OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2003 October 31 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains the C functions that implement date and time | |
13 ** functions for SQLite. | |
14 ** | |
15 ** There is only one exported symbol in this file - the function | |
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. | |
17 ** All other code has file scope. | |
18 ** | |
19 ** SQLite processes all times and dates as Julian Day numbers. The | |
20 ** dates and times are stored as the number of days since noon | |
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian | |
22 ** calendar system. | |
23 ** | |
24 ** 1970-01-01 00:00:00 is JD 2440587.5 | |
25 ** 2000-01-01 00:00:00 is JD 2451544.5 | |
26 ** | |
27 ** This implementation requires years to be expressed as a 4-digit number | |
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can | |
29 ** be represented, even though julian day numbers allow a much wider | |
30 ** range of dates. | |
31 ** | |
32 ** The Gregorian calendar system is used for all dates and times, | |
33 ** even those that predate the Gregorian calendar. Historians usually | |
34 ** use the Julian calendar for dates prior to 1582-10-15 and for some | |
35 ** dates afterwards, depending on locale. Beware of this difference. | |
36 ** | |
37 ** The conversion algorithms are implemented based on descriptions | |
38 ** in the following text: | |
39 ** | |
40 ** Jean Meeus | |
41 ** Astronomical Algorithms, 2nd Edition, 1998 | |
42 ** ISBM 0-943396-61-1 | |
43 ** Willmann-Bell, Inc | |
44 ** Richmond, Virginia (USA) | |
45 */ | |
46 #include "sqliteInt.h" | |
47 #include <stdlib.h> | |
48 #include <assert.h> | |
49 #include <time.h> | |
50 | |
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS | |
52 | |
53 | |
54 /* | |
55 ** A structure for holding a single date and time. | |
56 */ | |
57 typedef struct DateTime DateTime; | |
58 struct DateTime { | |
59 sqlite3_int64 iJD; /* The julian day number times 86400000 */ | |
60 int Y, M, D; /* Year, month, and day */ | |
61 int h, m; /* Hour and minutes */ | |
62 int tz; /* Timezone offset in minutes */ | |
63 double s; /* Seconds */ | |
64 char validYMD; /* True (1) if Y,M,D are valid */ | |
65 char validHMS; /* True (1) if h,m,s are valid */ | |
66 char validJD; /* True (1) if iJD is valid */ | |
67 char validTZ; /* True (1) if tz is valid */ | |
68 }; | |
69 | |
70 | |
71 /* | |
72 ** Convert zDate into one or more integers. Additional arguments | |
73 ** come in groups of 5 as follows: | |
74 ** | |
75 ** N number of digits in the integer | |
76 ** min minimum allowed value of the integer | |
77 ** max maximum allowed value of the integer | |
78 ** nextC first character after the integer | |
79 ** pVal where to write the integers value. | |
80 ** | |
81 ** Conversions continue until one with nextC==0 is encountered. | |
82 ** The function returns the number of successful conversions. | |
83 */ | |
84 static int getDigits(const char *zDate, ...){ | |
85 va_list ap; | |
86 int val; | |
87 int N; | |
88 int min; | |
89 int max; | |
90 int nextC; | |
91 int *pVal; | |
92 int cnt = 0; | |
93 va_start(ap, zDate); | |
94 do{ | |
95 N = va_arg(ap, int); | |
96 min = va_arg(ap, int); | |
97 max = va_arg(ap, int); | |
98 nextC = va_arg(ap, int); | |
99 pVal = va_arg(ap, int*); | |
100 val = 0; | |
101 while( N-- ){ | |
102 if( !sqlite3Isdigit(*zDate) ){ | |
103 goto end_getDigits; | |
104 } | |
105 val = val*10 + *zDate - '0'; | |
106 zDate++; | |
107 } | |
108 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ | |
109 goto end_getDigits; | |
110 } | |
111 *pVal = val; | |
112 zDate++; | |
113 cnt++; | |
114 }while( nextC ); | |
115 end_getDigits: | |
116 va_end(ap); | |
117 return cnt; | |
118 } | |
119 | |
120 /* | |
121 ** Parse a timezone extension on the end of a date-time. | |
122 ** The extension is of the form: | |
123 ** | |
124 ** (+/-)HH:MM | |
125 ** | |
126 ** Or the "zulu" notation: | |
127 ** | |
128 ** Z | |
129 ** | |
130 ** If the parse is successful, write the number of minutes | |
131 ** of change in p->tz and return 0. If a parser error occurs, | |
132 ** return non-zero. | |
133 ** | |
134 ** A missing specifier is not considered an error. | |
135 */ | |
