpha(x[0]) ){ | |
2234 if( psp->nrhs>=MAXRHS ){ | |
2235 ErrorMsg(psp->filename,psp->tokenlineno, | |
2236 "Too many symbols on RHS of rule beginning at \"%s\".", | |
2237 x); | |
2238 psp->errorcnt++; | |
2239 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2240 }else{ | |
2241 psp->rhs[psp->nrhs] = Symbol_new(x); | |
2242 psp->alias[psp->nrhs] = 0; | |
2243 psp->nrhs++; | |
2244 } | |
2245 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ | |
2246 struct symbol *msp = psp->rhs[psp->nrhs-1]; | |
2247 if( msp->type!=MULTITERMINAL ){ | |
2248 struct symbol *origsp = msp; | |
2249 msp = (struct symbol *) calloc(1,sizeof(*msp)); | |
2250 memset(msp, 0, sizeof(*msp)); | |
2251 msp->type = MULTITERMINAL; | |
2252 msp->nsubsym = 1; | |
2253 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); | |
2254 msp->subsym[0] = origsp; | |
2255 msp->name = origsp->name; | |
2256 psp->rhs[psp->nrhs-1] = msp; | |
2257 } | |
2258 msp->nsubsym++; | |
2259 msp->subsym = (struct symbol **) realloc(msp->subsym, | |
2260 sizeof(struct symbol*)*msp->nsubsym); | |
2261 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); | |
2262 if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){ | |
2263 ErrorMsg(psp->filename,psp->tokenlineno, | |
2264 "Cannot form a compound containing a non-terminal"); | |
2265 psp->errorcnt++; | |
2266 } | |
2267 }else if( x[0]=='(' && psp->nrhs>0 ){ | |
2268 psp->state = RHS_ALIAS_1; | |
2269 }else{ | |
2270 ErrorMsg(psp->filename,psp->tokenlineno, | |
2271 "Illegal character on RHS of rule: \"%s\".",x); | |
2272 psp->errorcnt++; | |
2273 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2274 } | |
2275 break; | |
2276 case RHS_ALIAS_1: | |
2277 if( isalpha(x[0]) ){ | |
2278 psp->alias[psp->nrhs-1] = x; | |
2279 psp->state = RHS_ALIAS_2; | |
2280 }else{ | |
2281 ErrorMsg(psp->filename,psp->tokenlineno, | |
2282 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", | |
2283 x,psp->rhs[psp->nrhs-1]->name); | |
2284 psp->errorcnt++; | |
2285 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2286 } | |
2287 break; | |
2288 case RHS_ALIAS_2: | |
2289 if( x[0]==')' ){ | |
2290 psp->state = IN_RHS; | |
2291 }else{ | |
2292 ErrorMsg(psp->filename,psp->tokenlineno, | |
2293 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); | |
2294 psp->errorcnt++; | |
2295 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2296 } | |
2297 break; | |
2298 case WAITING_FOR_DECL_KEYWORD: | |
2299 if( isalpha(x[0]) ){ | |
2300 psp->declkeyword = x; | |
2301 psp->declargslot = 0; | |
2302 psp->decllinenoslot = 0; | |
2303 psp->insertLineMacro = 1; | |
2304 psp->state = WAITING_FOR_DECL_ARG; | |
2305 if( strcmp(x,"name")==0 ){ | |
2306 psp->declargslot = &(psp->gp->name); | |
2307 psp->insertLineMacro = 0; | |
2308 }else if( strcmp(x,"include")==0 ){ | |
2309 psp->declargslot = &(psp->gp->include); | |
2310 }else if( strcmp(x,"code")==0 ){ | |
2311 psp->declargslot = &(psp->gp->extracode); | |
2312 }else if( strcmp(x,"token_destructor")==0 ){ | |
2313 psp->declargslot = &psp->gp->tokendest; | |
2314 }else if( strcmp(x,"default_destructor")==0 ){ | |
2315 psp->declargslot = &psp->gp->vardest; | |
2316 }else if( strcmp(x,"token_prefix")==0 ){ | |
2317 psp->declargslot = &psp->gp->tokenprefix; | |
2318 psp->insertLineMacro = 0; | |
2319 }else if( strcmp(x,"syntax_error")==0 ){ | |
2320 psp->declargslot = &(psp->gp->error); | |
2321 }else if( strcmp(x,"parse_accept")==0 ){ | |
2322 psp->declargslot = &(psp->gp->accept); | |
2323 }else if( strcmp(x,"parse_failure")==0 ){ | |
2324 psp->declargslot = &(psp->gp->failure); | |
2325 }else if( strcmp(x,"stack_overflow")==0 ){ | |
2326 psp->declargslot = &(psp->gp->overflow); | |
2327 }else if( strcmp(x,"extra_argument")==0 ){ | |
2328 psp->declargslot = &(psp->gp->arg); | |
2329 psp->insertLineMacro = 0; | |
2330 }else if( strcmp(x,"token_type")==0 ){ | |
2331 psp->declargslot = &(psp->gp->tokentype); | |
2332 psp->insertLineMacro = 0; | |
2333 }else if( strcmp(x,"default_type")==0 ){ | |
2334 psp->declargslot = &(psp->gp->vartype); | |
2335 psp->insertLineMacro = 0; | |
2336 }else if( strcmp(x,"stack_size")==0 ){ | |
2337 psp->declargslot = &(psp->gp->stacksize); | |
2338 psp->insertLineMacro = 0; | |
2339 }else if( strcmp(x,"start_symbol")==0 ){ | |
2340 psp->declargslot = &(psp->gp->start); | |
2341 psp->insertLineMacro = 0; | |
2342 }else if( strcmp(x,"left")==0 ){ | |
2343 psp->preccounter++; | |
2344 psp->declassoc = LEFT; | |
2345 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; | |
2346 }else if( strcmp(x,"right")==0 ){ | |
2347 psp->preccounter++; | |
2348 psp->declassoc = RIGHT; | |
2349 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; | |
2350 }else if( strcmp(x,"nonassoc")==0 ){ | |
2351 psp->preccounter++; | |
2352 psp->declassoc = NONE; | |
2353 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; | |
2354 }else if( strcmp(x,"destructor")==0 ){ | |
2355 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; | |
2356 }else if( strcmp(x,"type")==0 ){ | |
2357 psp->state = WAITING_FOR_DATATYPE_SYMBOL; | |
2358 }else if( strcmp(x,"fallback")==0 ){ | |
2359 psp->fallback = 0; | |
2360 psp->state = WAITING_FOR_FALLBACK_ID; | |
2361 }else if( strcmp(x,"wildcard")==0 ){ | |
2362 psp->state = WAITING_FOR_WILDCARD_ID; | |
2363 }else if( strcmp(x,"token_class")==0 ){ | |
2364 psp->state = WAITING_FOR_CLASS_ID; | |
2365 }else{ | |
2366 ErrorMsg(psp->filename,psp->tokenlineno, | |
2367 "Unknown declaration keyword: \"%%%s\".",x); | |
2368 psp->errorcnt++; | |
2369 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2370 } | |
2371 }else{ | |
2372 ErrorMsg(psp->filename,psp->tokenlineno, | |
2373 "Illegal declaration keyword: \"%s\".",x); | |
2374 psp->errorcnt++; | |
2375 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2376 } | |
2377 break; | |
2378 case WAITING_FOR_DESTRUCTOR_SYMBOL: | |
2379 if( !isalpha(x[0]) ){ | |
2380 ErrorMsg(psp->filename,psp->tokenlineno, | |
2381 "Symbol name missing after %%destructor keyword"); | |
2382 psp->errorcnt++; | |
2383 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2384 }else{ | |
2385 struct symbol *sp = Symbol_new(x); | |
2386 psp->declargslot = &sp->destructor; | |
2387 psp->decllinenoslot = &sp->destLineno; | |
2388 psp->insertLineMacro = 1; | |
2389 psp->state = WAITING_FOR_DECL_ARG; | |
2390 } | |
2391 break; | |
2392 case WAITING_FOR_DATATYPE_SYMBOL: | |
2393 if( !isalpha(x[0]) ){ | |
2394 ErrorMsg(psp->filename,psp->tokenlineno, | |
2395 "Symbol name missing after %%type keyword"); | |
2396 psp->errorcnt++; | |
2397 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2398 }else{ | |
2399 struct symbol *sp = Symbol_find(x); | |
2400 if((sp) && (sp->datatype)){ | |
2401 ErrorMsg(psp->filename,psp->tokenlineno, | |
2402 "Symbol %%type \"%s\" already defined", x); | |
2403 psp->errorcnt++; | |
2404 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2405 }else{ | |
2406 if (!sp){ | |
2407 sp = Symbol_new(x); | |
2408 } | |
2409 psp->declargslot = &sp->datatype; | |
2410 psp->insertLineMacro = 0; | |
2411 psp->state = WAITING_FOR_DECL_ARG; | |
2412 } | |
2413 } | |
2414 break; | |
2415 case WAITING_FOR_PRECEDENCE_SYMBOL: | |
2416 if( x[0]=='.' ){ | |
2417 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2418 }else if( isupper(x[0]) ){ | |
2419 struct symbol *sp; | |
2420 sp = Symbol_new(x); | |
2421 if( sp->prec>=0 ){ | |
2422 ErrorMsg(psp->filename,psp->tokenlineno, | |
2423 "Symbol \"%s\" has already be given a precedence.",x); | |
2424 psp->errorcnt++; | |
2425 }else{ | |
2426 sp->prec = psp->preccounter; | |
2427 sp->assoc = psp->declassoc; | |
2428 } | |
2429 }else{ | |
2430 ErrorMsg(psp->filename,psp->tokenlineno, | |
2431 "Can't assign a precedence to \"%s\".",x); | |
2432 psp->errorcnt++; | |
2433 } | |
2434 break; | |
2435 case WAITING_FOR_DECL_ARG: | |
2436 if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){ | |
2437 const char *zOld, *zNew; | |
2438 char *zBuf, *z; | |
2439 int nOld, n, nLine, nNew, nBack; | |
2440 int addLineMacro; | |
2441 char zLine[50]; | |
2442 zNew = x; | |
2443 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; | |
2444 nNew = lemonStrlen(zNew); | |
2445 if( *psp->declargslot ){ | |
2446 zOld = *psp->declargslot; | |
2447 }else{ | |
2448 zOld = ""; | |
2449 } | |
2450 nOld = lemonStrlen(zOld); | |
2451 n = nOld + nNew + 20; | |
2452 addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && | |
2453 (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); | |
2454 if( addLineMacro ){ | |
2455 for(z=psp->filename, nBack=0; *z; z++){ | |
2456 if( *z=='\\' ) nBack++; | |
2457 } | |
2458 lemon_sprintf(zLine, "#line %d ", psp->tokenlineno); | |
2459 nLine = lemonStrlen(zLine); | |
2460 n += nLine + lemonStrlen(psp->filename) + nBack; | |
2461 } | |
2462 *psp->declargslot = (char *) realloc(*psp->declargslot, n); | |
2463 zBuf = *psp->declargslot + nOld; | |
2464 if( addLineMacro ){ | |
2465 if( nOld && zBuf[-1]!='\n' ){ | |
2466 *(zBuf++) = '\n'; | |
2467 } | |
2468 memcpy(zBuf, zLine, nLine); | |
2469 zBuf += nLine; | |
2470 *(zBuf++) = '"'; | |
2471 for(z=psp->filename; *z; z++){ | |
2472 if( *z=='\\' ){ | |
2473 *(zBuf++) = '\\'; | |
2474 } | |
2475 *(zBuf++) = *z; | |
2476 } | |
2477 *(zBuf++) = '"'; | |
2478 *(zBuf++) = '\n'; | |
2479 } | |
2480 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ | |
2481 psp->decllinenoslot[0] = psp->tokenlineno; | |
2482 } | |
2483 memcpy(zBuf, zNew, nNew); | |
2484 zBuf += nNew; | |
2485 *zBuf = 0; | |
2486 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2487 }else{ | |
2488 ErrorMsg(psp->filename,psp->tokenlineno, | |
2489 "Illegal argument to %%%s: %s",psp->declkeyword,x); | |
2490 psp->errorcnt++; | |
2491 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2492 } | |
2493 break; | |
2494 case WAITING_FOR_FALLBACK_ID: | |
2495 if( x[0]=='.' ){ | |
2496 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2497 }else if( !isupper(x[0]) ){ | |
2498 ErrorMsg(psp->filename, psp->tokenlineno, | |
2499 "%%fallback argument \"%s\" should be a token", x); | |
2500 psp->errorcnt++; | |
2501 }else{ | |
2502 struct symbol *sp = Symbol_new(x); | |
2503 if( psp->fallback==0 ){ | |
2504 psp->fallback = sp; | |
2505 }else if( sp->fallback ){ | |
2506 ErrorMsg(psp->filename, psp->tokenlineno, | |
2507 "More than one fallback assigned to token %s", x); | |
2508 psp->errorcnt++; | |
2509 }else{ | |
2510 sp->fallback = psp->fallback; | |
2511 psp->gp->has_fallback = 1; | |
2512 } | |
2513 } | |
2514 break; | |
2515 case WAITING_FOR_WILDCARD_ID: | |
2516 if( x[0]=='.' ){ | |
2517 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2518 }else if( !isupper(x[0]) ){ | |
2519 ErrorMsg(psp->filename, psp->tokenlineno, | |
2520 "%%wildcard argument \"%s\" should be a token", x); | |
2521 psp->errorcnt++; | |
2522 }else{ | |
2523 struct symbol *sp = Symbol_new(x); | |
2524 if( psp->gp->wildcard==0 ){ | |
2525 psp->gp->wildcard = sp; | |
2526 }else{ | |
2527 ErrorMsg(psp->filename, psp->tokenlineno, | |
2528 "Extra wildcard to token: %s", x); | |
2529 psp->errorcnt++; | |
2530 } | |
2531 } | |
2532 break; | |
2533 case WAITING_FOR_CLASS_ID: | |
2534 if( !islower(x[0]) ){ | |
2535 ErrorMsg(psp->filename, psp->tokenlineno, | |
2536 "%%token_class must be followed by an identifier: ", x); | |
2537 psp->errorcnt++; | |
2538 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2539 }else if( Symbol_find(x) ){ | |
2540 ErrorMsg(psp->filename, psp->tokenlineno, | |
2541 "Symbol \"%s\" already used", x); | |
2542 psp->errorcnt++; | |
2543 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2544 }else{ | |
2545 psp->tkclass = Symbol_new(x); | |
2546 psp->tkclass->type = MULTITERMINAL; | |
2547 psp->state = WAITING_FOR_CLASS_TOKEN; | |
2548 } | |
2549 break; | |
2550 case WAITING_FOR_CLASS_TOKEN: | |
2551 if( x[0]=='.' ){ | |
2552 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2553 }else if( isupper(x[0]) || ((x[0]=='|' || x[0]=='/') && isupper(x[1])) ){ | |
