Index: third_party/sqlite/sqlite-src-3080704/src/date.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/date.c b/third_party/sqlite/sqlite-src-3080704/src/date.c |
deleted file mode 100644 |
index 11b04ea004b611457422108af8d83360be9d80ae..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/date.c |
+++ /dev/null |
@@ -1,1137 +0,0 @@ |
-/* |
-** 2003 October 31 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** This file contains the C functions that implement date and time |
-** functions for SQLite. |
-** |
-** There is only one exported symbol in this file - the function |
-** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. |
-** All other code has file scope. |
-** |
-** SQLite processes all times and dates as Julian Day numbers. The |
-** dates and times are stored as the number of days since noon |
-** in Greenwich on November 24, 4714 B.C. according to the Gregorian |
-** calendar system. |
-** |
-** 1970-01-01 00:00:00 is JD 2440587.5 |
-** 2000-01-01 00:00:00 is JD 2451544.5 |
-** |
-** This implementation requires years to be expressed as a 4-digit number |
-** which means that only dates between 0000-01-01 and 9999-12-31 can |
-** be represented, even though julian day numbers allow a much wider |
-** range of dates. |
-** |
-** The Gregorian calendar system is used for all dates and times, |
-** even those that predate the Gregorian calendar. Historians usually |
-** use the Julian calendar for dates prior to 1582-10-15 and for some |
-** dates afterwards, depending on locale. Beware of this difference. |
-** |
-** The conversion algorithms are implemented based on descriptions |
-** in the following text: |
-** |
-** Jean Meeus |
-** Astronomical Algorithms, 2nd Edition, 1998 |
-** ISBM 0-943396-61-1 |
-** Willmann-Bell, Inc |
-** Richmond, Virginia (USA) |
-*/ |
-#include "sqliteInt.h" |
-#include <stdlib.h> |
-#include <assert.h> |
-#include <time.h> |
- |
-#ifndef SQLITE_OMIT_DATETIME_FUNCS |
- |
- |
-/* |
-** A structure for holding a single date and time. |
-*/ |
-typedef struct DateTime DateTime; |
-struct DateTime { |
- sqlite3_int64 iJD; /* The julian day number times 86400000 */ |
- int Y, M, D; /* Year, month, and day */ |
- int h, m; /* Hour and minutes */ |
- int tz; /* Timezone offset in minutes */ |
- double s; /* Seconds */ |
- char validYMD; /* True (1) if Y,M,D are valid */ |
- char validHMS; /* True (1) if h,m,s are valid */ |
- char validJD; /* True (1) if iJD is valid */ |
- char validTZ; /* True (1) if tz is valid */ |
-}; |
- |
- |
-/* |
-** Convert zDate into one or more integers. Additional arguments |
-** come in groups of 5 as follows: |
-** |
-** N number of digits in the integer |
-** min minimum allowed value of the integer |
-** max maximum allowed value of the integer |
-** nextC first character after the integer |
-** pVal where to write the integers value. |
-** |
-** Conversions continue until one with nextC==0 is encountered. |
-** The function returns the number of successful conversions. |
-*/ |
-static int getDigits(const char *zDate, ...){ |
- va_list ap; |
- int val; |
- int N; |
- int min; |
- int max; |
- int nextC; |
- int *pVal; |
- int cnt = 0; |
- va_start(ap, zDate); |
- do{ |
- N = va_arg(ap, int); |
- min = va_arg(ap, int); |
- max = va_arg(ap, int); |
- nextC = va_arg(ap, int); |
- pVal = va_arg(ap, int*); |
- val = 0; |
- while( N-- ){ |
- if( !sqlite3Isdigit(*zDate) ){ |
- goto end_getDigits; |
- } |
- val = val*10 + *zDate - '0'; |
- zDate++; |
- } |
- if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ |
- goto end_getDigits; |
- } |
- *pVal = val; |
- zDate++; |
- cnt++; |
- }while( nextC ); |
-end_getDigits: |
- va_end(ap); |
- return cnt; |
