Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Unified Diff: third_party/sqlite/sqlite-src-3080704/src/vdbe.c

Issue 2363173002: [sqlite] Remove obsolete reference version 3.8.7.4. (Closed)
Patch Set: Created 4 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: third_party/sqlite/sqlite-src-3080704/src/vdbe.c
diff --git a/third_party/sqlite/sqlite-src-3080704/src/vdbe.c b/third_party/sqlite/sqlite-src-3080704/src/vdbe.c
deleted file mode 100644
index 366c7a01661b2d48e986d903d412981e69df33f5..0000000000000000000000000000000000000000
--- a/third_party/sqlite/sqlite-src-3080704/src/vdbe.c
+++ /dev/null
@@ -1,6477 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** The code in this file implements the function that runs the
-** bytecode of a prepared statement.
-**
-** Various scripts scan this source file in order to generate HTML
-** documentation, headers files, or other derived files. The formatting
-** of the code in this file is, therefore, important. See other comments
-** in this file for details. If in doubt, do not deviate from existing
-** commenting and indentation practices when changing or adding code.
-*/
-#include "sqliteInt.h"
-#include "vdbeInt.h"
-
-/*
-** Invoke this macro on memory cells just prior to changing the
-** value of the cell. This macro verifies that shallow copies are
-** not misused. A shallow copy of a string or blob just copies a
-** pointer to the string or blob, not the content. If the original
-** is changed while the copy is still in use, the string or blob might
-** be changed out from under the copy. This macro verifies that nothing
-** like that ever happens.
-*/
-#ifdef SQLITE_DEBUG
-# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
-#else
-# define memAboutToChange(P,M)
-#endif
-
-/*
-** The following global variable is incremented every time a cursor
-** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
-** procedures use this information to make sure that indices are
-** working correctly. This variable has no function other than to
-** help verify the correct operation of the library.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_search_count = 0;
-#endif
-
-/*
-** When this global variable is positive, it gets decremented once before
-** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
-** field of the sqlite3 structure is set in order to simulate an interrupt.
-**
-** This facility is used for testing purposes only. It does not function
-** in an ordinary build.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_interrupt_count = 0;
-#endif
-
-/*
-** The next global variable is incremented each type the OP_Sort opcode
-** is executed. The test procedures use this information to make sure that
-** sorting is occurring or not occurring at appropriate times. This variable
-** has no function other than to help verify the correct operation of the
-** library.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_sort_count = 0;
-#endif
-
-/*
-** The next global variable records the size of the largest MEM_Blob
-** or MEM_Str that has been used by a VDBE opcode. The test procedures
-** use this information to make sure that the zero-blob functionality
-** is working correctly. This variable has no function other than to
-** help verify the correct operation of the library.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_max_blobsize = 0;
-static void updateMaxBlobsize(Mem *p){
- if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
- sqlite3_max_blobsize = p->n;
- }
-}
-#endif
-
-/*
-** The next global variable is incremented each time the OP_Found opcode
-** is executed. This is used to test whether or not the foreign key
-** operation implemented using OP_FkIsZero is working. This variable
-** has no function other than to help verify the correct operation of the
-** library.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_found_count = 0;
-#endif
-
-/*
-** Test a register to see if it exceeds the current maximum blob size.
-** If it does, record the new maximum blob size.
-*/
-#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
-# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
-#else
-# define UPDATE_MAX_BLOBSIZE(P)
-#endif
-
-/*
-** Invoke the VDBE coverage callback, if that callback is defined. This
-** feature is used for test suite validation only and does not appear an
-** production builds.
-**
-** M is an integer, 2 or 3, that indices how many different ways the
-** branch can go. It is usually 2. "I" is the direction the branch
-** goes. 0 means falls through. 1 means branch is taken. 2 means the
-** second alternative branch is taken.
-**
-** iSrcLine is the source code line (from the __LINE__ macro) that
-** generated the VDBE instruction. This instrumentation assumes that all
-** source code is in a single file (the amalgamation). Special values 1
-** and 2 for the iSrcLine parameter mean that this particular branch is
-** always taken or never taken, respectively.
-*/
-#if !defined(SQLITE_VDBE_COVERAGE)
-# define VdbeBranchTaken(I,M)
-#else
-# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
- static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
- if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
- M = iSrcLine;
- /* Assert the truth of VdbeCoverageAlwaysTaken() and
- ** VdbeCoverageNeverTaken() */
- assert( (M & I)==I );
- }else{
- if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
- sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
- iSrcLine,I,M);
- }
- }
-#endif
-
-/*
-** Convert the given register into a string if it isn't one
-** already. Return non-zero if a malloc() fails.
-*/
-#define Stringify(P, enc) \
- if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
- { goto no_mem; }
-
-/*
-** An ephemeral string value (signified by the MEM_Ephem flag) contains
-** a pointer to a dynamically allocated string where some other entity
-** is responsible for deallocating that string. Because the register
-** does not control the string, it might be deleted without the register
-** knowing it.
-**
-** This routine converts an ephemeral string into a dynamically allocated
-** string that the register itself controls. In other words, it
-** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
-*/
-#define Deephemeralize(P) \
- if( ((P)->flags&MEM_Ephem)!=0 \
- && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
-
-/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
-#define isSorter(x) ((x)->pSorter!=0)
-
-/*
-** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
-** if we run out of memory.
-*/
-static VdbeCursor *allocateCursor(
- Vdbe *p, /* The virtual machine */
- int iCur, /* Index of the new VdbeCursor */
- int nField, /* Number of fields in the table or index */
- int iDb, /* Database the cursor belongs to, or -1 */
- int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
-){
- /* Find the memory cell that will be used to store the blob of memory
- ** required for this VdbeCursor structure. It is convenient to use a
- ** vdbe memory cell to manage the memory allocation required for a
- ** VdbeCursor structure for the following reasons:
- **
- ** * Sometimes cursor numbers are used for a couple of different
- ** purposes in a vdbe program. The different uses might require
- ** different sized allocations. Memory cells provide growable
- ** allocations.
- **
- ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
- ** be freed lazily via the sqlite3_release_memory() API. This
- ** minimizes the number of malloc calls made by the system.
- **
- ** Memory cells for cursors are allocated at the top of the address
- ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
- ** cursor 1 is managed by memory cell (p->nMem-1), etc.
- */
- Mem *pMem = &p->aMem[p->nMem-iCur];
-
- int nByte;
- VdbeCursor *pCx = 0;
- nByte =
- ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
- (isBtreeCursor?sqlite3BtreeCursorSize():0);
-
- assert( iCur<p->nCursor );
- if( p->apCsr[iCur] ){
- sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
- p->apCsr[iCur] = 0;
- }
- if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
- p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
- memset(pCx, 0, sizeof(VdbeCursor));
- pCx->iDb = iDb;
- pCx->nField = nField;
- pCx->aOffset = &pCx->aType[nField];
- if( isBtreeCursor ){
- pCx->pCursor = (BtCursor*)
- &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
- sqlite3BtreeCursorZero(pCx->pCursor);
- }
- }
- return pCx;
-}
-
-/*
-** Try to convert a value into a numeric representation if we can
-** do so without loss of information. In other words, if the string
-** looks like a number, convert it into a number. If it does not
-** look like a number, leave it alone.
-**
-** If the bTryForInt flag is true, then extra effort is made to give
-** an integer representation. Strings that look like floating point
-** values but which have no fractional component (example: '48.00')
-** will have a MEM_Int representation when bTryForInt is true.
-**
-** If bTryForInt is false, then if the input string contains a decimal
-** point or exponential notation, the result is only MEM_Real, even
-** if there is an exact integer representation of the quantity.
-*/
-static void applyNumericAffinity(Mem *pRec, int bTryForInt){
- double rValue;
- i64 iValue;
- u8 enc = pRec->enc;
- assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
- if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
- if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
- pRec->u.i = iValue;
- pRec->flags |= MEM_Int;
- }else{
- pRec->u.r = rValue;
- pRec->flags |= MEM_Real;
- if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
- }
-}
-
-/*
-** Processing is determine by the affinity parameter:
-**
-** SQLITE_AFF_INTEGER:
-** SQLITE_AFF_REAL:
-** SQLITE_AFF_NUMERIC:
-** Try to convert pRec to an integer representation or a
-** floating-point representation if an integer representation
-** is not possible. Note that the integer representation is
-** always preferred, even if the affinity is REAL, because
-** an integer representation is more space efficient on disk.
-**
-** SQLITE_AFF_TEXT:
-** Convert pRec to a text representation.
-**
-** SQLITE_AFF_NONE:
-** No-op. pRec is unchanged.
-*/
-static void applyAffinity(
- Mem *pRec, /* The value to apply affinity to */
- char affinity, /* The affinity to be applied */
- u8 enc /* Use this text encoding */
-){
- if( affinity>=SQLITE_AFF_NUMERIC ){
- assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
- || affinity==SQLITE_AFF_NUMERIC );
- if( (pRec->flags & MEM_Int)==0 ){
- if( (pRec->flags & MEM_Real)==0 ){
- if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
- }else{
- sqlite3VdbeIntegerAffinity(pRec);
- }
- }
- }else if( affinity==SQLITE_AFF_TEXT ){
- /* Only attempt the conversion to TEXT if there is an integer or real
- ** representation (blob and NULL do not get converted) but no string
- ** representation.
- */
- if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
- sqlite3VdbeMemStringify(pRec, enc, 1);
- }
- }
-}
-
-/*
-** Try to convert the type of a function argument or a result column
-** into a numeric representation. Use either INTEGER or REAL whichever
-** is appropriate. But only do the conversion if it is possible without
-** loss of information and return the revised type of the argument.
-*/
-int sqlite3_value_numeric_type(sqlite3_value *pVal){
- int eType = sqlite3_value_type(pVal);
- if( eType==SQLITE_TEXT ){
- Mem *pMem = (Mem*)pVal;
- applyNumericAffinity(pMem, 0);
- eType = sqlite3_value_type(pVal);
- }
- return eType;
-}
-
-/*
-** Exported version of applyAffinity(). This one works on sqlite3_value*,
-** not the internal Mem* type.
-*/
-void sqlite3ValueApplyAffinity(
- sqlite3_value *pVal,
- u8 affinity,
- u8 enc
-){
- applyAffinity((Mem *)pVal, affinity, enc);
-}
-
-/*
-** pMem currently only holds a string type (or maybe a BLOB that we can
-** interpret as a string if we want to). Compute its corresponding
-** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
-** accordingly.
-*/
-static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
- assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
- assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
- if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
- return 0;
- }
- if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
- return MEM_Int;
- }
- return MEM_Real;
-}
-
-/*
-** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
-** none.
-**
-** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
-** But it does set pMem->u.r and pMem->u.i appropriately.
-*/
-static u16 numericType(Mem *pMem){
- if( pMem->flags & (MEM_Int|MEM_Real) ){
- return pMem->flags & (MEM_Int|MEM_Real);
- }
- if( pMem->flags & (MEM_Str|MEM_Blob) ){
- return computeNumericType(pMem);
- }
- return 0;
-}
-
-#ifdef SQLITE_DEBUG
-/*
-** Write a nice string representation of the contents of cell pMem
-** into buffer zBuf, length nBuf.
-*/
-void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
- char *zCsr = zBuf;
- int f = pMem->flags;
-
- static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
-
- if( f&MEM_Blob ){
- int i;
- char c;
- if( f & MEM_Dyn ){
- c = 'z';
- assert( (f & (MEM_Static|MEM_Ephem))==0 );
- }else if( f & MEM_Static ){
- c = 't';
- assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
- }else if( f & MEM_Ephem ){
- c = 'e';
- assert( (f & (MEM_Static|MEM_Dyn))==0 );
- }else{
- c = 's';
- }
-
- sqlite3_snprintf(100, zCsr, "%c", c);
- zCsr += sqlite3Strlen30(zCsr);
- sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
- zCsr += sqlite3Strlen30(zCsr);
- for(i=0; i<16 && i<pMem->n; i++){
- sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
- zCsr += sqlite3Strlen30(zCsr);
- }
- for(i=0; i<16 && i<pMem->n; i++){
- char z = pMem->z[i];
- if( z<32 || z>126 ) *zCsr++ = '.';
- else *zCsr++ = z;
- }
-
- sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
- zCsr += sqlite3Strlen30(zCsr);
- if( f & MEM_Zero ){
- sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
- zCsr += sqlite3Strlen30(zCsr);
- }
- *zCsr = '\0';
- }else if( f & MEM_Str ){
- int j, k;
- zBuf[0] = ' ';
- if( f & MEM_Dyn ){
- zBuf[1] = 'z';
- assert( (f & (MEM_Static|MEM_Ephem))==0 );
- }else if( f & MEM_Static ){
- zBuf[1] = 't';
- assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
- }else if( f & MEM_Ephem ){
- zBuf[1] = 'e';
- assert( (f & (MEM_Static|MEM_Dyn))==0 );
- }else{
- zBuf[1] = 's';
- }
- k = 2;
- sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
- k += sqlite3Strlen30(&zBuf[k]);
- zBuf[k++] = '[';
- for(j=0; j<15 && j<pMem->n; j++){
- u8 c = pMem->z[j];
- if( c>=0x20 && c<0x7f ){
- zBuf[k++] = c;
- }else{
- zBuf[k++] = '.';
- }
- }
- zBuf[k++] = ']';
- sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
- k += sqlite3Strlen30(&zBuf[k]);
- zBuf[k++] = 0;
- }
-}
-#endif
-
-#ifdef SQLITE_DEBUG
-/*
-** Print the value of a register for tracing purposes:
-*/
-static void memTracePrint(Mem *p){
- if( p->flags & MEM_Undefined ){
- printf(" undefined");
- }else if( p->flags & MEM_Null ){
- printf(" NULL");
- }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
- printf(" si:%lld", p->u.i);
- }else if( p->flags & MEM_Int ){
- printf(" i:%lld", p->u.i);
-#ifndef SQLITE_OMIT_FLOATING_POINT
- }else if( p->flags & MEM_Real ){
- printf(" r:%g", p->u.r);
-#endif
- }else if( p->flags & MEM_RowSet ){
- printf(" (rowset)");
- }else{
- char zBuf[200];
- sqlite3VdbeMemPrettyPrint(p, zBuf);
- printf(" %s", zBuf);
- }
-}
-static void registerTrace(int iReg, Mem *p){
- printf("REG[%d] = ", iReg);
- memTracePrint(p);
- printf("\n");
-}
-#endif
-
-#ifdef SQLITE_DEBUG
-# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
-#else
-# define REGISTER_TRACE(R,M)
-#endif
-
-
-#ifdef VDBE_PROFILE
-
-/*
-** hwtime.h contains inline assembler code for implementing
-** high-performance timing routines.