136 static int parseTimezone(const char *zDate, DateTime *p){ | |
137 int sgn = 0; | |
138 int nHr, nMn; | |
139 int c; | |
140 while( sqlite3Isspace(*zDate) ){ zDate++; } | |
141 p->tz = 0; | |
142 c = *zDate; | |
143 if( c=='-' ){ | |
144 sgn = -1; | |
145 }else if( c=='+' ){ | |
146 sgn = +1; | |
147 }else if( c=='Z' || c=='z' ){ | |
148 zDate++; | |
149 goto zulu_time; | |
150 }else{ | |
151 return c!=0; | |
152 } | |
153 zDate++; | |
154 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ | |
155 return 1; | |
156 } | |
157 zDate += 5; | |
158 p->tz = sgn*(nMn + nHr*60); | |
159 zulu_time: | |
160 while( sqlite3Isspace(*zDate) ){ zDate++; } | |
161 return *zDate!=0; | |
162 } | |
163 | |
164 /* | |
165 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. | |
166 ** The HH, MM, and SS must each be exactly 2 digits. The | |
167 ** fractional seconds FFFF can be one or more digits. | |
168 ** | |
169 ** Return 1 if there is a parsing error and 0 on success. | |
170 */ | |
171 static int parseHhMmSs(const char *zDate, DateTime *p){ | |
172 int h, m, s; | |
173 double ms = 0.0; | |
174 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ | |
175 return 1; | |
176 } | |
177 zDate += 5; | |
178 if( *zDate==':' ){ | |
179 zDate++; | |
180 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ | |
181 return 1; | |
182 } | |
183 zDate += 2; | |
184 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ | |
185 double rScale = 1.0; | |
186 zDate++; | |
187 while( sqlite3Isdigit(*zDate) ){ | |
188 ms = ms*10.0 + *zDate - '0'; | |
189 rScale *= 10.0; | |
190 zDate++; | |
191 } | |
192 ms /= rScale; | |
193 } | |
194 }else{ | |
195 s = 0; | |
196 } | |
197 p->validJD = 0; | |
198 p->validHMS = 1; | |
199 p->h = h; | |
200 p->m = m; | |
201 p->s = s + ms; | |
202 if( parseTimezone(zDate, p) ) return 1; | |
203 p->validTZ = (p->tz!=0)?1:0; | |
204 return 0; | |
205 } | |
206 | |
207 /* | |
208 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume | |
209 ** that the YYYY-MM-DD is according to the Gregorian calendar. | |
210 ** | |
211 ** Reference: Meeus page 61 | |
212 */ | |
213 static void computeJD(DateTime *p){ | |
214 int Y, M, D, A, B, X1, X2; | |
215 | |
216 if( p->validJD ) return; | |
217 if( p->validYMD ){ | |
218 Y = p->Y; | |
219 M = p->M; | |
220 D = p->D; | |
221 }else{ | |
222 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ | |
223 M = 1; | |
224 D = 1; | |
225 } | |
226 if( M<=2 ){ | |
227 Y--; | |
228 M += 12; | |
229 } | |
230 A = Y/100; | |
231 B = 2 - A + (A/4); | |
232 X1 = 36525*(Y+4716)/100; | |
233 X2 = 306001*(M+1)/10000; | |
234 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); | |
235 p->validJD = 1; | |
236 if( p->validHMS ){ | |
237 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); | |
238 if( p->validTZ ){ | |
239 p->iJD -= p->tz*60000; | |
240 p->validYMD = 0; | |
241 p->validHMS = 0; | |
242 p->validTZ = 0; | |
243 } | |
244 } | |
245 } | |
246 | |
247 /* | |
248 ** Parse dates of the form | |
249 ** | |
250 ** YYYY-MM-DD HH:MM:SS.FFF | |
251 ** YYYY-MM-DD HH:MM:SS | |
252 ** YYYY-MM-DD HH:MM | |
253 ** YYYY-MM-DD | |
254 ** | |
255 ** Write the result into the DateTime structure and return 0 | |
256 ** on success and 1 if the input string is not a well-formed | |
257 ** date. | |
258 */ | |
259 static int parseYyyyMmDd(const char *zDate, DateTime *p){ | |
260 int Y, M, D, neg; | |
261 | |
262 if( zDate[0]=='-' ){ | |
263 zDate++; | |
264 neg = 1; | |
265 }else{ | |
266 neg = 0; | |
267 } | |
268 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ | |
269 return 1; | |
270 } | |
271 zDate += 10; | |
272 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } | |
273 if( parseHhMmSs(zDate, p)==0 ){ | |
274 /* We got the time */ | |
275 }else if( *zDate==0 ){ | |
276 p->validHMS = 0; | |
277 }else{ | |
278 return 1; | |
279 } | |
280 p->validJD = 0; | |
281 p->validYMD = 1; | |
282 p->Y = neg ? -Y : Y; | |
283 p->M = M; | |
284 p->D = D; | |
285 if( p->validTZ ){ | |
286 computeJD(p); | |
287 } | |
288 return 0; | |
289 } | |
290 | |
291 /* | |
292 ** Set the time to the current time reported by the VFS. | |
293 ** | |
294 ** Return the number of errors. | |
295 */ | |
296 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ | |
297 p->iJD = sqlite3StmtCurrentTime(context); | |