-} |
- |
-/* |
-** Parse a timezone extension on the end of a date-time. |
-** The extension is of the form: |
-** |
-** (+/-)HH:MM |
-** |
-** Or the "zulu" notation: |
-** |
-** Z |
-** |
-** If the parse is successful, write the number of minutes |
-** of change in p->tz and return 0. If a parser error occurs, |
-** return non-zero. |
-** |
-** A missing specifier is not considered an error. |
-*/ |
-static int parseTimezone(const char *zDate, DateTime *p){ |
- int sgn = 0; |
- int nHr, nMn; |
- int c; |
- while( sqlite3Isspace(*zDate) ){ zDate++; } |
- p->tz = 0; |
- c = *zDate; |
- if( c=='-' ){ |
- sgn = -1; |
- }else if( c=='+' ){ |
- sgn = +1; |
- }else if( c=='Z' || c=='z' ){ |
- zDate++; |
- goto zulu_time; |
- }else{ |
- return c!=0; |
- } |
- zDate++; |
- if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ |
- return 1; |
- } |
- zDate += 5; |
- p->tz = sgn*(nMn + nHr*60); |
-zulu_time: |
- while( sqlite3Isspace(*zDate) ){ zDate++; } |
- return *zDate!=0; |
-} |
- |
-/* |
-** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. |
-** The HH, MM, and SS must each be exactly 2 digits. The |
-** fractional seconds FFFF can be one or more digits. |
-** |
-** Return 1 if there is a parsing error and 0 on success. |
-*/ |
-static int parseHhMmSs(const char *zDate, DateTime *p){ |
- int h, m, s; |
- double ms = 0.0; |
- if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ |
- return 1; |
- } |
- zDate += 5; |
- if( *zDate==':' ){ |
- zDate++; |
- if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ |
- return 1; |
- } |
- zDate += 2; |
- if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ |
- double rScale = 1.0; |
- zDate++; |
- while( sqlite3Isdigit(*zDate) ){ |
- ms = ms*10.0 + *zDate - '0'; |
- rScale *= 10.0; |
- zDate++; |
- } |
- ms /= rScale; |
- } |
- }else{ |
- s = 0; |
- } |
- p->validJD = 0; |
- p->validHMS = 1; |
- p->h = h; |
- p->m = m; |
- p->s = s + ms; |
- if( parseTimezone(zDate, p) ) return 1; |
- p->validTZ = (p->tz!=0)?1:0; |
- return 0; |
-} |
- |
-/* |
-** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume |
-** that the YYYY-MM-DD is according to the Gregorian calendar. |
-** |
-** Reference: Meeus page 61 |
-*/ |
-static void computeJD(DateTime *p){ |
- int Y, M, D, A, B, X1, X2; |
- |
- if( p->validJD ) return; |
- if( p->validYMD ){ |
- Y = p->Y; |
- M = p->M; |
- D = p->D; |
- }else{ |
- Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ |
- M = 1; |
- D = 1; |
- } |
- if( M<=2 ){ |
- Y--; |
- M += 12; |
- } |
- A = Y/100; |
- B = 2 - A + (A/4); |
- X1 = 36525*(Y+4716)/100; |
- X2 = 306001*(M+1)/10000; |
- p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); |
- p->validJD = 1; |
- if( p->validHMS ){ |
- p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); |
- if( p->validTZ ){ |
- p->iJD -= p->tz*60000; |
- p->validYMD = 0; |
- p->validHMS = 0; |
- p->validTZ = 0; |
- } |
- } |
-} |
- |
-/* |
-** Parse dates of the form |
-** |
-** YYYY-MM-DD HH:MM:SS.FFF |
-** YYYY-MM-DD HH:MM:SS |
-** YYYY-MM-DD HH:MM |
-** YYYY-MM-DD |
-** |
-** Write the result into the DateTime structure and return 0 |
-** on success and 1 if the input string is not a well-formed |
-** date. |
-*/ |
-static int parseYyyyMmDd(const char *zDate, DateTime *p){ |
- int Y, M, D, neg; |
- |
- if( zDate[0]=='-' ){ |
- zDate++; |
- neg = 1; |
- }else{ |
- neg = 0; |
- } |
- if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ |
- return 1; |
- } |
- zDate += 10; |
- while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } |
- if( parseHhMmSs(zDate, p)==0 ){ |
- /* We got the time */ |
- }else if( *zDate==0 ){ |
- p->validHMS = 0; |
- }else{ |
- return 1; |
- } |
- p->validJD = 0; |
- p->validYMD = 1; |
