Index: third_party/sqlite/sqlite-src-3080704/src/util.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/util.c b/third_party/sqlite/sqlite-src-3080704/src/util.c |
deleted file mode 100644 |
index 9bb8d89157764c3cb98e7b5dfe3ca304e891cc3f..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/util.c |
+++ /dev/null |
@@ -1,1364 +0,0 @@ |
-/* |
-** 2001 September 15 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** Utility functions used throughout sqlite. |
-** |
-** This file contains functions for allocating memory, comparing |
-** strings, and stuff like that. |
-** |
-*/ |
-#include "sqliteInt.h" |
-#include <stdarg.h> |
-#ifdef SQLITE_HAVE_ISNAN |
-# include <math.h> |
-#endif |
- |
-/* |
-** Routine needed to support the testcase() macro. |
-*/ |
-#ifdef SQLITE_COVERAGE_TEST |
-void sqlite3Coverage(int x){ |
- static unsigned dummy = 0; |
- dummy += (unsigned)x; |
-} |
-#endif |
- |
-/* |
-** Give a callback to the test harness that can be used to simulate faults |
-** in places where it is difficult or expensive to do so purely by means |
-** of inputs. |
-** |
-** The intent of the integer argument is to let the fault simulator know |
-** which of multiple sqlite3FaultSim() calls has been hit. |
-** |
-** Return whatever integer value the test callback returns, or return |
-** SQLITE_OK if no test callback is installed. |
-*/ |
-#ifndef SQLITE_OMIT_BUILTIN_TEST |
-int sqlite3FaultSim(int iTest){ |
- int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; |
- return xCallback ? xCallback(iTest) : SQLITE_OK; |
-} |
-#endif |
- |
-#ifndef SQLITE_OMIT_FLOATING_POINT |
-/* |
-** Return true if the floating point value is Not a Number (NaN). |
-** |
-** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. |
-** Otherwise, we have our own implementation that works on most systems. |
-*/ |
-int sqlite3IsNaN(double x){ |
- int rc; /* The value return */ |
-#if !defined(SQLITE_HAVE_ISNAN) |
- /* |
- ** Systems that support the isnan() library function should probably |
- ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have |
- ** found that many systems do not have a working isnan() function so |
- ** this implementation is provided as an alternative. |
- ** |
- ** This NaN test sometimes fails if compiled on GCC with -ffast-math. |
- ** On the other hand, the use of -ffast-math comes with the following |
- ** warning: |
- ** |
- ** This option [-ffast-math] should never be turned on by any |
- ** -O option since it can result in incorrect output for programs |
- ** which depend on an exact implementation of IEEE or ISO |
- ** rules/specifications for math functions. |
- ** |
- ** Under MSVC, this NaN test may fail if compiled with a floating- |
- ** point precision mode other than /fp:precise. From the MSDN |
- ** documentation: |
- ** |
- ** The compiler [with /fp:precise] will properly handle comparisons |
- ** involving NaN. For example, x != x evaluates to true if x is NaN |
- ** ... |
- */ |
-#ifdef __FAST_MATH__ |
-# error SQLite will not work correctly with the -ffast-math option of GCC. |
-#endif |
- volatile double y = x; |
- volatile double z = y; |
- rc = (y!=z); |
-#else /* if defined(SQLITE_HAVE_ISNAN) */ |
- rc = isnan(x); |
-#endif /* SQLITE_HAVE_ISNAN */ |
- testcase( rc ); |
- return rc; |
-} |
-#endif /* SQLITE_OMIT_FLOATING_POINT */ |
- |
-/* |
-** Compute a string length that is limited to what can be stored in |
-** lower 30 bits of a 32-bit signed integer. |
-** |
-** The value returned will never be negative. Nor will it ever be greater |
-** than the actual length of the string. For very long strings (greater |
-** than 1GiB) the value returned might be less than the true string length. |
-*/ |
-int sqlite3Strlen30(const char *z){ |
- const char *z2 = z; |
- if( z==0 ) return 0; |
- while( *z2 ){ z2++; } |
- return 0x3fffffff & (int)(z2 - z); |
-} |
- |
-/* |
-** Set the current error code to err_code and clear any prior error message. |
-*/ |
-void sqlite3Error(sqlite3 *db, int err_code){ |
- assert( db!=0 ); |
- db->errCode = err_code; |
- if( db->pErr ) sqlite3ValueSetNull(db->pErr); |
-} |
- |
-/* |
-** Set the most recent error code and error string for the sqlite |
-** handle "db". The error code is set to "err_code". |
-** |
-** If it is not NULL, string zFormat specifies the format of the |
-** error string in the style of the printf functions: The following |
-** format characters are allowed: |
-** |
-** %s Insert a string |
-** %z A string that should be freed after use |
-** %d Insert an integer |
-** %T Insert a token |
-** %S Insert the first element of a SrcList |
-** |
-** zFormat and any string tokens that follow it are assumed to be |
-** encoded in UTF-8. |
-** |