298 if( p->iJD>0 ){ | |
299 p->validJD = 1; | |
300 return 0; | |
301 }else{ | |
302 return 1; | |
303 } | |
304 } | |
305 | |
306 /* | |
307 ** Attempt to parse the given string into a Julian Day Number. Return | |
308 ** the number of errors. | |
309 ** | |
310 ** The following are acceptable forms for the input string: | |
311 ** | |
312 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM | |
313 ** DDDD.DD | |
314 ** now | |
315 ** | |
316 ** In the first form, the +/-HH:MM is always optional. The fractional | |
317 ** seconds extension (the ".FFF") is optional. The seconds portion | |
318 ** (":SS.FFF") is option. The year and date can be omitted as long | |
319 ** as there is a time string. The time string can be omitted as long | |
320 ** as there is a year and date. | |
321 */ | |
322 static int parseDateOrTime( | |
323 sqlite3_context *context, | |
324 const char *zDate, | |
325 DateTime *p | |
326 ){ | |
327 double r; | |
328 if( parseYyyyMmDd(zDate,p)==0 ){ | |
329 return 0; | |
330 }else if( parseHhMmSs(zDate, p)==0 ){ | |
331 return 0; | |
332 }else if( sqlite3StrICmp(zDate,"now")==0){ | |
333 return setDateTimeToCurrent(context, p); | |
334 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ | |
335 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); | |
336 p->validJD = 1; | |
337 return 0; | |
338 } | |
339 return 1; | |
340 } | |
341 | |
342 /* | |
343 ** Compute the Year, Month, and Day from the julian day number. | |
344 */ | |
345 static void computeYMD(DateTime *p){ | |
346 int Z, A, B, C, D, E, X1; | |
347 if( p->validYMD ) return; | |
348 if( !p->validJD ){ | |
349 p->Y = 2000; | |
350 p->M = 1; | |
351 p->D = 1; | |
352 }else{ | |
353 Z = (int)((p->iJD + 43200000)/86400000); | |
354 A = (int)((Z - 1867216.25)/36524.25); | |
355 A = Z + 1 + A - (A/4); | |
356 B = A + 1524; | |
357 C = (int)((B - 122.1)/365.25); | |
358 D = (36525*C)/100; | |
359 E = (int)((B-D)/30.6001); | |
360 X1 = (int)(30.6001*E); | |
361 p->D = B - D - X1; | |
362 p->M = E<14 ? E-1 : E-13; | |
363 p->Y = p->M>2 ? C - 4716 : C - 4715; | |
364 } | |
365 p->validYMD = 1; | |
366 } | |
367 | |
368 /* | |
369 ** Compute the Hour, Minute, and Seconds from the julian day number. | |
370 */ | |
371 static void computeHMS(DateTime *p){ | |
372 int s; | |
373 if( p->validHMS ) return; | |
374 computeJD(p); | |
375 s = (int)((p->iJD + 43200000) % 86400000); | |
376 p->s = s/1000.0; | |
377 s = (int)p->s; | |
378 p->s -= s; | |
379 p->h = s/3600; | |
380 s -= p->h*3600; | |
381 p->m = s/60; | |
382 p->s += s - p->m*60; | |
383 p->validHMS = 1; | |
384 } | |
385 | |
386 /* | |
387 ** Compute both YMD and HMS | |
388 */ | |
389 static void computeYMD_HMS(DateTime *p){ | |
390 computeYMD(p); | |
391 computeHMS(p); | |
392 } | |
393 | |
394 /* | |
395 ** Clear the YMD and HMS and the TZ | |
396 */ | |
397 static void clearYMD_HMS_TZ(DateTime *p){ | |
398 p->validYMD = 0; | |
399 p->validHMS = 0; | |
400 p->validTZ = 0; | |
401 } | |
402 | |
403 /* | |
404 ** On recent Windows platforms, the localtime_s() function is available | |
405 ** as part of the "Secure CRT". It is essentially equivalent to | |
406 ** localtime_r() available under most POSIX platforms, except that the | |
407 ** order of the parameters is reversed. | |
408 ** | |
409 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. | |
410 ** | |
411 ** If the user has not indicated to use localtime_r() or localtime_s() | |
412 ** already, check for an MSVC build environment that provides | |
413 ** localtime_s(). | |
414 */ | |
415 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ | |
416 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) | |
417 #define HAVE_LOCALTIME_S 1 | |
418 #endif | |
419 | |
420 #ifndef SQLITE_OMIT_LOCALTIME | |
421 /* | |
422 ** The following routine implements the rough equivalent of localtime_r() | |
423 ** using whatever operating-system specific localtime facility that | |
424 ** is available. This routine returns 0 on success and | |
425 ** non-zero on any kind of error. | |
426 ** | |
427 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this | |
428 ** routine will always fail. | |
429 ** | |
430 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C | |
431 ** library function localtime_r() is used to assist in the calculation of | |