-*/
-#include "hwtime.h"
-
-#endif
-
-#ifndef NDEBUG
-/*
-** This function is only called from within an assert() expression. It
-** checks that the sqlite3.nTransaction variable is correctly set to
-** the number of non-transaction savepoints currently in the
-** linked list starting at sqlite3.pSavepoint.
-**
-** Usage:
-**
-** assert( checkSavepointCount(db) );
-*/
-static int checkSavepointCount(sqlite3 *db){
- int n = 0;
- Savepoint *p;
- for(p=db->pSavepoint; p; p=p->pNext) n++;
- assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
- return 1;
-}
-#endif
-
-
-/*
-** Execute as much of a VDBE program as we can.
-** This is the core of sqlite3_step().
-*/
-int sqlite3VdbeExec(
- Vdbe *p /* The VDBE */
-){
- int pc=0; /* The program counter */
- Op *aOp = p->aOp; /* Copy of p->aOp */
- Op *pOp; /* Current operation */
- int rc = SQLITE_OK; /* Value to return */
- sqlite3 *db = p->db; /* The database */
- u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
- u8 encoding = ENC(db); /* The database encoding */
- int iCompare = 0; /* Result of last OP_Compare operation */
- unsigned nVmStep = 0; /* Number of virtual machine steps */
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
-#endif
- Mem *aMem = p->aMem; /* Copy of p->aMem */
- Mem *pIn1 = 0; /* 1st input operand */
- Mem *pIn2 = 0; /* 2nd input operand */
- Mem *pIn3 = 0; /* 3rd input operand */
- Mem *pOut = 0; /* Output operand */
- int *aPermute = 0; /* Permutation of columns for OP_Compare */
- i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
-#ifdef VDBE_PROFILE
- u64 start; /* CPU clock count at start of opcode */
-#endif
- /*** INSERT STACK UNION HERE ***/
-
- assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
- sqlite3VdbeEnter(p);
- if( p->rc==SQLITE_NOMEM ){
- /* This happens if a malloc() inside a call to sqlite3_column_text() or
- ** sqlite3_column_text16() failed. */
- goto no_mem;
- }
- assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
- assert( p->bIsReader || p->readOnly!=0 );
- p->rc = SQLITE_OK;
- p->iCurrentTime = 0;
- assert( p->explain==0 );
- p->pResultSet = 0;
- db->busyHandler.nBusy = 0;
- if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
- sqlite3VdbeIOTraceSql(p);
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- if( db->xProgress ){
- assert( 0 < db->nProgressOps );
- nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
- if( nProgressLimit==0 ){
- nProgressLimit = db->nProgressOps;
- }else{
- nProgressLimit %= (unsigned)db->nProgressOps;
- }
- }
-#endif
-#ifdef SQLITE_DEBUG
- sqlite3BeginBenignMalloc();
- if( p->pc==0
- && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
- ){
- int i;
- int once = 1;
- sqlite3VdbePrintSql(p);
- if( p->db->flags & SQLITE_VdbeListing ){
- printf("VDBE Program Listing:\n");
- for(i=0; i<p->nOp; i++){
- sqlite3VdbePrintOp(stdout, i, &aOp[i]);
- }
- }
- if( p->db->flags & SQLITE_VdbeEQP ){
- for(i=0; i<p->nOp; i++){
- if( aOp[i].opcode==OP_Explain ){
- if( once ) printf("VDBE Query Plan:\n");
- printf("%s\n", aOp[i].p4.z);
- once = 0;
- }
- }
- }
- if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
- }
- sqlite3EndBenignMalloc();
-#endif
- for(pc=p->pc; rc==SQLITE_OK; pc++){
- assert( pc>=0 && pc<p->nOp );
- if( db->mallocFailed ) goto no_mem;
-#ifdef VDBE_PROFILE
- start = sqlite3Hwtime();
-#endif
- nVmStep++;
- pOp = &aOp[pc];
-
- /* Only allow tracing if SQLITE_DEBUG is defined.
- */
-#ifdef SQLITE_DEBUG
- if( db->flags & SQLITE_VdbeTrace ){
- sqlite3VdbePrintOp(stdout, pc, pOp);
- }
-#endif
-
-
- /* Check to see if we need to simulate an interrupt. This only happens
- ** if we have a special test build.
- */
-#ifdef SQLITE_TEST
- if( sqlite3_interrupt_count>0 ){
- sqlite3_interrupt_count--;
- if( sqlite3_interrupt_count==0 ){
- sqlite3_interrupt(db);
- }
- }
-#endif
-
- /* On any opcode with the "out2-prerelease" tag, free any
- ** external allocations out of mem[p2] and set mem[p2] to be
- ** an undefined integer. Opcodes will either fill in the integer
- ** value or convert mem[p2] to a different type.
- */
- assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
- if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
- assert( pOp->p2>0 );
- assert( pOp->p2<=(p->nMem-p->nCursor) );
- pOut = &aMem[pOp->p2];
- memAboutToChange(p, pOut);
- if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
- pOut->flags = MEM_Int;
- }
-
- /* Sanity checking on other operands */
-#ifdef SQLITE_DEBUG
- if( (pOp->opflags & OPFLG_IN1)!=0 ){
- assert( pOp->p1>0 );
- assert( pOp->p1<=(p->nMem-p->nCursor) );
- assert( memIsValid(&aMem[pOp->p1]) );
- assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
- REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
- }
- if( (pOp->opflags & OPFLG_IN2)!=0 ){
- assert( pOp->p2>0 );
- assert( pOp->p2<=(p->nMem-p->nCursor) );
- assert( memIsValid(&aMem[pOp->p2]) );
- assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
- REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
- }
- if( (pOp->opflags & OPFLG_IN3)!=0 ){
- assert( pOp->p3>0 );
- assert( pOp->p3<=(p->nMem-p->nCursor) );
- assert( memIsValid(&aMem[pOp->p3]) );
- assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
- REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
- }
- if( (pOp->opflags & OPFLG_OUT2)!=0 ){
- assert( pOp->p2>0 );
- assert( pOp->p2<=(p->nMem-p->nCursor) );
- memAboutToChange(p, &aMem[pOp->p2]);
- }
- if( (pOp->opflags & OPFLG_OUT3)!=0 ){
- assert( pOp->p3>0 );
- assert( pOp->p3<=(p->nMem-p->nCursor) );
- memAboutToChange(p, &aMem[pOp->p3]);
- }
-#endif
-
- switch( pOp->opcode ){
-
-/*****************************************************************************
-** What follows is a massive switch statement where each case implements a
-** separate instruction in the virtual machine. If we follow the usual
-** indentation conventions, each case should be indented by 6 spaces. But
-** that is a lot of wasted space on the left margin. So the code within
-** the switch statement will break with convention and be flush-left. Another
-** big comment (similar to this one) will mark the point in the code where
-** we transition back to normal indentation.
-**
-** The formatting of each case is important. The makefile for SQLite
-** generates two C files "opcodes.h" and "opcodes.c" by scanning this
-** file looking for lines that begin with "case OP_". The opcodes.h files
-** will be filled with #defines that give unique integer values to each
-** opcode and the opcodes.c file is filled with an array of strings where
-** each string is the symbolic name for the corresponding opcode. If the
-** case statement is followed by a comment of the form "/# same as ... #/"
-** that comment is used to determine the particular value of the opcode.
-**
-** Other keywords in the comment that follows each case are used to
-** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
-** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
-** the mkopcodeh.awk script for additional information.
-**
-** Documentation about VDBE opcodes is generated by scanning this file
-** for lines of that contain "Opcode:". That line and all subsequent
-** comment lines are used in the generation of the opcode.html documentation
-** file.
-**
-** SUMMARY:
-**
-** Formatting is important to scripts that scan this file.
-** Do not deviate from the formatting style currently in use.
-**
-*****************************************************************************/
-
-/* Opcode: Goto * P2 * * *
-**
-** An unconditional jump to address P2.
-** The next instruction executed will be
-** the one at index P2 from the beginning of
-** the program.
-**
-** The P1 parameter is not actually used by this opcode. However, it
-** is sometimes set to 1 instead of 0 as a hint to the command-line shell
-** that this Goto is the bottom of a loop and that the lines from P2 down
-** to the current line should be indented for EXPLAIN output.
-*/
-case OP_Goto: { /* jump */
- pc = pOp->p2 - 1;
-
- /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
- ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
- ** completion. Check to see if sqlite3_interrupt() has been called
- ** or if the progress callback needs to be invoked.
- **
- ** This code uses unstructured "goto" statements and does not look clean.
- ** But that is not due to sloppy coding habits. The code is written this
- ** way for performance, to avoid having to run the interrupt and progress
- ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
- ** faster according to "valgrind --tool=cachegrind" */
-check_for_interrupt:
- if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- /* Call the progress callback if it is configured and the required number
- ** of VDBE ops have been executed (either since this invocation of
- ** sqlite3VdbeExec() or since last time the progress callback was called).
- ** If the progress callback returns non-zero, exit the virtual machine with
- ** a return code SQLITE_ABORT.
- */
- if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
- assert( db->nProgressOps!=0 );
- nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
- if( db->xProgress(db->pProgressArg) ){
- rc = SQLITE_INTERRUPT;
- goto vdbe_error_halt;
- }
- }
-#endif
-
- break;
-}
-
-/* Opcode: Gosub P1 P2 * * *
-**
-** Write the current address onto register P1
-** and then jump to address P2.
-*/
-case OP_Gosub: { /* jump */
- assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
- pIn1 = &aMem[pOp->p1];
- assert( VdbeMemDynamic(pIn1)==0 );
- memAboutToChange(p, pIn1);
- pIn1->flags = MEM_Int;
- pIn1->u.i = pc;
- REGISTER_TRACE(pOp->p1, pIn1);
- pc = pOp->p2 - 1;
- break;
-}
-
-/* Opcode: Return P1 * * * *
-**
-** Jump to the next instruction after the address in register P1. After
-** the jump, register P1 becomes undefined.
-*/
-case OP_Return: { /* in1 */
- pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags==MEM_Int );
- pc = (int)pIn1->u.i;
- pIn1->flags = MEM_Undefined;
- break;
-}
-
-/* Opcode: InitCoroutine P1 P2 P3 * *
-**
-** Set up register P1 so that it will Yield to the coroutine
-** located at address P3.
-**
-** If P2!=0 then the coroutine implementation immediately follows
-** this opcode. So jump over the coroutine implementation to
-** address P2.
-**
-** See also: EndCoroutine
-*/
-case OP_InitCoroutine: { /* jump */
- assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
- assert( pOp->p2>=0 && pOp->p2<p->nOp );
- assert( pOp->p3>=0 && pOp->p3<p->nOp );
- pOut = &aMem[pOp->p1];
- assert( !VdbeMemDynamic(pOut) );
- pOut->u.i = pOp->p3 - 1;
- pOut->flags = MEM_Int;
- if( pOp->p2 ) pc = pOp->p2 - 1;
- break;
-}
-
-/* Opcode: EndCoroutine P1 * * * *
-**
-** The instruction at the address in register P1 is a Yield.
-** Jump to the P2 parameter of that Yield.
-** After the jump, register P1 becomes undefined.
-**
-** See also: InitCoroutine
-*/
-case OP_EndCoroutine: { /* in1 */
- VdbeOp *pCaller;
- pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags==MEM_Int );
- assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
- pCaller = &aOp[pIn1->u.i];
- assert( pCaller->opcode==OP_Yield );
- assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
- pc = pCaller->p2 - 1;
- pIn1->flags = MEM_Undefined;
- break;
-}
-
-/* Opcode: Yield P1 P2 * * *
-**
-** Swap the program counter with the value in register P1. This
-** has the effect of yielding to a coroutine.
-**
-** If the coroutine that is launched by this instruction ends with
-** Yield or Return then continue to the next instruction. But if
-** the coroutine launched by this instruction ends with
-** EndCoroutine, then jump to P2 rather than continuing with the
-** next instruction.
-**
-** See also: InitCoroutine
-*/
-case OP_Yield: { /* in1, jump */
- int pcDest;
- pIn1 = &aMem[pOp->p1];
- assert( VdbeMemDynamic(pIn1)==0 );
- pIn1->flags = MEM_Int;
- pcDest = (int)pIn1->u.i;
- pIn1->u.i = pc;
- REGISTER_TRACE(pOp->p1, pIn1);
- pc = pcDest;
- break;
-}
-
-/* Opcode: HaltIfNull P1 P2 P3 P4 P5
-** Synopsis: if r[P3]=null halt
-**
-** Check the value in register P3. If it is NULL then Halt using
-** parameter P1, P2, and P4 as if this were a Halt instruction. If the
-** value in register P3 is not NULL, then this routine is a no-op.
-** The P5 parameter should be 1.
-*/
-case OP_HaltIfNull: { /* in3 */
- pIn3 = &aMem[pOp->p3];
- if( (pIn3->flags & MEM_Null)==0 ) break;
- /* Fall through into OP_Halt */
-}
-
-/* Opcode: Halt P1 P2 * P4 P5
-**
-** Exit immediately. All open cursors, etc are closed
-** automatically.
-**
-** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
-** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
-** For errors, it can be some other value. If P1!=0 then P2 will determine
-** whether or not to rollback the current transaction. Do not rollback
-** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
-** then back out all changes that have occurred during this execution of the
-** VDBE, but do not rollback the transaction.
-**
-** If P4 is not null then it is an error message string.
-**
-** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
-**
-** 0: (no change)
-** 1: NOT NULL contraint failed: P4
-** 2: UNIQUE constraint failed: P4
-** 3: CHECK constraint failed: P4
-** 4: FOREIGN KEY constraint failed: P4
-**
-** If P5 is not zero and P4 is NULL, then everything after the ":" is
-** omitted.
-**
-** There is an implied "Halt 0 0 0" instruction inserted at the very end of
-** every program. So a jump past the last instruction of the program
-** is the same as executing Halt.