-** To clear the most recent error for sqlite handle "db", sqlite3Error |
-** should be called with err_code set to SQLITE_OK and zFormat set |
-** to NULL. |
-*/ |
-void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ |
- assert( db!=0 ); |
- db->errCode = err_code; |
- if( zFormat==0 ){ |
- sqlite3Error(db, err_code); |
- }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ |
- char *z; |
- va_list ap; |
- va_start(ap, zFormat); |
- z = sqlite3VMPrintf(db, zFormat, ap); |
- va_end(ap); |
- sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); |
- } |
-} |
- |
-/* |
-** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
-** The following formatting characters are allowed: |
-** |
-** %s Insert a string |
-** %z A string that should be freed after use |
-** %d Insert an integer |
-** %T Insert a token |
-** %S Insert the first element of a SrcList |
-** |
-** This function should be used to report any error that occurs while |
-** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
-** last thing the sqlite3_prepare() function does is copy the error |
-** stored by this function into the database handle using sqlite3Error(). |
-** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used |
-** during statement execution (sqlite3_step() etc.). |
-*/ |
-void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
- char *zMsg; |
- va_list ap; |
- sqlite3 *db = pParse->db; |
- va_start(ap, zFormat); |
- zMsg = sqlite3VMPrintf(db, zFormat, ap); |
- va_end(ap); |
- if( db->suppressErr ){ |
- sqlite3DbFree(db, zMsg); |
- }else{ |
- pParse->nErr++; |
- sqlite3DbFree(db, pParse->zErrMsg); |
- pParse->zErrMsg = zMsg; |
- pParse->rc = SQLITE_ERROR; |
- } |
-} |
- |
-/* |
-** Convert an SQL-style quoted string into a normal string by removing |
-** the quote characters. The conversion is done in-place. If the |
-** input does not begin with a quote character, then this routine |
-** is a no-op. |
-** |
-** The input string must be zero-terminated. A new zero-terminator |
-** is added to the dequoted string. |
-** |
-** The return value is -1 if no dequoting occurs or the length of the |
-** dequoted string, exclusive of the zero terminator, if dequoting does |
-** occur. |
-** |
-** 2002-Feb-14: This routine is extended to remove MS-Access style |
-** brackets from around identifiers. For example: "[a-b-c]" becomes |
-** "a-b-c". |
-*/ |
-int sqlite3Dequote(char *z){ |
- char quote; |
- int i, j; |
- if( z==0 ) return -1; |
- quote = z[0]; |
- switch( quote ){ |
- case '\'': break; |
- case '"': break; |
- case '`': break; /* For MySQL compatibility */ |
- case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
- default: return -1; |
- } |
- for(i=1, j=0;; i++){ |
- assert( z[i] ); |
- if( z[i]==quote ){ |
- if( z[i+1]==quote ){ |
- z[j++] = quote; |
- i++; |
- }else{ |
- break; |
- } |
- }else{ |
- z[j++] = z[i]; |
- } |
- } |
- z[j] = 0; |
- return j; |
-} |
- |
-/* Convenient short-hand */ |
-#define UpperToLower sqlite3UpperToLower |
- |
-/* |
-** Some systems have stricmp(). Others have strcasecmp(). Because |
-** there is no consistency, we will define our own. |
-** |
-** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and |
-** sqlite3_strnicmp() APIs allow applications and extensions to compare |
-** the contents of two buffers containing UTF-8 strings in a |
-** case-independent fashion, using the same definition of "case |
-** independence" that SQLite uses internally when comparing identifiers. |
-*/ |
-int sqlite3_stricmp(const char *zLeft, const char *zRight){ |
- register unsigned char *a, *b; |
- a = (unsigned char *)zLeft; |
- b = (unsigned char *)zRight; |
- while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
- return UpperToLower[*a] - UpperToLower[*b]; |
-} |
-int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ |
- register unsigned char *a, *b; |
- a = (unsigned char *)zLeft; |
- b = (unsigned char *)zRight; |
- while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
- return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
-} |
- |
-/* |
-** The string z[] is an text representation of a real number. |
-** Convert this string to a double and write it into *pResult. |
-** |
-** The string z[] is length bytes in length (bytes, not characters) and |
-** uses the encoding enc. The string is not necessarily zero-terminated. |
-** |
-** Return TRUE if the result is a valid real number (or integer) and FALSE |
-** if the string is empty or contains extraneous text. Valid numbers |
-** are in one of these formats: |
-** |
-** [+-]digits[E[+-]digits] |
-** [+-]digits.[digits][E[+-]digits] |
-** [+-].digits[E[+-]digits] |
-** |
-** Leading and trailing whitespace is ignored for the purpose of determining |
