| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2003 October 31 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** This file contains the C functions that implement date and time | |
| 13 ** functions for SQLite. | |
| 14 ** | |
| 15 ** There is only one exported symbol in this file - the function | |
| 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. | |
| 17 ** All other code has file scope. | |
| 18 ** | |
| 19 ** SQLite processes all times and dates as Julian Day numbers. The | |
| 20 ** dates and times are stored as the number of days since noon | |
| 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian | |
| 22 ** calendar system. | |
| 23 ** | |
| 24 ** 1970-01-01 00:00:00 is JD 2440587.5 | |
| 25 ** 2000-01-01 00:00:00 is JD 2451544.5 | |
| 26 ** | |
| 27 ** This implementation requires years to be expressed as a 4-digit number | |
| 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can | |
| 29 ** be represented, even though julian day numbers allow a much wider | |
| 30 ** range of dates. | |
| 31 ** | |
| 32 ** The Gregorian calendar system is used for all dates and times, | |
| 33 ** even those that predate the Gregorian calendar. Historians usually | |
| 34 ** use the Julian calendar for dates prior to 1582-10-15 and for some | |
| 35 ** dates afterwards, depending on locale. Beware of this difference. | |
| 36 ** | |
| 37 ** The conversion algorithms are implemented based on descriptions | |
| 38 ** in the following text: | |
| 39 ** | |
| 40 ** Jean Meeus | |
| 41 ** Astronomical Algorithms, 2nd Edition, 1998 | |
| 42 ** ISBM 0-943396-61-1 | |
| 43 ** Willmann-Bell, Inc | |
| 44 ** Richmond, Virginia (USA) | |
| 45 */ | |
| 46 #include "sqliteInt.h" | |
| 47 #include <stdlib.h> | |
| 48 #include <assert.h> | |
| 49 #include <time.h> | |
| 50 | |
| 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS | |
| 52 | |
| 53 | |
| 54 /* | |
| 55 ** A structure for holding a single date and time. | |
| 56 */ | |
| 57 typedef struct DateTime DateTime; | |
| 58 struct DateTime { | |
| 59 sqlite3_int64 iJD; /* The julian day number times 86400000 */ | |
| 60 int Y, M, D; /* Year, month, and day */ | |
| 61 int h, m; /* Hour and minutes */ | |
| 62 int tz; /* Timezone offset in minutes */ | |
| 63 double s; /* Seconds */ | |
| 64 char validYMD; /* True (1) if Y,M,D are valid */ | |
| 65 char validHMS; /* True (1) if h,m,s are valid */ | |
| 66 char validJD; /* True (1) if iJD is valid */ | |
| 67 char validTZ; /* True (1) if tz is valid */ | |
| 68 }; | |
| 69 | |
| 70 | |
| 71 /* | |
| 72 ** Convert zDate into one or more integers. Additional arguments | |
| 73 ** come in groups of 5 as follows: | |
| 74 ** | |
| 75 ** N number of digits in the integer | |
| 76 ** min minimum allowed value of the integer | |
| 77 ** max maximum allowed value of the integer | |
| 78 ** nextC first character after the integer | |
| 79 ** pVal where to write the integers value. | |
| 80 ** | |
| 81 ** Conversions continue until one with nextC==0 is encountered. | |
| 82 ** The function returns the number of successful conversions. | |
| 83 */ | |
| 84 static int getDigits(const char *zDate, ...){ | |
| 85 va_list ap; | |
| 86 int val; | |
| 87 int N; | |
| 88 int min; | |
| 89 int max; | |
| 90 int nextC; | |
| 91 int *pVal; | |
| 92 int cnt = 0; | |
| 93 va_start(ap, zDate); | |
| 94 do{ | |
| 95 N = va_arg(ap, int); | |
| 96 min = va_arg(ap, int); | |
| 97 max = va_arg(ap, int); | |
| 98 nextC = va_arg(ap, int); | |
| 99 pVal = va_arg(ap, int*); | |
| 100 val = 0; | |
| 101 while( N-- ){ | |
| 102 if( !sqlite3Isdigit(*zDate) ){ | |
| 103 goto end_getDigits; | |
| 104 } | |
| 105 val = val*10 + *zDate - '0'; | |
| 106 zDate++; | |
| 107 } | |
| 108 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ | |
| 109 goto end_getDigits; | |
| 110 } | |
| 111 *pVal = val; | |
| 112 zDate++; | |
| 113 cnt++; | |
| 114 }while( nextC ); | |
| 115 end_getDigits: | |
| 116 va_end(ap); | |
| 117 return cnt; | |
| 118 } | |
| 119 | |
| 120 /* | |
| 121 ** Parse a timezone extension on the end of a date-time. | |
| 122 ** The extension is of the form: | |
| 123 ** | |
| 124 ** (+/-)HH:MM | |
| 125 ** | |
| 126 ** Or the "zulu" notation: | |
| 127 ** | |
| 128 ** Z | |
| 129 ** | |
| 130 ** If the parse is successful, write the number of minutes | |
| 131 ** of change in p->tz and return 0. If a parser error occurs, | |
| 132 ** return non-zero. | |
| 133 ** | |
| 134 ** A missing specifier is not considered an error. | |
| 135 */ | |
| 136 static int parseTimezone(const char *zDate, DateTime *p){ | |