432 ** local time. | |
433 */ | |
434 static int osLocaltime(time_t *t, struct tm *pTm){ | |
435 int rc; | |
436 #if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \ | |
437 && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S) | |
438 struct tm *pX; | |
439 #if SQLITE_THREADSAFE>0 | |
440 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); | |
441 #endif | |
442 sqlite3_mutex_enter(mutex); | |
443 pX = localtime(t); | |
444 #ifndef SQLITE_OMIT_BUILTIN_TEST | |
445 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; | |
446 #endif | |
447 if( pX ) *pTm = *pX; | |
448 sqlite3_mutex_leave(mutex); | |
449 rc = pX==0; | |
450 #else | |
451 #ifndef SQLITE_OMIT_BUILTIN_TEST | |
452 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; | |
453 #endif | |
454 #if defined(HAVE_LOCALTIME_R) && HAVE_LOCALTIME_R | |
455 rc = localtime_r(t, pTm)==0; | |
456 #else | |
457 rc = localtime_s(pTm, t); | |
458 #endif /* HAVE_LOCALTIME_R */ | |
459 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ | |
460 return rc; | |
461 } | |
462 #endif /* SQLITE_OMIT_LOCALTIME */ | |
463 | |
464 | |
465 #ifndef SQLITE_OMIT_LOCALTIME | |
466 /* | |
467 ** Compute the difference (in milliseconds) between localtime and UTC | |
468 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, | |
469 ** return this value and set *pRc to SQLITE_OK. | |
470 ** | |
471 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value | |
472 ** is undefined in this case. | |
473 */ | |
474 static sqlite3_int64 localtimeOffset( | |
475 DateTime *p, /* Date at which to calculate offset */ | |
476 sqlite3_context *pCtx, /* Write error here if one occurs */ | |
477 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ | |
478 ){ | |
479 DateTime x, y; | |
480 time_t t; | |
481 struct tm sLocal; | |
482 | |
483 /* Initialize the contents of sLocal to avoid a compiler warning. */ | |
484 memset(&sLocal, 0, sizeof(sLocal)); | |
485 | |
486 x = *p; | |
487 computeYMD_HMS(&x); | |
488 if( x.Y<1971 || x.Y>=2038 ){ | |
489 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only | |
490 ** works for years between 1970 and 2037. For dates outside this range, | |
491 ** SQLite attempts to map the year into an equivalent year within this | |
492 ** range, do the calculation, then map the year back. | |
493 */ | |
494 x.Y = 2000; | |
495 x.M = 1; | |
496 x.D = 1; | |
497 x.h = 0; | |
498 x.m = 0; | |
499 x.s = 0.0; | |
500 } else { | |
501 int s = (int)(x.s + 0.5); | |
502 x.s = s; | |
503 } | |
504 x.tz = 0; | |
505 x.validJD = 0; | |
506 computeJD(&x); | |
507 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); | |
508 if( osLocaltime(&t, &sLocal) ){ | |
509 sqlite3_result_error(pCtx, "local time unavailable", -1); | |
510 *pRc = SQLITE_ERROR; | |
511 return 0; | |
512 } | |
513 y.Y = sLocal.tm_year + 1900; | |
514 y.M = sLocal.tm_mon + 1; | |
515 y.D = sLocal.tm_mday; | |
516 y.h = sLocal.tm_hour; | |
517 y.m = sLocal.tm_min; | |
518 y.s = sLocal.tm_sec; | |
519 y.validYMD = 1; | |
520 y.validHMS = 1; | |
521 y.validJD = 0; | |
522 y.validTZ = 0; | |
523 computeJD(&y); | |
524 *pRc = SQLITE_OK; | |
525 return y.iJD - x.iJD; | |
526 } | |
527 #endif /* SQLITE_OMIT_LOCALTIME */ | |
528 | |
529 /* | |
530 ** Process a modifier to a date-time stamp. The modifiers are | |
531 ** as follows: | |
532 ** | |
533 ** NNN days | |
534 ** NNN hours | |
535 ** NNN minutes | |
536 ** NNN.NNNN seconds | |
537 ** NNN months | |
538 ** NNN years | |
539 ** start of month | |
540 ** start of year | |
541 ** start of week | |
542 ** start of day | |
543 ** weekday N | |
544 ** unixepoch | |
545 ** localtime | |
546 ** utc | |
547 ** | |
548 ** Return 0 on success and 1 if there is any kind of error. If the error | |
549 ** is in a system call (i.e. localtime()), then an error message is written | |
550 ** to context pCtx. If the error is an unrecognized modifier, no error is | |
551 ** written to pCtx. | |
552 */ | |
553 static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){ | |
554 int rc = 1; | |
555 int n; | |
556 double r; | |
557 char *z, zBuf[30]; | |
558 z = zBuf; | |
559 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ | |
560 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; | |
561 } | |
562 z[n] = 0; | |