-** validity. |
-** |
-** If some prefix of the input string is a valid number, this routine |
-** returns FALSE but it still converts the prefix and writes the result |
-** into *pResult. |
-*/ |
-int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ |
-#ifndef SQLITE_OMIT_FLOATING_POINT |
- int incr; |
- const char *zEnd = z + length; |
- /* sign * significand * (10 ^ (esign * exponent)) */ |
- int sign = 1; /* sign of significand */ |
- i64 s = 0; /* significand */ |
- int d = 0; /* adjust exponent for shifting decimal point */ |
- int esign = 1; /* sign of exponent */ |
- int e = 0; /* exponent */ |
- int eValid = 1; /* True exponent is either not used or is well-formed */ |
- double result; |
- int nDigits = 0; |
- int nonNum = 0; |
- |
- assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); |
- *pResult = 0.0; /* Default return value, in case of an error */ |
- |
- if( enc==SQLITE_UTF8 ){ |
- incr = 1; |
- }else{ |
- int i; |
- incr = 2; |
- assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); |
- for(i=3-enc; i<length && z[i]==0; i+=2){} |
- nonNum = i<length; |
- zEnd = z+i+enc-3; |
- z += (enc&1); |
- } |
- |
- /* skip leading spaces */ |
- while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; |
- if( z>=zEnd ) return 0; |
- |
- /* get sign of significand */ |
- if( *z=='-' ){ |
- sign = -1; |
- z+=incr; |
- }else if( *z=='+' ){ |
- z+=incr; |
- } |
- |
- /* skip leading zeroes */ |
- while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; |
- |
- /* copy max significant digits to significand */ |
- while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
- s = s*10 + (*z - '0'); |
- z+=incr, nDigits++; |
- } |
- |
- /* skip non-significant significand digits |
- ** (increase exponent by d to shift decimal left) */ |
- while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; |
- if( z>=zEnd ) goto do_atof_calc; |
- |
- /* if decimal point is present */ |
- if( *z=='.' ){ |
- z+=incr; |
- /* copy digits from after decimal to significand |
- ** (decrease exponent by d to shift decimal right) */ |
- while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
- s = s*10 + (*z - '0'); |
- z+=incr, nDigits++, d--; |
- } |
- /* skip non-significant digits */ |
- while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; |
- } |
- if( z>=zEnd ) goto do_atof_calc; |
- |
- /* if exponent is present */ |
- if( *z=='e' || *z=='E' ){ |
- z+=incr; |
- eValid = 0; |
- if( z>=zEnd ) goto do_atof_calc; |
- /* get sign of exponent */ |
- if( *z=='-' ){ |
- esign = -1; |
- z+=incr; |
- }else if( *z=='+' ){ |
- z+=incr; |
- } |
- /* copy digits to exponent */ |
- while( z<zEnd && sqlite3Isdigit(*z) ){ |
- e = e<10000 ? (e*10 + (*z - '0')) : 10000; |
- z+=incr; |
- eValid = 1; |
- } |
- } |
- |
- /* skip trailing spaces */ |
- if( nDigits && eValid ){ |
- while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; |
- } |
- |
-do_atof_calc: |
- /* adjust exponent by d, and update sign */ |
- e = (e*esign) + d; |
- if( e<0 ) { |
- esign = -1; |
- e *= -1; |
- } else { |
- esign = 1; |
- } |
- |
- /* if 0 significand */ |
- if( !s ) { |
- /* In the IEEE 754 standard, zero is signed. |
- ** Add the sign if we've seen at least one digit */ |
- result = (sign<0 && nDigits) ? -(double)0 : (double)0; |
- } else { |
- /* attempt to reduce exponent */ |
- if( esign>0 ){ |
- while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; |
- }else{ |
- while( !(s%10) && e>0 ) e--,s/=10; |
- } |
- |
- /* adjust the sign of significand */ |
- s = sign<0 ? -s : s; |
- |
- /* if exponent, scale significand as appropriate |
- ** and store in result. */ |
- if( e ){ |
- LONGDOUBLE_TYPE scale = 1.0; |
- /* attempt to handle extremely small/large numbers better */ |
- if( e>307 && e<342 ){ |
- while( e%308 ) { scale *= 1.0e+1; e -= 1; } |
- if( esign<0 ){ |
- result = s / scale; |
- result /= 1.0e+308; |
- }else{ |
- result = s * scale; |
- result *= 1.0e+308; |
- } |
- }else if( e>=342 ){ |
- if( esign<0 ){ |
- result = 0.0*s; |
- }else{ |
- result = 1e308*1e308*s; /* Infinity */ |
- } |
- }else{ |
- /* 1.0e+22 is the largest power of 10 than can be |
- ** represented exactly. */ |
- while( e%22 ) { scale *= 1.0e+1; e -= 1; } |
- while( e>0 ) { scale *= 1.0e+22; e -= 22; } |
- if( esign<0 ){ |
- result = s / scale; |
- }else{ |
- result = s * scale; |
- } |
- } |
- } else { |
- result = (double)s; |
- } |
- } |
- |
- /* store the result */ |
- *pResult = result; |
- |
- /* return true if number and no extra non-whitespace chracters after */ |
- return z>=zEnd && nDigits>0 && eValid && nonNum==0; |
-#else |
- return !sqlite3Atoi64(z, pResult, length, enc); |
-#endif /* SQLITE_OMIT_FLOATING_POINT */ |
