OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 15 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** Utility functions used throughout sqlite. | |
13 ** | |
14 ** This file contains functions for allocating memory, comparing | |
15 ** strings, and stuff like that. | |
16 ** | |
17 */ | |
18 #include "sqliteInt.h" | |
19 #include <stdarg.h> | |
20 #ifdef SQLITE_HAVE_ISNAN | |
21 # include <math.h> | |
22 #endif | |
23 | |
24 /* | |
25 ** Routine needed to support the testcase() macro. | |
26 */ | |
27 #ifdef SQLITE_COVERAGE_TEST | |
28 void sqlite3Coverage(int x){ | |
29 static unsigned dummy = 0; | |
30 dummy += (unsigned)x; | |
31 } | |
32 #endif | |
33 | |
34 /* | |
35 ** Give a callback to the test harness that can be used to simulate faults | |
36 ** in places where it is difficult or expensive to do so purely by means | |
37 ** of inputs. | |
38 ** | |
39 ** The intent of the integer argument is to let the fault simulator know | |
40 ** which of multiple sqlite3FaultSim() calls has been hit. | |
41 ** | |
42 ** Return whatever integer value the test callback returns, or return | |
43 ** SQLITE_OK if no test callback is installed. | |
44 */ | |
45 #ifndef SQLITE_OMIT_BUILTIN_TEST | |
46 int sqlite3FaultSim(int iTest){ | |
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; | |
48 return xCallback ? xCallback(iTest) : SQLITE_OK; | |
49 } | |
50 #endif | |
51 | |
52 #ifndef SQLITE_OMIT_FLOATING_POINT | |
53 /* | |
54 ** Return true if the floating point value is Not a Number (NaN). | |
55 ** | |
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. | |
57 ** Otherwise, we have our own implementation that works on most systems. | |
58 */ | |
59 int sqlite3IsNaN(double x){ | |
60 int rc; /* The value return */ | |
61 #if !defined(SQLITE_HAVE_ISNAN) | |
62 /* | |
63 ** Systems that support the isnan() library function should probably | |
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have | |
65 ** found that many systems do not have a working isnan() function so | |
66 ** this implementation is provided as an alternative. | |
67 ** | |
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. | |
69 ** On the other hand, the use of -ffast-math comes with the following | |
70 ** warning: | |
71 ** | |
72 ** This option [-ffast-math] should never be turned on by any | |
73 ** -O option since it can result in incorrect output for programs | |
74 ** which depend on an exact implementation of IEEE or ISO | |
75 ** rules/specifications for math functions. | |
76 ** | |
77 ** Under MSVC, this NaN test may fail if compiled with a floating- | |
78 ** point precision mode other than /fp:precise. From the MSDN | |
79 ** documentation: | |
80 ** | |
81 ** The compiler [with /fp:precise] will properly handle comparisons | |
82 ** involving NaN. For example, x != x evaluates to true if x is NaN | |
83 ** ... | |
84 */ | |
85 #ifdef __FAST_MATH__ | |
86 # error SQLite will not work correctly with the -ffast-math option of GCC. | |
87 #endif | |
88 volatile double y = x; | |
89 volatile double z = y; | |
90 rc = (y!=z); | |
91 #else /* if defined(SQLITE_HAVE_ISNAN) */ | |
92 rc = isnan(x); | |
93 #endif /* SQLITE_HAVE_ISNAN */ | |
94 testcase( rc ); | |
95 return rc; | |
96 } | |
97 #endif /* SQLITE_OMIT_FLOATING_POINT */ | |
98 | |
99 /* | |
100 ** Compute a string length that is limited to what can be stored in | |
101 ** lower 30 bits of a 32-bit signed integer. | |
102 ** | |
103 ** The value returned will never be negative. Nor will it ever be greater | |
104 ** than the actual length of the string. For very long strings (greater | |
105 ** than 1GiB) the value returned might be less than the true string length. | |
106 */ | |
107 int sqlite3Strlen30(const char *z){ | |
108 const char *z2 = z; | |
109 if( z==0 ) return 0; | |
110 while( *z2 ){ z2++; } | |
111 return 0x3fffffff & (int)(z2 - z); | |
112 } | |
113 | |
114 /* | |
115 ** Set the current error code to err_code and clear any prior error message. | |
116 */ | |
117 void sqlite3Error(sqlite3 *db, int err_code){ | |
118 assert( db!=0 ); | |
119 db->errCode = err_code; | |
120 if( db->pErr ) sqlite3ValueSetNull(db->pErr); | |
121 } | |
122 | |
123 /* | |
124 ** Set the most recent error code and error string for the sqlite | |
125 ** handle "db". The error code is set to "err_code". | |
126 ** | |
127 ** If it is not NULL, string zFormat specifies the format of the | |
128 ** error string in the style of the printf functions: The following | |
129 ** format characters are allowed: | |
130 ** | |
131 ** %s Insert a string | |
132 ** %z A string that should be freed after use | |
133 ** %d Insert an integer | |
134 ** %T Insert a token | |
135 ** %S Insert the first element of a SrcList | |
136 ** | |
137 ** zFormat and any string tokens that follow it are assumed to be | |
138 ** encoded in UTF-8. | |
139 ** | |
140 ** To clear the most recent error for sqlite handle "db", sqlite3Error | |
141 ** should be called with err_code set to SQLITE_OK and zFormat set | |
142 ** to NULL. | |
143 */ | |
144 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ | |
145 assert( db!=0 ); | |
146 db->errCode = err_code; | |
147 if( zFormat==0 ){ | |
148 sqlite3Error(db, err_code); | |
149 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ | |
150 char *z; | |
151 va_list ap; | |
152 va_start(ap, zFormat); | |
153 z = sqlite3VMPrintf(db, zFormat, ap); | |