-*/
-case OP_Halt: {
- const char *zType;
- const char *zLogFmt;
-
- if( pOp->p1==SQLITE_OK && p->pFrame ){
- /* Halt the sub-program. Return control to the parent frame. */
- VdbeFrame *pFrame = p->pFrame;
- p->pFrame = pFrame->pParent;
- p->nFrame--;
- sqlite3VdbeSetChanges(db, p->nChange);
- pc = sqlite3VdbeFrameRestore(pFrame);
- lastRowid = db->lastRowid;
- if( pOp->p2==OE_Ignore ){
- /* Instruction pc is the OP_Program that invoked the sub-program
- ** currently being halted. If the p2 instruction of this OP_Halt
- ** instruction is set to OE_Ignore, then the sub-program is throwing
- ** an IGNORE exception. In this case jump to the address specified
- ** as the p2 of the calling OP_Program. */
- pc = p->aOp[pc].p2-1;
- }
- aOp = p->aOp;
- aMem = p->aMem;
- break;
- }
- p->rc = pOp->p1;
- p->errorAction = (u8)pOp->p2;
- p->pc = pc;
- if( p->rc ){
- if( pOp->p5 ){
- static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
- "FOREIGN KEY" };
- assert( pOp->p5>=1 && pOp->p5<=4 );
- testcase( pOp->p5==1 );
- testcase( pOp->p5==2 );
- testcase( pOp->p5==3 );
- testcase( pOp->p5==4 );
- zType = azType[pOp->p5-1];
- }else{
- zType = 0;
- }
- assert( zType!=0 || pOp->p4.z!=0 );
- zLogFmt = "abort at %d in [%s]: %s";
- if( zType && pOp->p4.z ){
- sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s",
- zType, pOp->p4.z);
- }else if( pOp->p4.z ){
- sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
- }else{
- sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
- }
- sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg);
- }
- rc = sqlite3VdbeHalt(p);
- assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
- if( rc==SQLITE_BUSY ){
- p->rc = rc = SQLITE_BUSY;
- }else{
- assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
- assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
- rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
- }
- goto vdbe_return;
-}
-
-/* Opcode: Integer P1 P2 * * *
-** Synopsis: r[P2]=P1
-**
-** The 32-bit integer value P1 is written into register P2.
-*/
-case OP_Integer: { /* out2-prerelease */
- pOut->u.i = pOp->p1;
- break;
-}
-
-/* Opcode: Int64 * P2 * P4 *
-** Synopsis: r[P2]=P4
-**
-** P4 is a pointer to a 64-bit integer value.
-** Write that value into register P2.
-*/
-case OP_Int64: { /* out2-prerelease */
- assert( pOp->p4.pI64!=0 );
- pOut->u.i = *pOp->p4.pI64;
- break;
-}
-
-#ifndef SQLITE_OMIT_FLOATING_POINT
-/* Opcode: Real * P2 * P4 *
-** Synopsis: r[P2]=P4
-**
-** P4 is a pointer to a 64-bit floating point value.
-** Write that value into register P2.
-*/
-case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
- pOut->flags = MEM_Real;
- assert( !sqlite3IsNaN(*pOp->p4.pReal) );
- pOut->u.r = *pOp->p4.pReal;
- break;
-}
-#endif
-
-/* Opcode: String8 * P2 * P4 *
-** Synopsis: r[P2]='P4'
-**
-** P4 points to a nul terminated UTF-8 string. This opcode is transformed
-** into a String before it is executed for the first time. During
-** this transformation, the length of string P4 is computed and stored
-** as the P1 parameter.
-*/
-case OP_String8: { /* same as TK_STRING, out2-prerelease */
- assert( pOp->p4.z!=0 );
- pOp->opcode = OP_String;
- pOp->p1 = sqlite3Strlen30(pOp->p4.z);
-
-#ifndef SQLITE_OMIT_UTF16
- if( encoding!=SQLITE_UTF8 ){
- rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
- if( rc==SQLITE_TOOBIG ) goto too_big;
- if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
- assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
- assert( VdbeMemDynamic(pOut)==0 );
- pOut->szMalloc = 0;
- pOut->flags |= MEM_Static;
- if( pOp->p4type==P4_DYNAMIC ){
- sqlite3DbFree(db, pOp->p4.z);
- }
- pOp->p4type = P4_DYNAMIC;
- pOp->p4.z = pOut->z;
- pOp->p1 = pOut->n;
- }
-#endif
- if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- /* Fall through to the next case, OP_String */
-}
-
-/* Opcode: String P1 P2 * P4 *
-** Synopsis: r[P2]='P4' (len=P1)
-**
-** The string value P4 of length P1 (bytes) is stored in register P2.
-*/
-case OP_String: { /* out2-prerelease */
- assert( pOp->p4.z!=0 );
- pOut->flags = MEM_Str|MEM_Static|MEM_Term;
- pOut->z = pOp->p4.z;
- pOut->n = pOp->p1;
- pOut->enc = encoding;
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Null P1 P2 P3 * *
-** Synopsis: r[P2..P3]=NULL
-**
-** Write a NULL into registers P2. If P3 greater than P2, then also write
-** NULL into register P3 and every register in between P2 and P3. If P3
-** is less than P2 (typically P3 is zero) then only register P2 is
-** set to NULL.
-**
-** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
-** NULL values will not compare equal even if SQLITE_NULLEQ is set on
-** OP_Ne or OP_Eq.
-*/
-case OP_Null: { /* out2-prerelease */
- int cnt;
- u16 nullFlag;
- cnt = pOp->p3-pOp->p2;
- assert( pOp->p3<=(p->nMem-p->nCursor) );
- pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
- while( cnt>0 ){
- pOut++;
- memAboutToChange(p, pOut);
- sqlite3VdbeMemSetNull(pOut);
- pOut->flags = nullFlag;
- cnt--;
- }
- break;
-}
-
-/* Opcode: SoftNull P1 * * * *
-** Synopsis: r[P1]=NULL
-**
-** Set register P1 to have the value NULL as seen by the OP_MakeRecord
-** instruction, but do not free any string or blob memory associated with
-** the register, so that if the value was a string or blob that was
-** previously copied using OP_SCopy, the copies will continue to be valid.
-*/
-case OP_SoftNull: {
- assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
- pOut = &aMem[pOp->p1];
- pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
- break;
-}
-
-/* Opcode: Blob P1 P2 * P4 *
-** Synopsis: r[P2]=P4 (len=P1)
-**
-** P4 points to a blob of data P1 bytes long. Store this
-** blob in register P2.
-*/
-case OP_Blob: { /* out2-prerelease */
- assert( pOp->p1 <= SQLITE_MAX_LENGTH );
- sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
- pOut->enc = encoding;
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Variable P1 P2 * P4 *
-** Synopsis: r[P2]=parameter(P1,P4)
-**
-** Transfer the values of bound parameter P1 into register P2
-**
-** If the parameter is named, then its name appears in P4.
-** The P4 value is used by sqlite3_bind_parameter_name().
-*/
-case OP_Variable: { /* out2-prerelease */
- Mem *pVar; /* Value being transferred */
-
- assert( pOp->p1>0 && pOp->p1<=p->nVar );
- assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
- pVar = &p->aVar[pOp->p1 - 1];
- if( sqlite3VdbeMemTooBig(pVar) ){
- goto too_big;
- }
- sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Move P1 P2 P3 * *
-** Synopsis: r[P2@P3]=r[P1@P3]
-**
-** Move the P3 values in register P1..P1+P3-1 over into
-** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
-** left holding a NULL. It is an error for register ranges
-** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
-** for P3 to be less than 1.
-*/
-case OP_Move: {
- int n; /* Number of registers left to copy */
- int p1; /* Register to copy from */
- int p2; /* Register to copy to */
-
- n = pOp->p3;
- p1 = pOp->p1;
- p2 = pOp->p2;
- assert( n>0 && p1>0 && p2>0 );
- assert( p1+n<=p2 || p2+n<=p1 );
-
- pIn1 = &aMem[p1];
- pOut = &aMem[p2];
- do{
- assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
- assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
- assert( memIsValid(pIn1) );
- memAboutToChange(p, pOut);
- sqlite3VdbeMemMove(pOut, pIn1);
-#ifdef SQLITE_DEBUG
- if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
- pOut->pScopyFrom += p1 - pOp->p2;
- }
-#endif
- REGISTER_TRACE(p2++, pOut);
- pIn1++;
- pOut++;
- }while( --n );
- break;
-}
-
-/* Opcode: Copy P1 P2 P3 * *
-** Synopsis: r[P2@P3+1]=r[P1@P3+1]
-**
-** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
-**
-** This instruction makes a deep copy of the value. A duplicate
-** is made of any string or blob constant. See also OP_SCopy.
-*/
-case OP_Copy: {
- int n;
-
- n = pOp->p3;
- pIn1 = &aMem[pOp->p1];
- pOut = &aMem[pOp->p2];
- assert( pOut!=pIn1 );
- while( 1 ){
- sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
- Deephemeralize(pOut);
-#ifdef SQLITE_DEBUG
- pOut->pScopyFrom = 0;
-#endif
- REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
- if( (n--)==0 ) break;
- pOut++;
- pIn1++;
- }
- break;
-}
-
-/* Opcode: SCopy P1 P2 * * *
-** Synopsis: r[P2]=r[P1]
-**
-** Make a shallow copy of register P1 into register P2.
-**
-** This instruction makes a shallow copy of the value. If the value
-** is a string or blob, then the copy is only a pointer to the
-** original and hence if the original changes so will the copy.
-** Worse, if the original is deallocated, the copy becomes invalid.
-** Thus the program must guarantee that the original will not change
-** during the lifetime of the copy. Use OP_Copy to make a complete
-** copy.
-*/
-case OP_SCopy: { /* out2 */
- pIn1 = &aMem[pOp->p1];
- pOut = &aMem[pOp->p2];
- assert( pOut!=pIn1 );
- sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
-#ifdef SQLITE_DEBUG
- if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
-#endif
- break;
-}
-
-/* Opcode: ResultRow P1 P2 * * *
-** Synopsis: output=r[P1@P2]
-**
-** The registers P1 through P1+P2-1 contain a single row of
-** results. This opcode causes the sqlite3_step() call to terminate
-** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
-** structure to provide access to the r(P1)..r(P1+P2-1) values as
-** the result row.
-*/
-case OP_ResultRow: {
- Mem *pMem;
- int i;
- assert( p->nResColumn==pOp->p2 );
- assert( pOp->p1>0 );
- assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
-
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- /* Run the progress counter just before returning.
- */
- if( db->xProgress!=0
- && nVmStep>=nProgressLimit
- && db->xProgress(db->pProgressArg)!=0
- ){
- rc = SQLITE_INTERRUPT;
- goto vdbe_error_halt;
- }
-#endif
-
- /* If this statement has violated immediate foreign key constraints, do
- ** not return the number of rows modified. And do not RELEASE the statement
- ** transaction. It needs to be rolled back. */
- if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
- assert( db->flags&SQLITE_CountRows );
- assert( p->usesStmtJournal );
- break;
- }
-
- /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
- ** DML statements invoke this opcode to return the number of rows
- ** modified to the user. This is the only way that a VM that
- ** opens a statement transaction may invoke this opcode.
- **
- ** In case this is such a statement, close any statement transaction
- ** opened by this VM before returning control to the user. This is to
- ** ensure that statement-transactions are always nested, not overlapping.
- ** If the open statement-transaction is not closed here, then the user
- ** may step another VM that opens its own statement transaction. This
- ** may lead to overlapping statement transactions.
- **
- ** The statement transaction is never a top-level transaction. Hence
- ** the RELEASE call below can never fail.
- */
- assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
- rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
- if( NEVER(rc!=SQLITE_OK) ){
- break;
- }
-
- /* Invalidate all ephemeral cursor row caches */
- p->cacheCtr = (p->cacheCtr + 2)|1;
-
- /* Make sure the results of the current row are \000 terminated
- ** and have an assigned type. The results are de-ephemeralized as
- ** a side effect.
- */
- pMem = p->pResultSet = &aMem[pOp->p1];
- for(i=0; i<pOp->p2; i++){
- assert( memIsValid(&pMem[i]) );
- Deephemeralize(&pMem[i]);
- assert( (pMem[i].flags & MEM_Ephem)==0
- || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
- sqlite3VdbeMemNulTerminate(&pMem[i]);
- REGISTER_TRACE(pOp->p1+i, &pMem[i]);
- }
- if( db->mallocFailed ) goto no_mem;
-
- /* Return SQLITE_ROW
- */
- p->pc = pc + 1;
- rc = SQLITE_ROW;
- goto vdbe_return;
-}
-
-/* Opcode: Concat P1 P2 P3 * *
-** Synopsis: r[P3]=r[P2]+r[P1]
-**
-** Add the text in register P1 onto the end of the text in
-** register P2 and store the result in register P3.
-** If either the P1 or P2 text are NULL then store NULL in P3.
-**
-** P3 = P2 || P1
-**
-** It is illegal for P1 and P3 to be the same register. Sometimes,
-** if P3 is the same register as P2, the implementation is able
-** to avoid a memcpy().
-*/
-case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
- i64 nByte;
-
- pIn1 = &aMem[pOp->p1];
- pIn2 = &aMem[pOp->p2];
- pOut = &aMem[pOp->p3];
- assert( pIn1!=pOut );
- if( (pIn1->flags | pIn2->flags) & MEM_Null ){
- sqlite3VdbeMemSetNull(pOut);
- break;
- }
- if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
- Stringify(pIn1, encoding);
- Stringify(pIn2, encoding);
- nByte = pIn1->n + pIn2->n;
- if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
- goto no_mem;
- }
- MemSetTypeFlag(pOut, MEM_Str);
- if( pOut!=pIn2 ){
- memcpy(pOut->z, pIn2->z, pIn2->n);
- }
- memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
- pOut->z[nByte]=0;
- pOut->z[nByte+1] = 0;
- pOut->flags |= MEM_Term;
- pOut->n = (int)nByte;
- pOut->enc = encoding;
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Add P1 P2 P3 * *
-** Synopsis: r[P3]=r[P1]+r[P2]
-**
-** Add the value in register P1 to the value in register P2
-** and store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: Multiply P1 P2 P3 * *
-** Synopsis: r[P3]=r[P1]*r[P2]
-**
-**
-** Multiply the value in register P1 by the value in register P2
-** and store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: Subtract P1 P2 P3 * *
-** Synopsis: r[P3]=r[P2]-r[P1]
-**
-** Subtract the value in register P1 from the value in register P2
-** and store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: Divide P1 P2 P3 * *
-** Synopsis: r[P3]=r[P2]/r[P1]
-**
-** Divide the value in register P1 by the value in register P2
-** and store the result in register P3 (P3=P2/P1). If the value in
-** register P1 is zero, then the result is NULL. If either input is
-** NULL, the result is NULL.