-} |
- |
-/* |
-** Compare the 19-character string zNum against the text representation |
-** value 2^63: 9223372036854775808. Return negative, zero, or positive |
-** if zNum is less than, equal to, or greater than the string. |
-** Note that zNum must contain exactly 19 characters. |
-** |
-** Unlike memcmp() this routine is guaranteed to return the difference |
-** in the values of the last digit if the only difference is in the |
-** last digit. So, for example, |
-** |
-** compare2pow63("9223372036854775800", 1) |
-** |
-** will return -8. |
-*/ |
-static int compare2pow63(const char *zNum, int incr){ |
- int c = 0; |
- int i; |
- /* 012345678901234567 */ |
- const char *pow63 = "922337203685477580"; |
- for(i=0; c==0 && i<18; i++){ |
- c = (zNum[i*incr]-pow63[i])*10; |
- } |
- if( c==0 ){ |
- c = zNum[18*incr] - '8'; |
- testcase( c==(-1) ); |
- testcase( c==0 ); |
- testcase( c==(+1) ); |
- } |
- return c; |
-} |
- |
-/* |
-** Convert zNum to a 64-bit signed integer. zNum must be decimal. This |
-** routine does *not* accept hexadecimal notation. |
-** |
-** If the zNum value is representable as a 64-bit twos-complement |
-** integer, then write that value into *pNum and return 0. |
-** |
-** If zNum is exactly 9223372036854775808, return 2. This special |
-** case is broken out because while 9223372036854775808 cannot be a |
-** signed 64-bit integer, its negative -9223372036854775808 can be. |
-** |
-** If zNum is too big for a 64-bit integer and is not |
-** 9223372036854775808 or if zNum contains any non-numeric text, |
-** then return 1. |
-** |
-** length is the number of bytes in the string (bytes, not characters). |
-** The string is not necessarily zero-terminated. The encoding is |
-** given by enc. |
-*/ |
-int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ |
- int incr; |
- u64 u = 0; |
- int neg = 0; /* assume positive */ |
- int i; |
- int c = 0; |
- int nonNum = 0; |
- const char *zStart; |
- const char *zEnd = zNum + length; |
- assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); |
- if( enc==SQLITE_UTF8 ){ |
- incr = 1; |
- }else{ |
- incr = 2; |
- assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); |
- for(i=3-enc; i<length && zNum[i]==0; i+=2){} |
- nonNum = i<length; |
- zEnd = zNum+i+enc-3; |
- zNum += (enc&1); |
- } |
- while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; |
- if( zNum<zEnd ){ |
- if( *zNum=='-' ){ |
- neg = 1; |
- zNum+=incr; |
- }else if( *zNum=='+' ){ |
- zNum+=incr; |
- } |
- } |
- zStart = zNum; |
- while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ |
- for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ |
- u = u*10 + c - '0'; |
- } |
- if( u>LARGEST_INT64 ){ |
- *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; |
- }else if( neg ){ |
- *pNum = -(i64)u; |
- }else{ |
- *pNum = (i64)u; |
- } |
- testcase( i==18 ); |
- testcase( i==19 ); |
- testcase( i==20 ); |
- if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){ |
- /* zNum is empty or contains non-numeric text or is longer |
- ** than 19 digits (thus guaranteeing that it is too large) */ |
- return 1; |
- }else if( i<19*incr ){ |
- /* Less than 19 digits, so we know that it fits in 64 bits */ |
- assert( u<=LARGEST_INT64 ); |
- return 0; |
- }else{ |
- /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ |
- c = compare2pow63(zNum, incr); |
- if( c<0 ){ |
- /* zNum is less than 9223372036854775808 so it fits */ |
- assert( u<=LARGEST_INT64 ); |
- return 0; |
- }else if( c>0 ){ |
- /* zNum is greater than 9223372036854775808 so it overflows */ |
- return 1; |
- }else{ |
- /* zNum is exactly 9223372036854775808. Fits if negative. The |
- ** special case 2 overflow if positive */ |
- assert( u-1==LARGEST_INT64 ); |
- return neg ? 0 : 2; |
- } |
- } |
-} |
- |
-/* |
-** Transform a UTF-8 integer literal, in either decimal or hexadecimal, |
-** into a 64-bit signed integer. This routine accepts hexadecimal literals, |
-** whereas sqlite3Atoi64() does not. |
-** |
-** Returns: |
-** |
-** 0 Successful transformation. Fits in a 64-bit signed integer. |
-** 1 Integer too large for a 64-bit signed integer or is malformed |
-** 2 Special case of 9223372036854775808 |
-*/ |
-int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ |
-#ifndef SQLITE_OMIT_HEX_INTEGER |
- if( z[0]=='0' |
- && (z[1]=='x' || z[1]=='X') |
- && sqlite3Isxdigit(z[2]) |
- ){ |
- u64 u = 0; |
- int i, k; |
- for(i=2; z[i]=='0'; i++){} |
- for(k=i; sqlite3Isxdigit(z[k]); k++){ |
- u = u*16 + sqlite3HexToInt(z[k]); |
- } |
- memcpy(pOut, &u, 8); |
- return (z[k]==0 && k-i<=16) ? 0 : 1; |
- }else |
-#endif /* SQLITE_OMIT_HEX_INTEGER */ |
- { |
- return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); |