154 va_end(ap); | |
155 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); | |
156 } | |
157 } | |
158 | |
159 /* | |
160 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. | |
161 ** The following formatting characters are allowed: | |
162 ** | |
163 ** %s Insert a string | |
164 ** %z A string that should be freed after use | |
165 ** %d Insert an integer | |
166 ** %T Insert a token | |
167 ** %S Insert the first element of a SrcList | |
168 ** | |
169 ** This function should be used to report any error that occurs while | |
170 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The | |
171 ** last thing the sqlite3_prepare() function does is copy the error | |
172 ** stored by this function into the database handle using sqlite3Error(). | |
173 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used | |
174 ** during statement execution (sqlite3_step() etc.). | |
175 */ | |
176 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ | |
177 char *zMsg; | |
178 va_list ap; | |
179 sqlite3 *db = pParse->db; | |
180 va_start(ap, zFormat); | |
181 zMsg = sqlite3VMPrintf(db, zFormat, ap); | |
182 va_end(ap); | |
183 if( db->suppressErr ){ | |
184 sqlite3DbFree(db, zMsg); | |
185 }else{ | |
186 pParse->nErr++; | |
187 sqlite3DbFree(db, pParse->zErrMsg); | |
188 pParse->zErrMsg = zMsg; | |
189 pParse->rc = SQLITE_ERROR; | |
190 } | |
191 } | |
192 | |
193 /* | |
194 ** Convert an SQL-style quoted string into a normal string by removing | |
195 ** the quote characters. The conversion is done in-place. If the | |
196 ** input does not begin with a quote character, then this routine | |
197 ** is a no-op. | |
198 ** | |
199 ** The input string must be zero-terminated. A new zero-terminator | |
200 ** is added to the dequoted string. | |
201 ** | |
202 ** The return value is -1 if no dequoting occurs or the length of the | |
203 ** dequoted string, exclusive of the zero terminator, if dequoting does | |
204 ** occur. | |
205 ** | |
206 ** 2002-Feb-14: This routine is extended to remove MS-Access style | |
207 ** brackets from around identifiers. For example: "[a-b-c]" becomes | |
208 ** "a-b-c". | |
209 */ | |
210 int sqlite3Dequote(char *z){ | |
211 char quote; | |
212 int i, j; | |
213 if( z==0 ) return -1; | |
214 quote = z[0]; | |
215 switch( quote ){ | |
216 case '\'': break; | |
217 case '"': break; | |
218 case '`': break; /* For MySQL compatibility */ | |
219 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ | |
220 default: return -1; | |
221 } | |
222 for(i=1, j=0;; i++){ | |
223 assert( z[i] ); | |
224 if( z[i]==quote ){ | |
225 if( z[i+1]==quote ){ | |
226 z[j++] = quote; | |
227 i++; | |
228 }else{ | |
229 break; | |
230 } | |
231 }else{ | |
232 z[j++] = z[i]; | |
233 } | |
234 } | |
235 z[j] = 0; | |
236 return j; | |
237 } | |
238 | |
239 /* Convenient short-hand */ | |
240 #define UpperToLower sqlite3UpperToLower | |
241 | |
242 /* | |
243 ** Some systems have stricmp(). Others have strcasecmp(). Because | |
244 ** there is no consistency, we will define our own. | |
245 ** | |
246 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and | |
247 ** sqlite3_strnicmp() APIs allow applications and extensions to compare | |
248 ** the contents of two buffers containing UTF-8 strings in a | |
249 ** case-independent fashion, using the same definition of "case | |
250 ** independence" that SQLite uses internally when comparing identifiers. | |
251 */ | |
252 int sqlite3_stricmp(const char *zLeft, const char *zRight){ | |
253 register unsigned char *a, *b; | |
254 a = (unsigned char *)zLeft; | |
255 b = (unsigned char *)zRight; | |
256 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } | |
257 return UpperToLower[*a] - UpperToLower[*b]; | |
258 } | |
259 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ | |
260 register unsigned char *a, *b; | |
261 a = (unsigned char *)zLeft; | |
262 b = (unsigned char *)zRight; | |
263 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } | |
264 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; | |
265 } | |
266 | |
267 /* | |
268 ** The string z[] is an text representation of a real number. | |
269 ** Convert this string to a double and write it into *pResult. | |
270 ** | |
271 ** The string z[] is length bytes in length (bytes, not characters) and | |
272 ** uses the encoding enc. The string is not necessarily zero-terminated. | |
273 ** | |
274 ** Return TRUE if the result is a valid real number (or integer) and FALSE | |
275 ** if the string is empty or contains extraneous text. Valid numbers | |
276 ** are in one of these formats: | |
277 ** | |
278 ** [+-]digits[E[+-]digits] | |
279 ** [+-]digits.[digits][E[+-]digits] | |
280 ** [+-].digits[E[+-]digits] | |
281 ** | |
282 ** Leading and trailing whitespace is ignored for the purpose of determining | |
283 ** validity. | |
284 ** | |
285 ** If some prefix of the input string is a valid number, this routine | |
286 ** returns FALSE but it still converts the prefix and writes the result | |
287 ** into *pResult. | |
288 */ | |
289 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ | |
290 #ifndef SQLITE_OMIT_FLOATING_POINT | |
291 int incr; | |
292 const char *zEnd = z + length; | |
293 /* sign * significand * (10 ^ (esign * exponent)) */ | |
294 int sign = 1; /* sign of significand */ | |
295 i64 s = 0; /* significand */ | |
296 int d = 0; /* adjust exponent for shifting decimal point */ | |