2554 struct symbol *msp = psp->tkclass; | |
2555 msp->nsubsym++; | |
2556 msp->subsym = (struct symbol **) realloc(msp->subsym, | |
2557 sizeof(struct symbol*)*msp->nsubsym); | |
2558 if( !isupper(x[0]) ) x++; | |
2559 msp->subsym[msp->nsubsym-1] = Symbol_new(x); | |
2560 }else{ | |
2561 ErrorMsg(psp->filename, psp->tokenlineno, | |
2562 "%%token_class argument \"%s\" should be a token", x); | |
2563 psp->errorcnt++; | |
2564 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2565 } | |
2566 break; | |
2567 case RESYNC_AFTER_RULE_ERROR: | |
2568 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; | |
2569 ** break; */ | |
2570 case RESYNC_AFTER_DECL_ERROR: | |
2571 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; | |
2572 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; | |
2573 break; | |
2574 } | |
2575 } | |
2576 | |
2577 /* Run the preprocessor over the input file text. The global variables | |
2578 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined | |
2579 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and | |
2580 ** comments them out. Text in between is also commented out as appropriate. | |
2581 */ | |
2582 static void preprocess_input(char *z){ | |
2583 int i, j, k, n; | |
2584 int exclude = 0; | |
2585 int start = 0; | |
2586 int lineno = 1; | |
2587 int start_lineno = 1; | |
2588 for(i=0; z[i]; i++){ | |
2589 if( z[i]=='\n' ) lineno++; | |
2590 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; | |
2591 if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){ | |
2592 if( exclude ){ | |
2593 exclude--; | |
2594 if( exclude==0 ){ | |
2595 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; | |
2596 } | |
2597 } | |
2598 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; | |
2599 }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6])) | |
2600 || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){ | |
2601 if( exclude ){ | |
2602 exclude++; | |
2603 }else{ | |
2604 for(j=i+7; isspace(z[j]); j++){} | |
2605 for(n=0; z[j+n] && !isspace(z[j+n]); n++){} | |
2606 exclude = 1; | |
2607 for(k=0; k<nDefine; k++){ | |
2608 if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){ | |
2609 exclude = 0; | |
2610 break; | |
2611 } | |
2612 } | |
2613 if( z[i+3]=='n' ) exclude = !exclude; | |
2614 if( exclude ){ | |
2615 start = i; | |
2616 start_lineno = lineno; | |
2617 } | |
2618 } | |
2619 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; | |
2620 } | |
2621 } | |
2622 if( exclude ){ | |
2623 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno); | |
2624 exit(1); | |
2625 } | |
2626 } | |
2627 | |
2628 /* In spite of its name, this function is really a scanner. It read | |
2629 ** in the entire input file (all at once) then tokenizes it. Each | |
2630 ** token is passed to the function "parseonetoken" which builds all | |
2631 ** the appropriate data structures in the global state vector "gp". | |
2632 */ | |
2633 void Parse(struct lemon *gp) | |
2634 { | |
2635 struct pstate ps; | |
2636 FILE *fp; | |
2637 char *filebuf; | |
2638 int filesize; | |
2639 int lineno; | |
2640 int c; | |
2641 char *cp, *nextcp; | |
2642 int startline = 0; | |
2643 | |
2644 memset(&ps, '\0', sizeof(ps)); | |
2645 ps.gp = gp; | |
2646 ps.filename = gp->filename; | |
2647 ps.errorcnt = 0; | |
2648 ps.state = INITIALIZE; | |
2649 | |
2650 /* Begin by reading the input file */ | |
2651 fp = fopen(ps.filename,"rb"); | |
2652 if( fp==0 ){ | |
2653 ErrorMsg(ps.filename,0,"Can't open this file for reading."); | |
2654 gp->errorcnt++; | |
2655 return; | |
2656 } | |
2657 fseek(fp,0,2); | |
2658 filesize = ftell(fp); | |
2659 rewind(fp); | |
2660 filebuf = (char *)malloc( filesize+1 ); | |
2661 if( filesize>100000000 || filebuf==0 ){ | |
2662 ErrorMsg(ps.filename,0,"Input file too large."); | |
2663 gp->errorcnt++; | |
2664 fclose(fp); | |
2665 return; | |
2666 } | |
2667 if( fread(filebuf,1,filesize,fp)!=filesize ){ | |
2668 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", | |
2669 filesize); | |
2670 free(filebuf); | |
2671 gp->errorcnt++; | |
2672 fclose(fp); | |
2673 return; | |
2674 } | |
2675 fclose(fp); | |
2676 filebuf[filesize] = 0; | |
2677 | |
2678 /* Make an initial pass through the file to handle %ifdef and %ifndef */ | |
2679 preprocess_input(filebuf); | |
2680 | |
2681 /* Now scan the text of the input file */ | |
2682 lineno = 1; | |
2683 for(cp=filebuf; (c= *cp)!=0; ){ | |
2684 if( c=='\n' ) lineno++; /* Keep track of the line number */ | |
2685 if( isspace(c) ){ cp++; continue; } /* Skip all white space */ | |
2686 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ | |
2687 cp+=2; | |
2688 while( (c= *cp)!=0 && c!='\n' ) cp++; | |
2689 continue; | |
2690 } | |
2691 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ | |
2692 cp+=2; | |
2693 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ | |
2694 if( c=='\n' ) lineno++; | |
2695 cp++; | |
2696 } | |
2697 if( c ) cp++; | |
2698 continue; | |
2699 } | |
2700 ps.tokenstart = cp; /* Mark the beginning of the token */ | |
2701 ps.tokenlineno = lineno; /* Linenumber on which token begins */ | |
2702 if( c=='\"' ){ /* String literals */ | |
2703 cp++; | |
2704 while( (c= *cp)!=0 && c!='\"' ){ | |
2705 if( c=='\n' ) lineno++; | |
2706 cp++; | |
2707 } | |
2708 if( c==0 ){ | |
2709 ErrorMsg(ps.filename,startline, | |
2710 "String starting on this line is not terminated before the end of the file."); | |
2711 ps.errorcnt++; | |
2712 nextcp = cp; | |
2713 }else{ | |
2714 nextcp = cp+1; | |
2715 } | |
2716 }else if( c=='{' ){ /* A block of C code */ | |
2717 int level; | |
2718 cp++; | |
2719 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ | |
2720 if( c=='\n' ) lineno++; | |
2721 else if( c=='{' ) level++; | |
2722 else if( c=='}' ) level--; | |
2723 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ | |
2724 int prevc; | |
2725 cp = &cp[2]; | |
2726 prevc = 0; | |
2727 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ | |
2728 if( c=='\n' ) lineno++; | |
2729 prevc = c; | |
2730 cp++; | |
2731 } | |
2732 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ | |
2733 cp = &cp[2]; | |
2734 while( (c= *cp)!=0 && c!='\n' ) cp++; | |
2735 if( c ) lineno++; | |
2736 }else if( c=='\'' || c=='\"' ){ /* String a character literals */ | |
2737 int startchar, prevc; | |
2738 startchar = c; | |
2739 prevc = 0; | |
2740 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ | |
2741 if( c=='\n' ) lineno++; | |
2742 if( prevc=='\\' ) prevc = 0; | |
2743 else prevc = c; | |
2744 } | |
2745 } | |
2746 } | |
2747 if( c==0 ){ | |
2748 ErrorMsg(ps.filename,ps.tokenlineno, | |
2749 "C code starting on this line is not terminated before the end of the file."); | |
2750 ps.errorcnt++; | |
2751 nextcp = cp; | |
2752 }else{ | |
2753 nextcp = cp+1; | |
2754 } | |
2755 }else if( isalnum(c) ){ /* Identifiers */ | |
2756 while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++; | |
2757 nextcp = cp; | |
2758 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ | |
2759 cp += 3; | |
2760 nextcp = cp; | |
2761 }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){ | |
2762 cp += 2; | |
2763 while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++; | |
2764 nextcp = cp; | |
2765 }else{ /* All other (one character) operators */ | |
2766 cp++; | |
2767 nextcp = cp; | |
2768 } | |
2769 c = *cp; | |
2770 *cp = 0; /* Null terminate the token */ | |
2771 parseonetoken(&ps); /* Parse the token */ | |
2772 *cp = c; /* Restore the buffer */ | |
2773 cp = nextcp; | |
2774 } | |
2775 free(filebuf); /* Release the buffer after parsing */ | |
2776 gp->rule = ps.firstrule; | |
2777 gp->errorcnt = ps.errorcnt; | |
2778 } | |
2779 /*************************** From the file "plink.c" *********************/ | |
2780 /* | |
2781 ** Routines processing configuration follow-set propagation links | |
2782 ** in the LEMON parser generator. | |
2783 */ | |
2784 static struct plink *plink_freelist = 0; | |
2785 | |
2786 /* Allocate a new plink */ | |
2787 struct plink *Plink_new(){ | |
2788 struct plink *newlink; | |
2789 | |
2790 if( plink_freelist==0 ){ | |
2791 int i; | |
2792 int amt = 100; | |
2793 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); | |
2794 if( plink_freelist==0 ){ | |
2795 fprintf(stderr, | |
2796 "Unable to allocate memory for a new follow-set propagation link.\n"); | |
2797 exit(1); | |
2798 } | |
2799 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; | |
2800 plink_freelist[amt-1].next = 0; | |
2801 } | |
2802 newlink = plink_freelist; | |
2803 plink_freelist = plink_freelist->next; | |
2804 return newlink; | |
2805 } | |
2806 | |
2807 /* Add a plink to a plink list */ | |
2808 void Plink_add(struct plink **plpp, struct config *cfp) | |
2809 { | |
2810 struct plink *newlink; | |
2811 newlink = Plink_new(); | |
2812 newlink->next = *plpp; | |
2813 *plpp = newlink; | |
2814 newlink->cfp = cfp; | |
2815 } | |
2816 | |
2817 /* Transfer every plink on the list "from" to the list "to" */ | |
2818 void Plink_copy(struct plink **to, struct plink *from) | |
2819 { | |
2820 struct plink *nextpl; | |
2821 while( from ){ | |
2822 nextpl = from->next; | |
2823 from->next = *to; | |
2824 *to = from; | |
2825 from = nextpl; | |
2826 } | |
2827 } | |
2828 | |
2829 /* Delete every plink on the list */ | |
2830 void Plink_delete(struct plink *plp) | |
2831 { | |
2832 struct plink *nextpl; | |
2833 | |
2834 while( plp ){ | |
2835 nextpl = plp->next; | |
2836 plp->next = plink_freelist; | |
2837 plink_freelist = plp; | |
2838 plp = nextpl; | |
2839 } | |
2840 } | |
2841 /*********************** From the file "report.c" **************************/ | |
2842 /* | |
2843 ** Procedures for generating reports and tables in the LEMON parser generator. | |
2844 */ | |
2845 | |
2846 /* Generate a filename with the given suffix. Space to hold the | |
2847 ** name comes from malloc() and must be freed by the calling | |
2848 ** function. | |
2849 */ | |
2850 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) | |
2851 { | |
2852 char *name; | |
2853 char *cp; | |
2854 | |
2855 name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); | |
2856 if( name==0 ){ | |
2857 fprintf(stderr,"Can't allocate space for a filename.\n"); | |
2858 exit(1); | |
2859 } | |
2860 lemon_strcpy(name,lemp->filename); | |
2861 cp = strrchr(name,'.'); | |
2862 if( cp ) *cp = 0; | |
2863 lemon_strcat(name,suffix); | |
2864 return name; | |
2865 } | |
2866 | |
2867 /* Open a file with a name based on the name of the input file, | |
2868 ** but with a different (specified) suffix, and return a pointer | |
2869 ** to the stream */ | |
2870 PRIVATE FILE *file_open( | |
2871 struct lemon *lemp, | |
2872 const char *suffix, | |
2873 const char *mode | |
2874 ){ | |
2875 FILE *fp; | |
2876 | |
2877 if( lemp->outname ) free(lemp->outname); | |
2878 lemp->outname = file_makename(lemp, suffix); | |
2879 fp = fopen(lemp->outname,mode); | |
2880 if( fp==0 && *mode=='w' ){ | |
2881 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); | |
2882 lemp->errorcnt++; | |
2883 return 0; | |
2884 } | |
2885 return fp; | |
2886 } | |
2887 | |
2888 /* Duplicate the input file without comments and without actions | |
2889 ** on rules */ | |
2890 void Reprint(struct lemon *lemp) | |
2891 { | |
2892 struct rule *rp; | |
2893 struct symbol *sp; | |
2894 int i, j, maxlen, len, ncolumns, skip; | |
2895 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); | |
2896 maxlen = 10; | |
2897 for(i=0; i<lemp->nsymbol; i++){ | |
2898 sp = lemp->symbols[i]; | |
2899 len = lemonStrlen(sp->name); | |
2900 if( len>maxlen ) maxlen = len; | |
2901 } | |
2902 ncolumns = 76/(maxlen+5); | |
2903 if( ncolumns<1 ) ncolumns = 1; | |
2904 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; | |
2905 for(i=0; i<skip; i++){ | |
2906 printf("//"); | |
2907 for(j=i; j<lemp->nsymbol; j+=skip){ | |
2908 sp = lemp->symbols[j]; | |
2909 assert( sp->index==j ); | |
2910 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); | |
2911 } | |