- } |
-} |
- |
-/* |
-** If zNum represents an integer that will fit in 32-bits, then set |
-** *pValue to that integer and return true. Otherwise return false. |
-** |
-** This routine accepts both decimal and hexadecimal notation for integers. |
-** |
-** Any non-numeric characters that following zNum are ignored. |
-** This is different from sqlite3Atoi64() which requires the |
-** input number to be zero-terminated. |
-*/ |
-int sqlite3GetInt32(const char *zNum, int *pValue){ |
- sqlite_int64 v = 0; |
- int i, c; |
- int neg = 0; |
- if( zNum[0]=='-' ){ |
- neg = 1; |
- zNum++; |
- }else if( zNum[0]=='+' ){ |
- zNum++; |
- } |
-#ifndef SQLITE_OMIT_HEX_INTEGER |
- else if( zNum[0]=='0' |
- && (zNum[1]=='x' || zNum[1]=='X') |
- && sqlite3Isxdigit(zNum[2]) |
- ){ |
- u32 u = 0; |
- zNum += 2; |
- while( zNum[0]=='0' ) zNum++; |
- for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ |
- u = u*16 + sqlite3HexToInt(zNum[i]); |
- } |
- if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ |
- memcpy(pValue, &u, 4); |
- return 1; |
- }else{ |
- return 0; |
- } |
- } |
-#endif |
- for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ |
- v = v*10 + c; |
- } |
- |
- /* The longest decimal representation of a 32 bit integer is 10 digits: |
- ** |
- ** 1234567890 |
- ** 2^31 -> 2147483648 |
- */ |
- testcase( i==10 ); |
- if( i>10 ){ |
- return 0; |
- } |
- testcase( v-neg==2147483647 ); |
- if( v-neg>2147483647 ){ |
- return 0; |
- } |
- if( neg ){ |
- v = -v; |
- } |
- *pValue = (int)v; |
- return 1; |
-} |
- |
-/* |
-** Return a 32-bit integer value extracted from a string. If the |
-** string is not an integer, just return 0. |
-*/ |
-int sqlite3Atoi(const char *z){ |
- int x = 0; |
- if( z ) sqlite3GetInt32(z, &x); |
- return x; |
-} |
- |
-/* |
-** The variable-length integer encoding is as follows: |
-** |
-** KEY: |
-** A = 0xxxxxxx 7 bits of data and one flag bit |
-** B = 1xxxxxxx 7 bits of data and one flag bit |
-** C = xxxxxxxx 8 bits of data |
-** |
-** 7 bits - A |
-** 14 bits - BA |
-** 21 bits - BBA |
-** 28 bits - BBBA |
-** 35 bits - BBBBA |
-** 42 bits - BBBBBA |
-** 49 bits - BBBBBBA |
-** 56 bits - BBBBBBBA |
-** 64 bits - BBBBBBBBC |
-*/ |
- |
-/* |
-** Write a 64-bit variable-length integer to memory starting at p[0]. |
-** The length of data write will be between 1 and 9 bytes. The number |
-** of bytes written is returned. |
-** |
-** A variable-length integer consists of the lower 7 bits of each byte |
-** for all bytes that have the 8th bit set and one byte with the 8th |
-** bit clear. Except, if we get to the 9th byte, it stores the full |
-** 8 bits and is the last byte. |
-*/ |
-static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ |
- int i, j, n; |
- u8 buf[10]; |
- if( v & (((u64)0xff000000)<<32) ){ |
- p[8] = (u8)v; |
- v >>= 8; |
- for(i=7; i>=0; i--){ |
- p[i] = (u8)((v & 0x7f) | 0x80); |
- v >>= 7; |
- } |
- return 9; |
- } |
- n = 0; |
- do{ |
- buf[n++] = (u8)((v & 0x7f) | 0x80); |
- v >>= 7; |
- }while( v!=0 ); |
- buf[0] &= 0x7f; |
- assert( n<=9 ); |
- for(i=0, j=n-1; j>=0; j--, i++){ |
- p[i] = buf[j]; |
- } |
- return n; |
-} |
-int sqlite3PutVarint(unsigned char *p, u64 v){ |
- if( v<=0x7f ){ |
- p[0] = v&0x7f; |
- return 1; |
- } |
- if( v<=0x3fff ){ |
- p[0] = ((v>>7)&0x7f)|0x80; |
- p[1] = v&0x7f; |
- return 2; |
- } |
- return putVarint64(p,v); |
-} |
- |
-/* |
-** Bitmasks used by sqlite3GetVarint(). These precomputed constants |
-** are defined here rather than simply putting the constant expressions |
-** inline in order to work around bugs in the RVT compiler. |
-** |
-** SLOT_2_0 A mask for (0x7f<<14) | 0x7f |
-** |
-** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 |
-*/ |
-#define SLOT_2_0 0x001fc07f |
-#define SLOT_4_2_0 0xf01fc07f |
- |
- |
-/* |
-** Read a 64-bit variable-length integer from memory starting at p[0]. |
-** Return the number of bytes read. The value is stored in *v. |
-*/ |
-u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ |
- u32 a,b,s; |
- |
- a = *p; |
- /* a: p0 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- *v = a; |
- return 1; |
- } |
- |
- p++; |
- b = *p; |
- /* b: p1 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- a &= 0x7f; |
- a = a<<7; |
- a |= b; |
- *v = a; |
- return 2; |
- } |
- |
- /* Verify that constants are precomputed correctly */ |
- assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); |
- assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); |
- |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p0<<14 | p2 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- a &= SLOT_2_0; |
- b &= 0x7f; |
- b = b<<7; |
- a |= b; |
- *v = a; |
- return 3; |
- } |
- |
- /* CSE1 from below */ |