- p->Y = neg ? -Y : Y; |
- p->M = M; |
- p->D = D; |
- if( p->validTZ ){ |
- computeJD(p); |
- } |
- return 0; |
-} |
- |
-/* |
-** Set the time to the current time reported by the VFS. |
-** |
-** Return the number of errors. |
-*/ |
-static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ |
- p->iJD = sqlite3StmtCurrentTime(context); |
- if( p->iJD>0 ){ |
- p->validJD = 1; |
- return 0; |
- }else{ |
- return 1; |
- } |
-} |
- |
-/* |
-** Attempt to parse the given string into a Julian Day Number. Return |
-** the number of errors. |
-** |
-** The following are acceptable forms for the input string: |
-** |
-** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM |
-** DDDD.DD |
-** now |
-** |
-** In the first form, the +/-HH:MM is always optional. The fractional |
-** seconds extension (the ".FFF") is optional. The seconds portion |
-** (":SS.FFF") is option. The year and date can be omitted as long |
-** as there is a time string. The time string can be omitted as long |
-** as there is a year and date. |
-*/ |
-static int parseDateOrTime( |
- sqlite3_context *context, |
- const char *zDate, |
- DateTime *p |
-){ |
- double r; |
- if( parseYyyyMmDd(zDate,p)==0 ){ |
- return 0; |
- }else if( parseHhMmSs(zDate, p)==0 ){ |
- return 0; |
- }else if( sqlite3StrICmp(zDate,"now")==0){ |
- return setDateTimeToCurrent(context, p); |
- }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ |
- p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); |
- p->validJD = 1; |
- return 0; |
- } |
- return 1; |
-} |
- |
-/* |
-** Compute the Year, Month, and Day from the julian day number. |
-*/ |
-static void computeYMD(DateTime *p){ |
- int Z, A, B, C, D, E, X1; |
- if( p->validYMD ) return; |
- if( !p->validJD ){ |
- p->Y = 2000; |
- p->M = 1; |
- p->D = 1; |
- }else{ |
- Z = (int)((p->iJD + 43200000)/86400000); |
- A = (int)((Z - 1867216.25)/36524.25); |
- A = Z + 1 + A - (A/4); |
- B = A + 1524; |
- C = (int)((B - 122.1)/365.25); |
- D = (36525*C)/100; |
- E = (int)((B-D)/30.6001); |
- X1 = (int)(30.6001*E); |
- p->D = B - D - X1; |
- p->M = E<14 ? E-1 : E-13; |
- p->Y = p->M>2 ? C - 4716 : C - 4715; |
- } |
- p->validYMD = 1; |
-} |
- |
-/* |
-** Compute the Hour, Minute, and Seconds from the julian day number. |
-*/ |
-static void computeHMS(DateTime *p){ |
- int s; |
- if( p->validHMS ) return; |
- computeJD(p); |
- s = (int)((p->iJD + 43200000) % 86400000); |
- p->s = s/1000.0; |
- s = (int)p->s; |
- p->s -= s; |
- p->h = s/3600; |
- s -= p->h*3600; |
- p->m = s/60; |
- p->s += s - p->m*60; |
- p->validHMS = 1; |
-} |
- |
-/* |
-** Compute both YMD and HMS |
-*/ |
-static void computeYMD_HMS(DateTime *p){ |
- computeYMD(p); |
- computeHMS(p); |
-} |
- |
-/* |
-** Clear the YMD and HMS and the TZ |
-*/ |
-static void clearYMD_HMS_TZ(DateTime *p){ |
- p->validYMD = 0; |
- p->validHMS = 0; |
- p->validTZ = 0; |
-} |
- |
-/* |
-** On recent Windows platforms, the localtime_s() function is available |
-** as part of the "Secure CRT". It is essentially equivalent to |
-** localtime_r() available under most POSIX platforms, except that the |
-** order of the parameters is reversed. |
-** |
-** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. |
-** |
-** If the user has not indicated to use localtime_r() or localtime_s() |
-** already, check for an MSVC build environment that provides |
-** localtime_s(). |
-*/ |
-#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ |
- defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) |
-#define HAVE_LOCALTIME_S 1 |
-#endif |
- |
-#ifndef SQLITE_OMIT_LOCALTIME |
-/* |
-** The following routine implements the rough equivalent of localtime_r() |