| 137 int sgn = 0; | |
| 138 int nHr, nMn; | |
| 139 int c; | |
| 140 while( sqlite3Isspace(*zDate) ){ zDate++; } | |
| 141 p->tz = 0; | |
| 142 c = *zDate; | |
| 143 if( c=='-' ){ | |
| 144 sgn = -1; | |
| 145 }else if( c=='+' ){ | |
| 146 sgn = +1; | |
| 147 }else if( c=='Z' || c=='z' ){ | |
| 148 zDate++; | |
| 149 goto zulu_time; | |
| 150 }else{ | |
| 151 return c!=0; | |
| 152 } | |
| 153 zDate++; | |
| 154 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ | |
| 155 return 1; | |
| 156 } | |
| 157 zDate += 5; | |
| 158 p->tz = sgn*(nMn + nHr*60); | |
| 159 zulu_time: | |
| 160 while( sqlite3Isspace(*zDate) ){ zDate++; } | |
| 161 return *zDate!=0; | |
| 162 } | |
| 163 | |
| 164 /* | |
| 165 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. | |
| 166 ** The HH, MM, and SS must each be exactly 2 digits. The | |
| 167 ** fractional seconds FFFF can be one or more digits. | |
| 168 ** | |
| 169 ** Return 1 if there is a parsing error and 0 on success. | |
| 170 */ | |
| 171 static int parseHhMmSs(const char *zDate, DateTime *p){ | |
| 172 int h, m, s; | |
| 173 double ms = 0.0; | |
| 174 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ | |
| 175 return 1; | |
| 176 } | |
| 177 zDate += 5; | |
| 178 if( *zDate==':' ){ | |
| 179 zDate++; | |
| 180 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ | |
| 181 return 1; | |
| 182 } | |
| 183 zDate += 2; | |
| 184 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ | |
| 185 double rScale = 1.0; | |
| 186 zDate++; | |
| 187 while( sqlite3Isdigit(*zDate) ){ | |
| 188 ms = ms*10.0 + *zDate - '0'; | |
| 189 rScale *= 10.0; | |
| 190 zDate++; | |
| 191 } | |
| 192 ms /= rScale; | |
| 193 } | |
| 194 }else{ | |
| 195 s = 0; | |
| 196 } | |
| 197 p->validJD = 0; | |
| 198 p->validHMS = 1; | |
| 199 p->h = h; | |
| 200 p->m = m; | |
| 201 p->s = s + ms; | |
| 202 if( parseTimezone(zDate, p) ) return 1; | |
| 203 p->validTZ = (p->tz!=0)?1:0; | |
| 204 return 0; | |
| 205 } | |
| 206 | |
| 207 /* | |
| 208 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume | |
| 209 ** that the YYYY-MM-DD is according to the Gregorian calendar. | |
| 210 ** | |
| 211 ** Reference: Meeus page 61 | |
| 212 */ | |
| 213 static void computeJD(DateTime *p){ | |
| 214 int Y, M, D, A, B, X1, X2; | |
| 215 | |
| 216 if( p->validJD ) return; | |
| 217 if( p->validYMD ){ | |
| 218 Y = p->Y; | |
| 219 M = p->M; | |
| 220 D = p->D; | |
| 221 }else{ | |
| 222 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ | |
| 223 M = 1; | |
| 224 D = 1; | |
| 225 } | |
| 226 if( M<=2 ){ | |
| 227 Y--; | |
| 228 M += 12; | |
| 229 } | |
| 230 A = Y/100; | |
| 231 B = 2 - A + (A/4); | |
| 232 X1 = 36525*(Y+4716)/100; | |
| 233 X2 = 306001*(M+1)/10000; | |
| 234 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); | |
| 235 p->validJD = 1; | |
| 236 if( p->validHMS ){ | |
| 237 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); | |
| 238 if( p->validTZ ){ | |
| 239 p->iJD -= p->tz*60000; | |
| 240 p->validYMD = 0; | |
| 241 p->validHMS = 0; | |
| 242 p->validTZ = 0; | |
| 243 } | |
| 244 } | |
| 245 } | |
| 246 | |
| 247 /* | |
| 248 ** Parse dates of the form | |
| 249 ** | |
| 250 ** YYYY-MM-DD HH:MM:SS.FFF | |
| 251 ** YYYY-MM-DD HH:MM:SS | |
| 252 ** YYYY-MM-DD HH:MM | |
| 253 ** YYYY-MM-DD | |
| 254 ** | |
| 255 ** Write the result into the DateTime structure and return 0 | |
| 256 ** on success and 1 if the input string is not a well-formed | |
| 257 ** date. | |
| 258 */ | |
| 259 static int parseYyyyMmDd(const char *zDate, DateTime *p){ | |
| 260 int Y, M, D, neg; | |
| 261 | |
| 262 if( zDate[0]=='-' ){ | |
| 263 zDate++; | |
| 264 neg = 1; | |
| 265 }else{ | |
| 266 neg = 0; | |
| 267 } | |
| 268 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ | |
| 269 return 1; | |
| 270 } | |
| 271 zDate += 10; | |
| 272 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } | |
| 273 if( parseHhMmSs(zDate, p)==0 ){ | |
| 274 /* We got the time */ | |
| 275 }else if( *zDate==0 ){ | |
| 276 p->validHMS = 0; | |
| 277 }else{ | |
| 278 return 1; | |
| 279 } | |
| 280 p->validJD = 0; | |
| 281 p->validYMD = 1; | |
| 282 p->Y = neg ? -Y : Y; | |
| 283 p->M = M; | |
| 284 p->D = D; | |
| 285 if( p->validTZ ){ | |
| 286 computeJD(p); | |
| 287 } | |
| 288 return 0; | |
| 289 } | |
| 290 | |
| 291 /* | |
| 292 ** Set the time to the current time reported by the VFS. | |
| 293 ** | |
| 294 ** Return the number of errors. | |
| 295 */ | |
| 296 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ | |
| 297 p->iJD = sqlite3StmtCurrentTime(context); | |