-*/
-/* Opcode: Remainder P1 P2 P3 * *
-** Synopsis: r[P3]=r[P2]%r[P1]
-**
-** Compute the remainder after integer register P2 is divided by
-** register P1 and store the result in register P3.
-** If the value in register P1 is zero the result is NULL.
-** If either operand is NULL, the result is NULL.
-*/
-case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
-case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
-case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
-case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
-case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
- char bIntint; /* Started out as two integer operands */
- u16 flags; /* Combined MEM_* flags from both inputs */
- u16 type1; /* Numeric type of left operand */
- u16 type2; /* Numeric type of right operand */
- i64 iA; /* Integer value of left operand */
- i64 iB; /* Integer value of right operand */
- double rA; /* Real value of left operand */
- double rB; /* Real value of right operand */
-
- pIn1 = &aMem[pOp->p1];
- type1 = numericType(pIn1);
- pIn2 = &aMem[pOp->p2];
- type2 = numericType(pIn2);
- pOut = &aMem[pOp->p3];
- flags = pIn1->flags | pIn2->flags;
- if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
- if( (type1 & type2 & MEM_Int)!=0 ){
- iA = pIn1->u.i;
- iB = pIn2->u.i;
- bIntint = 1;
- switch( pOp->opcode ){
- case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
- case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
- case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
- case OP_Divide: {
- if( iA==0 ) goto arithmetic_result_is_null;
- if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
- iB /= iA;
- break;
- }
- default: {
- if( iA==0 ) goto arithmetic_result_is_null;
- if( iA==-1 ) iA = 1;
- iB %= iA;
- break;
- }
- }
- pOut->u.i = iB;
- MemSetTypeFlag(pOut, MEM_Int);
- }else{
- bIntint = 0;
-fp_math:
- rA = sqlite3VdbeRealValue(pIn1);
- rB = sqlite3VdbeRealValue(pIn2);
- switch( pOp->opcode ){
- case OP_Add: rB += rA; break;
- case OP_Subtract: rB -= rA; break;
- case OP_Multiply: rB *= rA; break;
- case OP_Divide: {
- /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
- if( rA==(double)0 ) goto arithmetic_result_is_null;
- rB /= rA;
- break;
- }
- default: {
- iA = (i64)rA;
- iB = (i64)rB;
- if( iA==0 ) goto arithmetic_result_is_null;
- if( iA==-1 ) iA = 1;
- rB = (double)(iB % iA);
- break;
- }
- }
-#ifdef SQLITE_OMIT_FLOATING_POINT
- pOut->u.i = rB;
- MemSetTypeFlag(pOut, MEM_Int);
-#else
- if( sqlite3IsNaN(rB) ){
- goto arithmetic_result_is_null;
- }
- pOut->u.r = rB;
- MemSetTypeFlag(pOut, MEM_Real);
- if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
- sqlite3VdbeIntegerAffinity(pOut);
- }
-#endif
- }
- break;
-
-arithmetic_result_is_null:
- sqlite3VdbeMemSetNull(pOut);
- break;
-}
-
-/* Opcode: CollSeq P1 * * P4
-**
-** P4 is a pointer to a CollSeq struct. If the next call to a user function
-** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
-** be returned. This is used by the built-in min(), max() and nullif()
-** functions.
-**
-** If P1 is not zero, then it is a register that a subsequent min() or
-** max() aggregate will set to 1 if the current row is not the minimum or
-** maximum. The P1 register is initialized to 0 by this instruction.
-**
-** The interface used by the implementation of the aforementioned functions
-** to retrieve the collation sequence set by this opcode is not available
-** publicly, only to user functions defined in func.c.
-*/
-case OP_CollSeq: {
- assert( pOp->p4type==P4_COLLSEQ );
- if( pOp->p1 ){
- sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
- }
- break;
-}
-
-/* Opcode: Function P1 P2 P3 P4 P5
-** Synopsis: r[P3]=func(r[P2@P5])
-**
-** Invoke a user function (P4 is a pointer to a Function structure that
-** defines the function) with P5 arguments taken from register P2 and
-** successors. The result of the function is stored in register P3.
-** Register P3 must not be one of the function inputs.
-**
-** P1 is a 32-bit bitmask indicating whether or not each argument to the
-** function was determined to be constant at compile time. If the first
-** argument was constant then bit 0 of P1 is set. This is used to determine
-** whether meta data associated with a user function argument using the
-** sqlite3_set_auxdata() API may be safely retained until the next
-** invocation of this opcode.
-**
-** See also: AggStep and AggFinal
-*/
-case OP_Function: {
- int i;
- Mem *pArg;
- sqlite3_context ctx;
- sqlite3_value **apVal;
- int n;
-
- n = pOp->p5;
- apVal = p->apArg;
- assert( apVal || n==0 );
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- ctx.pOut = &aMem[pOp->p3];
- memAboutToChange(p, ctx.pOut);
-
- assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
- assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
- pArg = &aMem[pOp->p2];
- for(i=0; i<n; i++, pArg++){
- assert( memIsValid(pArg) );
- apVal[i] = pArg;
- Deephemeralize(pArg);
- REGISTER_TRACE(pOp->p2+i, pArg);
- }
-
- assert( pOp->p4type==P4_FUNCDEF );
- ctx.pFunc = pOp->p4.pFunc;
- ctx.iOp = pc;
- ctx.pVdbe = p;
- MemSetTypeFlag(ctx.pOut, MEM_Null);
- ctx.fErrorOrAux = 0;
- db->lastRowid = lastRowid;
- (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
- lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
-
- /* If the function returned an error, throw an exception */
- if( ctx.fErrorOrAux ){
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut));
- rc = ctx.isError;
- }
- sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
- }
-
- /* Copy the result of the function into register P3 */
- sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
- if( sqlite3VdbeMemTooBig(ctx.pOut) ){
- goto too_big;
- }
-
- REGISTER_TRACE(pOp->p3, ctx.pOut);
- UPDATE_MAX_BLOBSIZE(ctx.pOut);
- break;
-}
-
-/* Opcode: BitAnd P1 P2 P3 * *
-** Synopsis: r[P3]=r[P1]&r[P2]
-**
-** Take the bit-wise AND of the values in register P1 and P2 and
-** store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: BitOr P1 P2 P3 * *
-** Synopsis: r[P3]=r[P1]|r[P2]
-**
-** Take the bit-wise OR of the values in register P1 and P2 and
-** store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: ShiftLeft P1 P2 P3 * *
-** Synopsis: r[P3]=r[P2]<<r[P1]
-**
-** Shift the integer value in register P2 to the left by the
-** number of bits specified by the integer in register P1.
-** Store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: ShiftRight P1 P2 P3 * *
-** Synopsis: r[P3]=r[P2]>>r[P1]
-**
-** Shift the integer value in register P2 to the right by the
-** number of bits specified by the integer in register P1.
-** Store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
-case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
-case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
-case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
- i64 iA;
- u64 uA;
- i64 iB;
- u8 op;
-
- pIn1 = &aMem[pOp->p1];
- pIn2 = &aMem[pOp->p2];
- pOut = &aMem[pOp->p3];
- if( (pIn1->flags | pIn2->flags) & MEM_Null ){
- sqlite3VdbeMemSetNull(pOut);
- break;
- }
- iA = sqlite3VdbeIntValue(pIn2);
- iB = sqlite3VdbeIntValue(pIn1);
- op = pOp->opcode;
- if( op==OP_BitAnd ){
- iA &= iB;
- }else if( op==OP_BitOr ){
- iA |= iB;
- }else if( iB!=0 ){
- assert( op==OP_ShiftRight || op==OP_ShiftLeft );
-
- /* If shifting by a negative amount, shift in the other direction */
- if( iB<0 ){
- assert( OP_ShiftRight==OP_ShiftLeft+1 );
- op = 2*OP_ShiftLeft + 1 - op;
- iB = iB>(-64) ? -iB : 64;
- }
-
- if( iB>=64 ){
- iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
- }else{
- memcpy(&uA, &iA, sizeof(uA));
- if( op==OP_ShiftLeft ){
- uA <<= iB;
- }else{
- uA >>= iB;
- /* Sign-extend on a right shift of a negative number */
- if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
- }
- memcpy(&iA, &uA, sizeof(iA));
- }
- }
- pOut->u.i = iA;
- MemSetTypeFlag(pOut, MEM_Int);
- break;
-}
-
-/* Opcode: AddImm P1 P2 * * *
-** Synopsis: r[P1]=r[P1]+P2
-**
-** Add the constant P2 to the value in register P1.
-** The result is always an integer.
-**
-** To force any register to be an integer, just add 0.
-*/
-case OP_AddImm: { /* in1 */
- pIn1 = &aMem[pOp->p1];
- memAboutToChange(p, pIn1);
- sqlite3VdbeMemIntegerify(pIn1);
- pIn1->u.i += pOp->p2;
- break;
-}
-
-/* Opcode: MustBeInt P1 P2 * * *
-**
-** Force the value in register P1 to be an integer. If the value
-** in P1 is not an integer and cannot be converted into an integer
-** without data loss, then jump immediately to P2, or if P2==0
-** raise an SQLITE_MISMATCH exception.
-*/
-case OP_MustBeInt: { /* jump, in1 */
- pIn1 = &aMem[pOp->p1];
- if( (pIn1->flags & MEM_Int)==0 ){
- applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
- VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
- if( (pIn1->flags & MEM_Int)==0 ){
- if( pOp->p2==0 ){
- rc = SQLITE_MISMATCH;
- goto abort_due_to_error;
- }else{
- pc = pOp->p2 - 1;
- break;
- }
- }
- }
- MemSetTypeFlag(pIn1, MEM_Int);
- break;
-}
-
-#ifndef SQLITE_OMIT_FLOATING_POINT
-/* Opcode: RealAffinity P1 * * * *
-**
-** If register P1 holds an integer convert it to a real value.
-**
-** This opcode is used when extracting information from a column that
-** has REAL affinity. Such column values may still be stored as
-** integers, for space efficiency, but after extraction we want them
-** to have only a real value.
-*/
-case OP_RealAffinity: { /* in1 */
- pIn1 = &aMem[pOp->p1];
- if( pIn1->flags & MEM_Int ){
- sqlite3VdbeMemRealify(pIn1);
- }
- break;
-}
-#endif
-
-#ifndef SQLITE_OMIT_CAST
-/* Opcode: Cast P1 P2 * * *
-** Synopsis: affinity(r[P1])
-**
-** Force the value in register P1 to be the type defined by P2.
-**
-** <ul>
-** <li value="97"> TEXT
-** <li value="98"> BLOB
-** <li value="99"> NUMERIC
-** <li value="100"> INTEGER
-** <li value="101"> REAL
-** </ul>
-**
-** A NULL value is not changed by this routine. It remains NULL.
-*/
-case OP_Cast: { /* in1 */
- assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL );
- testcase( pOp->p2==SQLITE_AFF_TEXT );
- testcase( pOp->p2==SQLITE_AFF_NONE );
- testcase( pOp->p2==SQLITE_AFF_NUMERIC );
- testcase( pOp->p2==SQLITE_AFF_INTEGER );
- testcase( pOp->p2==SQLITE_AFF_REAL );
- pIn1 = &aMem[pOp->p1];
- memAboutToChange(p, pIn1);
- rc = ExpandBlob(pIn1);
- sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
- UPDATE_MAX_BLOBSIZE(pIn1);
- break;
-}
-#endif /* SQLITE_OMIT_CAST */
-
-/* Opcode: Lt P1 P2 P3 P4 P5
-** Synopsis: if r[P1]<r[P3] goto P2
-**
-** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
-** jump to address P2.
-**
-** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
-** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
-** bit is clear then fall through if either operand is NULL.
-**
-** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
-** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
-** to coerce both inputs according to this affinity before the
-** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
-** affinity is used. Note that the affinity conversions are stored
-** back into the input registers P1 and P3. So this opcode can cause
-** persistent changes to registers P1 and P3.
-**
-** Once any conversions have taken place, and neither value is NULL,
-** the values are compared. If both values are blobs then memcmp() is
-** used to determine the results of the comparison. If both values
-** are text, then the appropriate collating function specified in
-** P4 is used to do the comparison. If P4 is not specified then
-** memcmp() is used to compare text string. If both values are
-** numeric, then a numeric comparison is used. If the two values
-** are of different types, then numbers are considered less than
-** strings and strings are considered less than blobs.
-**
-** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
-** store a boolean result (either 0, or 1, or NULL) in register P2.
-**
-** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
-** equal to one another, provided that they do not have their MEM_Cleared
-** bit set.
-*/
-/* Opcode: Ne P1 P2 P3 P4 P5
-** Synopsis: if r[P1]!=r[P3] goto P2
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the operands in registers P1 and P3 are not equal. See the Lt opcode for
-** additional information.
-**
-** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
-** true or false and is never NULL. If both operands are NULL then the result
-** of comparison is false. If either operand is NULL then the result is true.
-** If neither operand is NULL the result is the same as it would be if
-** the SQLITE_NULLEQ flag were omitted from P5.
-*/
-/* Opcode: Eq P1 P2 P3 P4 P5
-** Synopsis: if r[P1]==r[P3] goto P2
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the operands in registers P1 and P3 are equal.
-** See the Lt opcode for additional information.
-**
-** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
-** true or false and is never NULL. If both operands are NULL then the result
-** of comparison is true. If either operand is NULL then the result is false.
-** If neither operand is NULL the result is the same as it would be if
-** the SQLITE_NULLEQ flag were omitted from P5.
-*/
-/* Opcode: Le P1 P2 P3 P4 P5
-** Synopsis: if r[P1]<=r[P3] goto P2
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the content of register P3 is less than or equal to the content of
-** register P1. See the Lt opcode for additional information.
-*/
-/* Opcode: Gt P1 P2 P3 P4 P5
-** Synopsis: if r[P1]>r[P3] goto P2
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the content of register P3 is greater than the content of
-** register P1. See the Lt opcode for additional information.
-*/
-/* Opcode: Ge P1 P2 P3 P4 P5
-** Synopsis: if r[P1]>=r[P3] goto P2
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the content of register P3 is greater than or equal to the content of
-** register P1. See the Lt opcode for additional information.