297 int esign = 1; /* sign of exponent */ | |
298 int e = 0; /* exponent */ | |
299 int eValid = 1; /* True exponent is either not used or is well-formed */ | |
300 double result; | |
301 int nDigits = 0; | |
302 int nonNum = 0; | |
303 | |
304 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); | |
305 *pResult = 0.0; /* Default return value, in case of an error */ | |
306 | |
307 if( enc==SQLITE_UTF8 ){ | |
308 incr = 1; | |
309 }else{ | |
310 int i; | |
311 incr = 2; | |
312 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); | |
313 for(i=3-enc; i<length && z[i]==0; i+=2){} | |
314 nonNum = i<length; | |
315 zEnd = z+i+enc-3; | |
316 z += (enc&1); | |
317 } | |
318 | |
319 /* skip leading spaces */ | |
320 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; | |
321 if( z>=zEnd ) return 0; | |
322 | |
323 /* get sign of significand */ | |
324 if( *z=='-' ){ | |
325 sign = -1; | |
326 z+=incr; | |
327 }else if( *z=='+' ){ | |
328 z+=incr; | |
329 } | |
330 | |
331 /* skip leading zeroes */ | |
332 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; | |
333 | |
334 /* copy max significant digits to significand */ | |
335 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ | |
336 s = s*10 + (*z - '0'); | |
337 z+=incr, nDigits++; | |
338 } | |
339 | |
340 /* skip non-significant significand digits | |
341 ** (increase exponent by d to shift decimal left) */ | |
342 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; | |
343 if( z>=zEnd ) goto do_atof_calc; | |
344 | |
345 /* if decimal point is present */ | |
346 if( *z=='.' ){ | |
347 z+=incr; | |
348 /* copy digits from after decimal to significand | |
349 ** (decrease exponent by d to shift decimal right) */ | |
350 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ | |
351 s = s*10 + (*z - '0'); | |
352 z+=incr, nDigits++, d--; | |
353 } | |
354 /* skip non-significant digits */ | |
355 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; | |
356 } | |
357 if( z>=zEnd ) goto do_atof_calc; | |
358 | |
359 /* if exponent is present */ | |
360 if( *z=='e' || *z=='E' ){ | |
361 z+=incr; | |
362 eValid = 0; | |
363 if( z>=zEnd ) goto do_atof_calc; | |
364 /* get sign of exponent */ | |
365 if( *z=='-' ){ | |
366 esign = -1; | |
367 z+=incr; | |
368 }else if( *z=='+' ){ | |
369 z+=incr; | |
370 } | |
371 /* copy digits to exponent */ | |
372 while( z<zEnd && sqlite3Isdigit(*z) ){ | |
373 e = e<10000 ? (e*10 + (*z - '0')) : 10000; | |
374 z+=incr; | |
375 eValid = 1; | |
376 } | |
377 } | |
378 | |
379 /* skip trailing spaces */ | |
380 if( nDigits && eValid ){ | |
381 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; | |
382 } | |
383 | |
384 do_atof_calc: | |
385 /* adjust exponent by d, and update sign */ | |
386 e = (e*esign) + d; | |
387 if( e<0 ) { | |
388 esign = -1; | |
389 e *= -1; | |
390 } else { | |
391 esign = 1; | |
392 } | |
393 | |
394 /* if 0 significand */ | |
395 if( !s ) { | |
396 /* In the IEEE 754 standard, zero is signed. | |
397 ** Add the sign if we've seen at least one digit */ | |
398 result = (sign<0 && nDigits) ? -(double)0 : (double)0; | |
399 } else { | |
400 /* attempt to reduce exponent */ | |
401 if( esign>0 ){ | |
402 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; | |
403 }else{ | |
404 while( !(s%10) && e>0 ) e--,s/=10; | |
405 } | |
406 | |
407 /* adjust the sign of significand */ | |
408 s = sign<0 ? -s : s; | |
409 | |
410 /* if exponent, scale significand as appropriate | |
411 ** and store in result. */ | |
412 if( e ){ | |
413 LONGDOUBLE_TYPE scale = 1.0; | |
414 /* attempt to handle extremely small/large numbers better */ | |
415 if( e>307 && e<342 ){ | |
416 while( e%308 ) { scale *= 1.0e+1; e -= 1; } | |
417 if( esign<0 ){ | |
418 result = s / scale; | |
419 result /= 1.0e+308; | |
420 }else{ | |
421 result = s * scale; | |
422 result *= 1.0e+308; | |
423 } | |
424 }else if( e>=342 ){ | |
425 if( esign<0 ){ | |
426 result = 0.0*s; | |
427 }else{ | |
428 result = 1e308*1e308*s; /* Infinity */ | |
429 } | |
430 }else{ | |
431 /* 1.0e+22 is the largest power of 10 than can be | |
432 ** represented exactly. */ | |
433 while( e%22 ) { scale *= 1.0e+1; e -= 1; } | |
434 while( e>0 ) { scale *= 1.0e+22; e -= 22; } | |
435 if( esign<0 ){ | |
436 result = s / scale; | |
437 }else{ | |
438 result = s * scale; | |
439 } | |
440 } | |
441 } else { | |
442 result = (double)s; | |
443 } | |
444 } | |
445 | |
446 /* store the result */ | |
447 *pResult = result; | |
448 | |
449 /* return true if number and no extra non-whitespace chracters after */ | |
450 return z>=zEnd && nDigits>0 && eValid && nonNum==0; | |
451 #else | |
452 return !sqlite3Atoi64(z, pResult, length, enc); | |
453 #endif /* SQLITE_OMIT_FLOATING_POINT */ | |
454 } | |
455 | |
456 /* | |
457 ** Compare the 19-character string zNum against the text representation | |
458 ** value 2^63: 9223372036854775808. Return negative, zero, or positive | |
459 ** if zNum is less than, equal to, or greater than the string. | |
460 ** Note that zNum must contain exactly 19 characters. | |
461 ** | |
462 ** Unlike memcmp() this routine is guaranteed to return the difference | |
463 ** in the values of the last digit if the only difference is in the | |
464 ** last digit. So, for example, | |
465 ** | |
466 ** compare2pow63("9223372036854775800", 1) | |
467 ** | |
468 ** will return -8. | |
469 */ | |