563 switch( z[0] ){ | |
564 #ifndef SQLITE_OMIT_LOCALTIME | |
565 case 'l': { | |
566 /* localtime | |
567 ** | |
568 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to | |
569 ** show local time. | |
570 */ | |
571 if( strcmp(z, "localtime")==0 ){ | |
572 computeJD(p); | |
573 p->iJD += localtimeOffset(p, pCtx, &rc); | |
574 clearYMD_HMS_TZ(p); | |
575 } | |
576 break; | |
577 } | |
578 #endif | |
579 case 'u': { | |
580 /* | |
581 ** unixepoch | |
582 ** | |
583 ** Treat the current value of p->iJD as the number of | |
584 ** seconds since 1970. Convert to a real julian day number. | |
585 */ | |
586 if( strcmp(z, "unixepoch")==0 && p->validJD ){ | |
587 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; | |
588 clearYMD_HMS_TZ(p); | |
589 rc = 0; | |
590 } | |
591 #ifndef SQLITE_OMIT_LOCALTIME | |
592 else if( strcmp(z, "utc")==0 ){ | |
593 sqlite3_int64 c1; | |
594 computeJD(p); | |
595 c1 = localtimeOffset(p, pCtx, &rc); | |
596 if( rc==SQLITE_OK ){ | |
597 p->iJD -= c1; | |
598 clearYMD_HMS_TZ(p); | |
599 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); | |
600 } | |
601 } | |
602 #endif | |
603 break; | |
604 } | |
605 case 'w': { | |
606 /* | |
607 ** weekday N | |
608 ** | |
609 ** Move the date to the same time on the next occurrence of | |
610 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the | |
611 ** date is already on the appropriate weekday, this is a no-op. | |
612 */ | |
613 if( strncmp(z, "weekday ", 8)==0 | |
614 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) | |
615 && (n=(int)r)==r && n>=0 && r<7 ){ | |
616 sqlite3_int64 Z; | |
617 computeYMD_HMS(p); | |
618 p->validTZ = 0; | |
619 p->validJD = 0; | |
620 computeJD(p); | |
621 Z = ((p->iJD + 129600000)/86400000) % 7; | |
622 if( Z>n ) Z -= 7; | |
623 p->iJD += (n - Z)*86400000; | |
624 clearYMD_HMS_TZ(p); | |
625 rc = 0; | |
626 } | |
627 break; | |
628 } | |
629 case 's': { | |
630 /* | |
631 ** start of TTTTT | |
632 ** | |
633 ** Move the date backwards to the beginning of the current day, | |
634 ** or month or year. | |
635 */ | |
636 if( strncmp(z, "start of ", 9)!=0 ) break; | |
637 z += 9; | |
638 computeYMD(p); | |
639 p->validHMS = 1; | |
640 p->h = p->m = 0; | |
641 p->s = 0.0; | |
642 p->validTZ = 0; | |
643 p->validJD = 0; | |
644 if( strcmp(z,"month")==0 ){ | |
645 p->D = 1; | |
646 rc = 0; | |
647 }else if( strcmp(z,"year")==0 ){ | |
648 computeYMD(p); | |
649 p->M = 1; | |
650 p->D = 1; | |
651 rc = 0; | |
652 }else if( strcmp(z,"day")==0 ){ | |
653 rc = 0; | |
654 } | |
655 break; | |
656 } | |
657 case '+': | |
658 case '-': | |
659 case '0': | |
660 case '1': | |
661 case '2': | |
662 case '3': | |
663 case '4': | |
664 case '5': | |
665 case '6': | |
666 case '7': | |
667 case '8': | |
668 case '9': { | |
669 double rRounder; | |
670 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} | |
671 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ | |
672 rc = 1; | |
673 break; | |
674 } | |
675 if( z[n]==':' ){ | |
676 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the | |
677 ** specified number of hours, minutes, seconds, and fractional seconds | |
678 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be | |
679 ** omitted. | |
680 */ | |
681 const char *z2 = z; | |
682 DateTime tx; | |
683 sqlite3_int64 day; | |
684 if( !sqlite3Isdigit(*z2) ) z2++; | |
685 memset(&tx, 0, sizeof(tx)); | |
686 if( parseHhMmSs(z2, &tx) ) break; | |
687 computeJD(&tx); | |
688 tx.iJD -= 43200000; | |
689 day = tx.iJD/86400000; | |
690 tx.iJD -= day*86400000; | |
691 if( z[0]=='-' ) tx.iJD = -tx.iJD; | |
692 computeJD(p); | |
693 clearYMD_HMS_TZ(p); | |
694 p->iJD += tx.iJD; | |
695 rc = 0; | |
696 break; | |
697 } | |
698 z += n; | |
699 while( sqlite3Isspace(*z) ) z++; | |
700 n = sqlite3Strlen30(z); | |
701 if( n>10 || n<3 ) break; | |
702 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } | |
703 computeJD(p); | |
704 rc = 0; | |
705 rRounder = r<0 ? -0.5 : +0.5; | |
706 if( n==3 && strcmp(z,"day")==0 ){ | |
707 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); | |
708 }else if( n==4 && strcmp(z,"hour")==0 ){ | |
709 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); | |
710 }else if( n==6 && strcmp(z,"minute")==0 ){ | |
711 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); | |