2912 printf("\n"); | |
2913 } | |
2914 for(rp=lemp->rule; rp; rp=rp->next){ | |
2915 printf("%s",rp->lhs->name); | |
2916 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ | |
2917 printf(" ::="); | |
2918 for(i=0; i<rp->nrhs; i++){ | |
2919 sp = rp->rhs[i]; | |
2920 if( sp->type==MULTITERMINAL ){ | |
2921 printf(" %s", sp->subsym[0]->name); | |
2922 for(j=1; j<sp->nsubsym; j++){ | |
2923 printf("|%s", sp->subsym[j]->name); | |
2924 } | |
2925 }else{ | |
2926 printf(" %s", sp->name); | |
2927 } | |
2928 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ | |
2929 } | |
2930 printf("."); | |
2931 if( rp->precsym ) printf(" [%s]",rp->precsym->name); | |
2932 /* if( rp->code ) printf("\n %s",rp->code); */ | |
2933 printf("\n"); | |
2934 } | |
2935 } | |
2936 | |
2937 void ConfigPrint(FILE *fp, struct config *cfp) | |
2938 { | |
2939 struct rule *rp; | |
2940 struct symbol *sp; | |
2941 int i, j; | |
2942 rp = cfp->rp; | |
2943 fprintf(fp,"%s ::=",rp->lhs->name); | |
2944 for(i=0; i<=rp->nrhs; i++){ | |
2945 if( i==cfp->dot ) fprintf(fp," *"); | |
2946 if( i==rp->nrhs ) break; | |
2947 sp = rp->rhs[i]; | |
2948 if( sp->type==MULTITERMINAL ){ | |
2949 fprintf(fp," %s", sp->subsym[0]->name); | |
2950 for(j=1; j<sp->nsubsym; j++){ | |
2951 fprintf(fp,"|%s",sp->subsym[j]->name); | |
2952 } | |
2953 }else{ | |
2954 fprintf(fp," %s", sp->name); | |
2955 } | |
2956 } | |
2957 } | |
2958 | |
2959 /* #define TEST */ | |
2960 #if 0 | |
2961 /* Print a set */ | |
2962 PRIVATE void SetPrint(out,set,lemp) | |
2963 FILE *out; | |
2964 char *set; | |
2965 struct lemon *lemp; | |
2966 { | |
2967 int i; | |
2968 char *spacer; | |
2969 spacer = ""; | |
2970 fprintf(out,"%12s[",""); | |
2971 for(i=0; i<lemp->nterminal; i++){ | |
2972 if( SetFind(set,i) ){ | |
2973 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); | |
2974 spacer = " "; | |
2975 } | |
2976 } | |
2977 fprintf(out,"]\n"); | |
2978 } | |
2979 | |
2980 /* Print a plink chain */ | |
2981 PRIVATE void PlinkPrint(out,plp,tag) | |
2982 FILE *out; | |
2983 struct plink *plp; | |
2984 char *tag; | |
2985 { | |
2986 while( plp ){ | |
2987 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); | |
2988 ConfigPrint(out,plp->cfp); | |
2989 fprintf(out,"\n"); | |
2990 plp = plp->next; | |
2991 } | |
2992 } | |
2993 #endif | |
2994 | |
2995 /* Print an action to the given file descriptor. Return FALSE if | |
2996 ** nothing was actually printed. | |
2997 */ | |
2998 int PrintAction(struct action *ap, FILE *fp, int indent){ | |
2999 int result = 1; | |
3000 switch( ap->type ){ | |
3001 case SHIFT: | |
3002 fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum); | |
3003 break; | |
3004 case REDUCE: | |
3005 fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index); | |
3006 break; | |
3007 case ACCEPT: | |
3008 fprintf(fp,"%*s accept",indent,ap->sp->name); | |
3009 break; | |
3010 case ERROR: | |
3011 fprintf(fp,"%*s error",indent,ap->sp->name); | |
3012 break; | |
3013 case SRCONFLICT: | |
3014 case RRCONFLICT: | |
3015 fprintf(fp,"%*s reduce %-3d ** Parsing conflict **", | |
3016 indent,ap->sp->name,ap->x.rp->index); | |
3017 break; | |
3018 case SSCONFLICT: | |
3019 fprintf(fp,"%*s shift %-3d ** Parsing conflict **", | |
3020 indent,ap->sp->name,ap->x.stp->statenum); | |
3021 break; | |
3022 case SH_RESOLVED: | |
3023 if( showPrecedenceConflict ){ | |
3024 fprintf(fp,"%*s shift %-3d -- dropped by precedence", | |
3025 indent,ap->sp->name,ap->x.stp->statenum); | |
3026 }else{ | |
3027 result = 0; | |
3028 } | |
3029 break; | |
3030 case RD_RESOLVED: | |
3031 if( showPrecedenceConflict ){ | |
3032 fprintf(fp,"%*s reduce %-3d -- dropped by precedence", | |
3033 indent,ap->sp->name,ap->x.rp->index); | |
3034 }else{ | |
3035 result = 0; | |
3036 } | |
3037 break; | |
3038 case NOT_USED: | |
3039 result = 0; | |
3040 break; | |
3041 } | |
3042 return result; | |
3043 } | |
3044 | |
3045 /* Generate the "y.output" log file */ | |
3046 void ReportOutput(struct lemon *lemp) | |
3047 { | |
3048 int i; | |
3049 struct state *stp; | |
3050 struct config *cfp; | |
3051 struct action *ap; | |
3052 FILE *fp; | |
3053 | |
3054 fp = file_open(lemp,".out","wb"); | |
3055 if( fp==0 ) return; | |
3056 for(i=0; i<lemp->nstate; i++){ | |
3057 stp = lemp->sorted[i]; | |
3058 fprintf(fp,"State %d:\n",stp->statenum); | |
3059 if( lemp->basisflag ) cfp=stp->bp; | |
3060 else cfp=stp->cfp; | |
3061 while( cfp ){ | |
3062 char buf[20]; | |
3063 if( cfp->dot==cfp->rp->nrhs ){ | |
3064 lemon_sprintf(buf,"(%d)",cfp->rp->index); | |
3065 fprintf(fp," %5s ",buf); | |
3066 }else{ | |
3067 fprintf(fp," "); | |
3068 } | |
3069 ConfigPrint(fp,cfp); | |
3070 fprintf(fp,"\n"); | |
3071 #if 0 | |
3072 SetPrint(fp,cfp->fws,lemp); | |
3073 PlinkPrint(fp,cfp->fplp,"To "); | |
3074 PlinkPrint(fp,cfp->bplp,"From"); | |
3075 #endif | |
3076 if( lemp->basisflag ) cfp=cfp->bp; | |
3077 else cfp=cfp->next; | |
3078 } | |
3079 fprintf(fp,"\n"); | |
3080 for(ap=stp->ap; ap; ap=ap->next){ | |
3081 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); | |
3082 } | |
3083 fprintf(fp,"\n"); | |
3084 } | |
3085 fprintf(fp, "----------------------------------------------------\n"); | |
3086 fprintf(fp, "Symbols:\n"); | |
3087 for(i=0; i<lemp->nsymbol; i++){ | |
3088 int j; | |
3089 struct symbol *sp; | |
3090 | |
3091 sp = lemp->symbols[i]; | |
3092 fprintf(fp, " %3d: %s", i, sp->name); | |
3093 if( sp->type==NONTERMINAL ){ | |
3094 fprintf(fp, ":"); | |
3095 if( sp->lambda ){ | |
3096 fprintf(fp, " <lambda>"); | |
3097 } | |
3098 for(j=0; j<lemp->nterminal; j++){ | |
3099 if( sp->firstset && SetFind(sp->firstset, j) ){ | |
3100 fprintf(fp, " %s", lemp->symbols[j]->name); | |
3101 } | |
3102 } | |
3103 } | |
3104 fprintf(fp, "\n"); | |
3105 } | |
3106 fclose(fp); | |
3107 return; | |
3108 } | |
3109 | |
3110 /* Search for the file "name" which is in the same directory as | |
3111 ** the exacutable */ | |
3112 PRIVATE char *pathsearch(char *argv0, char *name, int modemask) | |
3113 { | |
3114 const char *pathlist; | |
3115 char *pathbufptr; | |
3116 char *pathbuf; | |
3117 char *path,*cp; | |
3118 char c; | |
3119 | |
3120 #ifdef __WIN32__ | |
3121 cp = strrchr(argv0,'\\'); | |
3122 #else | |
3123 cp = strrchr(argv0,'/'); | |
3124 #endif | |
3125 if( cp ){ | |
3126 c = *cp; | |
3127 *cp = 0; | |
3128 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); | |
3129 if( path ) lemon_sprintf(path,"%s/%s",argv0,name); | |
3130 *cp = c; | |
3131 }else{ | |
3132 pathlist = getenv("PATH"); | |
3133 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; | |
3134 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); | |
3135 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); | |
3136 if( (pathbuf != 0) && (path!=0) ){ | |
3137 pathbufptr = pathbuf; | |
3138 lemon_strcpy(pathbuf, pathlist); | |
3139 while( *pathbuf ){ | |
3140 cp = strchr(pathbuf,':'); | |
3141 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; | |
3142 c = *cp; | |
3143 *cp = 0; | |
3144 lemon_sprintf(path,"%s/%s",pathbuf,name); | |
3145 *cp = c; | |
3146 if( c==0 ) pathbuf[0] = 0; | |
3147 else pathbuf = &cp[1]; | |
3148 if( access(path,modemask)==0 ) break; | |
3149 } | |
3150 free(pathbufptr); | |
3151 } | |
3152 } | |
3153 return path; | |
3154 } | |
3155 | |
3156 /* Given an action, compute the integer value for that action | |
3157 ** which is to be put in the action table of the generated machine. | |
3158 ** Return negative if no action should be generated. | |
3159 */ | |
3160 PRIVATE int compute_action(struct lemon *lemp, struct action *ap) | |
3161 { | |
3162 int act; | |
3163 switch( ap->type ){ | |
3164 case SHIFT: act = ap->x.stp->statenum; break; | |
3165 case REDUCE: act = ap->x.rp->index + lemp->nstate; break; | |
3166 case ERROR: act = lemp->nstate + lemp->nrule; break; | |
3167 case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break; | |
3168 default: act = -1; break; | |
3169 } | |
3170 return act; | |
3171 } | |
3172 | |
3173 #define LINESIZE 1000 | |
3174 /* The next cluster of routines are for reading the template file | |
3175 ** and writing the results to the generated parser */ | |
3176 /* The first function transfers data from "in" to "out" until | |
3177 ** a line is seen which begins with "%%". The line number is | |
3178 ** tracked. | |
3179 ** | |
3180 ** if name!=0, then any word that begin with "Parse" is changed to | |
3181 ** begin with *name instead. | |
3182 */ | |
3183 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) | |
3184 { | |
3185 int i, iStart; | |
3186 char line[LINESIZE]; | |
3187 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ | |
3188 (*lineno)++; | |
3189 iStart = 0; | |
3190 if( name ){ | |
3191 for(i=0; line[i]; i++){ | |
3192 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 | |
3193 && (i==0 || !isalpha(line[i-1])) | |
3194 ){ | |
3195 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); | |
3196 fprintf(out,"%s",name); | |
3197 i += 4; | |
3198 iStart = i+1; | |
3199 } | |
3200 } | |
3201 } | |
3202 fprintf(out,"%s",&line[iStart]); | |
3203 } | |
3204 } | |
3205 | |
3206 /* The next function finds the template file and opens it, returning | |
3207 ** a pointer to the opened file. */ | |
3208 PRIVATE FILE *tplt_open(struct lemon *lemp) | |
3209 { | |
3210 static char templatename[] = "lempar.c"; | |
3211 char buf[1000]; | |
3212 FILE *in; | |
3213 char *tpltname; | |
3214 char *cp; | |
3215 | |
3216 /* first, see if user specified a template filename on the command line. */ | |
3217 if (user_templatename != 0) { | |
3218 if( access(user_templatename,004)==-1 ){ | |
3219 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", | |
3220 user_templatename); | |
3221 lemp->errorcnt++; | |
3222 return 0; | |
3223 } | |
3224 in = fopen(user_templatename,"rb"); | |
3225 if( in==0 ){ | |
3226 fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename)
; | |
3227 lemp->errorcnt++; | |
3228 return 0; | |
3229 } | |
3230 return in; | |
3231 } | |
3232 | |
3233 cp = strrchr(lemp->filename,'.'); | |
3234 if( cp ){ | |
3235 lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); | |
3236 }else{ | |
3237 lemon_sprintf(buf,"%s.lt",lemp->filename); | |
3238 } | |
3239 if( access(buf,004)==0 ){ | |
3240 tpltname = buf; | |
3241 }else if( access(templatename,004)==0 ){ | |
3242 tpltname = templatename; | |
3243 }else{ | |
3244 tpltname = pathsearch(lemp->argv0,templatename,0); | |
3245 } | |
3246 if( tpltname==0 ){ | |
3247 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", | |
3248 templatename); | |
3249 lemp->errorcnt++; | |
3250 return 0; | |
3251 } | |
3252 in = fopen(tpltname,"rb"); | |
3253 if( in==0 ){ | |
3254 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); | |
3255 lemp->errorcnt++; | |
3256 return 0; | |
3257 } | |
3258 return in; | |
3259 } | |
3260 | |
3261 /* Print a #line directive line to the output file. */ | |
3262 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) | |
3263 { | |
3264 fprintf(out,"#line %d \"",lineno); | |
3265 while( *filename ){ | |
3266 if( *filename == '\\' ) putc('\\',out); | |
3267 putc(*filename,out); | |
3268 filename++; | |
3269 } | |
3270 fprintf(out,"\"\n"); | |
3271 } | |
3272 | |
3273 /* Print a string to the file and keep the linenumber up to date */ | |
3274 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) | |
3275 { | |
3276 if( str==0 ) return; | |
3277 while( *str ){ | |
3278 putc(*str,out); | |
3279 if( *str=='\n' ) (*lineno)++; | |
3280 str++; | |
3281 } | |
3282 if( str[-1]!='\n' ){ | |
3283 putc('\n',out); | |
3284 (*lineno)++; | |
3285 } | |
3286 if (!lemp->nolinenosflag) { | |
3287 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); | |
3288 } | |
3289 return; | |
3290 } | |
3291 | |
3292 /* | |
3293 ** The following routine emits code for the destructor for the | |
3294 ** symbol sp | |
3295 */ | |
3296 void emit_destructor_code( | |
3297 FILE *out, | |
3298 struct symbol *sp, | |
3299 struct lemon *lemp, | |
3300 int *lineno | |