- a &= SLOT_2_0; |
- p++; |
- b = b<<14; |
- b |= *p; |
- /* b: p1<<14 | p3 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- b &= SLOT_2_0; |
- /* moved CSE1 up */ |
- /* a &= (0x7f<<14)|(0x7f); */ |
- a = a<<7; |
- a |= b; |
- *v = a; |
- return 4; |
- } |
- |
- /* a: p0<<14 | p2 (masked) */ |
- /* b: p1<<14 | p3 (unmasked) */ |
- /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
- /* moved CSE1 up */ |
- /* a &= (0x7f<<14)|(0x7f); */ |
- b &= SLOT_2_0; |
- s = a; |
- /* s: p0<<14 | p2 (masked) */ |
- |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- /* we can skip these cause they were (effectively) done above in calc'ing s */ |
- /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
- /* b &= (0x7f<<14)|(0x7f); */ |
- b = b<<7; |
- a |= b; |
- s = s>>18; |
- *v = ((u64)s)<<32 | a; |
- return 5; |
- } |
- |
- /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
- s = s<<7; |
- s |= b; |
- /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
- |
- p++; |
- b = b<<14; |
- b |= *p; |
- /* b: p1<<28 | p3<<14 | p5 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- /* we can skip this cause it was (effectively) done above in calc'ing s */ |
- /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
- a &= SLOT_2_0; |
- a = a<<7; |
- a |= b; |
- s = s>>18; |
- *v = ((u64)s)<<32 | a; |
- return 6; |
- } |
- |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p2<<28 | p4<<14 | p6 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- a &= SLOT_4_2_0; |
- b &= SLOT_2_0; |
- b = b<<7; |
- a |= b; |
- s = s>>11; |
- *v = ((u64)s)<<32 | a; |
- return 7; |
- } |
- |
- /* CSE2 from below */ |
- a &= SLOT_2_0; |
- p++; |
- b = b<<14; |
- b |= *p; |
- /* b: p3<<28 | p5<<14 | p7 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- b &= SLOT_4_2_0; |
- /* moved CSE2 up */ |
- /* a &= (0x7f<<14)|(0x7f); */ |
- a = a<<7; |
- a |= b; |
- s = s>>4; |
- *v = ((u64)s)<<32 | a; |
- return 8; |
- } |
- |
- p++; |
- a = a<<15; |
- a |= *p; |
- /* a: p4<<29 | p6<<15 | p8 (unmasked) */ |
- |
- /* moved CSE2 up */ |
- /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ |
- b &= SLOT_2_0; |
- b = b<<8; |
- a |= b; |
- |
- s = s<<4; |
- b = p[-4]; |
- b &= 0x7f; |
- b = b>>3; |
- s |= b; |
- |
- *v = ((u64)s)<<32 | a; |
- |
- return 9; |
-} |
- |
-/* |
-** Read a 32-bit variable-length integer from memory starting at p[0]. |
-** Return the number of bytes read. The value is stored in *v. |
-** |
-** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned |
-** integer, then set *v to 0xffffffff. |
-** |
-** A MACRO version, getVarint32, is provided which inlines the |
-** single-byte case. All code should use the MACRO version as |
-** this function assumes the single-byte case has already been handled. |
-*/ |
-u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
- u32 a,b; |
- |
- /* The 1-byte case. Overwhelmingly the most common. Handled inline |
- ** by the getVarin32() macro */ |
- a = *p; |
- /* a: p0 (unmasked) */ |
-#ifndef getVarint32 |
- if (!(a&0x80)) |
- { |
- /* Values between 0 and 127 */ |
- *v = a; |
- return 1; |
- } |
-#endif |
- |
- /* The 2-byte case */ |
- p++; |
- b = *p; |
- /* b: p1 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- /* Values between 128 and 16383 */ |
- a &= 0x7f; |
- a = a<<7; |
- *v = a | b; |
- return 2; |
- } |
- |
- /* The 3-byte case */ |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p0<<14 | p2 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- /* Values between 16384 and 2097151 */ |
- a &= (0x7f<<14)|(0x7f); |
- b &= 0x7f; |
- b = b<<7; |
- *v = a | b; |
- return 3; |
- } |
- |
- /* A 32-bit varint is used to store size information in btrees. |
- ** Objects are rarely larger than 2MiB limit of a 3-byte varint. |
- ** A 3-byte varint is sufficient, for example, to record the size |
- ** of a 1048569-byte BLOB or string. |
- ** |
- ** We only unroll the first 1-, 2-, and 3- byte cases. The very |
- ** rare larger cases can be handled by the slower 64-bit varint |
- ** routine. |
- */ |
-#if 1 |
- { |
- u64 v64; |
- u8 n; |
- |
- p -= 2; |
- n = sqlite3GetVarint(p, &v64); |
- assert( n>3 && n<=9 ); |
- if( (v64 & SQLITE_MAX_U32)!=v64 ){ |
- *v = 0xffffffff; |
- }else{ |
- *v = (u32)v64; |
- } |
- return n; |
- } |
- |
-#else |
- /* For following code (kept for historical record only) shows an |
- ** unrolling for the 3- and 4-byte varint cases. This code is |
- ** slightly faster, but it is also larger and much harder to test. |
- */ |
- p++; |
- b = b<<14; |
- b |= *p; |
- /* b: p1<<14 | p3 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- /* Values between 2097152 and 268435455 */ |
- b &= (0x7f<<14)|(0x7f); |
- a &= (0x7f<<14)|(0x7f); |