470 static int compare2pow63(const char *zNum, int incr){ | |
471 int c = 0; | |
472 int i; | |
473 /* 012345678901234567 */ | |
474 const char *pow63 = "922337203685477580"; | |
475 for(i=0; c==0 && i<18; i++){ | |
476 c = (zNum[i*incr]-pow63[i])*10; | |
477 } | |
478 if( c==0 ){ | |
479 c = zNum[18*incr] - '8'; | |
480 testcase( c==(-1) ); | |
481 testcase( c==0 ); | |
482 testcase( c==(+1) ); | |
483 } | |
484 return c; | |
485 } | |
486 | |
487 /* | |
488 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This | |
489 ** routine does *not* accept hexadecimal notation. | |
490 ** | |
491 ** If the zNum value is representable as a 64-bit twos-complement | |
492 ** integer, then write that value into *pNum and return 0. | |
493 ** | |
494 ** If zNum is exactly 9223372036854775808, return 2. This special | |
495 ** case is broken out because while 9223372036854775808 cannot be a | |
496 ** signed 64-bit integer, its negative -9223372036854775808 can be. | |
497 ** | |
498 ** If zNum is too big for a 64-bit integer and is not | |
499 ** 9223372036854775808 or if zNum contains any non-numeric text, | |
500 ** then return 1. | |
501 ** | |
502 ** length is the number of bytes in the string (bytes, not characters). | |
503 ** The string is not necessarily zero-terminated. The encoding is | |
504 ** given by enc. | |
505 */ | |
506 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ | |
507 int incr; | |
508 u64 u = 0; | |
509 int neg = 0; /* assume positive */ | |
510 int i; | |
511 int c = 0; | |
512 int nonNum = 0; | |
513 const char *zStart; | |
514 const char *zEnd = zNum + length; | |
515 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); | |
516 if( enc==SQLITE_UTF8 ){ | |
517 incr = 1; | |
518 }else{ | |
519 incr = 2; | |
520 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); | |
521 for(i=3-enc; i<length && zNum[i]==0; i+=2){} | |
522 nonNum = i<length; | |
523 zEnd = zNum+i+enc-3; | |
524 zNum += (enc&1); | |
525 } | |
526 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; | |
527 if( zNum<zEnd ){ | |
528 if( *zNum=='-' ){ | |
529 neg = 1; | |
530 zNum+=incr; | |
531 }else if( *zNum=='+' ){ | |
532 zNum+=incr; | |
533 } | |
534 } | |
535 zStart = zNum; | |
536 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ | |
537 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ | |
538 u = u*10 + c - '0'; | |
539 } | |
540 if( u>LARGEST_INT64 ){ | |
541 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; | |
542 }else if( neg ){ | |
543 *pNum = -(i64)u; | |
544 }else{ | |
545 *pNum = (i64)u; | |
546 } | |
547 testcase( i==18 ); | |
548 testcase( i==19 ); | |
549 testcase( i==20 ); | |
550 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum )
{ | |
551 /* zNum is empty or contains non-numeric text or is longer | |
552 ** than 19 digits (thus guaranteeing that it is too large) */ | |
553 return 1; | |
554 }else if( i<19*incr ){ | |
555 /* Less than 19 digits, so we know that it fits in 64 bits */ | |
556 assert( u<=LARGEST_INT64 ); | |
557 return 0; | |
558 }else{ | |
559 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ | |
560 c = compare2pow63(zNum, incr); | |
561 if( c<0 ){ | |
562 /* zNum is less than 9223372036854775808 so it fits */ | |
563 assert( u<=LARGEST_INT64 ); | |
564 return 0; | |
565 }else if( c>0 ){ | |
566 /* zNum is greater than 9223372036854775808 so it overflows */ | |
567 return 1; | |
568 }else{ | |
569 /* zNum is exactly 9223372036854775808. Fits if negative. The | |
570 ** special case 2 overflow if positive */ | |
571 assert( u-1==LARGEST_INT64 ); | |
572 return neg ? 0 : 2; | |
573 } | |
574 } | |
575 } | |
576 | |
577 /* | |
578 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, | |
579 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, | |
580 ** whereas sqlite3Atoi64() does not. | |
581 ** | |
582 ** Returns: | |
583 ** | |
584 ** 0 Successful transformation. Fits in a 64-bit signed integer. | |
585 ** 1 Integer too large for a 64-bit signed integer or is malformed | |
586 ** 2 Special case of 9223372036854775808 | |
587 */ | |
588 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ | |
589 #ifndef SQLITE_OMIT_HEX_INTEGER | |
590 if( z[0]=='0' | |
591 && (z[1]=='x' || z[1]=='X') | |
592 && sqlite3Isxdigit(z[2]) | |
593 ){ | |
594 u64 u = 0; | |
595 int i, k; | |
596 for(i=2; z[i]=='0'; i++){} | |
597 for(k=i; sqlite3Isxdigit(z[k]); k++){ | |
598 u = u*16 + sqlite3HexToInt(z[k]); | |
599 } | |
600 memcpy(pOut, &u, 8); | |
601 return (z[k]==0 && k-i<=16) ? 0 : 1; | |
602 }else | |
603 #endif /* SQLITE_OMIT_HEX_INTEGER */ | |
604 { | |
605 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); | |
606 } | |
607 } | |
608 | |
609 /* | |
610 ** If zNum represents an integer that will fit in 32-bits, then set | |
611 ** *pValue to that integer and return true. Otherwise return false. | |
612 ** | |
613 ** This routine accepts both decimal and hexadecimal notation for integers. | |
614 ** | |
615 ** Any non-numeric characters that following zNum are ignored. | |
616 ** This is different from sqlite3Atoi64() which requires the | |
617 ** input number to be zero-terminated. | |
618 */ | |
619 int sqlite3GetInt32(const char *zNum, int *pValue){ | |
620 sqlite_int64 v = 0; | |
621 int i, c; | |
622 int neg = 0; | |
623 if( zNum[0]=='-' ){ | |
624 neg = 1; | |
625 zNum++; | |
626 }else if( zNum[0]=='+' ){ | |
627 zNum++; | |
628 } | |