-*/
-case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
-case OP_Ne: /* same as TK_NE, jump, in1, in3 */
-case OP_Lt: /* same as TK_LT, jump, in1, in3 */
-case OP_Le: /* same as TK_LE, jump, in1, in3 */
-case OP_Gt: /* same as TK_GT, jump, in1, in3 */
-case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
- int res; /* Result of the comparison of pIn1 against pIn3 */
- char affinity; /* Affinity to use for comparison */
- u16 flags1; /* Copy of initial value of pIn1->flags */
- u16 flags3; /* Copy of initial value of pIn3->flags */
-
- pIn1 = &aMem[pOp->p1];
- pIn3 = &aMem[pOp->p3];
- flags1 = pIn1->flags;
- flags3 = pIn3->flags;
- if( (flags1 | flags3)&MEM_Null ){
- /* One or both operands are NULL */
- if( pOp->p5 & SQLITE_NULLEQ ){
- /* If SQLITE_NULLEQ is set (which will only happen if the operator is
- ** OP_Eq or OP_Ne) then take the jump or not depending on whether
- ** or not both operands are null.
- */
- assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
- assert( (flags1 & MEM_Cleared)==0 );
- assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
- if( (flags1&MEM_Null)!=0
- && (flags3&MEM_Null)!=0
- && (flags3&MEM_Cleared)==0
- ){
- res = 0; /* Results are equal */
- }else{
- res = 1; /* Results are not equal */
- }
- }else{
- /* SQLITE_NULLEQ is clear and at least one operand is NULL,
- ** then the result is always NULL.
- ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
- */
- if( pOp->p5 & SQLITE_STOREP2 ){
- pOut = &aMem[pOp->p2];
- MemSetTypeFlag(pOut, MEM_Null);
- REGISTER_TRACE(pOp->p2, pOut);
- }else{
- VdbeBranchTaken(2,3);
- if( pOp->p5 & SQLITE_JUMPIFNULL ){
- pc = pOp->p2-1;
- }
- }
- break;
- }
- }else{
- /* Neither operand is NULL. Do a comparison. */
- affinity = pOp->p5 & SQLITE_AFF_MASK;
- if( affinity>=SQLITE_AFF_NUMERIC ){
- if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
- applyNumericAffinity(pIn1,0);
- }
- if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
- applyNumericAffinity(pIn3,0);
- }
- }else if( affinity==SQLITE_AFF_TEXT ){
- if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
- testcase( pIn1->flags & MEM_Int );
- testcase( pIn1->flags & MEM_Real );
- sqlite3VdbeMemStringify(pIn1, encoding, 1);
- }
- if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
- testcase( pIn3->flags & MEM_Int );
- testcase( pIn3->flags & MEM_Real );
- sqlite3VdbeMemStringify(pIn3, encoding, 1);
- }
- }
- assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
- if( pIn1->flags & MEM_Zero ){
- sqlite3VdbeMemExpandBlob(pIn1);
- flags1 &= ~MEM_Zero;
- }
- if( pIn3->flags & MEM_Zero ){
- sqlite3VdbeMemExpandBlob(pIn3);
- flags3 &= ~MEM_Zero;
- }
- if( db->mallocFailed ) goto no_mem;
- res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
- }
- switch( pOp->opcode ){
- case OP_Eq: res = res==0; break;
- case OP_Ne: res = res!=0; break;
- case OP_Lt: res = res<0; break;
- case OP_Le: res = res<=0; break;
- case OP_Gt: res = res>0; break;
- default: res = res>=0; break;
- }
-
- if( pOp->p5 & SQLITE_STOREP2 ){
- pOut = &aMem[pOp->p2];
- memAboutToChange(p, pOut);
- MemSetTypeFlag(pOut, MEM_Int);
- pOut->u.i = res;
- REGISTER_TRACE(pOp->p2, pOut);
- }else{
- VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
- if( res ){
- pc = pOp->p2-1;
- }
- }
- /* Undo any changes made by applyAffinity() to the input registers. */
- pIn1->flags = flags1;
- pIn3->flags = flags3;
- break;
-}
-
-/* Opcode: Permutation * * * P4 *
-**
-** Set the permutation used by the OP_Compare operator to be the array
-** of integers in P4.
-**
-** The permutation is only valid until the next OP_Compare that has
-** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
-** occur immediately prior to the OP_Compare.
-*/
-case OP_Permutation: {
- assert( pOp->p4type==P4_INTARRAY );
- assert( pOp->p4.ai );
- aPermute = pOp->p4.ai;
- break;
-}
-
-/* Opcode: Compare P1 P2 P3 P4 P5
-** Synopsis: r[P1@P3] <-> r[P2@P3]
-**
-** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
-** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
-** the comparison for use by the next OP_Jump instruct.
-**
-** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
-** determined by the most recent OP_Permutation operator. If the
-** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
-** order.
-**
-** P4 is a KeyInfo structure that defines collating sequences and sort
-** orders for the comparison. The permutation applies to registers
-** only. The KeyInfo elements are used sequentially.
-**
-** The comparison is a sort comparison, so NULLs compare equal,
-** NULLs are less than numbers, numbers are less than strings,
-** and strings are less than blobs.
-*/
-case OP_Compare: {
- int n;
- int i;
- int p1;
- int p2;
- const KeyInfo *pKeyInfo;
- int idx;
- CollSeq *pColl; /* Collating sequence to use on this term */
- int bRev; /* True for DESCENDING sort order */
-
- if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
- n = pOp->p3;
- pKeyInfo = pOp->p4.pKeyInfo;
- assert( n>0 );
- assert( pKeyInfo!=0 );
- p1 = pOp->p1;
- p2 = pOp->p2;
-#if SQLITE_DEBUG
- if( aPermute ){
- int k, mx = 0;
- for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
- assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
- assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
- }else{
- assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
- assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
- }
-#endif /* SQLITE_DEBUG */
- for(i=0; i<n; i++){
- idx = aPermute ? aPermute[i] : i;
- assert( memIsValid(&aMem[p1+idx]) );
- assert( memIsValid(&aMem[p2+idx]) );
- REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
- REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
- assert( i<pKeyInfo->nField );
- pColl = pKeyInfo->aColl[i];
- bRev = pKeyInfo->aSortOrder[i];
- iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
- if( iCompare ){
- if( bRev ) iCompare = -iCompare;
- break;
- }
- }
- aPermute = 0;
- break;
-}
-
-/* Opcode: Jump P1 P2 P3 * *
-**
-** Jump to the instruction at address P1, P2, or P3 depending on whether
-** in the most recent OP_Compare instruction the P1 vector was less than
-** equal to, or greater than the P2 vector, respectively.
-*/
-case OP_Jump: { /* jump */
- if( iCompare<0 ){
- pc = pOp->p1 - 1; VdbeBranchTaken(0,3);
- }else if( iCompare==0 ){
- pc = pOp->p2 - 1; VdbeBranchTaken(1,3);
- }else{
- pc = pOp->p3 - 1; VdbeBranchTaken(2,3);
- }
- break;
-}
-
-/* Opcode: And P1 P2 P3 * *
-** Synopsis: r[P3]=(r[P1] && r[P2])
-**
-** Take the logical AND of the values in registers P1 and P2 and
-** write the result into register P3.
-**
-** If either P1 or P2 is 0 (false) then the result is 0 even if
-** the other input is NULL. A NULL and true or two NULLs give
-** a NULL output.
-*/
-/* Opcode: Or P1 P2 P3 * *
-** Synopsis: r[P3]=(r[P1] || r[P2])
-**
-** Take the logical OR of the values in register P1 and P2 and
-** store the answer in register P3.
-**
-** If either P1 or P2 is nonzero (true) then the result is 1 (true)
-** even if the other input is NULL. A NULL and false or two NULLs
-** give a NULL output.
-*/
-case OP_And: /* same as TK_AND, in1, in2, out3 */
-case OP_Or: { /* same as TK_OR, in1, in2, out3 */
- int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
- int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
-
- pIn1 = &aMem[pOp->p1];
- if( pIn1->flags & MEM_Null ){
- v1 = 2;
- }else{
- v1 = sqlite3VdbeIntValue(pIn1)!=0;
- }
- pIn2 = &aMem[pOp->p2];
- if( pIn2->flags & MEM_Null ){
- v2 = 2;
- }else{
- v2 = sqlite3VdbeIntValue(pIn2)!=0;
- }
- if( pOp->opcode==OP_And ){
- static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
- v1 = and_logic[v1*3+v2];
- }else{
- static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
- v1 = or_logic[v1*3+v2];
- }
- pOut = &aMem[pOp->p3];
- if( v1==2 ){
- MemSetTypeFlag(pOut, MEM_Null);
- }else{
- pOut->u.i = v1;
- MemSetTypeFlag(pOut, MEM_Int);
- }
- break;
-}
-
-/* Opcode: Not P1 P2 * * *
-** Synopsis: r[P2]= !r[P1]
-**
-** Interpret the value in register P1 as a boolean value. Store the
-** boolean complement in register P2. If the value in register P1 is
-** NULL, then a NULL is stored in P2.
-*/
-case OP_Not: { /* same as TK_NOT, in1, out2 */
- pIn1 = &aMem[pOp->p1];
- pOut = &aMem[pOp->p2];
- sqlite3VdbeMemSetNull(pOut);
- if( (pIn1->flags & MEM_Null)==0 ){
- pOut->flags = MEM_Int;
- pOut->u.i = !sqlite3VdbeIntValue(pIn1);
- }
- break;
-}
-
-/* Opcode: BitNot P1 P2 * * *
-** Synopsis: r[P1]= ~r[P1]
-**
-** Interpret the content of register P1 as an integer. Store the
-** ones-complement of the P1 value into register P2. If P1 holds
-** a NULL then store a NULL in P2.
-*/
-case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
- pIn1 = &aMem[pOp->p1];
- pOut = &aMem[pOp->p2];
- sqlite3VdbeMemSetNull(pOut);
- if( (pIn1->flags & MEM_Null)==0 ){
- pOut->flags = MEM_Int;
- pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
- }
- break;
-}
-
-/* Opcode: Once P1 P2 * * *
-**
-** Check the "once" flag number P1. If it is set, jump to instruction P2.
-** Otherwise, set the flag and fall through to the next instruction.
-** In other words, this opcode causes all following opcodes up through P2
-** (but not including P2) to run just once and to be skipped on subsequent
-** times through the loop.
-**
-** All "once" flags are initially cleared whenever a prepared statement
-** first begins to run.
-*/
-case OP_Once: { /* jump */
- assert( pOp->p1<p->nOnceFlag );
- VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
- if( p->aOnceFlag[pOp->p1] ){
- pc = pOp->p2-1;
- }else{
- p->aOnceFlag[pOp->p1] = 1;
- }
- break;
-}
-
-/* Opcode: If P1 P2 P3 * *
-**
-** Jump to P2 if the value in register P1 is true. The value
-** is considered true if it is numeric and non-zero. If the value
-** in P1 is NULL then take the jump if and only if P3 is non-zero.
-*/
-/* Opcode: IfNot P1 P2 P3 * *
-**
-** Jump to P2 if the value in register P1 is False. The value
-** is considered false if it has a numeric value of zero. If the value
-** in P1 is NULL then take the jump if and only if P3 is non-zero.
-*/
-case OP_If: /* jump, in1 */
-case OP_IfNot: { /* jump, in1 */
- int c;
- pIn1 = &aMem[pOp->p1];
- if( pIn1->flags & MEM_Null ){
- c = pOp->p3;
- }else{
-#ifdef SQLITE_OMIT_FLOATING_POINT
- c = sqlite3VdbeIntValue(pIn1)!=0;
-#else
- c = sqlite3VdbeRealValue(pIn1)!=0.0;
-#endif
- if( pOp->opcode==OP_IfNot ) c = !c;
- }
- VdbeBranchTaken(c!=0, 2);
- if( c ){
- pc = pOp->p2-1;
- }
- break;
-}
-
-/* Opcode: IsNull P1 P2 * * *
-** Synopsis: if r[P1]==NULL goto P2
-**
-** Jump to P2 if the value in register P1 is NULL.
-*/
-case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
- pIn1 = &aMem[pOp->p1];
- VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
- if( (pIn1->flags & MEM_Null)!=0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: NotNull P1 P2 * * *
-** Synopsis: if r[P1]!=NULL goto P2
-**
-** Jump to P2 if the value in register P1 is not NULL.
-*/
-case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
- pIn1 = &aMem[pOp->p1];
- VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
- if( (pIn1->flags & MEM_Null)==0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: Column P1 P2 P3 P4 P5
-** Synopsis: r[P3]=PX
-**
-** Interpret the data that cursor P1 points to as a structure built using
-** the MakeRecord instruction. (See the MakeRecord opcode for additional
-** information about the format of the data.) Extract the P2-th column
-** from this record. If there are less that (P2+1)
-** values in the record, extract a NULL.
-**
-** The value extracted is stored in register P3.
-**
-** If the column contains fewer than P2 fields, then extract a NULL. Or,
-** if the P4 argument is a P4_MEM use the value of the P4 argument as
-** the result.
-**
-** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
-** then the cache of the cursor is reset prior to extracting the column.
-** The first OP_Column against a pseudo-table after the value of the content
-** register has changed should have this bit set.
-**
-** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
-** the result is guaranteed to only be used as the argument of a length()
-** or typeof() function, respectively. The loading of large blobs can be
-** skipped for length() and all content loading can be skipped for typeof().
-*/
-case OP_Column: {
- i64 payloadSize64; /* Number of bytes in the record */
- int p2; /* column number to retrieve */
- VdbeCursor *pC; /* The VDBE cursor */
- BtCursor *pCrsr; /* The BTree cursor */
- u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
- int len; /* The length of the serialized data for the column */
- int i; /* Loop counter */
- Mem *pDest; /* Where to write the extracted value */
- Mem sMem; /* For storing the record being decoded */
- const u8 *zData; /* Part of the record being decoded */
- const u8 *zHdr; /* Next unparsed byte of the header */
- const u8 *zEndHdr; /* Pointer to first byte after the header */
- u32 offset; /* Offset into the data */
- u32 szField; /* Number of bytes in the content of a field */
- u32 avail; /* Number of bytes of available data */
- u32 t; /* A type code from the record header */
- u16 fx; /* pDest->flags value */
- Mem *pReg; /* PseudoTable input register */
-
- p2 = pOp->p2;
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- pDest = &aMem[pOp->p3];
- memAboutToChange(p, pDest);
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( p2<pC->nField );
- aOffset = pC->aOffset;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
-#endif
- pCrsr = pC->pCursor;
- assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
- assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
-
- /* If the cursor cache is stale, bring it up-to-date */
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- if( pC->cacheStatus!=p->cacheCtr ){
- if( pC->nullRow ){
- if( pCrsr==0 ){
- assert( pC->pseudoTableReg>0 );
- pReg = &aMem[pC->pseudoTableReg];
- assert( pReg->flags & MEM_Blob );
- assert( memIsValid(pReg) );
- pC->payloadSize = pC->szRow = avail = pReg->n;
- pC->aRow = (u8*)pReg->z;
- }else{
- sqlite3VdbeMemSetNull(pDest);
- goto op_column_out;
- }
- }else{
- assert( pCrsr );
- if( pC->isTable==0 ){
- assert( sqlite3BtreeCursorIsValid(pCrsr) );
- VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
- assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
- /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
- ** payload size, so it is impossible for payloadSize64 to be
- ** larger than 32 bits. */
- assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
- pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
- pC->payloadSize = (u32)payloadSize64;
- }else{
- assert( sqlite3BtreeCursorIsValid(pCrsr) );
- VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
- assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
- pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
- }
- assert( avail<=65536 ); /* Maximum page size is 64KiB */
- if( pC->payloadSize <= (u32)avail ){
- pC->szRow = pC->payloadSize;
- }else{
- pC->szRow = avail;
- }
- if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- }
- pC->cacheStatus = p->cacheCtr;
- pC->iHdrOffset = getVarint32(pC->aRow, offset);
- pC->nHdrParsed = 0;
- aOffset[0] = offset;
-
- /* Make sure a corrupt database has not given us an oversize header.