3301 ){ | |
3302 char *cp = 0; | |
3303 | |
3304 if( sp->type==TERMINAL ){ | |
3305 cp = lemp->tokendest; | |
3306 if( cp==0 ) return; | |
3307 fprintf(out,"{\n"); (*lineno)++; | |
3308 }else if( sp->destructor ){ | |
3309 cp = sp->destructor; | |
3310 fprintf(out,"{\n"); (*lineno)++; | |
3311 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp
->filename); } | |
3312 }else if( lemp->vardest ){ | |
3313 cp = lemp->vardest; | |
3314 if( cp==0 ) return; | |
3315 fprintf(out,"{\n"); (*lineno)++; | |
3316 }else{ | |
3317 assert( 0 ); /* Cannot happen */ | |
3318 } | |
3319 for(; *cp; cp++){ | |
3320 if( *cp=='$' && cp[1]=='$' ){ | |
3321 fprintf(out,"(yypminor->yy%d)",sp->dtnum); | |
3322 cp++; | |
3323 continue; | |
3324 } | |
3325 if( *cp=='\n' ) (*lineno)++; | |
3326 fputc(*cp,out); | |
3327 } | |
3328 fprintf(out,"\n"); (*lineno)++; | |
3329 if (!lemp->nolinenosflag) { | |
3330 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); | |
3331 } | |
3332 fprintf(out,"}\n"); (*lineno)++; | |
3333 return; | |
3334 } | |
3335 | |
3336 /* | |
3337 ** Return TRUE (non-zero) if the given symbol has a destructor. | |
3338 */ | |
3339 int has_destructor(struct symbol *sp, struct lemon *lemp) | |
3340 { | |
3341 int ret; | |
3342 if( sp->type==TERMINAL ){ | |
3343 ret = lemp->tokendest!=0; | |
3344 }else{ | |
3345 ret = lemp->vardest!=0 || sp->destructor!=0; | |
3346 } | |
3347 return ret; | |
3348 } | |
3349 | |
3350 /* | |
3351 ** Append text to a dynamically allocated string. If zText is 0 then | |
3352 ** reset the string to be empty again. Always return the complete text | |
3353 ** of the string (which is overwritten with each call). | |
3354 ** | |
3355 ** n bytes of zText are stored. If n==0 then all of zText up to the first | |
3356 ** \000 terminator is stored. zText can contain up to two instances of | |
3357 ** %d. The values of p1 and p2 are written into the first and second | |
3358 ** %d. | |
3359 ** | |
3360 ** If n==-1, then the previous character is overwritten. | |
3361 */ | |
3362 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ | |
3363 static char empty[1] = { 0 }; | |
3364 static char *z = 0; | |
3365 static int alloced = 0; | |
3366 static int used = 0; | |
3367 int c; | |
3368 char zInt[40]; | |
3369 if( zText==0 ){ | |
3370 used = 0; | |
3371 return z; | |
3372 } | |
3373 if( n<=0 ){ | |
3374 if( n<0 ){ | |
3375 used += n; | |
3376 assert( used>=0 ); | |
3377 } | |
3378 n = lemonStrlen(zText); | |
3379 } | |
3380 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ | |
3381 alloced = n + sizeof(zInt)*2 + used + 200; | |
3382 z = (char *) realloc(z, alloced); | |
3383 } | |
3384 if( z==0 ) return empty; | |
3385 while( n-- > 0 ){ | |
3386 c = *(zText++); | |
3387 if( c=='%' && n>0 && zText[0]=='d' ){ | |
3388 lemon_sprintf(zInt, "%d", p1); | |
3389 p1 = p2; | |
3390 lemon_strcpy(&z[used], zInt); | |
3391 used += lemonStrlen(&z[used]); | |
3392 zText++; | |
3393 n--; | |
3394 }else{ | |
3395 z[used++] = c; | |
3396 } | |
3397 } | |
3398 z[used] = 0; | |
3399 return z; | |
3400 } | |
3401 | |
3402 /* | |
3403 ** zCode is a string that is the action associated with a rule. Expand | |
3404 ** the symbols in this string so that the refer to elements of the parser | |
3405 ** stack. | |
3406 */ | |
3407 PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){ | |
3408 char *cp, *xp; | |
3409 int i; | |
3410 char lhsused = 0; /* True if the LHS element has been used */ | |
3411 char used[MAXRHS]; /* True for each RHS element which is used */ | |
3412 | |
3413 for(i=0; i<rp->nrhs; i++) used[i] = 0; | |
3414 lhsused = 0; | |
3415 | |
3416 if( rp->code==0 ){ | |
3417 static char newlinestr[2] = { '\n', '\0' }; | |
3418 rp->code = newlinestr; | |
3419 rp->line = rp->ruleline; | |
3420 } | |
3421 | |
3422 append_str(0,0,0,0); | |
3423 | |
3424 /* This const cast is wrong but harmless, if we're careful. */ | |
3425 for(cp=(char *)rp->code; *cp; cp++){ | |
3426 if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){ | |
3427 char saved; | |
3428 for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++); | |
3429 saved = *xp; | |
3430 *xp = 0; | |
3431 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ | |
3432 append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0); | |
3433 cp = xp; | |
3434 lhsused = 1; | |
3435 }else{ | |
3436 for(i=0; i<rp->nrhs; i++){ | |
3437 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ | |
3438 if( cp!=rp->code && cp[-1]=='@' ){ | |
3439 /* If the argument is of the form @X then substituted | |
3440 ** the token number of X, not the value of X */ | |
3441 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); | |
3442 }else{ | |
3443 struct symbol *sp = rp->rhs[i]; | |
3444 int dtnum; | |
3445 if( sp->type==MULTITERMINAL ){ | |
3446 dtnum = sp->subsym[0]->dtnum; | |
3447 }else{ | |
3448 dtnum = sp->dtnum; | |
3449 } | |
3450 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); | |
3451 } | |
3452 cp = xp; | |
3453 used[i] = 1; | |
3454 break; | |
3455 } | |
3456 } | |
3457 } | |
3458 *xp = saved; | |
3459 } | |
3460 append_str(cp, 1, 0, 0); | |
3461 } /* End loop */ | |
3462 | |
3463 /* Check to make sure the LHS has been used */ | |
3464 if( rp->lhsalias && !lhsused ){ | |
3465 ErrorMsg(lemp->filename,rp->ruleline, | |
3466 "Label \"%s\" for \"%s(%s)\" is never used.", | |
3467 rp->lhsalias,rp->lhs->name,rp->lhsalias); | |
3468 lemp->errorcnt++; | |
3469 } | |
3470 | |
3471 /* Generate destructor code for RHS symbols which are not used in the | |
3472 ** reduce code */ | |
3473 for(i=0; i<rp->nrhs; i++){ | |
3474 if( rp->rhsalias[i] && !used[i] ){ | |
3475 ErrorMsg(lemp->filename,rp->ruleline, | |
3476 "Label %s for \"%s(%s)\" is never used.", | |
3477 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); | |
3478 lemp->errorcnt++; | |
3479 }else if( rp->rhsalias[i]==0 ){ | |
3480 if( has_destructor(rp->rhs[i],lemp) ){ | |
3481 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, | |
3482 rp->rhs[i]->index,i-rp->nrhs+1); | |
3483 }else{ | |
3484 /* No destructor defined for this term */ | |
3485 } | |
3486 } | |
3487 } | |
3488 if( rp->code ){ | |
3489 cp = append_str(0,0,0,0); | |
3490 rp->code = Strsafe(cp?cp:""); | |
3491 } | |
3492 } | |
3493 | |
3494 /* | |
3495 ** Generate code which executes when the rule "rp" is reduced. Write | |
3496 ** the code to "out". Make sure lineno stays up-to-date. | |
3497 */ | |
3498 PRIVATE void emit_code( | |
3499 FILE *out, | |
3500 struct rule *rp, | |
3501 struct lemon *lemp, | |
3502 int *lineno | |
3503 ){ | |
3504 const char *cp; | |
3505 | |
3506 /* Generate code to do the reduce action */ | |
3507 if( rp->code ){ | |
3508 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->file
name); } | |
3509 fprintf(out,"{%s",rp->code); | |
3510 for(cp=rp->code; *cp; cp++){ | |
3511 if( *cp=='\n' ) (*lineno)++; | |
3512 } /* End loop */ | |
3513 fprintf(out,"}\n"); (*lineno)++; | |
3514 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outna
me); } | |
3515 } /* End if( rp->code ) */ | |
3516 | |
3517 return; | |
3518 } | |
3519 | |
3520 /* | |
3521 ** Print the definition of the union used for the parser's data stack. | |
3522 ** This union contains fields for every possible data type for tokens | |
3523 ** and nonterminals. In the process of computing and printing this | |
3524 ** union, also set the ".dtnum" field of every terminal and nonterminal | |
3525 ** symbol. | |
3526 */ | |
3527 void print_stack_union( | |
3528 FILE *out, /* The output stream */ | |
3529 struct lemon *lemp, /* The main info structure for this parser */ | |
3530 int *plineno, /* Pointer to the line number */ | |
3531 int mhflag /* True if generating makeheaders output */ | |
3532 ){ | |
3533 int lineno = *plineno; /* The line number of the output */ | |
3534 char **types; /* A hash table of datatypes */ | |
3535 int arraysize; /* Size of the "types" array */ | |
3536 int maxdtlength; /* Maximum length of any ".datatype" field. */ | |
3537 char *stddt; /* Standardized name for a datatype */ | |
3538 int i,j; /* Loop counters */ | |
3539 unsigned hash; /* For hashing the name of a type */ | |
3540 const char *name; /* Name of the parser */ | |
3541 | |
3542 /* Allocate and initialize types[] and allocate stddt[] */ | |
3543 arraysize = lemp->nsymbol * 2; | |
3544 types = (char**)calloc( arraysize, sizeof(char*) ); | |
3545 if( types==0 ){ | |
3546 fprintf(stderr,"Out of memory.\n"); | |
3547 exit(1); | |
3548 } | |
3549 for(i=0; i<arraysize; i++) types[i] = 0; | |
3550 maxdtlength = 0; | |
3551 if( lemp->vartype ){ | |
3552 maxdtlength = lemonStrlen(lemp->vartype); | |
3553 } | |
3554 for(i=0; i<lemp->nsymbol; i++){ | |
3555 int len; | |
3556 struct symbol *sp = lemp->symbols[i]; | |
3557 if( sp->datatype==0 ) continue; | |
3558 len = lemonStrlen(sp->datatype); | |
3559 if( len>maxdtlength ) maxdtlength = len; | |
3560 } | |
3561 stddt = (char*)malloc( maxdtlength*2 + 1 ); | |
3562 if( stddt==0 ){ | |
3563 fprintf(stderr,"Out of memory.\n"); | |
3564 exit(1); | |
3565 } | |
3566 | |
3567 /* Build a hash table of datatypes. The ".dtnum" field of each symbol | |
3568 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is | |
3569 ** used for terminal symbols. If there is no %default_type defined then | |
3570 ** 0 is also used as the .dtnum value for nonterminals which do not specify | |
3571 ** a datatype using the %type directive. | |
3572 */ | |
3573 for(i=0; i<lemp->nsymbol; i++){ | |
3574 struct symbol *sp = lemp->symbols[i]; | |
3575 char *cp; | |
3576 if( sp==lemp->errsym ){ | |
3577 sp->dtnum = arraysize+1; | |
3578 continue; | |
3579 } | |
3580 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ | |
3581 sp->dtnum = 0; | |
3582 continue; | |
3583 } | |
3584 cp = sp->datatype; | |
3585 if( cp==0 ) cp = lemp->vartype; | |
3586 j = 0; | |
3587 while( isspace(*cp) ) cp++; | |
3588 while( *cp ) stddt[j++] = *cp++; | |
3589 while( j>0 && isspace(stddt[j-1]) ) j--; | |
3590 stddt[j] = 0; | |
3591 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ | |
3592 sp->dtnum = 0; | |
3593 continue; | |
3594 } | |
3595 hash = 0; | |
3596 for(j=0; stddt[j]; j++){ | |
3597 hash = hash*53 + stddt[j]; | |
3598 } | |
3599 hash = (hash & 0x7fffffff)%arraysize; | |
3600 while( types[hash] ){ | |
3601 if( strcmp(types[hash],stddt)==0 ){ | |
3602 sp->dtnum = hash + 1; | |
3603 break; | |
3604 } | |
3605 hash++; | |
3606 if( hash>=(unsigned)arraysize ) hash = 0; | |
3607 } | |
3608 if( types[hash]==0 ){ | |
3609 sp->dtnum = hash + 1; | |
3610 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); | |
3611 if( types[hash]==0 ){ | |
3612 fprintf(stderr,"Out of memory.\n"); | |
3613 exit(1); | |
3614 } | |
3615 lemon_strcpy(types[hash],stddt); | |
3616 } | |
3617 } | |
3618 | |
3619 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ | |
3620 name = lemp->name ? lemp->name : "Parse"; | |
3621 lineno = *plineno; | |
3622 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } | |
3623 fprintf(out,"#define %sTOKENTYPE %s\n",name, | |
3624 lemp->tokentype?lemp->tokentype:"void*"); lineno++; | |
3625 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } | |
3626 fprintf(out,"typedef union {\n"); lineno++; | |
3627 fprintf(out," int yyinit;\n"); lineno++; | |
3628 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; | |
3629 for(i=0; i<arraysize; i++){ | |
3630 if( types[i]==0 ) continue; | |
3631 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; | |
3632 free(types[i]); | |
3633 } | |
3634 if( lemp->errsym->useCnt ){ | |
3635 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; | |
3636 } | |
3637 free(stddt); | |
3638 free(types); | |
3639 fprintf(out,"} YYMINORTYPE;\n"); lineno++; | |
3640 *plineno = lineno; | |
3641 } | |
3642 | |
3643 /* | |
3644 ** Return the name of a C datatype able to represent values between | |
3645 ** lwr and upr, inclusive. | |
3646 */ | |
3647 static const char *minimum_size_type(int lwr, int upr){ | |
3648 if( lwr>=0 ){ | |