| 298 if( p->iJD>0 ){ | |
| 299 p->validJD = 1; | |
| 300 return 0; | |
| 301 }else{ | |
| 302 return 1; | |
| 303 } | |
| 304 } | |
| 305 | |
| 306 /* | |
| 307 ** Attempt to parse the given string into a Julian Day Number. Return | |
| 308 ** the number of errors. | |
| 309 ** | |
| 310 ** The following are acceptable forms for the input string: | |
| 311 ** | |
| 312 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM | |
| 313 ** DDDD.DD | |
| 314 ** now | |
| 315 ** | |
| 316 ** In the first form, the +/-HH:MM is always optional. The fractional | |
| 317 ** seconds extension (the ".FFF") is optional. The seconds portion | |
| 318 ** (":SS.FFF") is option. The year and date can be omitted as long | |
| 319 ** as there is a time string. The time string can be omitted as long | |
| 320 ** as there is a year and date. | |
| 321 */ | |
| 322 static int parseDateOrTime( | |
| 323 sqlite3_context *context, | |
| 324 const char *zDate, | |
| 325 DateTime *p | |
| 326 ){ | |
| 327 double r; | |
| 328 if( parseYyyyMmDd(zDate,p)==0 ){ | |
| 329 return 0; | |
| 330 }else if( parseHhMmSs(zDate, p)==0 ){ | |
| 331 return 0; | |
| 332 }else if( sqlite3StrICmp(zDate,"now")==0){ | |
| 333 return setDateTimeToCurrent(context, p); | |
| 334 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ | |
| 335 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); | |
| 336 p->validJD = 1; | |
| 337 return 0; | |
| 338 } | |
| 339 return 1; | |
| 340 } | |
| 341 | |
| 342 /* | |
| 343 ** Compute the Year, Month, and Day from the julian day number. | |
| 344 */ | |
| 345 static void computeYMD(DateTime *p){ | |
| 346 int Z, A, B, C, D, E, X1; | |
| 347 if( p->validYMD ) return; | |
| 348 if( !p->validJD ){ | |
| 349 p->Y = 2000; | |
| 350 p->M = 1; | |
| 351 p->D = 1; | |
| 352 }else{ | |
| 353 Z = (int)((p->iJD + 43200000)/86400000); | |
| 354 A = (int)((Z - 1867216.25)/36524.25); | |
| 355 A = Z + 1 + A - (A/4); | |
| 356 B = A + 1524; | |
| 357 C = (int)((B - 122.1)/365.25); | |
| 358 D = (36525*C)/100; | |
| 359 E = (int)((B-D)/30.6001); | |
| 360 X1 = (int)(30.6001*E); | |
| 361 p->D = B - D - X1; | |
| 362 p->M = E<14 ? E-1 : E-13; | |
| 363 p->Y = p->M>2 ? C - 4716 : C - 4715; | |
| 364 } | |
| 365 p->validYMD = 1; | |
| 366 } | |
| 367 | |
| 368 /* | |
| 369 ** Compute the Hour, Minute, and Seconds from the julian day number. | |
| 370 */ | |
| 371 static void computeHMS(DateTime *p){ | |
| 372 int s; | |
| 373 if( p->validHMS ) return; | |
| 374 computeJD(p); | |
| 375 s = (int)((p->iJD + 43200000) % 86400000); | |
| 376 p->s = s/1000.0; | |
| 377 s = (int)p->s; | |
| 378 p->s -= s; | |
| 379 p->h = s/3600; | |
| 380 s -= p->h*3600; | |
| 381 p->m = s/60; | |
| 382 p->s += s - p->m*60; | |
| 383 p->validHMS = 1; | |
| 384 } | |
| 385 | |
| 386 /* | |
| 387 ** Compute both YMD and HMS | |
| 388 */ | |
| 389 static void computeYMD_HMS(DateTime *p){ | |
| 390 computeYMD(p); | |
| 391 computeHMS(p); | |
| 392 } | |
| 393 | |
| 394 /* | |
| 395 ** Clear the YMD and HMS and the TZ | |
| 396 */ | |
| 397 static void clearYMD_HMS_TZ(DateTime *p){ | |
| 398 p->validYMD = 0; | |
| 399 p->validHMS = 0; | |
| 400 p->validTZ = 0; | |
| 401 } | |
| 402 | |
| 403 /* | |
| 404 ** On recent Windows platforms, the localtime_s() function is available | |
| 405 ** as part of the "Secure CRT". It is essentially equivalent to | |
| 406 ** localtime_r() available under most POSIX platforms, except that the | |
| 407 ** order of the parameters is reversed. | |
| 408 ** | |
| 409 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. | |
| 410 ** | |
| 411 ** If the user has not indicated to use localtime_r() or localtime_s() | |
| 412 ** already, check for an MSVC build environment that provides | |
| 413 ** localtime_s(). | |
| 414 */ | |
| 415 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ | |
| 416 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) | |
| 417 #define HAVE_LOCALTIME_S 1 | |
| 418 #endif | |
| 419 | |
| 420 #ifndef SQLITE_OMIT_LOCALTIME | |
| 421 /* | |
| 422 ** The following routine implements the rough equivalent of localtime_r() | |
| 423 ** using whatever operating-system specific localtime facility that | |
| 424 ** is available. This routine returns 0 on success and | |
| 425 ** non-zero on any kind of error. | |
| 426 ** | |
| 427 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this | |
| 428 ** routine will always fail. | |
| 429 ** | |
| 430 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C | |
| 431 ** library function localtime_r() is used to assist in the calculation of | |