629 #ifndef SQLITE_OMIT_HEX_INTEGER | |
630 else if( zNum[0]=='0' | |
631 && (zNum[1]=='x' || zNum[1]=='X') | |
632 && sqlite3Isxdigit(zNum[2]) | |
633 ){ | |
634 u32 u = 0; | |
635 zNum += 2; | |
636 while( zNum[0]=='0' ) zNum++; | |
637 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ | |
638 u = u*16 + sqlite3HexToInt(zNum[i]); | |
639 } | |
640 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ | |
641 memcpy(pValue, &u, 4); | |
642 return 1; | |
643 }else{ | |
644 return 0; | |
645 } | |
646 } | |
647 #endif | |
648 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ | |
649 v = v*10 + c; | |
650 } | |
651 | |
652 /* The longest decimal representation of a 32 bit integer is 10 digits: | |
653 ** | |
654 ** 1234567890 | |
655 ** 2^31 -> 2147483648 | |
656 */ | |
657 testcase( i==10 ); | |
658 if( i>10 ){ | |
659 return 0; | |
660 } | |
661 testcase( v-neg==2147483647 ); | |
662 if( v-neg>2147483647 ){ | |
663 return 0; | |
664 } | |
665 if( neg ){ | |
666 v = -v; | |
667 } | |
668 *pValue = (int)v; | |
669 return 1; | |
670 } | |
671 | |
672 /* | |
673 ** Return a 32-bit integer value extracted from a string. If the | |
674 ** string is not an integer, just return 0. | |
675 */ | |
676 int sqlite3Atoi(const char *z){ | |
677 int x = 0; | |
678 if( z ) sqlite3GetInt32(z, &x); | |
679 return x; | |
680 } | |
681 | |
682 /* | |
683 ** The variable-length integer encoding is as follows: | |
684 ** | |
685 ** KEY: | |
686 ** A = 0xxxxxxx 7 bits of data and one flag bit | |
687 ** B = 1xxxxxxx 7 bits of data and one flag bit | |
688 ** C = xxxxxxxx 8 bits of data | |
689 ** | |
690 ** 7 bits - A | |
691 ** 14 bits - BA | |
692 ** 21 bits - BBA | |
693 ** 28 bits - BBBA | |
694 ** 35 bits - BBBBA | |
695 ** 42 bits - BBBBBA | |
696 ** 49 bits - BBBBBBA | |
697 ** 56 bits - BBBBBBBA | |
698 ** 64 bits - BBBBBBBBC | |
699 */ | |
700 | |
701 /* | |
702 ** Write a 64-bit variable-length integer to memory starting at p[0]. | |
703 ** The length of data write will be between 1 and 9 bytes. The number | |
704 ** of bytes written is returned. | |
705 ** | |
706 ** A variable-length integer consists of the lower 7 bits of each byte | |
707 ** for all bytes that have the 8th bit set and one byte with the 8th | |
708 ** bit clear. Except, if we get to the 9th byte, it stores the full | |
709 ** 8 bits and is the last byte. | |
710 */ | |
711 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ | |
712 int i, j, n; | |
713 u8 buf[10]; | |
714 if( v & (((u64)0xff000000)<<32) ){ | |
715 p[8] = (u8)v; | |
716 v >>= 8; | |
717 for(i=7; i>=0; i--){ | |
718 p[i] = (u8)((v & 0x7f) | 0x80); | |
719 v >>= 7; | |
720 } | |
721 return 9; | |
722 } | |
723 n = 0; | |
724 do{ | |
725 buf[n++] = (u8)((v & 0x7f) | 0x80); | |
726 v >>= 7; | |
727 }while( v!=0 ); | |
728 buf[0] &= 0x7f; | |
729 assert( n<=9 ); | |
730 for(i=0, j=n-1; j>=0; j--, i++){ | |
731 p[i] = buf[j]; | |
732 } | |
733 return n; | |
734 } | |
735 int sqlite3PutVarint(unsigned char *p, u64 v){ | |
736 if( v<=0x7f ){ | |
737 p[0] = v&0x7f; | |
738 return 1; | |
739 } | |
740 if( v<=0x3fff ){ | |
741 p[0] = ((v>>7)&0x7f)|0x80; | |
742 p[1] = v&0x7f; | |
743 return 2; | |
744 } | |
745 return putVarint64(p,v); | |
746 } | |
747 | |
748 /* | |
749 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants | |
750 ** are defined here rather than simply putting the constant expressions | |
751 ** inline in order to work around bugs in the RVT compiler. | |
752 ** | |
753 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f | |
754 ** | |
755 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 | |
756 */ | |
757 #define SLOT_2_0 0x001fc07f | |
758 #define SLOT_4_2_0 0xf01fc07f | |
759 | |
760 | |
761 /* | |
762 ** Read a 64-bit variable-length integer from memory starting at p[0]. | |
763 ** Return the number of bytes read. The value is stored in *v. | |
764 */ | |
765 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ | |
766 u32 a,b,s; | |
767 | |
768 a = *p; | |
769 /* a: p0 (unmasked) */ | |
770 if (!(a&0x80)) | |
771 { | |
772 *v = a; | |
773 return 1; | |
774 } | |
775 | |
776 p++; | |
777 b = *p; | |
778 /* b: p1 (unmasked) */ | |
779 if (!(b&0x80)) | |
780 { | |
781 a &= 0x7f; | |
782 a = a<<7; | |
783 a |= b; | |
784 *v = a; | |
785 return 2; | |
786 } | |
787 | |
788 /* Verify that constants are precomputed correctly */ | |
789 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); | |
790 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); | |
791 | |
792 p++; | |
793 a = a<<14; | |
794 a |= *p; | |
795 /* a: p0<<14 | p2 (unmasked) */ | |
796 if (!(a&0x80)) | |
797 { | |
798 a &= SLOT_2_0; | |
799 b &= 0x7f; | |
800 b = b<<7; | |
801 a |= b; | |
802 *v = a; | |
803 return 3; | |
804 } | |
805 | |
806 /* CSE1 from below */ | |
807 a &= SLOT_2_0; | |
808 p++; | |
809 b = b<<14; | |
810 b |= *p; | |
811 /* b: p1<<14 | p3 (unmasked) */ | |
812 if (!(b&0x80)) | |
813 { | |
814 b &= SLOT_2_0; | |
815 /* moved CSE1 up */ | |
816 /* a &= (0x7f<<14)|(0x7f); */ | |
817 a = a<<7; | |
818 a |= b; | |
819 *v = a; | |
820 return 4; | |
821 } | |
822 | |
823 /* a: p0<<14 | p2 (masked) */ | |
824 /* b: p1<<14 | p3 (unmasked) */ | |
825 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ | |
826 /* moved CSE1 up */ | |
827 /* a &= (0x7f<<14)|(0x7f); */ | |
828 b &= SLOT_2_0; | |
829 s = a; | |
830 /* s: p0<<14 | p2 (masked) */ | |
831 | |
832 p++; | |
833 a = a<<14; | |