3649 if( upr<=255 ){ | |
3650 return "unsigned char"; | |
3651 }else if( upr<65535 ){ | |
3652 return "unsigned short int"; | |
3653 }else{ | |
3654 return "unsigned int"; | |
3655 } | |
3656 }else if( lwr>=-127 && upr<=127 ){ | |
3657 return "signed char"; | |
3658 }else if( lwr>=-32767 && upr<32767 ){ | |
3659 return "short"; | |
3660 }else{ | |
3661 return "int"; | |
3662 } | |
3663 } | |
3664 | |
3665 /* | |
3666 ** Each state contains a set of token transaction and a set of | |
3667 ** nonterminal transactions. Each of these sets makes an instance | |
3668 ** of the following structure. An array of these structures is used | |
3669 ** to order the creation of entries in the yy_action[] table. | |
3670 */ | |
3671 struct axset { | |
3672 struct state *stp; /* A pointer to a state */ | |
3673 int isTkn; /* True to use tokens. False for non-terminals */ | |
3674 int nAction; /* Number of actions */ | |
3675 int iOrder; /* Original order of action sets */ | |
3676 }; | |
3677 | |
3678 /* | |
3679 ** Compare to axset structures for sorting purposes | |
3680 */ | |
3681 static int axset_compare(const void *a, const void *b){ | |
3682 struct axset *p1 = (struct axset*)a; | |
3683 struct axset *p2 = (struct axset*)b; | |
3684 int c; | |
3685 c = p2->nAction - p1->nAction; | |
3686 if( c==0 ){ | |
3687 c = p2->iOrder - p1->iOrder; | |
3688 } | |
3689 assert( c!=0 || p1==p2 ); | |
3690 return c; | |
3691 } | |
3692 | |
3693 /* | |
3694 ** Write text on "out" that describes the rule "rp". | |
3695 */ | |
3696 static void writeRuleText(FILE *out, struct rule *rp){ | |
3697 int j; | |
3698 fprintf(out,"%s ::=", rp->lhs->name); | |
3699 for(j=0; j<rp->nrhs; j++){ | |
3700 struct symbol *sp = rp->rhs[j]; | |
3701 if( sp->type!=MULTITERMINAL ){ | |
3702 fprintf(out," %s", sp->name); | |
3703 }else{ | |
3704 int k; | |
3705 fprintf(out," %s", sp->subsym[0]->name); | |
3706 for(k=1; k<sp->nsubsym; k++){ | |
3707 fprintf(out,"|%s",sp->subsym[k]->name); | |
3708 } | |
3709 } | |
3710 } | |
3711 } | |
3712 | |
3713 | |
3714 /* Generate C source code for the parser */ | |
3715 void ReportTable( | |
3716 struct lemon *lemp, | |
3717 int mhflag /* Output in makeheaders format if true */ | |
3718 ){ | |
3719 FILE *out, *in; | |
3720 char line[LINESIZE]; | |
3721 int lineno; | |
3722 struct state *stp; | |
3723 struct action *ap; | |
3724 struct rule *rp; | |
3725 struct acttab *pActtab; | |
3726 int i, j, n; | |
3727 const char *name; | |
3728 int mnTknOfst, mxTknOfst; | |
3729 int mnNtOfst, mxNtOfst; | |
3730 struct axset *ax; | |
3731 | |
3732 in = tplt_open(lemp); | |
3733 if( in==0 ) return; | |
3734 out = file_open(lemp,".c","wb"); | |
3735 if( out==0 ){ | |
3736 fclose(in); | |
3737 return; | |
3738 } | |
3739 lineno = 1; | |
3740 tplt_xfer(lemp->name,in,out,&lineno); | |
3741 | |
3742 /* Generate the include code, if any */ | |
3743 tplt_print(out,lemp,lemp->include,&lineno); | |
3744 if( mhflag ){ | |
3745 char *name = file_makename(lemp, ".h"); | |
3746 fprintf(out,"#include \"%s\"\n", name); lineno++; | |
3747 free(name); | |
3748 } | |
3749 tplt_xfer(lemp->name,in,out,&lineno); | |
3750 | |
3751 /* Generate #defines for all tokens */ | |
3752 if( mhflag ){ | |
3753 const char *prefix; | |
3754 fprintf(out,"#if INTERFACE\n"); lineno++; | |
3755 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; | |
3756 else prefix = ""; | |
3757 for(i=1; i<lemp->nterminal; i++){ | |
3758 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); | |
3759 lineno++; | |
3760 } | |
3761 fprintf(out,"#endif\n"); lineno++; | |
3762 } | |
3763 tplt_xfer(lemp->name,in,out,&lineno); | |
3764 | |
3765 /* Generate the defines */ | |
3766 fprintf(out,"#define YYCODETYPE %s\n", | |
3767 minimum_size_type(0, lemp->nsymbol+1)); lineno++; | |
3768 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; | |
3769 fprintf(out,"#define YYACTIONTYPE %s\n", | |
3770 minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++; | |
3771 if( lemp->wildcard ){ | |
3772 fprintf(out,"#define YYWILDCARD %d\n", | |
3773 lemp->wildcard->index); lineno++; | |
3774 } | |
3775 print_stack_union(out,lemp,&lineno,mhflag); | |
3776 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; | |
3777 if( lemp->stacksize ){ | |
3778 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; | |
3779 }else{ | |
3780 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; | |
3781 } | |
3782 fprintf(out, "#endif\n"); lineno++; | |
3783 if( mhflag ){ | |
3784 fprintf(out,"#if INTERFACE\n"); lineno++; | |
3785 } | |
3786 name = lemp->name ? lemp->name : "Parse"; | |
3787 if( lemp->arg && lemp->arg[0] ){ | |
3788 int i; | |
3789 i = lemonStrlen(lemp->arg); | |
3790 while( i>=1 && isspace(lemp->arg[i-1]) ) i--; | |
3791 while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; | |
3792 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; | |
3793 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; | |
3794 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", | |
3795 name,lemp->arg,&lemp->arg[i]); lineno++; | |
3796 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", | |
3797 name,&lemp->arg[i],&lemp->arg[i]); lineno++; | |
3798 }else{ | |
3799 fprintf(out,"#define %sARG_SDECL\n",name); lineno++; | |
3800 fprintf(out,"#define %sARG_PDECL\n",name); lineno++; | |
3801 fprintf(out,"#define %sARG_FETCH\n",name); lineno++; | |
3802 fprintf(out,"#define %sARG_STORE\n",name); lineno++; | |
3803 } | |
3804 if( mhflag ){ | |
3805 fprintf(out,"#endif\n"); lineno++; | |
3806 } | |
3807 fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++; | |
3808 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; | |
3809 if( lemp->errsym->useCnt ){ | |
3810 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; | |
3811 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; | |
3812 } | |
3813 if( lemp->has_fallback ){ | |
3814 fprintf(out,"#define YYFALLBACK 1\n"); lineno++; | |
3815 } | |
3816 tplt_xfer(lemp->name,in,out,&lineno); | |
3817 | |
3818 /* Generate the action table and its associates: | |
3819 ** | |
3820 ** yy_action[] A single table containing all actions. | |
3821 ** yy_lookahead[] A table containing the lookahead for each entry in | |
3822 ** yy_action. Used to detect hash collisions. | |
3823 ** yy_shift_ofst[] For each state, the offset into yy_action for | |
3824 ** shifting terminals. | |
3825 ** yy_reduce_ofst[] For each state, the offset into yy_action for | |
3826 ** shifting non-terminals after a reduce. | |
3827 ** yy_default[] Default action for each state. | |
3828 */ | |
3829 | |
3830 /* Compute the actions on all states and count them up */ | |
3831 ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0])); | |
3832 if( ax==0 ){ | |
3833 fprintf(stderr,"malloc failed\n"); | |
3834 exit(1); | |
3835 } | |
3836 for(i=0; i<lemp->nstate; i++){ | |
3837 stp = lemp->sorted[i]; | |
3838 ax[i*2].stp = stp; | |
3839 ax[i*2].isTkn = 1; | |
3840 ax[i*2].nAction = stp->nTknAct; | |
3841 ax[i*2+1].stp = stp; | |
3842 ax[i*2+1].isTkn = 0; | |
3843 ax[i*2+1].nAction = stp->nNtAct; | |
3844 } | |
3845 mxTknOfst = mnTknOfst = 0; | |
3846 mxNtOfst = mnNtOfst = 0; | |
3847 | |
3848 /* Compute the action table. In order to try to keep the size of the | |
3849 ** action table to a minimum, the heuristic of placing the largest action | |
3850 ** sets first is used. | |
3851 */ | |
3852 for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i; | |
3853 qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare); | |
3854 pActtab = acttab_alloc(); | |
3855 for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){ | |
3856 stp = ax[i].stp; | |
3857 if( ax[i].isTkn ){ | |
3858 for(ap=stp->ap; ap; ap=ap->next){ | |
3859 int action; | |
3860 if( ap->sp->index>=lemp->nterminal ) continue; | |
3861 action = compute_action(lemp, ap); | |
3862 if( action<0 ) continue; | |
3863 acttab_action(pActtab, ap->sp->index, action); | |
3864 } | |
3865 stp->iTknOfst = acttab_insert(pActtab); | |
3866 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; | |
3867 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; | |
3868 }else{ | |
3869 for(ap=stp->ap; ap; ap=ap->next){ | |
3870 int action; | |
3871 if( ap->sp->index<lemp->nterminal ) continue; | |
3872 if( ap->sp->index==lemp->nsymbol ) continue; | |
3873 action = compute_action(lemp, ap); | |
3874 if( action<0 ) continue; | |
3875 acttab_action(pActtab, ap->sp->index, action); | |
3876 } | |
3877 stp->iNtOfst = acttab_insert(pActtab); | |
3878 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; | |
3879 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; | |
3880 } | |
3881 } | |
3882 free(ax); | |
3883 | |
3884 /* Output the yy_action table */ | |
3885 n = acttab_size(pActtab); | |
3886 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; | |
3887 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; | |
3888 for(i=j=0; i<n; i++){ | |
3889 int action = acttab_yyaction(pActtab, i); | |
3890 if( action<0 ) action = lemp->nstate + lemp->nrule + 2; | |
3891 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
3892 fprintf(out, " %4d,", action); | |
3893 if( j==9 || i==n-1 ){ | |
3894 fprintf(out, "\n"); lineno++; | |
3895 j = 0; | |
3896 }else{ | |
3897 j++; | |
3898 } | |
3899 } | |
3900 fprintf(out, "};\n"); lineno++; | |
3901 | |
3902 /* Output the yy_lookahead table */ | |
3903 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; | |
3904 for(i=j=0; i<n; i++){ | |
3905 int la = acttab_yylookahead(pActtab, i); | |
3906 if( la<0 ) la = lemp->nsymbol; | |
3907 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
3908 fprintf(out, " %4d,", la); | |
3909 if( j==9 || i==n-1 ){ | |
3910 fprintf(out, "\n"); lineno++; | |
3911 j = 0; | |
3912 }else{ | |
3913 j++; | |
3914 } | |
3915 } | |
3916 fprintf(out, "};\n"); lineno++; | |
3917 | |
3918 /* Output the yy_shift_ofst[] table */ | |
3919 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++; | |
3920 n = lemp->nstate; | |
3921 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; | |
3922 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; | |
3923 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; | |
3924 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; | |
3925 fprintf(out, "static const %s yy_shift_ofst[] = {\n", | |
3926 minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++; | |
3927 for(i=j=0; i<n; i++){ | |
3928 int ofst; | |
3929 stp = lemp->sorted[i]; | |
3930 ofst = stp->iTknOfst; | |
3931 if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1; | |
3932 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
3933 fprintf(out, " %4d,", ofst); | |
3934 if( j==9 || i==n-1 ){ | |
3935 fprintf(out, "\n"); lineno++; | |
3936 j = 0; | |
3937 }else{ | |
3938 j++; | |
3939 } | |
3940 } | |
3941 fprintf(out, "};\n"); lineno++; | |
3942 | |
3943 /* Output the yy_reduce_ofst[] table */ | |
3944 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; | |
3945 n = lemp->nstate; | |
3946 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; | |
3947 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; | |
3948 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; | |
3949 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; | |
3950 fprintf(out, "static const %s yy_reduce_ofst[] = {\n", | |
3951 minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++; | |
3952 for(i=j=0; i<n; i++){ | |
3953 int ofst; | |
3954 stp = lemp->sorted[i]; | |
3955 ofst = stp->iNtOfst; | |
3956 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; | |
3957 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
3958 fprintf(out, " %4d,", ofst); | |
3959 if( j==9 || i==n-1 ){ | |
3960 fprintf(out, "\n"); lineno++; | |
3961 j = 0; | |
3962 }else{ | |
3963 j++; | |
3964 } | |
3965 } | |
3966 fprintf(out, "};\n"); lineno++; | |
3967 | |
3968 /* Output the default action table */ | |
3969 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; | |
3970 n = lemp->nstate; | |
3971 for(i=j=0; i<n; i++){ | |
3972 stp = lemp->sorted[i]; | |