| 432 ** local time. | |
| 433 */ | |
| 434 static int osLocaltime(time_t *t, struct tm *pTm){ | |
| 435 int rc; | |
| 436 #if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \ | |
| 437 && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S) | |
| 438 struct tm *pX; | |
| 439 #if SQLITE_THREADSAFE>0 | |
| 440 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); | |
| 441 #endif | |
| 442 sqlite3_mutex_enter(mutex); | |
| 443 pX = localtime(t); | |
| 444 #ifndef SQLITE_OMIT_BUILTIN_TEST | |
| 445 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; | |
| 446 #endif | |
| 447 if( pX ) *pTm = *pX; | |
| 448 sqlite3_mutex_leave(mutex); | |
| 449 rc = pX==0; | |
| 450 #else | |
| 451 #ifndef SQLITE_OMIT_BUILTIN_TEST | |
| 452 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; | |
| 453 #endif | |
| 454 #if defined(HAVE_LOCALTIME_R) && HAVE_LOCALTIME_R | |
| 455 rc = localtime_r(t, pTm)==0; | |
| 456 #else | |
| 457 rc = localtime_s(pTm, t); | |
| 458 #endif /* HAVE_LOCALTIME_R */ | |
| 459 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ | |
| 460 return rc; | |
| 461 } | |
| 462 #endif /* SQLITE_OMIT_LOCALTIME */ | |
| 463 | |
| 464 | |
| 465 #ifndef SQLITE_OMIT_LOCALTIME | |
| 466 /* | |
| 467 ** Compute the difference (in milliseconds) between localtime and UTC | |
| 468 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, | |
| 469 ** return this value and set *pRc to SQLITE_OK. | |
| 470 ** | |
| 471 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value | |
| 472 ** is undefined in this case. | |
| 473 */ | |
| 474 static sqlite3_int64 localtimeOffset( | |
| 475 DateTime *p, /* Date at which to calculate offset */ | |
| 476 sqlite3_context *pCtx, /* Write error here if one occurs */ | |
| 477 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ | |
| 478 ){ | |
| 479 DateTime x, y; | |
| 480 time_t t; | |
| 481 struct tm sLocal; | |
| 482 | |
| 483 /* Initialize the contents of sLocal to avoid a compiler warning. */ | |
| 484 memset(&sLocal, 0, sizeof(sLocal)); | |
| 485 | |
| 486 x = *p; | |
| 487 computeYMD_HMS(&x); | |
| 488 if( x.Y<1971 || x.Y>=2038 ){ | |
| 489 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only | |
| 490 ** works for years between 1970 and 2037. For dates outside this range, | |
| 491 ** SQLite attempts to map the year into an equivalent year within this | |
| 492 ** range, do the calculation, then map the year back. | |
| 493 */ | |
| 494 x.Y = 2000; | |
| 495 x.M = 1; | |
| 496 x.D = 1; | |
| 497 x.h = 0; | |
| 498 x.m = 0; | |
| 499 x.s = 0.0; | |
| 500 } else { | |
| 501 int s = (int)(x.s + 0.5); | |
| 502 x.s = s; | |
| 503 } | |
| 504 x.tz = 0; | |
| 505 x.validJD = 0; | |
| 506 computeJD(&x); | |
| 507 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); | |
| 508 if( osLocaltime(&t, &sLocal) ){ | |
| 509 sqlite3_result_error(pCtx, "local time unavailable", -1); | |
| 510 *pRc = SQLITE_ERROR; | |
| 511 return 0; | |
| 512 } | |
| 513 y.Y = sLocal.tm_year + 1900; | |
| 514 y.M = sLocal.tm_mon + 1; | |
| 515 y.D = sLocal.tm_mday; | |
| 516 y.h = sLocal.tm_hour; | |
| 517 y.m = sLocal.tm_min; | |
| 518 y.s = sLocal.tm_sec; | |
| 519 y.validYMD = 1; | |
| 520 y.validHMS = 1; | |
| 521 y.validJD = 0; | |
| 522 y.validTZ = 0; | |
| 523 computeJD(&y); | |
| 524 *pRc = SQLITE_OK; | |
| 525 return y.iJD - x.iJD; | |
| 526 } | |
| 527 #endif /* SQLITE_OMIT_LOCALTIME */ | |
| 528 | |
| 529 /* | |
| 530 ** Process a modifier to a date-time stamp. The modifiers are | |
| 531 ** as follows: | |
| 532 ** | |
| 533 ** NNN days | |
| 534 ** NNN hours | |
| 535 ** NNN minutes | |
| 536 ** NNN.NNNN seconds | |
| 537 ** NNN months | |
| 538 ** NNN years | |
| 539 ** start of month | |
| 540 ** start of year | |
| 541 ** start of week | |
| 542 ** start of day | |
| 543 ** weekday N | |
| 544 ** unixepoch | |
| 545 ** localtime | |
| 546 ** utc | |
| 547 ** | |
| 548 ** Return 0 on success and 1 if there is any kind of error. If the error | |
| 549 ** is in a system call (i.e. localtime()), then an error message is written | |
| 550 ** to context pCtx. If the error is an unrecognized modifier, no error is | |
| 551 ** written to pCtx. | |
| 552 */ | |
| 553 static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){ | |
| 554 int rc = 1; | |
| 555 int n; | |
| 556 double r; | |
| 557 char *z, zBuf[30]; | |
| 558 z = zBuf; | |
| 559 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ | |
| 560 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; | |
| 561 } | |
| 562 z[n] = 0; | |
| 563 switch( z[0] ){ | |