834 a |= *p; | |
835 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ | |
836 if (!(a&0x80)) | |
837 { | |
838 /* we can skip these cause they were (effectively) done above in calc'ing s
*/ | |
839 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ | |
840 /* b &= (0x7f<<14)|(0x7f); */ | |
841 b = b<<7; | |
842 a |= b; | |
843 s = s>>18; | |
844 *v = ((u64)s)<<32 | a; | |
845 return 5; | |
846 } | |
847 | |
848 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ | |
849 s = s<<7; | |
850 s |= b; | |
851 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ | |
852 | |
853 p++; | |
854 b = b<<14; | |
855 b |= *p; | |
856 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ | |
857 if (!(b&0x80)) | |
858 { | |
859 /* we can skip this cause it was (effectively) done above in calc'ing s */ | |
860 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ | |
861 a &= SLOT_2_0; | |
862 a = a<<7; | |
863 a |= b; | |
864 s = s>>18; | |
865 *v = ((u64)s)<<32 | a; | |
866 return 6; | |
867 } | |
868 | |
869 p++; | |
870 a = a<<14; | |
871 a |= *p; | |
872 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ | |
873 if (!(a&0x80)) | |
874 { | |
875 a &= SLOT_4_2_0; | |
876 b &= SLOT_2_0; | |
877 b = b<<7; | |
878 a |= b; | |
879 s = s>>11; | |
880 *v = ((u64)s)<<32 | a; | |
881 return 7; | |
882 } | |
883 | |
884 /* CSE2 from below */ | |
885 a &= SLOT_2_0; | |
886 p++; | |
887 b = b<<14; | |
888 b |= *p; | |
889 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ | |
890 if (!(b&0x80)) | |
891 { | |
892 b &= SLOT_4_2_0; | |
893 /* moved CSE2 up */ | |
894 /* a &= (0x7f<<14)|(0x7f); */ | |
895 a = a<<7; | |
896 a |= b; | |
897 s = s>>4; | |
898 *v = ((u64)s)<<32 | a; | |
899 return 8; | |
900 } | |
901 | |
902 p++; | |
903 a = a<<15; | |
904 a |= *p; | |
905 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ | |
906 | |
907 /* moved CSE2 up */ | |
908 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ | |
909 b &= SLOT_2_0; | |
910 b = b<<8; | |
911 a |= b; | |
912 | |
913 s = s<<4; | |
914 b = p[-4]; | |
915 b &= 0x7f; | |
916 b = b>>3; | |
917 s |= b; | |
918 | |
919 *v = ((u64)s)<<32 | a; | |
920 | |
921 return 9; | |
922 } | |
923 | |
924 /* | |
925 ** Read a 32-bit variable-length integer from memory starting at p[0]. | |
926 ** Return the number of bytes read. The value is stored in *v. | |
927 ** | |
928 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned | |
929 ** integer, then set *v to 0xffffffff. | |
930 ** | |
931 ** A MACRO version, getVarint32, is provided which inlines the | |
932 ** single-byte case. All code should use the MACRO version as | |
933 ** this function assumes the single-byte case has already been handled. | |
934 */ | |
935 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ | |
936 u32 a,b; | |
937 | |
938 /* The 1-byte case. Overwhelmingly the most common. Handled inline | |
939 ** by the getVarin32() macro */ | |
940 a = *p; | |
941 /* a: p0 (unmasked) */ | |
942 #ifndef getVarint32 | |
943 if (!(a&0x80)) | |
944 { | |
945 /* Values between 0 and 127 */ | |
946 *v = a; | |
947 return 1; | |
948 } | |
949 #endif | |
950 | |
951 /* The 2-byte case */ | |
952 p++; | |
953 b = *p; | |
954 /* b: p1 (unmasked) */ | |
955 if (!(b&0x80)) | |
956 { | |
957 /* Values between 128 and 16383 */ | |
958 a &= 0x7f; | |
959 a = a<<7; | |
960 *v = a | b; | |
961 return 2; | |
962 } | |
963 | |
964 /* The 3-byte case */ | |
965 p++; | |
966 a = a<<14; | |
967 a |= *p; | |
968 /* a: p0<<14 | p2 (unmasked) */ | |
969 if (!(a&0x80)) | |
970 { | |
971 /* Values between 16384 and 2097151 */ | |
972 a &= (0x7f<<14)|(0x7f); | |
973 b &= 0x7f; | |
974 b = b<<7; | |
975 *v = a | b; | |
976 return 3; | |
977 } | |
978 | |
979 /* A 32-bit varint is used to store size information in btrees. | |
980 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. | |
981 ** A 3-byte varint is sufficient, for example, to record the size | |
982 ** of a 1048569-byte BLOB or string. | |
983 ** | |
984 ** We only unroll the first 1-, 2-, and 3- byte cases. The very | |
985 ** rare larger cases can be handled by the slower 64-bit varint | |
986 ** routine. | |
987 */ | |
988 #if 1 | |
989 { | |
990 u64 v64; | |
991 u8 n; | |
992 | |
993 p -= 2; | |
994 n = sqlite3GetVarint(p, &v64); | |
995 assert( n>3 && n<=9 ); | |
996 if( (v64 & SQLITE_MAX_U32)!=v64 ){ | |
997 *v = 0xffffffff; | |
998 }else{ | |
999 *v = (u32)v64; | |
1000 } | |
1001 return n; | |
1002 } | |
1003 | |
1004 #else | |
1005 /* For following code (kept for historical record only) shows an | |
1006 ** unrolling for the 3- and 4-byte varint cases. This code is | |
1007 ** slightly faster, but it is also larger and much harder to test. | |
1008 */ | |
1009 p++; | |
1010 b = b<<14; | |
1011 b |= *p; | |
1012 /* b: p1<<14 | p3 (unmasked) */ | |
1013 if (!(b&0x80)) | |
1014 { | |
1015 /* Values between 2097152 and 268435455 */ | |
1016 b &= (0x7f<<14)|(0x7f); | |
1017 a &= (0x7f<<14)|(0x7f); | |
1018 a = a<<7; | |
1019 *v = a | b; | |
1020 return 4; | |
1021 } | |
1022 | |
1023 p++; | |
1024 a = a<<14; | |
1025 a |= *p; | |
1026 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ | |
1027 if (!(a&0x80)) | |
1028 { | |
1029 /* Values between 268435456 and 34359738367 */ | |
1030 a &= SLOT_4_2_0; | |
1031 b &= SLOT_4_2_0; | |
1032 b = b<<7; | |
1033 *v = a | b; | |
1034 return 5; | |
1035 } | |
1036 | |