3973 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
3974 fprintf(out, " %4d,", stp->iDflt); | |
3975 if( j==9 || i==n-1 ){ | |
3976 fprintf(out, "\n"); lineno++; | |
3977 j = 0; | |
3978 }else{ | |
3979 j++; | |
3980 } | |
3981 } | |
3982 fprintf(out, "};\n"); lineno++; | |
3983 tplt_xfer(lemp->name,in,out,&lineno); | |
3984 | |
3985 /* Generate the table of fallback tokens. | |
3986 */ | |
3987 if( lemp->has_fallback ){ | |
3988 int mx = lemp->nterminal - 1; | |
3989 while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } | |
3990 for(i=0; i<=mx; i++){ | |
3991 struct symbol *p = lemp->symbols[i]; | |
3992 if( p->fallback==0 ){ | |
3993 fprintf(out, " 0, /* %10s => nothing */\n", p->name); | |
3994 }else{ | |
3995 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, | |
3996 p->name, p->fallback->name); | |
3997 } | |
3998 lineno++; | |
3999 } | |
4000 } | |
4001 tplt_xfer(lemp->name, in, out, &lineno); | |
4002 | |
4003 /* Generate a table containing the symbolic name of every symbol | |
4004 */ | |
4005 for(i=0; i<lemp->nsymbol; i++){ | |
4006 lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name); | |
4007 fprintf(out," %-15s",line); | |
4008 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } | |
4009 } | |
4010 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } | |
4011 tplt_xfer(lemp->name,in,out,&lineno); | |
4012 | |
4013 /* Generate a table containing a text string that describes every | |
4014 ** rule in the rule set of the grammar. This information is used | |
4015 ** when tracing REDUCE actions. | |
4016 */ | |
4017 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ | |
4018 assert( rp->index==i ); | |
4019 fprintf(out," /* %3d */ \"", i); | |
4020 writeRuleText(out, rp); | |
4021 fprintf(out,"\",\n"); lineno++; | |
4022 } | |
4023 tplt_xfer(lemp->name,in,out,&lineno); | |
4024 | |
4025 /* Generate code which executes every time a symbol is popped from | |
4026 ** the stack while processing errors or while destroying the parser. | |
4027 ** (In other words, generate the %destructor actions) | |
4028 */ | |
4029 if( lemp->tokendest ){ | |
4030 int once = 1; | |
4031 for(i=0; i<lemp->nsymbol; i++){ | |
4032 struct symbol *sp = lemp->symbols[i]; | |
4033 if( sp==0 || sp->type!=TERMINAL ) continue; | |
4034 if( once ){ | |
4035 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; | |
4036 once = 0; | |
4037 } | |
4038 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; | |
4039 } | |
4040 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); | |
4041 if( i<lemp->nsymbol ){ | |
4042 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); | |
4043 fprintf(out," break;\n"); lineno++; | |
4044 } | |
4045 } | |
4046 if( lemp->vardest ){ | |
4047 struct symbol *dflt_sp = 0; | |
4048 int once = 1; | |
4049 for(i=0; i<lemp->nsymbol; i++){ | |
4050 struct symbol *sp = lemp->symbols[i]; | |
4051 if( sp==0 || sp->type==TERMINAL || | |
4052 sp->index<=0 || sp->destructor!=0 ) continue; | |
4053 if( once ){ | |
4054 fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++; | |
4055 once = 0; | |
4056 } | |
4057 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; | |
4058 dflt_sp = sp; | |
4059 } | |
4060 if( dflt_sp!=0 ){ | |
4061 emit_destructor_code(out,dflt_sp,lemp,&lineno); | |
4062 } | |
4063 fprintf(out," break;\n"); lineno++; | |
4064 } | |
4065 for(i=0; i<lemp->nsymbol; i++){ | |
4066 struct symbol *sp = lemp->symbols[i]; | |
4067 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; | |
4068 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; | |
4069 | |
4070 /* Combine duplicate destructors into a single case */ | |
4071 for(j=i+1; j<lemp->nsymbol; j++){ | |
4072 struct symbol *sp2 = lemp->symbols[j]; | |
4073 if( sp2 && sp2->type!=TERMINAL && sp2->destructor | |
4074 && sp2->dtnum==sp->dtnum | |
4075 && strcmp(sp->destructor,sp2->destructor)==0 ){ | |
4076 fprintf(out," case %d: /* %s */\n", | |
4077 sp2->index, sp2->name); lineno++; | |
4078 sp2->destructor = 0; | |
4079 } | |
4080 } | |
4081 | |
4082 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); | |
4083 fprintf(out," break;\n"); lineno++; | |
4084 } | |
4085 tplt_xfer(lemp->name,in,out,&lineno); | |
4086 | |
4087 /* Generate code which executes whenever the parser stack overflows */ | |
4088 tplt_print(out,lemp,lemp->overflow,&lineno); | |
4089 tplt_xfer(lemp->name,in,out,&lineno); | |
4090 | |
4091 /* Generate the table of rule information | |
4092 ** | |
4093 ** Note: This code depends on the fact that rules are number | |
4094 ** sequentually beginning with 0. | |
4095 */ | |
4096 for(rp=lemp->rule; rp; rp=rp->next){ | |
4097 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; | |
4098 } | |
4099 tplt_xfer(lemp->name,in,out,&lineno); | |
4100 | |
4101 /* Generate code which execution during each REDUCE action */ | |
4102 for(rp=lemp->rule; rp; rp=rp->next){ | |
4103 translate_code(lemp, rp); | |
4104 } | |
4105 /* First output rules other than the default: rule */ | |
4106 for(rp=lemp->rule; rp; rp=rp->next){ | |
4107 struct rule *rp2; /* Other rules with the same action */ | |
4108 if( rp->code==0 ) continue; | |
4109 if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */ | |
4110 fprintf(out," case %d: /* ", rp->index); | |
4111 writeRuleText(out, rp); | |
4112 fprintf(out, " */\n"); lineno++; | |
4113 for(rp2=rp->next; rp2; rp2=rp2->next){ | |
4114 if( rp2->code==rp->code ){ | |
4115 fprintf(out," case %d: /* ", rp2->index); | |
4116 writeRuleText(out, rp2); | |
4117 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++; | |
4118 rp2->code = 0; | |
4119 } | |
4120 } | |
4121 emit_code(out,rp,lemp,&lineno); | |
4122 fprintf(out," break;\n"); lineno++; | |
4123 rp->code = 0; | |
4124 } | |
4125 /* Finally, output the default: rule. We choose as the default: all | |
4126 ** empty actions. */ | |
4127 fprintf(out," default:\n"); lineno++; | |
4128 for(rp=lemp->rule; rp; rp=rp->next){ | |
4129 if( rp->code==0 ) continue; | |
4130 assert( rp->code[0]=='\n' && rp->code[1]==0 ); | |
4131 fprintf(out," /* (%d) ", rp->index); | |
4132 writeRuleText(out, rp); | |
4133 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++; | |
4134 } | |
4135 fprintf(out," break;\n"); lineno++; | |
4136 tplt_xfer(lemp->name,in,out,&lineno); | |
4137 | |
4138 /* Generate code which executes if a parse fails */ | |
4139 tplt_print(out,lemp,lemp->failure,&lineno); | |
4140 tplt_xfer(lemp->name,in,out,&lineno); | |
4141 | |
4142 /* Generate code which executes when a syntax error occurs */ | |
4143 tplt_print(out,lemp,lemp->error,&lineno); | |
4144 tplt_xfer(lemp->name,in,out,&lineno); | |
4145 | |
4146 /* Generate code which executes when the parser accepts its input */ | |
4147 tplt_print(out,lemp,lemp->accept,&lineno); | |
4148 tplt_xfer(lemp->name,in,out,&lineno); | |
4149 | |
4150 /* Append any addition code the user desires */ | |
4151 tplt_print(out,lemp,lemp->extracode,&lineno); | |
4152 | |
4153 fclose(in); | |
4154 fclose(out); | |
4155 return; | |
4156 } | |
4157 | |
4158 /* Generate a header file for the parser */ | |
4159 void ReportHeader(struct lemon *lemp) | |
4160 { | |
4161 FILE *out, *in; | |
4162 const char *prefix; | |
4163 char line[LINESIZE]; | |
4164 char pattern[LINESIZE]; | |
4165 int i; | |
4166 | |
4167 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; | |
4168 else prefix = ""; | |
4169 in = file_open(lemp,".h","rb"); | |
4170 if( in ){ | |
4171 int nextChar; | |
4172 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ | |
4173 lemon_sprintf(pattern,"#define %s%-30s %3d\n", | |
4174 prefix,lemp->symbols[i]->name,i); | |
4175 if( strcmp(line,pattern) ) break; | |
4176 } | |
4177 nextChar = fgetc(in); | |
4178 fclose(in); | |
4179 if( i==lemp->nterminal && nextChar==EOF ){ | |
4180 /* No change in the file. Don't rewrite it. */ | |
4181 return; | |
4182 } | |
4183 } | |
4184 out = file_open(lemp,".h","wb"); | |
4185 if( out ){ | |
4186 for(i=1; i<lemp->nterminal; i++){ | |
4187 fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i); | |
4188 } | |
4189 fclose(out); | |
4190 } | |
4191 return; | |
4192 } | |
4193 | |
4194 /* Reduce the size of the action tables, if possible, by making use | |
4195 ** of defaults. | |
4196 ** | |
4197 ** In this version, we take the most frequent REDUCE action and make | |
4198 ** it the default. Except, there is no default if the wildcard token | |
4199 ** is a possible look-ahead. | |
4200 */ | |
4201 void CompressTables(struct lemon *lemp) | |
4202 { | |
4203 struct state *stp; | |
4204 struct action *ap, *ap2; | |
4205 struct rule *rp, *rp2, *rbest; | |
4206 int nbest, n; | |
4207 int i; | |
4208 int usesWildcard; | |
4209 | |
4210 for(i=0; i<lemp->nstate; i++){ | |
4211 stp = lemp->sorted[i]; | |
4212 nbest = 0; | |
4213 rbest = 0; | |
4214 usesWildcard = 0; | |
4215 | |
4216 for(ap=stp->ap; ap; ap=ap->next){ | |
4217 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ | |
4218 usesWildcard = 1; | |
4219 } | |
4220 if( ap->type!=REDUCE ) continue; | |
4221 rp = ap->x.rp; | |
4222 if( rp->lhsStart ) continue; | |
4223 if( rp==rbest ) continue; | |
4224 n = 1; | |
4225 for(ap2=ap->next; ap2; ap2=ap2->next){ | |
4226 if( ap2->type!=REDUCE ) continue; | |
4227 rp2 = ap2->x.rp; | |
4228 if( rp2==rbest ) continue; | |
4229 if( rp2==rp ) n++; | |
4230 } | |
4231 if( n>nbest ){ | |
4232 nbest = n; | |
4233 rbest = rp; | |
4234 } | |
4235 } | |
4236 | |
4237 /* Do not make a default if the number of rules to default | |
4238 ** is not at least 1 or if the wildcard token is a possible | |
4239 ** lookahead. | |
4240 */ | |
4241 if( nbest<1 || usesWildcard ) continue; | |
4242 | |
4243 | |
4244 /* Combine matching REDUCE actions into a single default */ | |
4245 for(ap=stp->ap; ap; ap=ap->next){ | |
4246 if( ap->type==REDUCE && ap->x.rp==rbest ) break; | |
4247 } | |
4248 assert( ap ); | |
4249 ap->sp = Symbol_new("{default}"); | |
4250 for(ap=ap->next; ap; ap=ap->next){ | |
4251 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; | |
4252 } | |
4253 stp->ap = Action_sort(stp->ap); | |
4254 } | |
4255 } | |
4256 | |
4257 | |
4258 /* | |
4259 ** Compare two states for sorting purposes. The smaller state is the | |
4260 ** one with the most non-terminal actions. If they have the same number | |
4261 ** of non-terminal actions, then the smaller is the one with the most | |
4262 ** token actions. | |
4263 */ | |
4264 static int stateResortCompare(const void *a, const void *b){ | |
4265 const struct state *pA = *(const struct state**)a; | |
4266 const struct state *pB = *(const struct state**)b; | |
4267 int n; | |
4268 | |
4269 n = pB->nNtAct - pA->nNtAct; | |
4270 if( n==0 ){ | |
4271 n = pB->nTknAct - pA->nTknAct; | |
4272 if( n==0 ){ | |
4273 n = pB->statenum - pA->statenum; | |
4274 } | |
4275 } | |
4276 assert( n!=0 ); | |
4277 return n; | |
4278 } | |
4279 | |
4280 | |
4281 /* | |
4282 ** Renumber and resort states so that states with fewer choices | |
4283 ** occur at the end. Except, keep state 0 as the first state. | |
4284 */ | |
4285 void ResortStates(struct lemon *lemp) | |
4286 { | |
4287 int i; | |
4288 struct state *stp; | |
4289 struct action *ap; | |
4290 | |
4291 for(i=0; i<lemp->nstate; i++){ | |
4292 stp = lemp->sorted[i]; | |
4293 stp->nTknAct = stp->nNtAct = 0; | |
4294 stp->iDflt = lemp->nstate + lemp->nrule; | |
4295 stp->iTknOfst = NO_OFFSET; | |
4296 stp->iNtOfst = NO_OFFSET; | |
4297 for(ap=stp->ap; ap; ap=ap->next){ | |
4298 if( compute_action(lemp,ap)>=0 ){ | |
4299 if( ap->sp->index<lemp->nterminal ){ | |
4300 stp->nTknAct++; | |
4301 }else if( ap->sp->index<lemp->nsymbol ){ | |
4302 stp->nNtAct++; | |
4303 }else{ | |
4304 stp->iDflt = compute_action(lemp, ap); | |
4305 } | |
4306 } | |
4307 } | |
4308 } | |
4309 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), | |
4310 stateResortCompare); | |
4311 for(i=0; i<lemp->nstate; i++){ | |
4312 lemp->sorted[i]->statenum = i; | |
4313 } | |
4314 } | |
4315 | |
4316 | |