- ** Do this now to avoid an oversize memory allocation.
- **
- ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
- ** types use so much data space that there can only be 4096 and 32 of
- ** them, respectively. So the maximum header length results from a
- ** 3-byte type for each of the maximum of 32768 columns plus three
- ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
- */
- if( offset > 98307 || offset > pC->payloadSize ){
- rc = SQLITE_CORRUPT_BKPT;
- goto op_column_error;
- }
-
- if( avail<offset ){
- /* pC->aRow does not have to hold the entire row, but it does at least
- ** need to cover the header of the record. If pC->aRow does not contain
- ** the complete header, then set it to zero, forcing the header to be
- ** dynamically allocated. */
- pC->aRow = 0;
- pC->szRow = 0;
- }
-
- /* The following goto is an optimization. It can be omitted and
- ** everything will still work. But OP_Column is measurably faster
- ** by skipping the subsequent conditional, which is always true.
- */
- assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
- goto op_column_read_header;
- }
-
- /* Make sure at least the first p2+1 entries of the header have been
- ** parsed and valid information is in aOffset[] and pC->aType[].
- */
- if( pC->nHdrParsed<=p2 ){
- /* If there is more header available for parsing in the record, try
- ** to extract additional fields up through the p2+1-th field
- */
- op_column_read_header:
- if( pC->iHdrOffset<aOffset[0] ){
- /* Make sure zData points to enough of the record to cover the header. */
- if( pC->aRow==0 ){
- memset(&sMem, 0, sizeof(sMem));
- rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
- !pC->isTable, &sMem);
- if( rc!=SQLITE_OK ){
- goto op_column_error;
- }
- zData = (u8*)sMem.z;
- }else{
- zData = pC->aRow;
- }
-
- /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
- i = pC->nHdrParsed;
- offset = aOffset[i];
- zHdr = zData + pC->iHdrOffset;
- zEndHdr = zData + aOffset[0];
- assert( i<=p2 && zHdr<zEndHdr );
- do{
- if( zHdr[0]<0x80 ){
- t = zHdr[0];
- zHdr++;
- }else{
- zHdr += sqlite3GetVarint32(zHdr, &t);
- }
- pC->aType[i] = t;
- szField = sqlite3VdbeSerialTypeLen(t);
- offset += szField;
- if( offset<szField ){ /* True if offset overflows */
- zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
- break;
- }
- i++;
- aOffset[i] = offset;
- }while( i<=p2 && zHdr<zEndHdr );
- pC->nHdrParsed = i;
- pC->iHdrOffset = (u32)(zHdr - zData);
- if( pC->aRow==0 ){
- sqlite3VdbeMemRelease(&sMem);
- sMem.flags = MEM_Null;
- }
-
- /* The record is corrupt if any of the following are true:
- ** (1) the bytes of the header extend past the declared header size
- ** (zHdr>zEndHdr)
- ** (2) the entire header was used but not all data was used
- ** (zHdr==zEndHdr && offset!=pC->payloadSize)
- ** (3) the end of the data extends beyond the end of the record.
- ** (offset > pC->payloadSize)
- */
- if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
- || (offset > pC->payloadSize)
- ){
- rc = SQLITE_CORRUPT_BKPT;
- goto op_column_error;
- }
- }
-
- /* If after trying to extra new entries from the header, nHdrParsed is
- ** still not up to p2, that means that the record has fewer than p2
- ** columns. So the result will be either the default value or a NULL.
- */
- if( pC->nHdrParsed<=p2 ){
- if( pOp->p4type==P4_MEM ){
- sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
- }else{
- sqlite3VdbeMemSetNull(pDest);
- }
- goto op_column_out;
- }
- }
-
- /* Extract the content for the p2+1-th column. Control can only
- ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
- ** all valid.
- */
- assert( p2<pC->nHdrParsed );
- assert( rc==SQLITE_OK );
- assert( sqlite3VdbeCheckMemInvariants(pDest) );
- if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
- t = pC->aType[p2];
- if( pC->szRow>=aOffset[p2+1] ){
- /* This is the common case where the desired content fits on the original
- ** page - where the content is not on an overflow page */
- sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
- }else{
- /* This branch happens only when content is on overflow pages */
- if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
- && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
- || (len = sqlite3VdbeSerialTypeLen(t))==0
- ){
- /* Content is irrelevant for
- ** 1. the typeof() function,
- ** 2. the length(X) function if X is a blob, and
- ** 3. if the content length is zero.
- ** So we might as well use bogus content rather than reading
- ** content from disk. NULL will work for the value for strings
- ** and blobs and whatever is in the payloadSize64 variable
- ** will work for everything else. */
- sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
- }else{
- rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
- pDest);
- if( rc!=SQLITE_OK ){
- goto op_column_error;
- }
- sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
- pDest->flags &= ~MEM_Ephem;
- }
- }
- pDest->enc = encoding;
-
-op_column_out:
- /* If the column value is an ephemeral string, go ahead and persist
- ** that string in case the cursor moves before the column value is
- ** used. The following code does the equivalent of Deephemeralize()
- ** but does it faster. */
- if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
- fx = pDest->flags & (MEM_Str|MEM_Blob);
- assert( fx!=0 );
- zData = (const u8*)pDest->z;
- len = pDest->n;
- if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
- memcpy(pDest->z, zData, len);
- pDest->z[len] = 0;
- pDest->z[len+1] = 0;
- pDest->flags = fx|MEM_Term;
- }
-op_column_error:
- UPDATE_MAX_BLOBSIZE(pDest);
- REGISTER_TRACE(pOp->p3, pDest);
- break;
-}
-
-/* Opcode: Affinity P1 P2 * P4 *
-** Synopsis: affinity(r[P1@P2])
-**
-** Apply affinities to a range of P2 registers starting with P1.
-**
-** P4 is a string that is P2 characters long. The nth character of the
-** string indicates the column affinity that should be used for the nth
-** memory cell in the range.
-*/
-case OP_Affinity: {
- const char *zAffinity; /* The affinity to be applied */
- char cAff; /* A single character of affinity */
-
- zAffinity = pOp->p4.z;
- assert( zAffinity!=0 );
- assert( zAffinity[pOp->p2]==0 );
- pIn1 = &aMem[pOp->p1];
- while( (cAff = *(zAffinity++))!=0 ){
- assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
- assert( memIsValid(pIn1) );
- applyAffinity(pIn1, cAff, encoding);
- pIn1++;
- }
- break;
-}
-
-/* Opcode: MakeRecord P1 P2 P3 P4 *
-** Synopsis: r[P3]=mkrec(r[P1@P2])
-**
-** Convert P2 registers beginning with P1 into the [record format]
-** use as a data record in a database table or as a key
-** in an index. The OP_Column opcode can decode the record later.
-**
-** P4 may be a string that is P2 characters long. The nth character of the
-** string indicates the column affinity that should be used for the nth
-** field of the index key.
-**
-** The mapping from character to affinity is given by the SQLITE_AFF_
-** macros defined in sqliteInt.h.
-**
-** If P4 is NULL then all index fields have the affinity NONE.
-*/
-case OP_MakeRecord: {
- u8 *zNewRecord; /* A buffer to hold the data for the new record */
- Mem *pRec; /* The new record */
- u64 nData; /* Number of bytes of data space */
- int nHdr; /* Number of bytes of header space */
- i64 nByte; /* Data space required for this record */
- int nZero; /* Number of zero bytes at the end of the record */
- int nVarint; /* Number of bytes in a varint */
- u32 serial_type; /* Type field */
- Mem *pData0; /* First field to be combined into the record */
- Mem *pLast; /* Last field of the record */
- int nField; /* Number of fields in the record */
- char *zAffinity; /* The affinity string for the record */
- int file_format; /* File format to use for encoding */
- int i; /* Space used in zNewRecord[] header */
- int j; /* Space used in zNewRecord[] content */
- int len; /* Length of a field */
-
- /* Assuming the record contains N fields, the record format looks
- ** like this:
- **
- ** ------------------------------------------------------------------------
- ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
- ** ------------------------------------------------------------------------
- **
- ** Data(0) is taken from register P1. Data(1) comes from register P1+1
- ** and so forth.
- **
- ** Each type field is a varint representing the serial type of the
- ** corresponding data element (see sqlite3VdbeSerialType()). The
- ** hdr-size field is also a varint which is the offset from the beginning
- ** of the record to data0.
- */
- nData = 0; /* Number of bytes of data space */
- nHdr = 0; /* Number of bytes of header space */
- nZero = 0; /* Number of zero bytes at the end of the record */
- nField = pOp->p1;
- zAffinity = pOp->p4.z;
- assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
- pData0 = &aMem[nField];
- nField = pOp->p2;
- pLast = &pData0[nField-1];
- file_format = p->minWriteFileFormat;
-
- /* Identify the output register */
- assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
- pOut = &aMem[pOp->p3];
- memAboutToChange(p, pOut);
-
- /* Apply the requested affinity to all inputs
- */
- assert( pData0<=pLast );
- if( zAffinity ){
- pRec = pData0;
- do{
- applyAffinity(pRec++, *(zAffinity++), encoding);
- assert( zAffinity[0]==0 || pRec<=pLast );
- }while( zAffinity[0] );
- }
-
- /* Loop through the elements that will make up the record to figure
- ** out how much space is required for the new record.
- */
- pRec = pLast;
- do{
- assert( memIsValid(pRec) );
- pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
- len = sqlite3VdbeSerialTypeLen(serial_type);
- if( pRec->flags & MEM_Zero ){
- if( nData ){
- sqlite3VdbeMemExpandBlob(pRec);
- }else{
- nZero += pRec->u.nZero;
- len -= pRec->u.nZero;
- }
- }
- nData += len;
- testcase( serial_type==127 );
- testcase( serial_type==128 );
- nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
- }while( (--pRec)>=pData0 );
-
- /* Add the initial header varint and total the size */
- testcase( nHdr==126 );
- testcase( nHdr==127 );
- if( nHdr<=126 ){
- /* The common case */
- nHdr += 1;
- }else{
- /* Rare case of a really large header */
- nVarint = sqlite3VarintLen(nHdr);
- nHdr += nVarint;
- if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
- }
- nByte = nHdr+nData;
- if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
-
- /* Make sure the output register has a buffer large enough to store
- ** the new record. The output register (pOp->p3) is not allowed to
- ** be one of the input registers (because the following call to
- ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
- */
- if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
- goto no_mem;
- }
- zNewRecord = (u8 *)pOut->z;
-
- /* Write the record */
- i = putVarint32(zNewRecord, nHdr);
- j = nHdr;
- assert( pData0<=pLast );
- pRec = pData0;
- do{
- serial_type = pRec->uTemp;
- i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
- j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
- }while( (++pRec)<=pLast );
- assert( i==nHdr );
- assert( j==nByte );
-
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- pOut->n = (int)nByte;
- pOut->flags = MEM_Blob;
- if( nZero ){
- pOut->u.nZero = nZero;
- pOut->flags |= MEM_Zero;
- }
- pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
- REGISTER_TRACE(pOp->p3, pOut);
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Count P1 P2 * * *
-** Synopsis: r[P2]=count()
-**
-** Store the number of entries (an integer value) in the table or index
-** opened by cursor P1 in register P2
-*/
-#ifndef SQLITE_OMIT_BTREECOUNT
-case OP_Count: { /* out2-prerelease */
- i64 nEntry;
- BtCursor *pCrsr;
-
- pCrsr = p->apCsr[pOp->p1]->pCursor;
- assert( pCrsr );
- nEntry = 0; /* Not needed. Only used to silence a warning. */
- rc = sqlite3BtreeCount(pCrsr, &nEntry);
- pOut->u.i = nEntry;
- break;
-}
-#endif
-
-/* Opcode: Savepoint P1 * * P4 *
-**
-** Open, release or rollback the savepoint named by parameter P4, depending
-** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
-** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
-*/
-case OP_Savepoint: {
- int p1; /* Value of P1 operand */
- char *zName; /* Name of savepoint */
- int nName;
- Savepoint *pNew;
- Savepoint *pSavepoint;
- Savepoint *pTmp;
- int iSavepoint;
- int ii;
-
- p1 = pOp->p1;
- zName = pOp->p4.z;
-
- /* Assert that the p1 parameter is valid. Also that if there is no open
- ** transaction, then there cannot be any savepoints.
- */
- assert( db->pSavepoint==0 || db->autoCommit==0 );
- assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
- assert( db->pSavepoint || db->isTransactionSavepoint==0 );
- assert( checkSavepointCount(db) );
- assert( p->bIsReader );
-
- if( p1==SAVEPOINT_BEGIN ){
- if( db->nVdbeWrite>0 ){
- /* A new savepoint cannot be created if there are active write
- ** statements (i.e. open read/write incremental blob handles).