- a = a<<7; |
- *v = a | b; |
- return 4; |
- } |
- |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- /* Values between 268435456 and 34359738367 */ |
- a &= SLOT_4_2_0; |
- b &= SLOT_4_2_0; |
- b = b<<7; |
- *v = a | b; |
- return 5; |
- } |
- |
- /* We can only reach this point when reading a corrupt database |
- ** file. In that case we are not in any hurry. Use the (relatively |
- ** slow) general-purpose sqlite3GetVarint() routine to extract the |
- ** value. */ |
- { |
- u64 v64; |
- u8 n; |
- |
- p -= 4; |
- n = sqlite3GetVarint(p, &v64); |
- assert( n>5 && n<=9 ); |
- *v = (u32)v64; |
- return n; |
- } |
-#endif |
-} |
- |
-/* |
-** Return the number of bytes that will be needed to store the given |
-** 64-bit integer. |
-*/ |
-int sqlite3VarintLen(u64 v){ |
- int i = 0; |
- do{ |
- i++; |
- v >>= 7; |
- }while( v!=0 && ALWAYS(i<9) ); |
- return i; |
-} |
- |
- |
-/* |
-** Read or write a four-byte big-endian integer value. |
-*/ |
-u32 sqlite3Get4byte(const u8 *p){ |
- testcase( p[0]&0x80 ); |
- return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
-} |
-void sqlite3Put4byte(unsigned char *p, u32 v){ |
- p[0] = (u8)(v>>24); |
- p[1] = (u8)(v>>16); |
- p[2] = (u8)(v>>8); |
- p[3] = (u8)v; |
-} |
- |
- |
- |
-/* |
-** Translate a single byte of Hex into an integer. |
-** This routine only works if h really is a valid hexadecimal |
-** character: 0..9a..fA..F |
-*/ |
-u8 sqlite3HexToInt(int h){ |
- assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); |
-#ifdef SQLITE_ASCII |
- h += 9*(1&(h>>6)); |
-#endif |
-#ifdef SQLITE_EBCDIC |
- h += 9*(1&~(h>>4)); |
-#endif |
- return (u8)(h & 0xf); |
-} |
- |
-#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
-/* |
-** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
-** value. Return a pointer to its binary value. Space to hold the |
-** binary value has been obtained from malloc and must be freed by |
-** the calling routine. |
-*/ |
-void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ |
- char *zBlob; |
- int i; |
- |
- zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); |
- n--; |
- if( zBlob ){ |
- for(i=0; i<n; i+=2){ |
- zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); |
- } |
- zBlob[i/2] = 0; |
- } |
- return zBlob; |
-} |
-#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
- |
-/* |
-** Log an error that is an API call on a connection pointer that should |
-** not have been used. The "type" of connection pointer is given as the |
-** argument. The zType is a word like "NULL" or "closed" or "invalid". |
-*/ |
-static void logBadConnection(const char *zType){ |
- sqlite3_log(SQLITE_MISUSE, |
- "API call with %s database connection pointer", |
- zType |
- ); |
-} |
- |
-/* |
-** Check to make sure we have a valid db pointer. This test is not |
-** foolproof but it does provide some measure of protection against |
-** misuse of the interface such as passing in db pointers that are |
-** NULL or which have been previously closed. If this routine returns |
-** 1 it means that the db pointer is valid and 0 if it should not be |
-** dereferenced for any reason. The calling function should invoke |
-** SQLITE_MISUSE immediately. |
-** |
-** sqlite3SafetyCheckOk() requires that the db pointer be valid for |
-** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to |
-** open properly and is not fit for general use but which can be |
-** used as an argument to sqlite3_errmsg() or sqlite3_close(). |
-*/ |
-int sqlite3SafetyCheckOk(sqlite3 *db){ |
- u32 magic; |
- if( db==0 ){ |
- logBadConnection("NULL"); |
- return 0; |
- } |
- magic = db->magic; |
- if( magic!=SQLITE_MAGIC_OPEN ){ |
- if( sqlite3SafetyCheckSickOrOk(db) ){ |
- testcase( sqlite3GlobalConfig.xLog!=0 ); |
- logBadConnection("unopened"); |
- } |
- return 0; |
- }else{ |
- return 1; |
- } |
-} |
-int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ |
- u32 magic; |
- magic = db->magic; |
- if( magic!=SQLITE_MAGIC_SICK && |
- magic!=SQLITE_MAGIC_OPEN && |
- magic!=SQLITE_MAGIC_BUSY ){ |
- testcase( sqlite3GlobalConfig.xLog!=0 ); |
- logBadConnection("invalid"); |
- return 0; |
- }else{ |
- return 1; |
- } |
-} |
- |
-/* |
-** Attempt to add, substract, or multiply the 64-bit signed value iB against |
-** the other 64-bit signed integer at *pA and store the result in *pA. |
-** Return 0 on success. Or if the operation would have resulted in an |
-** overflow, leave *pA unchanged and return 1. |
-*/ |
-int sqlite3AddInt64(i64 *pA, i64 iB){ |
- i64 iA = *pA; |
- testcase( iA==0 ); testcase( iA==1 ); |
- testcase( iB==-1 ); testcase( iB==0 ); |
- if( iB>=0 ){ |
- testcase( iA>0 && LARGEST_INT64 - iA == iB ); |
- testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); |