712 }else if( n==6 && strcmp(z,"second")==0 ){ | |
713 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); | |
714 }else if( n==5 && strcmp(z,"month")==0 ){ | |
715 int x, y; | |
716 computeYMD_HMS(p); | |
717 p->M += (int)r; | |
718 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; | |
719 p->Y += x; | |
720 p->M -= x*12; | |
721 p->validJD = 0; | |
722 computeJD(p); | |
723 y = (int)r; | |
724 if( y!=r ){ | |
725 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); | |
726 } | |
727 }else if( n==4 && strcmp(z,"year")==0 ){ | |
728 int y = (int)r; | |
729 computeYMD_HMS(p); | |
730 p->Y += y; | |
731 p->validJD = 0; | |
732 computeJD(p); | |
733 if( y!=r ){ | |
734 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); | |
735 } | |
736 }else{ | |
737 rc = 1; | |
738 } | |
739 clearYMD_HMS_TZ(p); | |
740 break; | |
741 } | |
742 default: { | |
743 break; | |
744 } | |
745 } | |
746 return rc; | |
747 } | |
748 | |
749 /* | |
750 ** Process time function arguments. argv[0] is a date-time stamp. | |
751 ** argv[1] and following are modifiers. Parse them all and write | |
752 ** the resulting time into the DateTime structure p. Return 0 | |
753 ** on success and 1 if there are any errors. | |
754 ** | |
755 ** If there are zero parameters (if even argv[0] is undefined) | |
756 ** then assume a default value of "now" for argv[0]. | |
757 */ | |
758 static int isDate( | |
759 sqlite3_context *context, | |
760 int argc, | |
761 sqlite3_value **argv, | |
762 DateTime *p | |
763 ){ | |
764 int i; | |
765 const unsigned char *z; | |
766 int eType; | |
767 memset(p, 0, sizeof(*p)); | |
768 if( argc==0 ){ | |
769 return setDateTimeToCurrent(context, p); | |
770 } | |
771 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT | |
772 || eType==SQLITE_INTEGER ){ | |
773 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); | |
774 p->validJD = 1; | |
775 }else{ | |
776 z = sqlite3_value_text(argv[0]); | |
777 if( !z || parseDateOrTime(context, (char*)z, p) ){ | |
778 return 1; | |
779 } | |
780 } | |
781 for(i=1; i<argc; i++){ | |
782 z = sqlite3_value_text(argv[i]); | |
783 if( z==0 || parseModifier(context, (char*)z, p) ) return 1; | |
784 } | |
785 return 0; | |
786 } | |
787 | |
788 | |
789 /* | |
790 ** The following routines implement the various date and time functions | |
791 ** of SQLite. | |
792 */ | |
793 | |
794 /* | |
795 ** julianday( TIMESTRING, MOD, MOD, ...) | |
796 ** | |
797 ** Return the julian day number of the date specified in the arguments | |
798 */ | |
799 static void juliandayFunc( | |
800 sqlite3_context *context, | |
801 int argc, | |
802 sqlite3_value **argv | |
803 ){ | |
804 DateTime x; | |
805 if( isDate(context, argc, argv, &x)==0 ){ | |
806 computeJD(&x); | |
807 sqlite3_result_double(context, x.iJD/86400000.0); | |
808 } | |
809 } | |
810 | |
811 /* | |
812 ** datetime( TIMESTRING, MOD, MOD, ...) | |
813 ** | |
814 ** Return YYYY-MM-DD HH:MM:SS | |
815 */ | |
816 static void datetimeFunc( | |
817 sqlite3_context *context, | |
818 int argc, | |
819 sqlite3_value **argv | |
820 ){ | |
821 DateTime x; | |
822 if( isDate(context, argc, argv, &x)==0 ){ | |
823 char zBuf[100]; | |
824 computeYMD_HMS(&x); | |
825 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", | |
826 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); | |
827 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
828 } | |
829 } | |
830 | |
831 /* | |
832 ** time( TIMESTRING, MOD, MOD, ...) | |
833 ** | |
834 ** Return HH:MM:SS | |
835 */ | |
836 static void timeFunc( | |
837 sqlite3_context *context, | |
838 int argc, | |
839 sqlite3_value **argv | |
840 ){ | |
841 DateTime x; | |
842 if( isDate(context, argc, argv, &x)==0 ){ | |
843 char zBuf[100]; | |
844 computeHMS(&x); | |
845 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); | |
846 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
847 } | |
848 } | |
849 | |
850 /* | |
851 ** date( TIMESTRING, MOD, MOD, ...) | |
852 ** | |
853 ** Return YYYY-MM-DD | |
854 */ | |
855 static void dateFunc( | |
856 sqlite3_context *context, | |
857 int argc, | |
858 sqlite3_value **argv | |
859 ){ | |
860 DateTime x; | |
861 if( isDate(context, argc, argv, &x)==0 ){ | |
862 char zBuf[100]; | |
863 computeYMD(&x); | |