- */
- sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
- "SQL statements in progress");
- rc = SQLITE_BUSY;
- }else{
- nName = sqlite3Strlen30(zName);
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- /* This call is Ok even if this savepoint is actually a transaction
- ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
- ** If this is a transaction savepoint being opened, it is guaranteed
- ** that the db->aVTrans[] array is empty. */
- assert( db->autoCommit==0 || db->nVTrans==0 );
- rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
- db->nStatement+db->nSavepoint);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
-#endif
-
- /* Create a new savepoint structure. */
- pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
- if( pNew ){
- pNew->zName = (char *)&pNew[1];
- memcpy(pNew->zName, zName, nName+1);
-
- /* If there is no open transaction, then mark this as a special
- ** "transaction savepoint". */
- if( db->autoCommit ){
- db->autoCommit = 0;
- db->isTransactionSavepoint = 1;
- }else{
- db->nSavepoint++;
- }
-
- /* Link the new savepoint into the database handle's list. */
- pNew->pNext = db->pSavepoint;
- db->pSavepoint = pNew;
- pNew->nDeferredCons = db->nDeferredCons;
- pNew->nDeferredImmCons = db->nDeferredImmCons;
- }
- }
- }else{
- iSavepoint = 0;
-
- /* Find the named savepoint. If there is no such savepoint, then an
- ** an error is returned to the user. */
- for(
- pSavepoint = db->pSavepoint;
- pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
- pSavepoint = pSavepoint->pNext
- ){
- iSavepoint++;
- }
- if( !pSavepoint ){
- sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
- rc = SQLITE_ERROR;
- }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
- /* It is not possible to release (commit) a savepoint if there are
- ** active write statements.
- */
- sqlite3SetString(&p->zErrMsg, db,
- "cannot release savepoint - SQL statements in progress"
- );
- rc = SQLITE_BUSY;
- }else{
-
- /* Determine whether or not this is a transaction savepoint. If so,
- ** and this is a RELEASE command, then the current transaction
- ** is committed.
- */
- int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
- if( isTransaction && p1==SAVEPOINT_RELEASE ){
- if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
- goto vdbe_return;
- }
- db->autoCommit = 1;
- if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
- p->pc = pc;
- db->autoCommit = 0;
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- db->isTransactionSavepoint = 0;
- rc = p->rc;
- }else{
- int isSchemaChange;
- iSavepoint = db->nSavepoint - iSavepoint - 1;
- if( p1==SAVEPOINT_ROLLBACK ){
- isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
- for(ii=0; ii<db->nDb; ii++){
- rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
- SQLITE_ABORT_ROLLBACK,
- isSchemaChange==0);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- }
- }else{
- isSchemaChange = 0;
- }
- for(ii=0; ii<db->nDb; ii++){
- rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- }
- if( isSchemaChange ){
- sqlite3ExpirePreparedStatements(db);
- sqlite3ResetAllSchemasOfConnection(db);
- db->flags = (db->flags | SQLITE_InternChanges);
- }
- }
-
- /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
- ** savepoints nested inside of the savepoint being operated on. */
- while( db->pSavepoint!=pSavepoint ){
- pTmp = db->pSavepoint;
- db->pSavepoint = pTmp->pNext;
- sqlite3DbFree(db, pTmp);
- db->nSavepoint--;
- }
-
- /* If it is a RELEASE, then destroy the savepoint being operated on
- ** too. If it is a ROLLBACK TO, then set the number of deferred
- ** constraint violations present in the database to the value stored
- ** when the savepoint was created. */
- if( p1==SAVEPOINT_RELEASE ){
- assert( pSavepoint==db->pSavepoint );
- db->pSavepoint = pSavepoint->pNext;
- sqlite3DbFree(db, pSavepoint);
- if( !isTransaction ){
- db->nSavepoint--;
- }
- }else{
- db->nDeferredCons = pSavepoint->nDeferredCons;
- db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
- }
-
- if( !isTransaction ){
- rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- }
- }
- }
-
- break;
-}
-
-/* Opcode: AutoCommit P1 P2 * * *
-**
-** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
-** back any currently active btree transactions. If there are any active
-** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
-** there are active writing VMs or active VMs that use shared cache.
-**
-** This instruction causes the VM to halt.
-*/
-case OP_AutoCommit: {
- int desiredAutoCommit;
- int iRollback;
- int turnOnAC;
-
- desiredAutoCommit = pOp->p1;
- iRollback = pOp->p2;
- turnOnAC = desiredAutoCommit && !db->autoCommit;
- assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
- assert( desiredAutoCommit==1 || iRollback==0 );
- assert( db->nVdbeActive>0 ); /* At least this one VM is active */
- assert( p->bIsReader );
-
-#if 0
- if( turnOnAC && iRollback && db->nVdbeActive>1 ){
- /* If this instruction implements a ROLLBACK and other VMs are
- ** still running, and a transaction is active, return an error indicating
- ** that the other VMs must complete first.
- */
- sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
- "SQL statements in progress");
- rc = SQLITE_BUSY;
- }else
-#endif
- if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
- /* If this instruction implements a COMMIT and other VMs are writing
- ** return an error indicating that the other VMs must complete first.
- */
- sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
- "SQL statements in progress");
- rc = SQLITE_BUSY;
- }else if( desiredAutoCommit!=db->autoCommit ){
- if( iRollback ){
- assert( desiredAutoCommit==1 );
- sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
- db->autoCommit = 1;
- }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
- goto vdbe_return;
- }else{
- db->autoCommit = (u8)desiredAutoCommit;
- if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
- p->pc = pc;
- db->autoCommit = (u8)(1-desiredAutoCommit);
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- }
- assert( db->nStatement==0 );
- sqlite3CloseSavepoints(db);
- if( p->rc==SQLITE_OK ){
- rc = SQLITE_DONE;
- }else{
- rc = SQLITE_ERROR;
- }
- goto vdbe_return;
- }else{
- sqlite3SetString(&p->zErrMsg, db,
- (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
- (iRollback)?"cannot rollback - no transaction is active":
- "cannot commit - no transaction is active"));
-
- rc = SQLITE_ERROR;
- }
- break;
-}
-
-/* Opcode: Transaction P1 P2 P3 P4 P5
-**
-** Begin a transaction on database P1 if a transaction is not already
-** active.
-** If P2 is non-zero, then a write-transaction is started, or if a
-** read-transaction is already active, it is upgraded to a write-transaction.
-** If P2 is zero, then a read-transaction is started.
-**
-** P1 is the index of the database file on which the transaction is
-** started. Index 0 is the main database file and index 1 is the
-** file used for temporary tables. Indices of 2 or more are used for
-** attached databases.
-**
-** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
-** true (this flag is set if the Vdbe may modify more than one row and may
-** throw an ABORT exception), a statement transaction may also be opened.
-** More specifically, a statement transaction is opened iff the database
-** connection is currently not in autocommit mode, or if there are other
-** active statements. A statement transaction allows the changes made by this
-** VDBE to be rolled back after an error without having to roll back the
-** entire transaction. If no error is encountered, the statement transaction
-** will automatically commit when the VDBE halts.
-**
-** If P5!=0 then this opcode also checks the schema cookie against P3
-** and the schema generation counter against P4.
-** The cookie changes its value whenever the database schema changes.
-** This operation is used to detect when that the cookie has changed
-** and that the current process needs to reread the schema. If the schema
-** cookie in P3 differs from the schema cookie in the database header or
-** if the schema generation counter in P4 differs from the current
-** generation counter, then an SQLITE_SCHEMA error is raised and execution
-** halts. The sqlite3_step() wrapper function might then reprepare the
-** statement and rerun it from the beginning.
-*/
-case OP_Transaction: {
- Btree *pBt;
- int iMeta;
- int iGen;
-
- assert( p->bIsReader );
- assert( p->readOnly==0 || pOp->p2==0 );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( DbMaskTest(p->btreeMask, pOp->p1) );
- if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
- rc = SQLITE_READONLY;
- goto abort_due_to_error;
- }
- pBt = db->aDb[pOp->p1].pBt;
-
- if( pBt ){
- rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
- if( rc==SQLITE_BUSY ){
- p->pc = pc;
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
-
- if( pOp->p2 && p->usesStmtJournal
- && (db->autoCommit==0 || db->nVdbeRead>1)
- ){
- assert( sqlite3BtreeIsInTrans(pBt) );
- if( p->iStatement==0 ){
- assert( db->nStatement>=0 && db->nSavepoint>=0 );
- db->nStatement++;
- p->iStatement = db->nSavepoint + db->nStatement;
- }
-
- rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
- }
-
- /* Store the current value of the database handles deferred constraint
- ** counter. If the statement transaction needs to be rolled back,
- ** the value of this counter needs to be restored too. */
- p->nStmtDefCons = db->nDeferredCons;
- p->nStmtDefImmCons = db->nDeferredImmCons;
- }
-
- /* Gather the schema version number for checking */
- sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
- iGen = db->aDb[pOp->p1].pSchema->iGeneration;
- }else{
- iGen = iMeta = 0;
- }
- assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
- if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
- /* If the schema-cookie from the database file matches the cookie
- ** stored with the in-memory representation of the schema, do
- ** not reload the schema from the database file.
- **
- ** If virtual-tables are in use, this is not just an optimization.
- ** Often, v-tables store their data in other SQLite tables, which
- ** are queried from within xNext() and other v-table methods using
- ** prepared queries. If such a query is out-of-date, we do not want to
- ** discard the database schema, as the user code implementing the
- ** v-table would have to be ready for the sqlite3_vtab structure itself
- ** to be invalidated whenever sqlite3_step() is called from within
- ** a v-table method.
- */
- if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
- sqlite3ResetOneSchema(db, pOp->p1);
- }
- p->expired = 1;
- rc = SQLITE_SCHEMA;
- }
- break;
-}
-
-/* Opcode: ReadCookie P1 P2 P3 * *
-**
-** Read cookie number P3 from database P1 and write it into register P2.
-** P3==1 is the schema version. P3==2 is the database format.
-** P3==3 is the recommended pager cache size, and so forth. P1==0 is
-** the main database file and P1==1 is the database file used to store
-** temporary tables.
-**
-** There must be a read-lock on the database (either a transaction
-** must be started or there must be an open cursor) before
-** executing this instruction.
-*/
-case OP_ReadCookie: { /* out2-prerelease */
- int iMeta;
- int iDb;
- int iCookie;
-
- assert( p->bIsReader );
- iDb = pOp->p1;
- iCookie = pOp->p3;
- assert( pOp->p3<SQLITE_N_BTREE_META );
- assert( iDb>=0 && iDb<db->nDb );
- assert( db->aDb[iDb].pBt!=0 );
- assert( DbMaskTest(p->btreeMask, iDb) );
-
- sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
- pOut->u.i = iMeta;
- break;
-}
-
-/* Opcode: SetCookie P1 P2 P3 * *
-**
-** Write the content of register P3 (interpreted as an integer)
-** into cookie number P2 of database P1. P2==1 is the schema version.
-** P2==2 is the database format. P2==3 is the recommended pager cache
-** size, and so forth. P1==0 is the main database file and P1==1 is the
-** database file used to store temporary tables.
-**
-** A transaction must be started before executing this opcode.
-*/
-case OP_SetCookie: { /* in3 */
- Db *pDb;
- assert( pOp->p2<SQLITE_N_BTREE_META );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( DbMaskTest(p->btreeMask, pOp->p1) );
- assert( p->readOnly==0 );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
- assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
- pIn3 = &aMem[pOp->p3];
- sqlite3VdbeMemIntegerify(pIn3);
- /* See note about index shifting on OP_ReadCookie */
- rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
- if( pOp->p2==BTREE_SCHEMA_VERSION ){
- /* When the schema cookie changes, record the new cookie internally */
- pDb->pSchema->schema_cookie = (int)pIn3->u.i;
- db->flags |= SQLITE_InternChanges;
- }else if( pOp->p2==BTREE_FILE_FORMAT ){
- /* Record changes in the file format */
- pDb->pSchema->file_format = (u8)pIn3->u.i;
- }
- if( pOp->p1==1 ){
- /* Invalidate all prepared statements whenever the TEMP database
- ** schema is changed. Ticket #1644 */
- sqlite3ExpirePreparedStatements(db);
- p->expired = 0;
- }
- break;
-}
-
-/* Opcode: OpenRead P1 P2 P3 P4 P5
-** Synopsis: root=P2 iDb=P3
-**
-** Open a read-only cursor for the database table whose root page is
-** P2 in a database file. The database file is determined by P3.
-** P3==0 means the main database, P3==1 means the database used for
-** temporary tables, and P3>1 means used the corresponding attached
-** database. Give the new cursor an identifier of P1. The P1
-** values need not be contiguous but all P1 values should be small integers.
-** It is an error for P1 to be negative.
-**
-** If P5!=0 then use the content of register P2 as the root page, not
-** the value of P2 itself.
-**
-** There will be a read lock on the database whenever there is an
-** open cursor. If the database was unlocked prior to this instruction
-** then a read lock is acquired as part of this instruction. A read
-** lock allows other processes to read the database but prohibits
-** any other process from modifying the database. The read lock is
-** released when all cursors are closed. If this instruction attempts
-** to get a read lock but fails, the script terminates with an
-** SQLITE_BUSY error code.
-**
-** The P4 value may be either an integer (P4_INT32) or a pointer to
-** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
-** structure, then said structure defines the content and collating
-** sequence of the index being opened. Otherwise, if P4 is an integer
-** value, it is set to the number of columns in the table.
-**
-** See also: OpenWrite, ReopenIdx
-*/
-/* Opcode: ReopenIdx P1 P2 P3 P4 P5
-** Synopsis: root=P2 iDb=P3
-**
-** The ReopenIdx opcode works exactly like ReadOpen except that it first
-** checks to see if the cursor on P1 is already open with a root page
-** number of P2 and if it is this opcode becomes a no-op. In other words,
-** if the cursor is already open, do not reopen it.
-**
-** The ReopenIdx opcode may only be used with P5==0 and with P4 being
-** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
-** every other ReopenIdx or OpenRead for the same cursor number.
-**
-** See the OpenRead opcode documentation for additional information.
-*/
-/* Opcode: OpenWrite P1 P2 P3 P4 P5
-** Synopsis: root=P2 iDb=P3
-**
-** Open a read/write cursor named P1 on the table or index whose root
-** page is P2. Or if P5!=0 use the content of register P2 to find the
-** root page.
-**
-** The P4 value may be either an integer (P4_INT32) or a pointer to
-** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
-** structure, then said structure defines the content and collating
-** sequence of the index being opened. Otherwise, if P4 is an integer
-** value, it is set to the number of columns in the table, or to the
-** largest index of any column of the table that is actually used.
-**
-** This instruction works just like OpenRead except that it opens the cursor
-** in read/write mode. For a given table, there can be one or more read-only
-** cursors or a single read/write cursor but not both.
-**
-** See also OpenRead.