1037 /* We can only reach this point when reading a corrupt database | |
1038 ** file. In that case we are not in any hurry. Use the (relatively | |
1039 ** slow) general-purpose sqlite3GetVarint() routine to extract the | |
1040 ** value. */ | |
1041 { | |
1042 u64 v64; | |
1043 u8 n; | |
1044 | |
1045 p -= 4; | |
1046 n = sqlite3GetVarint(p, &v64); | |
1047 assert( n>5 && n<=9 ); | |
1048 *v = (u32)v64; | |
1049 return n; | |
1050 } | |
1051 #endif | |
1052 } | |
1053 | |
1054 /* | |
1055 ** Return the number of bytes that will be needed to store the given | |
1056 ** 64-bit integer. | |
1057 */ | |
1058 int sqlite3VarintLen(u64 v){ | |
1059 int i = 0; | |
1060 do{ | |
1061 i++; | |
1062 v >>= 7; | |
1063 }while( v!=0 && ALWAYS(i<9) ); | |
1064 return i; | |
1065 } | |
1066 | |
1067 | |
1068 /* | |
1069 ** Read or write a four-byte big-endian integer value. | |
1070 */ | |
1071 u32 sqlite3Get4byte(const u8 *p){ | |
1072 testcase( p[0]&0x80 ); | |
1073 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; | |
1074 } | |
1075 void sqlite3Put4byte(unsigned char *p, u32 v){ | |
1076 p[0] = (u8)(v>>24); | |
1077 p[1] = (u8)(v>>16); | |
1078 p[2] = (u8)(v>>8); | |
1079 p[3] = (u8)v; | |
1080 } | |
1081 | |
1082 | |
1083 | |
1084 /* | |
1085 ** Translate a single byte of Hex into an integer. | |
1086 ** This routine only works if h really is a valid hexadecimal | |
1087 ** character: 0..9a..fA..F | |
1088 */ | |
1089 u8 sqlite3HexToInt(int h){ | |
1090 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); | |
1091 #ifdef SQLITE_ASCII | |
1092 h += 9*(1&(h>>6)); | |
1093 #endif | |
1094 #ifdef SQLITE_EBCDIC | |
1095 h += 9*(1&~(h>>4)); | |
1096 #endif | |
1097 return (u8)(h & 0xf); | |
1098 } | |
1099 | |
1100 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) | |
1101 /* | |
1102 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary | |
1103 ** value. Return a pointer to its binary value. Space to hold the | |
1104 ** binary value has been obtained from malloc and must be freed by | |
1105 ** the calling routine. | |
1106 */ | |
1107 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ | |
1108 char *zBlob; | |
1109 int i; | |
1110 | |
1111 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); | |
1112 n--; | |
1113 if( zBlob ){ | |
1114 for(i=0; i<n; i+=2){ | |
1115 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); | |
1116 } | |
1117 zBlob[i/2] = 0; | |
1118 } | |
1119 return zBlob; | |
1120 } | |
1121 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ | |
1122 | |
1123 /* | |
1124 ** Log an error that is an API call on a connection pointer that should | |
1125 ** not have been used. The "type" of connection pointer is given as the | |
1126 ** argument. The zType is a word like "NULL" or "closed" or "invalid". | |
1127 */ | |
1128 static void logBadConnection(const char *zType){ | |
1129 sqlite3_log(SQLITE_MISUSE, | |
1130 "API call with %s database connection pointer", | |
1131 zType | |
1132 ); | |
1133 } | |
1134 | |
1135 /* | |
1136 ** Check to make sure we have a valid db pointer. This test is not | |
1137 ** foolproof but it does provide some measure of protection against | |
1138 ** misuse of the interface such as passing in db pointers that are | |
1139 ** NULL or which have been previously closed. If this routine returns | |
1140 ** 1 it means that the db pointer is valid and 0 if it should not be | |
1141 ** dereferenced for any reason. The calling function should invoke | |
1142 ** SQLITE_MISUSE immediately. | |
1143 ** | |
1144 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for | |
1145 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to | |
1146 ** open properly and is not fit for general use but which can be | |
1147 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). | |
1148 */ | |
1149 int sqlite3SafetyCheckOk(sqlite3 *db){ | |
1150 u32 magic; | |
1151 if( db==0 ){ | |
1152 logBadConnection("NULL"); | |
1153 return 0; | |
1154 } | |
1155 magic = db->magic; | |
1156 if( magic!=SQLITE_MAGIC_OPEN ){ | |
1157 if( sqlite3SafetyCheckSickOrOk(db) ){ | |
1158 testcase( sqlite3GlobalConfig.xLog!=0 ); | |
1159 logBadConnection("unopened"); | |
1160 } | |
1161 return 0; | |
1162 }else{ | |
1163 return 1; | |
1164 } | |
1165 } | |
1166 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ | |
1167 u32 magic; | |
1168 magic = db->magic; | |
1169 if( magic!=SQLITE_MAGIC_SICK && | |
1170 magic!=SQLITE_MAGIC_OPEN && | |
1171 magic!=SQLITE_MAGIC_BUSY ){ | |
1172 testcase( sqlite3GlobalConfig.xLog!=0 ); | |
1173 logBadConnection("invalid"); | |
1174 return 0; | |
1175 }else{ | |
1176 return 1; | |
1177 } | |
1178 } | |
1179 | |
1180 /* | |
1181 ** Attempt to add, substract, or multiply the 64-bit signed value iB against | |
1182 ** the other 64-bit signed integer at *pA and store the result in *pA. | |
1183 ** Return 0 on success. Or if the operation would have resulted in an | |
1184 ** overflow, leave *pA unchanged and return 1. | |
1185 */ | |
1186 int sqlite3AddInt64(i64 *pA, i64 iB){ | |
1187 i64 iA = *pA; | |
1188 testcase( iA==0 ); testcase( iA==1 ); | |
1189 testcase( iB==-1 ); testcase( iB==0 ); | |
1190 if( iB>=0 ){ | |
1191 testcase( iA>0 && LARGEST_INT64 - iA == iB ); | |
1192 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); | |
1193 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; | |
1194 }else{ | |
1195 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); | |