864 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); | |
865 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
866 } | |
867 } | |
868 | |
869 /* | |
870 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) | |
871 ** | |
872 ** Return a string described by FORMAT. Conversions as follows: | |
873 ** | |
874 ** %d day of month | |
875 ** %f ** fractional seconds SS.SSS | |
876 ** %H hour 00-24 | |
877 ** %j day of year 000-366 | |
878 ** %J ** Julian day number | |
879 ** %m month 01-12 | |
880 ** %M minute 00-59 | |
881 ** %s seconds since 1970-01-01 | |
882 ** %S seconds 00-59 | |
883 ** %w day of week 0-6 sunday==0 | |
884 ** %W week of year 00-53 | |
885 ** %Y year 0000-9999 | |
886 ** %% % | |
887 */ | |
888 static void strftimeFunc( | |
889 sqlite3_context *context, | |
890 int argc, | |
891 sqlite3_value **argv | |
892 ){ | |
893 DateTime x; | |
894 u64 n; | |
895 size_t i,j; | |
896 char *z; | |
897 sqlite3 *db; | |
898 const char *zFmt = (const char*)sqlite3_value_text(argv[0]); | |
899 char zBuf[100]; | |
900 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; | |
901 db = sqlite3_context_db_handle(context); | |
902 for(i=0, n=1; zFmt[i]; i++, n++){ | |
903 if( zFmt[i]=='%' ){ | |
904 switch( zFmt[i+1] ){ | |
905 case 'd': | |
906 case 'H': | |
907 case 'm': | |
908 case 'M': | |
909 case 'S': | |
910 case 'W': | |
911 n++; | |
912 /* fall thru */ | |
913 case 'w': | |
914 case '%': | |
915 break; | |
916 case 'f': | |
917 n += 8; | |
918 break; | |
919 case 'j': | |
920 n += 3; | |
921 break; | |
922 case 'Y': | |
923 n += 8; | |
924 break; | |
925 case 's': | |
926 case 'J': | |
927 n += 50; | |
928 break; | |
929 default: | |
930 return; /* ERROR. return a NULL */ | |
931 } | |
932 i++; | |
933 } | |
934 } | |
935 testcase( n==sizeof(zBuf)-1 ); | |
936 testcase( n==sizeof(zBuf) ); | |
937 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); | |
938 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
939 if( n<sizeof(zBuf) ){ | |
940 z = zBuf; | |
941 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
942 sqlite3_result_error_toobig(context); | |
943 return; | |
944 }else{ | |
945 z = sqlite3DbMallocRaw(db, (int)n); | |
946 if( z==0 ){ | |
947 sqlite3_result_error_nomem(context); | |
948 return; | |
949 } | |
950 } | |
951 computeJD(&x); | |
952 computeYMD_HMS(&x); | |
953 for(i=j=0; zFmt[i]; i++){ | |
954 if( zFmt[i]!='%' ){ | |
955 z[j++] = zFmt[i]; | |
956 }else{ | |
957 i++; | |
958 switch( zFmt[i] ){ | |
959 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; | |
960 case 'f': { | |
961 double s = x.s; | |
962 if( s>59.999 ) s = 59.999; | |
963 sqlite3_snprintf(7, &z[j],"%06.3f", s); | |
964 j += sqlite3Strlen30(&z[j]); | |
965 break; | |
966 } | |
967 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; | |
968 case 'W': /* Fall thru */ | |
969 case 'j': { | |
970 int nDay; /* Number of days since 1st day of year */ | |
971 DateTime y = x; | |
972 y.validJD = 0; | |
973 y.M = 1; | |
974 y.D = 1; | |
975 computeJD(&y); | |
976 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); | |
977 if( zFmt[i]=='W' ){ | |
978 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ | |
979 wd = (int)(((x.iJD+43200000)/86400000)%7); | |
980 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); | |
981 j += 2; | |
982 }else{ | |
983 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); | |
984 j += 3; | |
985 } | |
986 break; | |
987 } | |
988 case 'J': { | |
989 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); | |
990 j+=sqlite3Strlen30(&z[j]); | |
991 break; | |
992 } | |
993 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; | |
994 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; | |
995 case 's': { | |
996 sqlite3_snprintf(30,&z[j],"%lld", | |
997 (i64)(x.iJD/1000 - 21086676*(i64)10000)); | |
998 j += sqlite3Strlen30(&z[j]); | |
999 break; | |
1000 } | |
1001 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; | |
1002 case 'w': { | |
1003 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; | |
1004 break; | |
1005 } | |
1006 case 'Y': { | |
1007 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); | |
1008 break; | |
1009 } | |
1010 default: z[j++] = '%'; break; | |
1011 } | |
1012 } | |
1013 } | |
1014 z[j] = 0; | |
1015 sqlite3_result_text(context, z, -1, | |