4317 /***************** From the file "set.c" ************************************/ | |
4318 /* | |
4319 ** Set manipulation routines for the LEMON parser generator. | |
4320 */ | |
4321 | |
4322 static int size = 0; | |
4323 | |
4324 /* Set the set size */ | |
4325 void SetSize(int n) | |
4326 { | |
4327 size = n+1; | |
4328 } | |
4329 | |
4330 /* Allocate a new set */ | |
4331 char *SetNew(){ | |
4332 char *s; | |
4333 s = (char*)calloc( size, 1); | |
4334 if( s==0 ){ | |
4335 extern void memory_error(); | |
4336 memory_error(); | |
4337 } | |
4338 return s; | |
4339 } | |
4340 | |
4341 /* Deallocate a set */ | |
4342 void SetFree(char *s) | |
4343 { | |
4344 free(s); | |
4345 } | |
4346 | |
4347 /* Add a new element to the set. Return TRUE if the element was added | |
4348 ** and FALSE if it was already there. */ | |
4349 int SetAdd(char *s, int e) | |
4350 { | |
4351 int rv; | |
4352 assert( e>=0 && e<size ); | |
4353 rv = s[e]; | |
4354 s[e] = 1; | |
4355 return !rv; | |
4356 } | |
4357 | |
4358 /* Add every element of s2 to s1. Return TRUE if s1 changes. */ | |
4359 int SetUnion(char *s1, char *s2) | |
4360 { | |
4361 int i, progress; | |
4362 progress = 0; | |
4363 for(i=0; i<size; i++){ | |
4364 if( s2[i]==0 ) continue; | |
4365 if( s1[i]==0 ){ | |
4366 progress = 1; | |
4367 s1[i] = 1; | |
4368 } | |
4369 } | |
4370 return progress; | |
4371 } | |
4372 /********************** From the file "table.c" ****************************/ | |
4373 /* | |
4374 ** All code in this file has been automatically generated | |
4375 ** from a specification in the file | |
4376 ** "table.q" | |
4377 ** by the associative array code building program "aagen". | |
4378 ** Do not edit this file! Instead, edit the specification | |
4379 ** file, then rerun aagen. | |
4380 */ | |
4381 /* | |
4382 ** Code for processing tables in the LEMON parser generator. | |
4383 */ | |
4384 | |
4385 PRIVATE unsigned strhash(const char *x) | |
4386 { | |
4387 unsigned h = 0; | |
4388 while( *x ) h = h*13 + *(x++); | |
4389 return h; | |
4390 } | |
4391 | |
4392 /* Works like strdup, sort of. Save a string in malloced memory, but | |
4393 ** keep strings in a table so that the same string is not in more | |
4394 ** than one place. | |
4395 */ | |
4396 const char *Strsafe(const char *y) | |
4397 { | |
4398 const char *z; | |
4399 char *cpy; | |
4400 | |
4401 if( y==0 ) return 0; | |
4402 z = Strsafe_find(y); | |
4403 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){ | |
4404 lemon_strcpy(cpy,y); | |
4405 z = cpy; | |
4406 Strsafe_insert(z); | |
4407 } | |
4408 MemoryCheck(z); | |
4409 return z; | |
4410 } | |
4411 | |
4412 /* There is one instance of the following structure for each | |
4413 ** associative array of type "x1". | |
4414 */ | |
4415 struct s_x1 { | |
4416 int size; /* The number of available slots. */ | |
4417 /* Must be a power of 2 greater than or */ | |
4418 /* equal to 1 */ | |
4419 int count; /* Number of currently slots filled */ | |
4420 struct s_x1node *tbl; /* The data stored here */ | |
4421 struct s_x1node **ht; /* Hash table for lookups */ | |
4422 }; | |
4423 | |
4424 /* There is one instance of this structure for every data element | |
4425 ** in an associative array of type "x1". | |
4426 */ | |
4427 typedef struct s_x1node { | |
4428 const char *data; /* The data */ | |
4429 struct s_x1node *next; /* Next entry with the same hash */ | |
4430 struct s_x1node **from; /* Previous link */ | |
4431 } x1node; | |
4432 | |
4433 /* There is only one instance of the array, which is the following */ | |
4434 static struct s_x1 *x1a; | |
4435 | |
4436 /* Allocate a new associative array */ | |
4437 void Strsafe_init(){ | |
4438 if( x1a ) return; | |
4439 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); | |
4440 if( x1a ){ | |
4441 x1a->size = 1024; | |
4442 x1a->count = 0; | |
4443 x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*)); | |
4444 if( x1a->tbl==0 ){ | |
4445 free(x1a); | |
4446 x1a = 0; | |
4447 }else{ | |
4448 int i; | |
4449 x1a->ht = (x1node**)&(x1a->tbl[1024]); | |
4450 for(i=0; i<1024; i++) x1a->ht[i] = 0; | |
4451 } | |
4452 } | |
4453 } | |
4454 /* Insert a new record into the array. Return TRUE if successful. | |
4455 ** Prior data with the same key is NOT overwritten */ | |
4456 int Strsafe_insert(const char *data) | |
4457 { | |
4458 x1node *np; | |
4459 unsigned h; | |
4460 unsigned ph; | |
4461 | |
4462 if( x1a==0 ) return 0; | |
4463 ph = strhash(data); | |
4464 h = ph & (x1a->size-1); | |
4465 np = x1a->ht[h]; | |
4466 while( np ){ | |
4467 if( strcmp(np->data,data)==0 ){ | |
4468 /* An existing entry with the same key is found. */ | |
4469 /* Fail because overwrite is not allows. */ | |
4470 return 0; | |
4471 } | |
4472 np = np->next; | |
4473 } | |
4474 if( x1a->count>=x1a->size ){ | |
4475 /* Need to make the hash table bigger */ | |
4476 int i,size; | |
4477 struct s_x1 array; | |
4478 array.size = size = x1a->size*2; | |
4479 array.count = x1a->count; | |
4480 array.tbl = (x1node*)calloc(size, sizeof(x1node) + sizeof(x1node*)); | |
4481 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ | |
4482 array.ht = (x1node**)&(array.tbl[size]); | |
4483 for(i=0; i<size; i++) array.ht[i] = 0; | |
4484 for(i=0; i<x1a->count; i++){ | |
4485 x1node *oldnp, *newnp; | |
4486 oldnp = &(x1a->tbl[i]); | |
4487 h = strhash(oldnp->data) & (size-1); | |
4488 newnp = &(array.tbl[i]); | |
4489 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | |
4490 newnp->next = array.ht[h]; | |
4491 newnp->data = oldnp->data; | |
4492 newnp->from = &(array.ht[h]); | |
4493 array.ht[h] = newnp; | |
4494 } | |
4495 free(x1a->tbl); | |
4496 *x1a = array; | |
4497 } | |
4498 /* Insert the new data */ | |
4499 h = ph & (x1a->size-1); | |
4500 np = &(x1a->tbl[x1a->count++]); | |
4501 np->data = data; | |
4502 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); | |
4503 np->next = x1a->ht[h]; | |
4504 x1a->ht[h] = np; | |
4505 np->from = &(x1a->ht[h]); | |
4506 return 1; | |
4507 } | |
4508 | |
4509 /* Return a pointer to data assigned to the given key. Return NULL | |
4510 ** if no such key. */ | |
4511 const char *Strsafe_find(const char *key) | |
4512 { | |
4513 unsigned h; | |
4514 x1node *np; | |
4515 | |
4516 if( x1a==0 ) return 0; | |
4517 h = strhash(key) & (x1a->size-1); | |
4518 np = x1a->ht[h]; | |
4519 while( np ){ | |
4520 if( strcmp(np->data,key)==0 ) break; | |
4521 np = np->next; | |
4522 } | |
4523 return np ? np->data : 0; | |
4524 } | |
4525 | |
4526 /* Return a pointer to the (terminal or nonterminal) symbol "x". | |
4527 ** Create a new symbol if this is the first time "x" has been seen. | |
4528 */ | |
4529 struct symbol *Symbol_new(const char *x) | |
4530 { | |
4531 struct symbol *sp; | |
4532 | |
4533 sp = Symbol_find(x); | |
4534 if( sp==0 ){ | |
4535 sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); | |
4536 MemoryCheck(sp); | |
4537 sp->name = Strsafe(x); | |
4538 sp->type = isupper(*x) ? TERMINAL : NONTERMINAL; | |
4539 sp->rule = 0; | |
4540 sp->fallback = 0; | |
4541 sp->prec = -1; | |
4542 sp->assoc = UNK; | |
4543 sp->firstset = 0; | |
4544 sp->lambda = LEMON_FALSE; | |
4545 sp->destructor = 0; | |
4546 sp->destLineno = 0; | |
4547 sp->datatype = 0; | |
4548 sp->useCnt = 0; | |
4549 Symbol_insert(sp,sp->name); | |
4550 } | |
4551 sp->useCnt++; | |
4552 return sp; | |
4553 } | |
4554 | |
4555 /* Compare two symbols for sorting purposes. Return negative, | |
4556 ** zero, or positive if a is less then, equal to, or greater | |
4557 ** than b. | |
4558 ** | |
4559 ** Symbols that begin with upper case letters (terminals or tokens) | |
4560 ** must sort before symbols that begin with lower case letters | |
4561 ** (non-terminals). And MULTITERMINAL symbols (created using the | |
4562 ** %token_class directive) must sort at the very end. Other than | |
4563 ** that, the order does not matter. | |
4564 ** | |
4565 ** We find experimentally that leaving the symbols in their original | |
4566 ** order (the order they appeared in the grammar file) gives the | |
4567 ** smallest parser tables in SQLite. | |
4568 */ | |
4569 int Symbolcmpp(const void *_a, const void *_b) | |
4570 { | |
4571 const struct symbol *a = *(const struct symbol **) _a; | |
4572 const struct symbol *b = *(const struct symbol **) _b; | |
4573 int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1; | |
4574 int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1; | |
4575 return i1==i2 ? a->index - b->index : i1 - i2; | |
4576 } | |
4577 | |
4578 /* There is one instance of the following structure for each | |
4579 ** associative array of type "x2". | |
4580 */ | |
4581 struct s_x2 { | |
4582 int size; /* The number of available slots. */ | |
4583 /* Must be a power of 2 greater than or */ | |
4584 /* equal to 1 */ | |
4585 int count; /* Number of currently slots filled */ | |
4586 struct s_x2node *tbl; /* The data stored here */ | |
4587 struct s_x2node **ht; /* Hash table for lookups */ | |
4588 }; | |
4589 | |
4590 /* There is one instance of this structure for every data element | |
4591 ** in an associative array of type "x2". | |
4592 */ | |
4593 typedef struct s_x2node { | |
4594 struct symbol *data; /* The data */ | |
4595 const char *key; /* The key */ | |
4596 struct s_x2node *next; /* Next entry with the same hash */ | |
4597 struct s_x2node **from; /* Previous link */ | |
4598 } x2node; | |
4599 | |
4600 /* There is only one instance of the array, which is the following */ | |
4601 static struct s_x2 *x2a; | |
4602 | |
4603 /* Allocate a new associative array */ | |
4604 void Symbol_init(){ | |
4605 if( x2a ) return; | |
4606 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); | |
4607 if( x2a ){ | |
4608 x2a->size = 128; | |
4609 x2a->count = 0; | |
4610 x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*)); | |
4611 if( x2a->tbl==0 ){ | |
4612 free(x2a); | |
4613 x2a = 0; | |
4614 }else{ | |
4615 int i; | |
4616 x2a->ht = (x2node**)&(x2a->tbl[128]); | |
4617 for(i=0; i<128; i++) x2a->ht[i] = 0; | |
4618 } | |
4619 } | |
4620 } | |
4621 /* Insert a new record into the array. Return TRUE if successful. | |
4622 ** Prior data with the same key is NOT overwritten */ | |
4623 int Symbol_insert(struct symbol *data, const char *key) | |
4624 { | |
4625 x2node *np; | |
4626 unsigned h; | |
4627 unsigned ph; | |
4628 | |
4629 if( x2a==0 ) return 0; | |
4630 ph = strhash(key); | |
4631 h = ph & (x2a->size-1); | |
4632 np = x2a->ht[h]; | |
4633 while( np ){ | |
4634 if( strcmp(np->key,key)==0 ){ | |
4635 /* An existing entry with the same key is found. */ | |
4636 /* Fail because overwrite is not allows. */ | |
4637 return 0; | |
4638 } | |
4639 np = np->next; | |
4640 } | |
4641 if( x2a->count>=x2a->size ){ | |
4642 /* Need to make the hash table bigger */ | |
4643 int i,size; | |
4644 struct s_x2 array; | |
4645 array.size = size = x2a->size*2; | |
4646 array.count = x2a->count; | |
4647 array.tbl = (x2node*)calloc(size, sizeof(x2node) + sizeof(x2node*)); | |
4648 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ | |
4649 array.ht = (x2node**)&(array.tbl[size]); | |
4650 for(i=0; i<size; i++) array.ht[i] = 0; | |
4651 for(i=0; i<x2a->count; i++){ | |
4652 x2node *oldnp, *newnp; | |
4653 oldnp = &(x2a->tbl[i]); | |
4654 h = strhash(oldnp->key) & (size-1); | |
4655 newnp = &(array.tbl[i]); | |
4656 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | |
4657 newnp->next = array.ht[h]; | |
4658 newnp->key = oldnp->key; | |
4659 newnp->data = oldnp->data; | |
4660 newnp->from = &(array.ht[h]); | |
4661 array.ht[h] = newnp; | |
4662 } | |
4663 free(x2a->tbl); | |
4664 *x2a = array; | |
4665 } | |
4666 /* Insert the new data */ | |
4667 h = ph & (x2a->size-1); | |
4668 np = &(x2a->tbl[x2a->count++]); | |
4669 np->key = key; | |
4670 np->data = data; | |
4671 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); | |
4672 np->next = x2a->ht[h]; | |
4673 x2a->ht[h] = np; | |
4674 np->from = &(x2a->ht[h]); | |
4675 return 1; | |
4676 } | |
4677 | |