| 564 #ifndef SQLITE_OMIT_LOCALTIME | |
| 565 case 'l': { | |
| 566 /* localtime | |
| 567 ** | |
| 568 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to | |
| 569 ** show local time. | |
| 570 */ | |
| 571 if( strcmp(z, "localtime")==0 ){ | |
| 572 computeJD(p); | |
| 573 p->iJD += localtimeOffset(p, pCtx, &rc); | |
| 574 clearYMD_HMS_TZ(p); | |
| 575 } | |
| 576 break; | |
| 577 } | |
| 578 #endif | |
| 579 case 'u': { | |
| 580 /* | |
| 581 ** unixepoch | |
| 582 ** | |
| 583 ** Treat the current value of p->iJD as the number of | |
| 584 ** seconds since 1970. Convert to a real julian day number. | |
| 585 */ | |
| 586 if( strcmp(z, "unixepoch")==0 && p->validJD ){ | |
| 587 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; | |
| 588 clearYMD_HMS_TZ(p); | |
| 589 rc = 0; | |
| 590 } | |
| 591 #ifndef SQLITE_OMIT_LOCALTIME | |
| 592 else if( strcmp(z, "utc")==0 ){ | |
| 593 sqlite3_int64 c1; | |
| 594 computeJD(p); | |
| 595 c1 = localtimeOffset(p, pCtx, &rc); | |
| 596 if( rc==SQLITE_OK ){ | |
| 597 p->iJD -= c1; | |
| 598 clearYMD_HMS_TZ(p); | |
| 599 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); | |
| 600 } | |
| 601 } | |
| 602 #endif | |
| 603 break; | |
| 604 } | |
| 605 case 'w': { | |
| 606 /* | |
| 607 ** weekday N | |
| 608 ** | |
| 609 ** Move the date to the same time on the next occurrence of | |
| 610 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the | |
| 611 ** date is already on the appropriate weekday, this is a no-op. | |
| 612 */ | |
| 613 if( strncmp(z, "weekday ", 8)==0 | |
| 614 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) | |
| 615 && (n=(int)r)==r && n>=0 && r<7 ){ | |
| 616 sqlite3_int64 Z; | |
| 617 computeYMD_HMS(p); | |
| 618 p->validTZ = 0; | |
| 619 p->validJD = 0; | |
| 620 computeJD(p); | |
| 621 Z = ((p->iJD + 129600000)/86400000) % 7; | |
| 622 if( Z>n ) Z -= 7; | |
| 623 p->iJD += (n - Z)*86400000; | |
| 624 clearYMD_HMS_TZ(p); | |
| 625 rc = 0; | |
| 626 } | |
| 627 break; | |
| 628 } | |
| 629 case 's': { | |
| 630 /* | |
| 631 ** start of TTTTT | |
| 632 ** | |
| 633 ** Move the date backwards to the beginning of the current day, | |
| 634 ** or month or year. | |
| 635 */ | |
| 636 if( strncmp(z, "start of ", 9)!=0 ) break; | |
| 637 z += 9; | |
| 638 computeYMD(p); | |
| 639 p->validHMS = 1; | |
| 640 p->h = p->m = 0; | |
| 641 p->s = 0.0; | |
| 642 p->validTZ = 0; | |
| 643 p->validJD = 0; | |
| 644 if( strcmp(z,"month")==0 ){ | |
| 645 p->D = 1; | |
| 646 rc = 0; | |
| 647 }else if( strcmp(z,"year")==0 ){ | |
| 648 computeYMD(p); | |
| 649 p->M = 1; | |
| 650 p->D = 1; | |
| 651 rc = 0; | |
| 652 }else if( strcmp(z,"day")==0 ){ | |
| 653 rc = 0; | |
| 654 } | |
| 655 break; | |
| 656 } | |
| 657 case '+': | |
| 658 case '-': | |
| 659 case '0': | |
| 660 case '1': | |
| 661 case '2': | |
| 662 case '3': | |
| 663 case '4': | |
| 664 case '5': | |
| 665 case '6': | |
| 666 case '7': | |
| 667 case '8': | |
| 668 case '9': { | |
| 669 double rRounder; | |
| 670 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} | |
| 671 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ | |
| 672 rc = 1; | |
| 673 break; | |
| 674 } | |
| 675 if( z[n]==':' ){ | |
| 676 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the | |
| 677 ** specified number of hours, minutes, seconds, and fractional seconds | |
| 678 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be | |
| 679 ** omitted. | |
| 680 */ | |
| 681 const char *z2 = z; | |
| 682 DateTime tx; | |
| 683 sqlite3_int64 day; | |
| 684 if( !sqlite3Isdigit(*z2) ) z2++; | |
| 685 memset(&tx, 0, sizeof(tx)); | |
| 686 if( parseHhMmSs(z2, &tx) ) break; | |
| 687 computeJD(&tx); | |
| 688 tx.iJD -= 43200000; | |
| 689 day = tx.iJD/86400000; | |
| 690 tx.iJD -= day*86400000; | |
| 691 if( z[0]=='-' ) tx.iJD = -tx.iJD; | |
| 692 computeJD(p); | |
| 693 clearYMD_HMS_TZ(p); | |
| 694 p->iJD += tx.iJD; | |
| 695 rc = 0; | |
| 696 break; | |
| 697 } | |
| 698 z += n; | |
| 699 while( sqlite3Isspace(*z) ) z++; | |
| 700 n = sqlite3Strlen30(z); | |
| 701 if( n>10 || n<3 ) break; | |
| 702 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } | |
| 703 computeJD(p); | |
| 704 rc = 0; | |
| 705 rRounder = r<0 ? -0.5 : +0.5; | |
| 706 if( n==3 && strcmp(z,"day")==0 ){ | |
| 707 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); | |
| 708 }else if( n==4 && strcmp(z,"hour")==0 ){ | |
| 709 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); | |
| 710 }else if( n==6 && strcmp(z,"minute")==0 ){ | |
| 711 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); | |