1016 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); | |
1017 } | |
1018 | |
1019 /* | |
1020 ** current_time() | |
1021 ** | |
1022 ** This function returns the same value as time('now'). | |
1023 */ | |
1024 static void ctimeFunc( | |
1025 sqlite3_context *context, | |
1026 int NotUsed, | |
1027 sqlite3_value **NotUsed2 | |
1028 ){ | |
1029 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
1030 timeFunc(context, 0, 0); | |
1031 } | |
1032 | |
1033 /* | |
1034 ** current_date() | |
1035 ** | |
1036 ** This function returns the same value as date('now'). | |
1037 */ | |
1038 static void cdateFunc( | |
1039 sqlite3_context *context, | |
1040 int NotUsed, | |
1041 sqlite3_value **NotUsed2 | |
1042 ){ | |
1043 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
1044 dateFunc(context, 0, 0); | |
1045 } | |
1046 | |
1047 /* | |
1048 ** current_timestamp() | |
1049 ** | |
1050 ** This function returns the same value as datetime('now'). | |
1051 */ | |
1052 static void ctimestampFunc( | |
1053 sqlite3_context *context, | |
1054 int NotUsed, | |
1055 sqlite3_value **NotUsed2 | |
1056 ){ | |
1057 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
1058 datetimeFunc(context, 0, 0); | |
1059 } | |
1060 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ | |
1061 | |
1062 #ifdef SQLITE_OMIT_DATETIME_FUNCS | |
1063 /* | |
1064 ** If the library is compiled to omit the full-scale date and time | |
1065 ** handling (to get a smaller binary), the following minimal version | |
1066 ** of the functions current_time(), current_date() and current_timestamp() | |
1067 ** are included instead. This is to support column declarations that | |
1068 ** include "DEFAULT CURRENT_TIME" etc. | |
1069 ** | |
1070 ** This function uses the C-library functions time(), gmtime() | |
1071 ** and strftime(). The format string to pass to strftime() is supplied | |
1072 ** as the user-data for the function. | |
1073 */ | |
1074 static void currentTimeFunc( | |
1075 sqlite3_context *context, | |
1076 int argc, | |
1077 sqlite3_value **argv | |
1078 ){ | |
1079 time_t t; | |
1080 char *zFormat = (char *)sqlite3_user_data(context); | |
1081 sqlite3 *db; | |
1082 sqlite3_int64 iT; | |
1083 struct tm *pTm; | |
1084 struct tm sNow; | |
1085 char zBuf[20]; | |
1086 | |
1087 UNUSED_PARAMETER(argc); | |
1088 UNUSED_PARAMETER(argv); | |
1089 | |
1090 iT = sqlite3StmtCurrentTime(context); | |
1091 if( iT<=0 ) return; | |
1092 t = iT/1000 - 10000*(sqlite3_int64)21086676; | |
1093 #ifdef HAVE_GMTIME_R | |
1094 pTm = gmtime_r(&t, &sNow); | |
1095 #else | |
1096 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
1097 pTm = gmtime(&t); | |
1098 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); | |
1099 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
1100 #endif | |
1101 if( pTm ){ | |
1102 strftime(zBuf, 20, zFormat, &sNow); | |
1103 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
1104 } | |
1105 } | |
1106 #endif | |
1107 | |
1108 /* | |
1109 ** This function registered all of the above C functions as SQL | |
1110 ** functions. This should be the only routine in this file with | |
1111 ** external linkage. | |
1112 */ | |
1113 void sqlite3RegisterDateTimeFunctions(void){ | |
1114 static SQLITE_WSD FuncDef aDateTimeFuncs[] = { | |
1115 #ifndef SQLITE_OMIT_DATETIME_FUNCS | |
1116 FUNCTION(julianday, -1, 0, 0, juliandayFunc ), | |
1117 FUNCTION(date, -1, 0, 0, dateFunc ), | |
1118 FUNCTION(time, -1, 0, 0, timeFunc ), | |
1119 FUNCTION(datetime, -1, 0, 0, datetimeFunc ), | |
1120 FUNCTION(strftime, -1, 0, 0, strftimeFunc ), | |
1121 FUNCTION(current_time, 0, 0, 0, ctimeFunc ), | |
1122 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), | |
1123 FUNCTION(current_date, 0, 0, 0, cdateFunc ), | |
1124 #else | |
1125 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), | |
1126 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), | |
1127 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), | |
1128 #endif | |
1129 }; | |
1130 int i; | |
1131 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); | |
1132 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); | |
1133 | |
1134 for(i=0; i<ArraySize(aDateTimeFuncs); i++){ | |
1135 sqlite3FuncDefInsert(pHash, &aFunc[i]); | |
1136 } | |
1137 } | |
OLD | NEW |