-** using whatever operating-system specific localtime facility that |
-** is available. This routine returns 0 on success and |
-** non-zero on any kind of error. |
-** |
-** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this |
-** routine will always fail. |
-** |
-** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C |
-** library function localtime_r() is used to assist in the calculation of |
-** local time. |
-*/ |
-static int osLocaltime(time_t *t, struct tm *pTm){ |
- int rc; |
-#if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \ |
- && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S) |
- struct tm *pX; |
-#if SQLITE_THREADSAFE>0 |
- sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); |
-#endif |
- sqlite3_mutex_enter(mutex); |
- pX = localtime(t); |
-#ifndef SQLITE_OMIT_BUILTIN_TEST |
- if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; |
-#endif |
- if( pX ) *pTm = *pX; |
- sqlite3_mutex_leave(mutex); |
- rc = pX==0; |
-#else |
-#ifndef SQLITE_OMIT_BUILTIN_TEST |
- if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; |
-#endif |
-#if defined(HAVE_LOCALTIME_R) && HAVE_LOCALTIME_R |
- rc = localtime_r(t, pTm)==0; |
-#else |
- rc = localtime_s(pTm, t); |
-#endif /* HAVE_LOCALTIME_R */ |
-#endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ |
- return rc; |
-} |
-#endif /* SQLITE_OMIT_LOCALTIME */ |
- |
- |
-#ifndef SQLITE_OMIT_LOCALTIME |
-/* |
-** Compute the difference (in milliseconds) between localtime and UTC |
-** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, |
-** return this value and set *pRc to SQLITE_OK. |
-** |
-** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value |
-** is undefined in this case. |
-*/ |
-static sqlite3_int64 localtimeOffset( |
- DateTime *p, /* Date at which to calculate offset */ |
- sqlite3_context *pCtx, /* Write error here if one occurs */ |
- int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ |
-){ |
- DateTime x, y; |
- time_t t; |
- struct tm sLocal; |
- |
- /* Initialize the contents of sLocal to avoid a compiler warning. */ |
- memset(&sLocal, 0, sizeof(sLocal)); |
- |
- x = *p; |
- computeYMD_HMS(&x); |
- if( x.Y<1971 || x.Y>=2038 ){ |
- /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only |
- ** works for years between 1970 and 2037. For dates outside this range, |
- ** SQLite attempts to map the year into an equivalent year within this |
- ** range, do the calculation, then map the year back. |
- */ |
- x.Y = 2000; |
- x.M = 1; |
- x.D = 1; |
- x.h = 0; |
- x.m = 0; |
- x.s = 0.0; |
- } else { |
- int s = (int)(x.s + 0.5); |
- x.s = s; |
- } |
- x.tz = 0; |
- x.validJD = 0; |
- computeJD(&x); |
- t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); |
- if( osLocaltime(&t, &sLocal) ){ |
- sqlite3_result_error(pCtx, "local time unavailable", -1); |
- *pRc = SQLITE_ERROR; |
- return 0; |
- } |
- y.Y = sLocal.tm_year + 1900; |
- y.M = sLocal.tm_mon + 1; |
- y.D = sLocal.tm_mday; |
- y.h = sLocal.tm_hour; |
- y.m = sLocal.tm_min; |
- y.s = sLocal.tm_sec; |
- y.validYMD = 1; |
- y.validHMS = 1; |
- y.validJD = 0; |
- y.validTZ = 0; |
- computeJD(&y); |
- *pRc = SQLITE_OK; |
- return y.iJD - x.iJD; |
-} |
-#endif /* SQLITE_OMIT_LOCALTIME */ |
- |
-/* |
-** Process a modifier to a date-time stamp. The modifiers are |
-** as follows: |
-** |
-** NNN days |
-** NNN hours |
-** NNN minutes |
-** NNN.NNNN seconds |
-** NNN months |
-** NNN years |
-** start of month |
-** start of year |
-** start of week |
-** start of day |
-** weekday N |
-** unixepoch |
-** localtime |
-** utc |
-** |
-** Return 0 on success and 1 if there is any kind of error. If the error |
-** is in a system call (i.e. localtime()), then an error message is written |