| 712 }else if( n==6 && strcmp(z,"second")==0 ){ | |
| 713 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); | |
| 714 }else if( n==5 && strcmp(z,"month")==0 ){ | |
| 715 int x, y; | |
| 716 computeYMD_HMS(p); | |
| 717 p->M += (int)r; | |
| 718 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; | |
| 719 p->Y += x; | |
| 720 p->M -= x*12; | |
| 721 p->validJD = 0; | |
| 722 computeJD(p); | |
| 723 y = (int)r; | |
| 724 if( y!=r ){ | |
| 725 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); | |
| 726 } | |
| 727 }else if( n==4 && strcmp(z,"year")==0 ){ | |
| 728 int y = (int)r; | |
| 729 computeYMD_HMS(p); | |
| 730 p->Y += y; | |
| 731 p->validJD = 0; | |
| 732 computeJD(p); | |
| 733 if( y!=r ){ | |
| 734 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); | |
| 735 } | |
| 736 }else{ | |
| 737 rc = 1; | |
| 738 } | |
| 739 clearYMD_HMS_TZ(p); | |
| 740 break; | |
| 741 } | |
| 742 default: { | |
| 743 break; | |
| 744 } | |
| 745 } | |
| 746 return rc; | |
| 747 } | |
| 748 | |
| 749 /* | |
| 750 ** Process time function arguments. argv[0] is a date-time stamp. | |
| 751 ** argv[1] and following are modifiers. Parse them all and write | |
| 752 ** the resulting time into the DateTime structure p. Return 0 | |
| 753 ** on success and 1 if there are any errors. | |
| 754 ** | |
| 755 ** If there are zero parameters (if even argv[0] is undefined) | |
| 756 ** then assume a default value of "now" for argv[0]. | |
| 757 */ | |
| 758 static int isDate( | |
| 759 sqlite3_context *context, | |
| 760 int argc, | |
| 761 sqlite3_value **argv, | |
| 762 DateTime *p | |
| 763 ){ | |
| 764 int i; | |
| 765 const unsigned char *z; | |
| 766 int eType; | |
| 767 memset(p, 0, sizeof(*p)); | |
| 768 if( argc==0 ){ | |
| 769 return setDateTimeToCurrent(context, p); | |
| 770 } | |
| 771 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT | |
| 772 || eType==SQLITE_INTEGER ){ | |
| 773 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); | |
| 774 p->validJD = 1; | |
| 775 }else{ | |
| 776 z = sqlite3_value_text(argv[0]); | |
| 777 if( !z || parseDateOrTime(context, (char*)z, p) ){ | |
| 778 return 1; | |
| 779 } | |
| 780 } | |
| 781 for(i=1; i<argc; i++){ | |
| 782 z = sqlite3_value_text(argv[i]); | |
| 783 if( z==0 || parseModifier(context, (char*)z, p) ) return 1; | |
| 784 } | |
| 785 return 0; | |
| 786 } | |
| 787 | |
| 788 | |
| 789 /* | |
| 790 ** The following routines implement the various date and time functions | |
| 791 ** of SQLite. | |
| 792 */ | |
| 793 | |
| 794 /* | |
| 795 ** julianday( TIMESTRING, MOD, MOD, ...) | |
| 796 ** | |
| 797 ** Return the julian day number of the date specified in the arguments | |
| 798 */ | |
| 799 static void juliandayFunc( | |
| 800 sqlite3_context *context, | |
| 801 int argc, | |
| 802 sqlite3_value **argv | |
| 803 ){ | |
| 804 DateTime x; | |
| 805 if( isDate(context, argc, argv, &x)==0 ){ | |
| 806 computeJD(&x); | |
| 807 sqlite3_result_double(context, x.iJD/86400000.0); | |
| 808 } | |
| 809 } | |
| 810 | |
| 811 /* | |
| 812 ** datetime( TIMESTRING, MOD, MOD, ...) | |
| 813 ** | |
| 814 ** Return YYYY-MM-DD HH:MM:SS | |
| 815 */ | |
| 816 static void datetimeFunc( | |
| 817 sqlite3_context *context, | |
| 818 int argc, | |
| 819 sqlite3_value **argv | |
| 820 ){ | |
| 821 DateTime x; | |
| 822 if( isDate(context, argc, argv, &x)==0 ){ | |
| 823 char zBuf[100]; | |
| 824 computeYMD_HMS(&x); | |
| 825 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", | |
| 826 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); | |
| 827 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 828 } | |
| 829 } | |
| 830 | |
| 831 /* | |
| 832 ** time( TIMESTRING, MOD, MOD, ...) | |
| 833 ** | |
| 834 ** Return HH:MM:SS | |
| 835 */ | |
| 836 static void timeFunc( | |
| 837 sqlite3_context *context, | |
| 838 int argc, | |
| 839 sqlite3_value **argv | |
| 840 ){ | |
| 841 DateTime x; | |
| 842 if( isDate(context, argc, argv, &x)==0 ){ | |
| 843 char zBuf[100]; | |
| 844 computeHMS(&x); | |
| 845 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); | |
| 846 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 847 } | |
| 848 } | |
| 849 | |
| 850 /* | |
| 851 ** date( TIMESTRING, MOD, MOD, ...) | |
| 852 ** | |
| 853 ** Return YYYY-MM-DD | |
| 854 */ | |
| 855 static void dateFunc( | |
| 856 sqlite3_context *context, | |
| 857 int argc, | |
| 858 sqlite3_value **argv | |
| 859 ){ | |
| 860 DateTime x; | |
| 861 if( isDate(context, argc, argv, &x)==0 ){ | |
| 862 char zBuf[100]; | |
| 863 computeYMD(&x); | |