4678 /* Return a pointer to data assigned to the given key. Return NULL | |
4679 ** if no such key. */ | |
4680 struct symbol *Symbol_find(const char *key) | |
4681 { | |
4682 unsigned h; | |
4683 x2node *np; | |
4684 | |
4685 if( x2a==0 ) return 0; | |
4686 h = strhash(key) & (x2a->size-1); | |
4687 np = x2a->ht[h]; | |
4688 while( np ){ | |
4689 if( strcmp(np->key,key)==0 ) break; | |
4690 np = np->next; | |
4691 } | |
4692 return np ? np->data : 0; | |
4693 } | |
4694 | |
4695 /* Return the n-th data. Return NULL if n is out of range. */ | |
4696 struct symbol *Symbol_Nth(int n) | |
4697 { | |
4698 struct symbol *data; | |
4699 if( x2a && n>0 && n<=x2a->count ){ | |
4700 data = x2a->tbl[n-1].data; | |
4701 }else{ | |
4702 data = 0; | |
4703 } | |
4704 return data; | |
4705 } | |
4706 | |
4707 /* Return the size of the array */ | |
4708 int Symbol_count() | |
4709 { | |
4710 return x2a ? x2a->count : 0; | |
4711 } | |
4712 | |
4713 /* Return an array of pointers to all data in the table. | |
4714 ** The array is obtained from malloc. Return NULL if memory allocation | |
4715 ** problems, or if the array is empty. */ | |
4716 struct symbol **Symbol_arrayof() | |
4717 { | |
4718 struct symbol **array; | |
4719 int i,size; | |
4720 if( x2a==0 ) return 0; | |
4721 size = x2a->count; | |
4722 array = (struct symbol **)calloc(size, sizeof(struct symbol *)); | |
4723 if( array ){ | |
4724 for(i=0; i<size; i++) array[i] = x2a->tbl[i].data; | |
4725 } | |
4726 return array; | |
4727 } | |
4728 | |
4729 /* Compare two configurations */ | |
4730 int Configcmp(const char *_a,const char *_b) | |
4731 { | |
4732 const struct config *a = (struct config *) _a; | |
4733 const struct config *b = (struct config *) _b; | |
4734 int x; | |
4735 x = a->rp->index - b->rp->index; | |
4736 if( x==0 ) x = a->dot - b->dot; | |
4737 return x; | |
4738 } | |
4739 | |
4740 /* Compare two states */ | |
4741 PRIVATE int statecmp(struct config *a, struct config *b) | |
4742 { | |
4743 int rc; | |
4744 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ | |
4745 rc = a->rp->index - b->rp->index; | |
4746 if( rc==0 ) rc = a->dot - b->dot; | |
4747 } | |
4748 if( rc==0 ){ | |
4749 if( a ) rc = 1; | |
4750 if( b ) rc = -1; | |
4751 } | |
4752 return rc; | |
4753 } | |
4754 | |
4755 /* Hash a state */ | |
4756 PRIVATE unsigned statehash(struct config *a) | |
4757 { | |
4758 unsigned h=0; | |
4759 while( a ){ | |
4760 h = h*571 + a->rp->index*37 + a->dot; | |
4761 a = a->bp; | |
4762 } | |
4763 return h; | |
4764 } | |
4765 | |
4766 /* Allocate a new state structure */ | |
4767 struct state *State_new() | |
4768 { | |
4769 struct state *newstate; | |
4770 newstate = (struct state *)calloc(1, sizeof(struct state) ); | |
4771 MemoryCheck(newstate); | |
4772 return newstate; | |
4773 } | |
4774 | |
4775 /* There is one instance of the following structure for each | |
4776 ** associative array of type "x3". | |
4777 */ | |
4778 struct s_x3 { | |
4779 int size; /* The number of available slots. */ | |
4780 /* Must be a power of 2 greater than or */ | |
4781 /* equal to 1 */ | |
4782 int count; /* Number of currently slots filled */ | |
4783 struct s_x3node *tbl; /* The data stored here */ | |
4784 struct s_x3node **ht; /* Hash table for lookups */ | |
4785 }; | |
4786 | |
4787 /* There is one instance of this structure for every data element | |
4788 ** in an associative array of type "x3". | |
4789 */ | |
4790 typedef struct s_x3node { | |
4791 struct state *data; /* The data */ | |
4792 struct config *key; /* The key */ | |
4793 struct s_x3node *next; /* Next entry with the same hash */ | |
4794 struct s_x3node **from; /* Previous link */ | |
4795 } x3node; | |
4796 | |
4797 /* There is only one instance of the array, which is the following */ | |
4798 static struct s_x3 *x3a; | |
4799 | |
4800 /* Allocate a new associative array */ | |
4801 void State_init(){ | |
4802 if( x3a ) return; | |
4803 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); | |
4804 if( x3a ){ | |
4805 x3a->size = 128; | |
4806 x3a->count = 0; | |
4807 x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*)); | |
4808 if( x3a->tbl==0 ){ | |
4809 free(x3a); | |
4810 x3a = 0; | |
4811 }else{ | |
4812 int i; | |
4813 x3a->ht = (x3node**)&(x3a->tbl[128]); | |
4814 for(i=0; i<128; i++) x3a->ht[i] = 0; | |
4815 } | |
4816 } | |
4817 } | |
4818 /* Insert a new record into the array. Return TRUE if successful. | |
4819 ** Prior data with the same key is NOT overwritten */ | |
4820 int State_insert(struct state *data, struct config *key) | |
4821 { | |
4822 x3node *np; | |
4823 unsigned h; | |
4824 unsigned ph; | |
4825 | |
4826 if( x3a==0 ) return 0; | |
4827 ph = statehash(key); | |
4828 h = ph & (x3a->size-1); | |
4829 np = x3a->ht[h]; | |
4830 while( np ){ | |
4831 if( statecmp(np->key,key)==0 ){ | |
4832 /* An existing entry with the same key is found. */ | |
4833 /* Fail because overwrite is not allows. */ | |
4834 return 0; | |
4835 } | |
4836 np = np->next; | |
4837 } | |
4838 if( x3a->count>=x3a->size ){ | |
4839 /* Need to make the hash table bigger */ | |
4840 int i,size; | |
4841 struct s_x3 array; | |
4842 array.size = size = x3a->size*2; | |
4843 array.count = x3a->count; | |
4844 array.tbl = (x3node*)calloc(size, sizeof(x3node) + sizeof(x3node*)); | |
4845 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ | |
4846 array.ht = (x3node**)&(array.tbl[size]); | |
4847 for(i=0; i<size; i++) array.ht[i] = 0; | |
4848 for(i=0; i<x3a->count; i++){ | |
4849 x3node *oldnp, *newnp; | |
4850 oldnp = &(x3a->tbl[i]); | |
4851 h = statehash(oldnp->key) & (size-1); | |
4852 newnp = &(array.tbl[i]); | |
4853 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | |
4854 newnp->next = array.ht[h]; | |
4855 newnp->key = oldnp->key; | |
4856 newnp->data = oldnp->data; | |
4857 newnp->from = &(array.ht[h]); | |
4858 array.ht[h] = newnp; | |
4859 } | |
4860 free(x3a->tbl); | |
4861 *x3a = array; | |
4862 } | |
4863 /* Insert the new data */ | |
4864 h = ph & (x3a->size-1); | |
4865 np = &(x3a->tbl[x3a->count++]); | |
4866 np->key = key; | |
4867 np->data = data; | |
4868 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); | |
4869 np->next = x3a->ht[h]; | |
4870 x3a->ht[h] = np; | |
4871 np->from = &(x3a->ht[h]); | |
4872 return 1; | |
4873 } | |
4874 | |
4875 /* Return a pointer to data assigned to the given key. Return NULL | |
4876 ** if no such key. */ | |
4877 struct state *State_find(struct config *key) | |
4878 { | |
4879 unsigned h; | |
4880 x3node *np; | |
4881 | |
4882 if( x3a==0 ) return 0; | |
4883 h = statehash(key) & (x3a->size-1); | |
4884 np = x3a->ht[h]; | |
4885 while( np ){ | |
4886 if( statecmp(np->key,key)==0 ) break; | |
4887 np = np->next; | |
4888 } | |
4889 return np ? np->data : 0; | |
4890 } | |
4891 | |
4892 /* Return an array of pointers to all data in the table. | |
4893 ** The array is obtained from malloc. Return NULL if memory allocation | |
4894 ** problems, or if the array is empty. */ | |
4895 struct state **State_arrayof() | |
4896 { | |
4897 struct state **array; | |
4898 int i,size; | |
4899 if( x3a==0 ) return 0; | |
4900 size = x3a->count; | |
4901 array = (struct state **)calloc(size, sizeof(struct state *)); | |
4902 if( array ){ | |
4903 for(i=0; i<size; i++) array[i] = x3a->tbl[i].data; | |
4904 } | |
4905 return array; | |
4906 } | |
4907 | |
4908 /* Hash a configuration */ | |
4909 PRIVATE unsigned confighash(struct config *a) | |
4910 { | |
4911 unsigned h=0; | |
4912 h = h*571 + a->rp->index*37 + a->dot; | |
4913 return h; | |
4914 } | |
4915 | |
4916 /* There is one instance of the following structure for each | |
4917 ** associative array of type "x4". | |
4918 */ | |
4919 struct s_x4 { | |
4920 int size; /* The number of available slots. */ | |
4921 /* Must be a power of 2 greater than or */ | |
4922 /* equal to 1 */ | |
4923 int count; /* Number of currently slots filled */ | |
4924 struct s_x4node *tbl; /* The data stored here */ | |
4925 struct s_x4node **ht; /* Hash table for lookups */ | |
4926 }; | |
4927 | |
4928 /* There is one instance of this structure for every data element | |
4929 ** in an associative array of type "x4". | |
4930 */ | |
4931 typedef struct s_x4node { | |
4932 struct config *data; /* The data */ | |
4933 struct s_x4node *next; /* Next entry with the same hash */ | |
4934 struct s_x4node **from; /* Previous link */ | |
4935 } x4node; | |
4936 | |
4937 /* There is only one instance of the array, which is the following */ | |
4938 static struct s_x4 *x4a; | |
4939 | |
4940 /* Allocate a new associative array */ | |
4941 void Configtable_init(){ | |
4942 if( x4a ) return; | |
4943 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); | |
4944 if( x4a ){ | |
4945 x4a->size = 64; | |
4946 x4a->count = 0; | |
4947 x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*)); | |
4948 if( x4a->tbl==0 ){ | |
4949 free(x4a); | |
4950 x4a = 0; | |
4951 }else{ | |
4952 int i; | |
4953 x4a->ht = (x4node**)&(x4a->tbl[64]); | |
4954 for(i=0; i<64; i++) x4a->ht[i] = 0; | |
4955 } | |
4956 } | |
4957 } | |
4958 /* Insert a new record into the array. Return TRUE if successful. | |
4959 ** Prior data with the same key is NOT overwritten */ | |
4960 int Configtable_insert(struct config *data) | |
4961 { | |
4962 x4node *np; | |
4963 unsigned h; | |
4964 unsigned ph; | |
4965 | |
4966 if( x4a==0 ) return 0; | |
4967 ph = confighash(data); | |
4968 h = ph & (x4a->size-1); | |
4969 np = x4a->ht[h]; | |
4970 while( np ){ | |
4971 if( Configcmp((const char *) np->data,(const char *) data)==0 ){ | |
4972 /* An existing entry with the same key is found. */ | |
4973 /* Fail because overwrite is not allows. */ | |
4974 return 0; | |
4975 } | |
4976 np = np->next; | |
4977 } | |
4978 if( x4a->count>=x4a->size ){ | |
4979 /* Need to make the hash table bigger */ | |
4980 int i,size; | |
4981 struct s_x4 array; | |
4982 array.size = size = x4a->size*2; | |
4983 array.count = x4a->count; | |
4984 array.tbl = (x4node*)calloc(size, sizeof(x4node) + sizeof(x4node*)); | |
4985 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ | |
4986 array.ht = (x4node**)&(array.tbl[size]); | |
4987 for(i=0; i<size; i++) array.ht[i] = 0; | |
4988 for(i=0; i<x4a->count; i++){ | |
4989 x4node *oldnp, *newnp; | |
4990 oldnp = &(x4a->tbl[i]); | |
4991 h = confighash(oldnp->data) & (size-1); | |
4992 newnp = &(array.tbl[i]); | |
4993 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | |
4994 newnp->next = array.ht[h]; | |
4995 newnp->data = oldnp->data; | |
4996 newnp->from = &(array.ht[h]); | |
4997 array.ht[h] = newnp; | |
4998 } | |
4999 free(x4a->tbl); | |
5000 *x4a = array; | |
5001 } | |
5002 /* Insert the new data */ | |
5003 h = ph & (x4a->size-1); | |
5004 np = &(x4a->tbl[x4a->count++]); | |
5005 np->data = data; | |
5006 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); | |
5007 np->next = x4a->ht[h]; | |
5008 x4a->ht[h] = np; | |
5009 np->from = &(x4a->ht[h]); | |
5010 return 1; | |
5011 } | |
5012 | |
5013 /* Return a pointer to data assigned to the given key. Return NULL | |
5014 ** if no such key. */ | |
5015 struct config *Configtable_find(struct config *key) | |
5016 { | |
5017 int h; | |
5018 x4node *np; | |
5019 | |
5020 if( x4a==0 ) return 0; | |
5021 h = confighash(key) & (x4a->size-1); | |
5022 np = x4a->ht[h]; | |
5023 while( np ){ | |
5024 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; | |
5025 np = np->next; | |
5026 } | |
5027 return np ? np->data : 0; | |
5028 } | |
5029 | |
5030 /* Remove all data from the table. Pass each data to the function "f" | |
5031 ** as it is removed. ("f" may be null to avoid this step.) */ | |
5032 void Configtable_clear(int(*f)(struct config *)) | |
5033 { | |
5034 int i; | |
5035 if( x4a==0 || x4a->count==0 ) return; | |
5036 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); | |
5037 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; | |
5038 x4a->count = 0; | |
5039 return; | |
5040 } | |
OLD | NEW |