-** to context pCtx. If the error is an unrecognized modifier, no error is |
-** written to pCtx. |
-*/ |
-static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){ |
- int rc = 1; |
- int n; |
- double r; |
- char *z, zBuf[30]; |
- z = zBuf; |
- for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ |
- z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; |
- } |
- z[n] = 0; |
- switch( z[0] ){ |
-#ifndef SQLITE_OMIT_LOCALTIME |
- case 'l': { |
- /* localtime |
- ** |
- ** Assuming the current time value is UTC (a.k.a. GMT), shift it to |
- ** show local time. |
- */ |
- if( strcmp(z, "localtime")==0 ){ |
- computeJD(p); |
- p->iJD += localtimeOffset(p, pCtx, &rc); |
- clearYMD_HMS_TZ(p); |
- } |
- break; |
- } |
-#endif |
- case 'u': { |
- /* |
- ** unixepoch |
- ** |
- ** Treat the current value of p->iJD as the number of |
- ** seconds since 1970. Convert to a real julian day number. |
- */ |
- if( strcmp(z, "unixepoch")==0 && p->validJD ){ |
- p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; |
- clearYMD_HMS_TZ(p); |
- rc = 0; |
- } |
-#ifndef SQLITE_OMIT_LOCALTIME |
- else if( strcmp(z, "utc")==0 ){ |
- sqlite3_int64 c1; |
- computeJD(p); |
- c1 = localtimeOffset(p, pCtx, &rc); |
- if( rc==SQLITE_OK ){ |
- p->iJD -= c1; |
- clearYMD_HMS_TZ(p); |
- p->iJD += c1 - localtimeOffset(p, pCtx, &rc); |
- } |
- } |
-#endif |
- break; |
- } |
- case 'w': { |
- /* |
- ** weekday N |
- ** |
- ** Move the date to the same time on the next occurrence of |
- ** weekday N where 0==Sunday, 1==Monday, and so forth. If the |
- ** date is already on the appropriate weekday, this is a no-op. |
- */ |
- if( strncmp(z, "weekday ", 8)==0 |
- && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) |
- && (n=(int)r)==r && n>=0 && r<7 ){ |
- sqlite3_int64 Z; |
- computeYMD_HMS(p); |
- p->validTZ = 0; |
- p->validJD = 0; |
- computeJD(p); |
- Z = ((p->iJD + 129600000)/86400000) % 7; |
- if( Z>n ) Z -= 7; |
- p->iJD += (n - Z)*86400000; |
- clearYMD_HMS_TZ(p); |
- rc = 0; |
- } |
- break; |
- } |
- case 's': { |
- /* |
- ** start of TTTTT |
- ** |
- ** Move the date backwards to the beginning of the current day, |
- ** or month or year. |
- */ |
- if( strncmp(z, "start of ", 9)!=0 ) break; |
- z += 9; |
- computeYMD(p); |
- p->validHMS = 1; |
- p->h = p->m = 0; |
- p->s = 0.0; |
- p->validTZ = 0; |
- p->validJD = 0; |
- if( strcmp(z,"month")==0 ){ |
- p->D = 1; |
- rc = 0; |
- }else if( strcmp(z,"year")==0 ){ |
- computeYMD(p); |
- p->M = 1; |
- p->D = 1; |
- rc = 0; |
- }else if( strcmp(z,"day")==0 ){ |
- rc = 0; |
- } |
- break; |
- } |
- case '+': |
- case '-': |
- case '0': |
- case '1': |
- case '2': |
- case '3': |
- case '4': |
- case '5': |
- case '6': |
- case '7': |
- case '8': |
- case '9': { |
- double rRounder; |
- for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} |
- if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ |
- rc = 1; |
- break; |
- } |
- if( z[n]==':' ){ |
- /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the |
- ** specified number of hours, minutes, seconds, and fractional seconds |
- ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be |
- ** omitted. |
- */ |
- const char *z2 = z; |
- DateTime tx; |
- sqlite3_int64 day; |
- if( !sqlite3Isdigit(*z2) ) z2++; |
- memset(&tx, 0, sizeof(tx)); |
- if( parseHhMmSs(z2, &tx) ) break; |
- computeJD(&tx); |
- tx.iJD -= 43200000; |
- day = tx.iJD/86400000; |
- tx.iJD -= day*86400000; |
- if( z[0]=='-' ) tx.iJD = -tx.iJD; |
- computeJD(p); |
- clearYMD_HMS_TZ(p); |
- p->iJD += tx.iJD; |
- rc = 0; |
- break; |
- } |
- z += n; |
- while( sqlite3Isspace(*z) ) z++; |
- n = sqlite3Strlen30(z); |
- if( n>10 || n<3 ) break; |
- if( z[n-1]=='s' ){ z[n-1] = 0; n--; } |