| 864 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); | |
| 865 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 866 } | |
| 867 } | |
| 868 | |
| 869 /* | |
| 870 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) | |
| 871 ** | |
| 872 ** Return a string described by FORMAT. Conversions as follows: | |
| 873 ** | |
| 874 ** %d day of month | |
| 875 ** %f ** fractional seconds SS.SSS | |
| 876 ** %H hour 00-24 | |
| 877 ** %j day of year 000-366 | |
| 878 ** %J ** Julian day number | |
| 879 ** %m month 01-12 | |
| 880 ** %M minute 00-59 | |
| 881 ** %s seconds since 1970-01-01 | |
| 882 ** %S seconds 00-59 | |
| 883 ** %w day of week 0-6 sunday==0 | |
| 884 ** %W week of year 00-53 | |
| 885 ** %Y year 0000-9999 | |
| 886 ** %% % | |
| 887 */ | |
| 888 static void strftimeFunc( | |
| 889 sqlite3_context *context, | |
| 890 int argc, | |
| 891 sqlite3_value **argv | |
| 892 ){ | |
| 893 DateTime x; | |
| 894 u64 n; | |
| 895 size_t i,j; | |
| 896 char *z; | |
| 897 sqlite3 *db; | |
| 898 const char *zFmt = (const char*)sqlite3_value_text(argv[0]); | |
| 899 char zBuf[100]; | |
| 900 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; | |
| 901 db = sqlite3_context_db_handle(context); | |
| 902 for(i=0, n=1; zFmt[i]; i++, n++){ | |
| 903 if( zFmt[i]=='%' ){ | |
| 904 switch( zFmt[i+1] ){ | |
| 905 case 'd': | |
| 906 case 'H': | |
| 907 case 'm': | |
| 908 case 'M': | |
| 909 case 'S': | |
| 910 case 'W': | |
| 911 n++; | |
| 912 /* fall thru */ | |
| 913 case 'w': | |
| 914 case '%': | |
| 915 break; | |
| 916 case 'f': | |
| 917 n += 8; | |
| 918 break; | |
| 919 case 'j': | |
| 920 n += 3; | |
| 921 break; | |
| 922 case 'Y': | |
| 923 n += 8; | |
| 924 break; | |
| 925 case 's': | |
| 926 case 'J': | |
| 927 n += 50; | |
| 928 break; | |
| 929 default: | |
| 930 return; /* ERROR. return a NULL */ | |
| 931 } | |
| 932 i++; | |
| 933 } | |
| 934 } | |
| 935 testcase( n==sizeof(zBuf)-1 ); | |
| 936 testcase( n==sizeof(zBuf) ); | |
| 937 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); | |
| 938 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
| 939 if( n<sizeof(zBuf) ){ | |
| 940 z = zBuf; | |
| 941 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
| 942 sqlite3_result_error_toobig(context); | |
| 943 return; | |
| 944 }else{ | |
| 945 z = sqlite3DbMallocRaw(db, (int)n); | |
| 946 if( z==0 ){ | |
| 947 sqlite3_result_error_nomem(context); | |
| 948 return; | |
| 949 } | |
| 950 } | |
| 951 computeJD(&x); | |
| 952 computeYMD_HMS(&x); | |
| 953 for(i=j=0; zFmt[i]; i++){ | |
| 954 if( zFmt[i]!='%' ){ | |
| 955 z[j++] = zFmt[i]; | |
| 956 }else{ | |
| 957 i++; | |
| 958 switch( zFmt[i] ){ | |
| 959 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; | |
| 960 case 'f': { | |
| 961 double s = x.s; | |
| 962 if( s>59.999 ) s = 59.999; | |
| 963 sqlite3_snprintf(7, &z[j],"%06.3f", s); | |
| 964 j += sqlite3Strlen30(&z[j]); | |
| 965 break; | |
| 966 } | |
| 967 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; | |
| 968 case 'W': /* Fall thru */ | |
| 969 case 'j': { | |
| 970 int nDay; /* Number of days since 1st day of year */ | |
| 971 DateTime y = x; | |
| 972 y.validJD = 0; | |
| 973 y.M = 1; | |
| 974 y.D = 1; | |
| 975 computeJD(&y); | |
| 976 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); | |
| 977 if( zFmt[i]=='W' ){ | |
| 978 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ | |
| 979 wd = (int)(((x.iJD+43200000)/86400000)%7); | |
| 980 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); | |
| 981 j += 2; | |
| 982 }else{ | |
| 983 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); | |
| 984 j += 3; | |
| 985 } | |
| 986 break; | |
| 987 } | |
| 988 case 'J': { | |
| 989 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); | |
| 990 j+=sqlite3Strlen30(&z[j]); | |
| 991 break; | |
| 992 } | |
| 993 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; | |
| 994 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; | |
| 995 case 's': { | |
| 996 sqlite3_snprintf(30,&z[j],"%lld", | |
| 997 (i64)(x.iJD/1000 - 21086676*(i64)10000)); | |
| 998 j += sqlite3Strlen30(&z[j]); | |
| 999 break; | |
| 1000 } | |
| 1001 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; | |
| 1002 case 'w': { | |
| 1003 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; | |
| 1004 break; | |
| 1005 } | |
| 1006 case 'Y': { | |
| 1007 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); | |
| 1008 break; | |
| 1009 } | |
| 1010 default: z[j++] = '%'; break; | |
| 1011 } | |
| 1012 } | |
| 1013 } | |
| 1014 z[j] = 0; | |