- if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; |
- }else{ |
- testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); |
- testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); |
- if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; |
- } |
- *pA += iB; |
- return 0; |
-} |
-int sqlite3SubInt64(i64 *pA, i64 iB){ |
- testcase( iB==SMALLEST_INT64+1 ); |
- if( iB==SMALLEST_INT64 ){ |
- testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); |
- if( (*pA)>=0 ) return 1; |
- *pA -= iB; |
- return 0; |
- }else{ |
- return sqlite3AddInt64(pA, -iB); |
- } |
-} |
-#define TWOPOWER32 (((i64)1)<<32) |
-#define TWOPOWER31 (((i64)1)<<31) |
-int sqlite3MulInt64(i64 *pA, i64 iB){ |
- i64 iA = *pA; |
- i64 iA1, iA0, iB1, iB0, r; |
- |
- iA1 = iA/TWOPOWER32; |
- iA0 = iA % TWOPOWER32; |
- iB1 = iB/TWOPOWER32; |
- iB0 = iB % TWOPOWER32; |
- if( iA1==0 ){ |
- if( iB1==0 ){ |
- *pA *= iB; |
- return 0; |
- } |
- r = iA0*iB1; |
- }else if( iB1==0 ){ |
- r = iA1*iB0; |
- }else{ |
- /* If both iA1 and iB1 are non-zero, overflow will result */ |
- return 1; |
- } |
- testcase( r==(-TWOPOWER31)-1 ); |
- testcase( r==(-TWOPOWER31) ); |
- testcase( r==TWOPOWER31 ); |
- testcase( r==TWOPOWER31-1 ); |
- if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; |
- r *= TWOPOWER32; |
- if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; |
- *pA = r; |
- return 0; |
-} |
- |
-/* |
-** Compute the absolute value of a 32-bit signed integer, of possible. Or |
-** if the integer has a value of -2147483648, return +2147483647 |
-*/ |
-int sqlite3AbsInt32(int x){ |
- if( x>=0 ) return x; |
- if( x==(int)0x80000000 ) return 0x7fffffff; |
- return -x; |
-} |
- |
-#ifdef SQLITE_ENABLE_8_3_NAMES |
-/* |
-** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database |
-** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and |
-** if filename in z[] has a suffix (a.k.a. "extension") that is longer than |
-** three characters, then shorten the suffix on z[] to be the last three |
-** characters of the original suffix. |
-** |
-** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always |
-** do the suffix shortening regardless of URI parameter. |
-** |
-** Examples: |
-** |
-** test.db-journal => test.nal |
-** test.db-wal => test.wal |
-** test.db-shm => test.shm |
-** test.db-mj7f3319fa => test.9fa |
-*/ |
-void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ |
-#if SQLITE_ENABLE_8_3_NAMES<2 |
- if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) |
-#endif |
- { |
- int i, sz; |
- sz = sqlite3Strlen30(z); |
- for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} |
- if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); |
- } |
-} |
-#endif |
- |
-/* |
-** Find (an approximate) sum of two LogEst values. This computation is |
-** not a simple "+" operator because LogEst is stored as a logarithmic |
-** value. |
-** |
-*/ |
-LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ |
- static const unsigned char x[] = { |
- 10, 10, /* 0,1 */ |
- 9, 9, /* 2,3 */ |
- 8, 8, /* 4,5 */ |
- 7, 7, 7, /* 6,7,8 */ |
- 6, 6, 6, /* 9,10,11 */ |
- 5, 5, 5, /* 12-14 */ |
- 4, 4, 4, 4, /* 15-18 */ |
- 3, 3, 3, 3, 3, 3, /* 19-24 */ |
- 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ |
- }; |
- if( a>=b ){ |
- if( a>b+49 ) return a; |
- if( a>b+31 ) return a+1; |
- return a+x[a-b]; |
- }else{ |
- if( b>a+49 ) return b; |
- if( b>a+31 ) return b+1; |
- return b+x[b-a]; |
- } |
-} |
- |
-/* |
-** Convert an integer into a LogEst. In other words, compute an |
-** approximation for 10*log2(x). |
-*/ |
-LogEst sqlite3LogEst(u64 x){ |
- static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; |
- LogEst y = 40; |
- if( x<8 ){ |
- if( x<2 ) return 0; |
- while( x<8 ){ y -= 10; x <<= 1; } |
- }else{ |
- while( x>255 ){ y += 40; x >>= 4; } |
- while( x>15 ){ y += 10; x >>= 1; } |
- } |
- return a[x&7] + y - 10; |
-} |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
-/* |
-** Convert a double into a LogEst |
-** In other words, compute an approximation for 10*log2(x). |
-*/ |
-LogEst sqlite3LogEstFromDouble(double x){ |
- u64 a; |
- LogEst e; |
- assert( sizeof(x)==8 && sizeof(a)==8 ); |
- if( x<=1 ) return 0; |
- if( x<=2000000000 ) return sqlite3LogEst((u64)x); |
- memcpy(&a, &x, 8); |
- e = (a>>52) - 1022; |
- return e*10; |
-} |
-#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
- |
-/* |
-** Convert a LogEst into an integer. |
-*/ |
-u64 sqlite3LogEstToInt(LogEst x){ |
- u64 n; |
- if( x<10 ) return 1; |
- n = x%10; |
- x /= 10; |
- if( n>=5 ) n -= 2; |
- else if( n>=1 ) n -= 1; |
- if( x>=3 ){ |
- return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3); |
- } |
- return (n+8)>>(3-x); |
-} |