- computeJD(p); |
- rc = 0; |
- rRounder = r<0 ? -0.5 : +0.5; |
- if( n==3 && strcmp(z,"day")==0 ){ |
- p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); |
- }else if( n==4 && strcmp(z,"hour")==0 ){ |
- p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); |
- }else if( n==6 && strcmp(z,"minute")==0 ){ |
- p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); |
- }else if( n==6 && strcmp(z,"second")==0 ){ |
- p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); |
- }else if( n==5 && strcmp(z,"month")==0 ){ |
- int x, y; |
- computeYMD_HMS(p); |
- p->M += (int)r; |
- x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; |
- p->Y += x; |
- p->M -= x*12; |
- p->validJD = 0; |
- computeJD(p); |
- y = (int)r; |
- if( y!=r ){ |
- p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); |
- } |
- }else if( n==4 && strcmp(z,"year")==0 ){ |
- int y = (int)r; |
- computeYMD_HMS(p); |
- p->Y += y; |
- p->validJD = 0; |
- computeJD(p); |
- if( y!=r ){ |
- p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); |
- } |
- }else{ |
- rc = 1; |
- } |
- clearYMD_HMS_TZ(p); |
- break; |
- } |
- default: { |
- break; |
- } |
- } |
- return rc; |
-} |
- |
-/* |
-** Process time function arguments. argv[0] is a date-time stamp. |
-** argv[1] and following are modifiers. Parse them all and write |
-** the resulting time into the DateTime structure p. Return 0 |
-** on success and 1 if there are any errors. |
-** |
-** If there are zero parameters (if even argv[0] is undefined) |
-** then assume a default value of "now" for argv[0]. |
-*/ |
-static int isDate( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv, |
- DateTime *p |
-){ |
- int i; |
- const unsigned char *z; |
- int eType; |
- memset(p, 0, sizeof(*p)); |
- if( argc==0 ){ |
- return setDateTimeToCurrent(context, p); |
- } |
- if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT |
- || eType==SQLITE_INTEGER ){ |
- p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); |
- p->validJD = 1; |
- }else{ |
- z = sqlite3_value_text(argv[0]); |
- if( !z || parseDateOrTime(context, (char*)z, p) ){ |
- return 1; |
- } |
- } |
- for(i=1; i<argc; i++){ |
- z = sqlite3_value_text(argv[i]); |
- if( z==0 || parseModifier(context, (char*)z, p) ) return 1; |
- } |
- return 0; |
-} |
- |
- |
-/* |
-** The following routines implement the various date and time functions |
-** of SQLite. |
-*/ |
- |
-/* |
-** julianday( TIMESTRING, MOD, MOD, ...) |
-** |
-** Return the julian day number of the date specified in the arguments |
-*/ |
-static void juliandayFunc( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- DateTime x; |
- if( isDate(context, argc, argv, &x)==0 ){ |
- computeJD(&x); |
- sqlite3_result_double(context, x.iJD/86400000.0); |
- } |
-} |
- |
-/* |
-** datetime( TIMESTRING, MOD, MOD, ...) |
-** |
-** Return YYYY-MM-DD HH:MM:SS |
-*/ |
-static void datetimeFunc( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- DateTime x; |
- if( isDate(context, argc, argv, &x)==0 ){ |
- char zBuf[100]; |
- computeYMD_HMS(&x); |
- sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", |
- x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); |
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
- } |
-} |
- |
-/* |
-** time( TIMESTRING, MOD, MOD, ...) |
-** |
-** Return HH:MM:SS |
-*/ |
-static void timeFunc( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- DateTime x; |
- if( isDate(context, argc, argv, &x)==0 ){ |
- char zBuf[100]; |
- computeHMS(&x); |
- sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); |
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
- } |
-} |
- |
-/* |
-** date( TIMESTRING, MOD, MOD, ...) |
-** |
-** Return YYYY-MM-DD |
-*/ |