| 1015 sqlite3_result_text(context, z, -1, | |
| 1016 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); | |
| 1017 } | |
| 1018 | |
| 1019 /* | |
| 1020 ** current_time() | |
| 1021 ** | |
| 1022 ** This function returns the same value as time('now'). | |
| 1023 */ | |
| 1024 static void ctimeFunc( | |
| 1025 sqlite3_context *context, | |
| 1026 int NotUsed, | |
| 1027 sqlite3_value **NotUsed2 | |
| 1028 ){ | |
| 1029 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 1030 timeFunc(context, 0, 0); | |
| 1031 } | |
| 1032 | |
| 1033 /* | |
| 1034 ** current_date() | |
| 1035 ** | |
| 1036 ** This function returns the same value as date('now'). | |
| 1037 */ | |
| 1038 static void cdateFunc( | |
| 1039 sqlite3_context *context, | |
| 1040 int NotUsed, | |
| 1041 sqlite3_value **NotUsed2 | |
| 1042 ){ | |
| 1043 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 1044 dateFunc(context, 0, 0); | |
| 1045 } | |
| 1046 | |
| 1047 /* | |
| 1048 ** current_timestamp() | |
| 1049 ** | |
| 1050 ** This function returns the same value as datetime('now'). | |
| 1051 */ | |
| 1052 static void ctimestampFunc( | |
| 1053 sqlite3_context *context, | |
| 1054 int NotUsed, | |
| 1055 sqlite3_value **NotUsed2 | |
| 1056 ){ | |
| 1057 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 1058 datetimeFunc(context, 0, 0); | |
| 1059 } | |
| 1060 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ | |
| 1061 | |
| 1062 #ifdef SQLITE_OMIT_DATETIME_FUNCS | |
| 1063 /* | |
| 1064 ** If the library is compiled to omit the full-scale date and time | |
| 1065 ** handling (to get a smaller binary), the following minimal version | |
| 1066 ** of the functions current_time(), current_date() and current_timestamp() | |
| 1067 ** are included instead. This is to support column declarations that | |
| 1068 ** include "DEFAULT CURRENT_TIME" etc. | |
| 1069 ** | |
| 1070 ** This function uses the C-library functions time(), gmtime() | |
| 1071 ** and strftime(). The format string to pass to strftime() is supplied | |
| 1072 ** as the user-data for the function. | |
| 1073 */ | |
| 1074 static void currentTimeFunc( | |
| 1075 sqlite3_context *context, | |
| 1076 int argc, | |
| 1077 sqlite3_value **argv | |
| 1078 ){ | |
| 1079 time_t t; | |
| 1080 char *zFormat = (char *)sqlite3_user_data(context); | |
| 1081 sqlite3 *db; | |
| 1082 sqlite3_int64 iT; | |
| 1083 struct tm *pTm; | |
| 1084 struct tm sNow; | |
| 1085 char zBuf[20]; | |
| 1086 | |
| 1087 UNUSED_PARAMETER(argc); | |
| 1088 UNUSED_PARAMETER(argv); | |
| 1089 | |
| 1090 iT = sqlite3StmtCurrentTime(context); | |
| 1091 if( iT<=0 ) return; | |
| 1092 t = iT/1000 - 10000*(sqlite3_int64)21086676; | |
| 1093 #ifdef HAVE_GMTIME_R | |
| 1094 pTm = gmtime_r(&t, &sNow); | |
| 1095 #else | |
| 1096 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
| 1097 pTm = gmtime(&t); | |
| 1098 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); | |
| 1099 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
| 1100 #endif | |
| 1101 if( pTm ){ | |
| 1102 strftime(zBuf, 20, zFormat, &sNow); | |
| 1103 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 1104 } | |
| 1105 } | |
| 1106 #endif | |
| 1107 | |
| 1108 /* | |
| 1109 ** This function registered all of the above C functions as SQL | |
| 1110 ** functions. This should be the only routine in this file with | |
| 1111 ** external linkage. | |
| 1112 */ | |
| 1113 void sqlite3RegisterDateTimeFunctions(void){ | |
| 1114 static SQLITE_WSD FuncDef aDateTimeFuncs[] = { | |
| 1115 #ifndef SQLITE_OMIT_DATETIME_FUNCS | |
| 1116 FUNCTION(julianday, -1, 0, 0, juliandayFunc ), | |
| 1117 FUNCTION(date, -1, 0, 0, dateFunc ), | |
| 1118 FUNCTION(time, -1, 0, 0, timeFunc ), | |
| 1119 FUNCTION(datetime, -1, 0, 0, datetimeFunc ), | |
| 1120 FUNCTION(strftime, -1, 0, 0, strftimeFunc ), | |
| 1121 FUNCTION(current_time, 0, 0, 0, ctimeFunc ), | |
| 1122 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), | |
| 1123 FUNCTION(current_date, 0, 0, 0, cdateFunc ), | |
| 1124 #else | |
| 1125 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), | |
| 1126 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), | |
| 1127 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), | |
| 1128 #endif | |
| 1129 }; | |
| 1130 int i; | |
| 1131 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); | |
| 1132 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); | |
| 1133 | |
| 1134 for(i=0; i<ArraySize(aDateTimeFuncs); i++){ | |
| 1135 sqlite3FuncDefInsert(pHash, &aFunc[i]); | |
| 1136 } | |
| 1137 } | |
| OLD | NEW |