1196 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); | |
1197 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; | |
1198 } | |
1199 *pA += iB; | |
1200 return 0; | |
1201 } | |
1202 int sqlite3SubInt64(i64 *pA, i64 iB){ | |
1203 testcase( iB==SMALLEST_INT64+1 ); | |
1204 if( iB==SMALLEST_INT64 ){ | |
1205 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); | |
1206 if( (*pA)>=0 ) return 1; | |
1207 *pA -= iB; | |
1208 return 0; | |
1209 }else{ | |
1210 return sqlite3AddInt64(pA, -iB); | |
1211 } | |
1212 } | |
1213 #define TWOPOWER32 (((i64)1)<<32) | |
1214 #define TWOPOWER31 (((i64)1)<<31) | |
1215 int sqlite3MulInt64(i64 *pA, i64 iB){ | |
1216 i64 iA = *pA; | |
1217 i64 iA1, iA0, iB1, iB0, r; | |
1218 | |
1219 iA1 = iA/TWOPOWER32; | |
1220 iA0 = iA % TWOPOWER32; | |
1221 iB1 = iB/TWOPOWER32; | |
1222 iB0 = iB % TWOPOWER32; | |
1223 if( iA1==0 ){ | |
1224 if( iB1==0 ){ | |
1225 *pA *= iB; | |
1226 return 0; | |
1227 } | |
1228 r = iA0*iB1; | |
1229 }else if( iB1==0 ){ | |
1230 r = iA1*iB0; | |
1231 }else{ | |
1232 /* If both iA1 and iB1 are non-zero, overflow will result */ | |
1233 return 1; | |
1234 } | |
1235 testcase( r==(-TWOPOWER31)-1 ); | |
1236 testcase( r==(-TWOPOWER31) ); | |
1237 testcase( r==TWOPOWER31 ); | |
1238 testcase( r==TWOPOWER31-1 ); | |
1239 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; | |
1240 r *= TWOPOWER32; | |
1241 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; | |
1242 *pA = r; | |
1243 return 0; | |
1244 } | |
1245 | |
1246 /* | |
1247 ** Compute the absolute value of a 32-bit signed integer, of possible. Or | |
1248 ** if the integer has a value of -2147483648, return +2147483647 | |
1249 */ | |
1250 int sqlite3AbsInt32(int x){ | |
1251 if( x>=0 ) return x; | |
1252 if( x==(int)0x80000000 ) return 0x7fffffff; | |
1253 return -x; | |
1254 } | |
1255 | |
1256 #ifdef SQLITE_ENABLE_8_3_NAMES | |
1257 /* | |
1258 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database | |
1259 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and | |
1260 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than | |
1261 ** three characters, then shorten the suffix on z[] to be the last three | |
1262 ** characters of the original suffix. | |
1263 ** | |
1264 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always | |
1265 ** do the suffix shortening regardless of URI parameter. | |
1266 ** | |
1267 ** Examples: | |
1268 ** | |
1269 ** test.db-journal => test.nal | |
1270 ** test.db-wal => test.wal | |
1271 ** test.db-shm => test.shm | |
1272 ** test.db-mj7f3319fa => test.9fa | |
1273 */ | |
1274 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ | |
1275 #if SQLITE_ENABLE_8_3_NAMES<2 | |
1276 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) | |
1277 #endif | |
1278 { | |
1279 int i, sz; | |
1280 sz = sqlite3Strlen30(z); | |
1281 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} | |
1282 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); | |
1283 } | |
1284 } | |
1285 #endif | |
1286 | |
1287 /* | |
1288 ** Find (an approximate) sum of two LogEst values. This computation is | |
1289 ** not a simple "+" operator because LogEst is stored as a logarithmic | |
1290 ** value. | |
1291 ** | |
1292 */ | |
1293 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ | |
1294 static const unsigned char x[] = { | |
1295 10, 10, /* 0,1 */ | |
1296 9, 9, /* 2,3 */ | |
1297 8, 8, /* 4,5 */ | |
1298 7, 7, 7, /* 6,7,8 */ | |
1299 6, 6, 6, /* 9,10,11 */ | |
1300 5, 5, 5, /* 12-14 */ | |
1301 4, 4, 4, 4, /* 15-18 */ | |
1302 3, 3, 3, 3, 3, 3, /* 19-24 */ | |
1303 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ | |
1304 }; | |
1305 if( a>=b ){ | |
1306 if( a>b+49 ) return a; | |
1307 if( a>b+31 ) return a+1; | |
1308 return a+x[a-b]; | |
1309 }else{ | |
1310 if( b>a+49 ) return b; | |
1311 if( b>a+31 ) return b+1; | |
1312 return b+x[b-a]; | |
1313 } | |
1314 } | |
1315 | |
1316 /* | |
1317 ** Convert an integer into a LogEst. In other words, compute an | |
1318 ** approximation for 10*log2(x). | |
1319 */ | |
1320 LogEst sqlite3LogEst(u64 x){ | |
1321 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; | |
1322 LogEst y = 40; | |
1323 if( x<8 ){ | |
1324 if( x<2 ) return 0; | |
1325 while( x<8 ){ y -= 10; x <<= 1; } | |
1326 }else{ | |
1327 while( x>255 ){ y += 40; x >>= 4; } | |
1328 while( x>15 ){ y += 10; x >>= 1; } | |
1329 } | |
1330 return a[x&7] + y - 10; | |
1331 } | |
1332 | |
1333 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
1334 /* | |
1335 ** Convert a double into a LogEst | |
1336 ** In other words, compute an approximation for 10*log2(x). | |
1337 */ | |
1338 LogEst sqlite3LogEstFromDouble(double x){ | |
1339 u64 a; | |
1340 LogEst e; | |
1341 assert( sizeof(x)==8 && sizeof(a)==8 ); | |
1342 if( x<=1 ) return 0; | |
1343 if( x<=2000000000 ) return sqlite3LogEst((u64)x); | |
1344 memcpy(&a, &x, 8); | |
1345 e = (a>>52) - 1022; | |
1346 return e*10; | |
1347 } | |
1348 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
1349 | |
1350 /* | |
1351 ** Convert a LogEst into an integer. | |
1352 */ | |
1353 u64 sqlite3LogEstToInt(LogEst x){ | |
1354 u64 n; | |
1355 if( x<10 ) return 1; | |
1356 n = x%10; | |
1357 x /= 10; | |
1358 if( n>=5 ) n -= 2; | |
1359 else if( n>=1 ) n -= 1; | |
1360 if( x>=3 ){ | |
1361 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3); | |
1362 } | |
1363 return (n+8)>>(3-x); | |
1364 } | |
OLD | NEW |