-static void dateFunc( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- DateTime x; |
- if( isDate(context, argc, argv, &x)==0 ){ |
- char zBuf[100]; |
- computeYMD(&x); |
- sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); |
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
- } |
-} |
- |
-/* |
-** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) |
-** |
-** Return a string described by FORMAT. Conversions as follows: |
-** |
-** %d day of month |
-** %f ** fractional seconds SS.SSS |
-** %H hour 00-24 |
-** %j day of year 000-366 |
-** %J ** Julian day number |
-** %m month 01-12 |
-** %M minute 00-59 |
-** %s seconds since 1970-01-01 |
-** %S seconds 00-59 |
-** %w day of week 0-6 sunday==0 |
-** %W week of year 00-53 |
-** %Y year 0000-9999 |
-** %% % |
-*/ |
-static void strftimeFunc( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- DateTime x; |
- u64 n; |
- size_t i,j; |
- char *z; |
- sqlite3 *db; |
- const char *zFmt = (const char*)sqlite3_value_text(argv[0]); |
- char zBuf[100]; |
- if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; |
- db = sqlite3_context_db_handle(context); |
- for(i=0, n=1; zFmt[i]; i++, n++){ |
- if( zFmt[i]=='%' ){ |
- switch( zFmt[i+1] ){ |
- case 'd': |
- case 'H': |
- case 'm': |
- case 'M': |
- case 'S': |
- case 'W': |
- n++; |
- /* fall thru */ |
- case 'w': |
- case '%': |
- break; |
- case 'f': |
- n += 8; |
- break; |
- case 'j': |
- n += 3; |
- break; |
- case 'Y': |
- n += 8; |
- break; |
- case 's': |
- case 'J': |
- n += 50; |
- break; |
- default: |
- return; /* ERROR. return a NULL */ |
- } |
- i++; |
- } |
- } |
- testcase( n==sizeof(zBuf)-1 ); |
- testcase( n==sizeof(zBuf) ); |
- testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); |
- testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); |
- if( n<sizeof(zBuf) ){ |
- z = zBuf; |
- }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
- sqlite3_result_error_toobig(context); |
- return; |
- }else{ |
- z = sqlite3DbMallocRaw(db, (int)n); |
- if( z==0 ){ |
- sqlite3_result_error_nomem(context); |
- return; |
- } |
- } |
- computeJD(&x); |
- computeYMD_HMS(&x); |
- for(i=j=0; zFmt[i]; i++){ |
- if( zFmt[i]!='%' ){ |
- z[j++] = zFmt[i]; |
- }else{ |
- i++; |
- switch( zFmt[i] ){ |
- case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; |
- case 'f': { |
- double s = x.s; |
- if( s>59.999 ) s = 59.999; |
- sqlite3_snprintf(7, &z[j],"%06.3f", s); |
- j += sqlite3Strlen30(&z[j]); |
- break; |
- } |
- case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; |
- case 'W': /* Fall thru */ |
- case 'j': { |
- int nDay; /* Number of days since 1st day of year */ |
- DateTime y = x; |
- y.validJD = 0; |
- y.M = 1; |
- y.D = 1; |
- computeJD(&y); |
- nDay = (int)((x.iJD-y.iJD+43200000)/86400000); |
- if( zFmt[i]=='W' ){ |
- int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ |
- wd = (int)(((x.iJD+43200000)/86400000)%7); |
- sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); |
- j += 2; |
- }else{ |
- sqlite3_snprintf(4, &z[j],"%03d",nDay+1); |
- j += 3; |
- } |
- break; |
- } |
- case 'J': { |
- sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); |
- j+=sqlite3Strlen30(&z[j]); |
- break; |
- } |
- case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; |
- case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; |
- case 's': { |
- sqlite3_snprintf(30,&z[j],"%lld", |
- (i64)(x.iJD/1000 - 21086676*(i64)10000)); |
- j += sqlite3Strlen30(&z[j]); |
- break; |
- } |
- case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; |
- case 'w': { |
- z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; |
- break; |
- } |
- case 'Y': { |
- sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); |
- break; |
- } |
- default: z[j++] = '%'; break; |
- } |
- } |
- } |
- z[j] = 0; |
- sqlite3_result_text(context, z, -1, |
- z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); |
-} |
- |
-/* |
-** current_time() |
-** |
-** This function returns the same value as time('now'). |
-*/ |
-static void ctimeFunc( |
- sqlite3_context *context, |
- int NotUsed, |
- sqlite3_value **NotUsed2 |
-){ |
- UNUSED_PARAMETER2(NotUsed, NotUsed2); |
- timeFunc(context, 0, 0); |
-} |
- |
-/* |
-** current_date() |
-** |
-** This function returns the same value as date('now'). |
-*/ |
-static void cdateFunc( |
- sqlite3_context *context, |
- int NotUsed, |
- sqlite3_value **NotUsed2 |
-){ |
- UNUSED_PARAMETER2(NotUsed, NotUsed2); |
- dateFunc(context, 0, 0); |
-} |
- |
-/* |
-** current_timestamp() |
-** |
-** This function returns the same value as datetime('now'). |
-*/ |
-static void ctimestampFunc( |
- sqlite3_context *context, |
- int NotUsed, |
- sqlite3_value **NotUsed2 |
-){ |
- UNUSED_PARAMETER2(NotUsed, NotUsed2); |
- datetimeFunc(context, 0, 0); |
-} |
-#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ |
- |
-#ifdef SQLITE_OMIT_DATETIME_FUNCS |
-/* |
-** If the library is compiled to omit the full-scale date and time |
-** handling (to get a smaller binary), the following minimal version |
-** of the functions current_time(), current_date() and current_timestamp() |
-** are included instead. This is to support column declarations that |
-** include "DEFAULT CURRENT_TIME" etc. |
-** |
-** This function uses the C-library functions time(), gmtime() |
-** and strftime(). The format string to pass to strftime() is supplied |
-** as the user-data for the function. |
-*/ |
-static void currentTimeFunc( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- time_t t; |
- char *zFormat = (char *)sqlite3_user_data(context); |
- sqlite3 *db; |
- sqlite3_int64 iT; |
- struct tm *pTm; |
- struct tm sNow; |
- char zBuf[20]; |
- |
- UNUSED_PARAMETER(argc); |
- UNUSED_PARAMETER(argv); |
- |
- iT = sqlite3StmtCurrentTime(context); |
- if( iT<=0 ) return; |
- t = iT/1000 - 10000*(sqlite3_int64)21086676; |
-#ifdef HAVE_GMTIME_R |
- pTm = gmtime_r(&t, &sNow); |
-#else |
- sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
- pTm = gmtime(&t); |
- if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); |
- sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
-#endif |
- if( pTm ){ |
- strftime(zBuf, 20, zFormat, &sNow); |
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
- } |
-} |
-#endif |
- |
-/* |
-** This function registered all of the above C functions as SQL |
-** functions. This should be the only routine in this file with |
-** external linkage. |
-*/ |
-void sqlite3RegisterDateTimeFunctions(void){ |
- static SQLITE_WSD FuncDef aDateTimeFuncs[] = { |
-#ifndef SQLITE_OMIT_DATETIME_FUNCS |
- FUNCTION(julianday, -1, 0, 0, juliandayFunc ), |
- FUNCTION(date, -1, 0, 0, dateFunc ), |
- FUNCTION(time, -1, 0, 0, timeFunc ), |
- FUNCTION(datetime, -1, 0, 0, datetimeFunc ), |
- FUNCTION(strftime, -1, 0, 0, strftimeFunc ), |
- FUNCTION(current_time, 0, 0, 0, ctimeFunc ), |
- FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), |
- FUNCTION(current_date, 0, 0, 0, cdateFunc ), |
-#else |
- STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), |
- STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), |
- STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), |
-#endif |
- }; |
- int i; |
- FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); |
- FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); |
- |
- for(i=0; i<ArraySize(aDateTimeFuncs); i++){ |
- sqlite3FuncDefInsert(pHash, &aFunc[i]); |
- } |
-} |