-*/
-case OP_ReopenIdx: {
- VdbeCursor *pCur;
-
- assert( pOp->p5==0 );
- assert( pOp->p4type==P4_KEYINFO );
- pCur = p->apCsr[pOp->p1];
- if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
- assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
- break;
- }
- /* If the cursor is not currently open or is open on a different
- ** index, then fall through into OP_OpenRead to force a reopen */
-}
-case OP_OpenRead:
-case OP_OpenWrite: {
- int nField;
- KeyInfo *pKeyInfo;
- int p2;
- int iDb;
- int wrFlag;
- Btree *pX;
- VdbeCursor *pCur;
- Db *pDb;
-
- assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
- assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
- assert( p->bIsReader );
- assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
- || p->readOnly==0 );
-
- if( p->expired ){
- rc = SQLITE_ABORT_ROLLBACK;
- break;
- }
-
- nField = 0;
- pKeyInfo = 0;
- p2 = pOp->p2;
- iDb = pOp->p3;
- assert( iDb>=0 && iDb<db->nDb );
- assert( DbMaskTest(p->btreeMask, iDb) );
- pDb = &db->aDb[iDb];
- pX = pDb->pBt;
- assert( pX!=0 );
- if( pOp->opcode==OP_OpenWrite ){
- wrFlag = 1;
- assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
- if( pDb->pSchema->file_format < p->minWriteFileFormat ){
- p->minWriteFileFormat = pDb->pSchema->file_format;
- }
- }else{
- wrFlag = 0;
- }
- if( pOp->p5 & OPFLAG_P2ISREG ){
- assert( p2>0 );
- assert( p2<=(p->nMem-p->nCursor) );
- pIn2 = &aMem[p2];
- assert( memIsValid(pIn2) );
- assert( (pIn2->flags & MEM_Int)!=0 );
- sqlite3VdbeMemIntegerify(pIn2);
- p2 = (int)pIn2->u.i;
- /* The p2 value always comes from a prior OP_CreateTable opcode and
- ** that opcode will always set the p2 value to 2 or more or else fail.
- ** If there were a failure, the prepared statement would have halted
- ** before reaching this instruction. */
- if( NEVER(p2<2) ) {
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- }
- if( pOp->p4type==P4_KEYINFO ){
- pKeyInfo = pOp->p4.pKeyInfo;
- assert( pKeyInfo->enc==ENC(db) );
- assert( pKeyInfo->db==db );
- nField = pKeyInfo->nField+pKeyInfo->nXField;
- }else if( pOp->p4type==P4_INT32 ){
- nField = pOp->p4.i;
- }
- assert( pOp->p1>=0 );
- assert( nField>=0 );
- testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
- pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
- if( pCur==0 ) goto no_mem;
- pCur->nullRow = 1;
- pCur->isOrdered = 1;
- pCur->pgnoRoot = p2;
- rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
- pCur->pKeyInfo = pKeyInfo;
- assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
- sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
-
- /* Set the VdbeCursor.isTable variable. Previous versions of
- ** SQLite used to check if the root-page flags were sane at this point
- ** and report database corruption if they were not, but this check has
- ** since moved into the btree layer. */
- pCur->isTable = pOp->p4type!=P4_KEYINFO;
- break;
-}
-
-/* Opcode: OpenEphemeral P1 P2 * P4 P5
-** Synopsis: nColumn=P2
-**
-** Open a new cursor P1 to a transient table.
-** The cursor is always opened read/write even if
-** the main database is read-only. The ephemeral
-** table is deleted automatically when the cursor is closed.
-**
-** P2 is the number of columns in the ephemeral table.
-** The cursor points to a BTree table if P4==0 and to a BTree index
-** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
-** that defines the format of keys in the index.
-**
-** The P5 parameter can be a mask of the BTREE_* flags defined
-** in btree.h. These flags control aspects of the operation of
-** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
-** added automatically.
-*/
-/* Opcode: OpenAutoindex P1 P2 * P4 *
-** Synopsis: nColumn=P2
-**
-** This opcode works the same as OP_OpenEphemeral. It has a
-** different name to distinguish its use. Tables created using
-** by this opcode will be used for automatically created transient
-** indices in joins.
-*/
-case OP_OpenAutoindex:
-case OP_OpenEphemeral: {
- VdbeCursor *pCx;
- KeyInfo *pKeyInfo;
-
- static const int vfsFlags =
- SQLITE_OPEN_READWRITE |
- SQLITE_OPEN_CREATE |
- SQLITE_OPEN_EXCLUSIVE |
- SQLITE_OPEN_DELETEONCLOSE |
- SQLITE_OPEN_TRANSIENT_DB;
- assert( pOp->p1>=0 );
- assert( pOp->p2>=0 );
- pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- pCx->isEphemeral = 1;
- rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
- BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
- }
- if( rc==SQLITE_OK ){
- /* If a transient index is required, create it by calling
- ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
- ** opening it. If a transient table is required, just use the
- ** automatically created table with root-page 1 (an BLOB_INTKEY table).
- */
- if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
- int pgno;
- assert( pOp->p4type==P4_KEYINFO );
- rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
- if( rc==SQLITE_OK ){
- assert( pgno==MASTER_ROOT+1 );
- assert( pKeyInfo->db==db );
- assert( pKeyInfo->enc==ENC(db) );
- pCx->pKeyInfo = pKeyInfo;
- rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
- }
- pCx->isTable = 0;
- }else{
- rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
- pCx->isTable = 1;
- }
- }
- pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
- break;
-}
-
-/* Opcode: SorterOpen P1 P2 P3 P4 *
-**
-** This opcode works like OP_OpenEphemeral except that it opens
-** a transient index that is specifically designed to sort large
-** tables using an external merge-sort algorithm.
-**
-** If argument P3 is non-zero, then it indicates that the sorter may
-** assume that a stable sort considering the first P3 fields of each
-** key is sufficient to produce the required results.
-*/
-case OP_SorterOpen: {
- VdbeCursor *pCx;
-
- assert( pOp->p1>=0 );
- assert( pOp->p2>=0 );
- pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
- if( pCx==0 ) goto no_mem;
- pCx->pKeyInfo = pOp->p4.pKeyInfo;
- assert( pCx->pKeyInfo->db==db );
- assert( pCx->pKeyInfo->enc==ENC(db) );
- rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
- break;
-}
-
-/* Opcode: SequenceTest P1 P2 * * *
-** Synopsis: if( cursor[P1].ctr++ ) pc = P2
-**
-** P1 is a sorter cursor. If the sequence counter is currently zero, jump
-** to P2. Regardless of whether or not the jump is taken, increment the
-** the sequence value.
-*/
-case OP_SequenceTest: {
- VdbeCursor *pC;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC->pSorter );
- if( (pC->seqCount++)==0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: OpenPseudo P1 P2 P3 * *
-** Synopsis: P3 columns in r[P2]
-**
-** Open a new cursor that points to a fake table that contains a single
-** row of data. The content of that one row is the content of memory
-** register P2. In other words, cursor P1 becomes an alias for the
-** MEM_Blob content contained in register P2.
-**
-** A pseudo-table created by this opcode is used to hold a single
-** row output from the sorter so that the row can be decomposed into
-** individual columns using the OP_Column opcode. The OP_Column opcode
-** is the only cursor opcode that works with a pseudo-table.
-**
-** P3 is the number of fields in the records that will be stored by
-** the pseudo-table.
-*/
-case OP_OpenPseudo: {
- VdbeCursor *pCx;
-
- assert( pOp->p1>=0 );
- assert( pOp->p3>=0 );
- pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- pCx->pseudoTableReg = pOp->p2;
- pCx->isTable = 1;
- assert( pOp->p5==0 );
- break;
-}
-
-/* Opcode: Close P1 * * * *
-**
-** Close a cursor previously opened as P1. If P1 is not
-** currently open, this instruction is a no-op.
-*/
-case OP_Close: {
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
- p->apCsr[pOp->p1] = 0;
- break;
-}
-
-/* Opcode: SeekGE P1 P2 P3 P4 *
-** Synopsis: key=r[P3@P4]
-**
-** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
-** use the value in register P3 as the key. If cursor P1 refers
-** to an SQL index, then P3 is the first in an array of P4 registers
-** that are used as an unpacked index key.
-**
-** Reposition cursor P1 so that it points to the smallest entry that
-** is greater than or equal to the key value. If there are no records
-** greater than or equal to the key and P2 is not zero, then jump to P2.
-**
-** This opcode leaves the cursor configured to move in forward order,
-** from the beginning toward the end. In other words, the cursor is
-** configured to use Next, not Prev.
-**
-** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
-*/
-/* Opcode: SeekGT P1 P2 P3 P4 *
-** Synopsis: key=r[P3@P4]
-**
-** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
-** use the value in register P3 as a key. If cursor P1 refers
-** to an SQL index, then P3 is the first in an array of P4 registers
-** that are used as an unpacked index key.
-**
-** Reposition cursor P1 so that it points to the smallest entry that
-** is greater than the key value. If there are no records greater than
-** the key and P2 is not zero, then jump to P2.
-**
-** This opcode leaves the cursor configured to move in forward order,
-** from the beginning toward the end. In other words, the cursor is
-** configured to use Next, not Prev.
-**
-** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
-*/
-/* Opcode: SeekLT P1 P2 P3 P4 *
-** Synopsis: key=r[P3@P4]
-**
-** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
-** use the value in register P3 as a key. If cursor P1 refers
-** to an SQL index, then P3 is the first in an array of P4 registers
-** that are used as an unpacked index key.
-**
-** Reposition cursor P1 so that it points to the largest entry that
-** is less than the key value. If there are no records less than
-** the key and P2 is not zero, then jump to P2.
-**
-** This opcode leaves the cursor configured to move in reverse order,
-** from the end toward the beginning. In other words, the cursor is
-** configured to use Prev, not Next.
-**
-** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
-*/
-/* Opcode: SeekLE P1 P2 P3 P4 *
-** Synopsis: key=r[P3@P4]
-**
-** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
-** use the value in register P3 as a key. If cursor P1 refers
-** to an SQL index, then P3 is the first in an array of P4 registers
-** that are used as an unpacked index key.
-**
-** Reposition cursor P1 so that it points to the largest entry that
-** is less than or equal to the key value. If there are no records
-** less than or equal to the key and P2 is not zero, then jump to P2.
-**
-** This opcode leaves the cursor configured to move in reverse order,
-** from the end toward the beginning. In other words, the cursor is
-** configured to use Prev, not Next.
-**
-** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
-*/
-case OP_SeekLT: /* jump, in3 */
-case OP_SeekLE: /* jump, in3 */
-case OP_SeekGE: /* jump, in3 */
-case OP_SeekGT: { /* jump, in3 */
- int res;
- int oc;
- VdbeCursor *pC;
- UnpackedRecord r;
- int nField;
- i64 iKey; /* The rowid we are to seek to */
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( pOp->p2!=0 );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->pseudoTableReg==0 );
- assert( OP_SeekLE == OP_SeekLT+1 );
- assert( OP_SeekGE == OP_SeekLT+2 );
- assert( OP_SeekGT == OP_SeekLT+3 );
- assert( pC->isOrdered );
- assert( pC->pCursor!=0 );
- oc = pOp->opcode;
- pC->nullRow = 0;
-#ifdef SQLITE_DEBUG
- pC->seekOp = pOp->opcode;
-#endif
- if( pC->isTable ){
- /* The input value in P3 might be of any type: integer, real, string,
- ** blob, or NULL. But it needs to be an integer before we can do
- ** the seek, so convert it. */
- pIn3 = &aMem[pOp->p3];
- if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
- applyNumericAffinity(pIn3, 0);
- }
- iKey = sqlite3VdbeIntValue(pIn3);
-
- /* If the P3 value could not be converted into an integer without
- ** loss of information, then special processing is required... */
- if( (pIn3->flags & MEM_Int)==0 ){
- if( (pIn3->flags & MEM_Real)==0 ){
- /* If the P3 value cannot be converted into any kind of a number,
- ** then the seek is not possible, so jump to P2 */
- pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
- break;
- }
-
- /* If the approximation iKey is larger than the actual real search
- ** term, substitute >= for > and < for <=. e.g. if the search term
- ** is 4.9 and the integer approximation 5:
- **
- ** (x > 4.9) -> (x >= 5)
- ** (x <= 4.9) -> (x < 5)
- */
- if( pIn3->u.r<(double)iKey ){
- assert( OP_SeekGE==(OP_SeekGT-1) );
- assert( OP_SeekLT==(OP_SeekLE-1) );
- assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
- if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
- }
-
- /* If the approximation iKey is smaller than the actual real search
- ** term, substitute <= for < and > for >=. */
- else if( pIn3->u.r>(double)iKey ){
- assert( OP_SeekLE==(OP_SeekLT+1) );
- assert( OP_SeekGT==(OP_SeekGE+1) );
- assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
- if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
- }
- }
- rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
- pC->movetoTarget = iKey; /* Used by OP_Delete */
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- }else{
- nField = pOp->p4.i;
- assert( pOp->p4type==P4_INT32 );
- assert( nField>0 );
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)nField;
-
- /* The next line of code computes as follows, only faster:
- ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
- ** r.default_rc = -1;
- ** }else{
- ** r.default_rc = +1;
- ** }
- */
- r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
- assert( oc!=OP_SeekGT || r.default_rc==-1 );
- assert( oc!=OP_SeekLE || r.default_rc==-1 );
- assert( oc!=OP_SeekGE || r.default_rc==+1 );
- assert( oc!=OP_SeekLT || r.default_rc==+1 );
-
- r.aMem = &aMem[pOp->p3];
-#ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
-#endif
- ExpandBlob(r.aMem);
- rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- }
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
-#ifdef SQLITE_TEST
- sqlite3_search_count++;
-#endif
- if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
- if( res<0 || (res==0 && oc==OP_SeekGT) ){
- res = 0;
- rc = sqlite3BtreeNext(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- }else{
- res = 0;
- }
- }else{
- assert( oc==OP_SeekLT || oc==OP_SeekLE );
- if( res>0 || (res==0 && oc==OP_SeekLT) ){
- res = 0;
- rc = sqlite3BtreePrevious(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- }else{
- /* res might be negative because the table is empty. Check to
- ** see if this is the case.
- */
- res = sqlite3BtreeEof(pC->pCursor);
- }
- }
- assert( pOp->p2>0 );
- VdbeBranchTaken(res!=0,2);
- if( res ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: Seek P1 P2 * * *
-** Synopsis: intkey=r[P2]
-**
-** P1 is an open table cursor and P2 is a rowid integer. Arrange
-** for P1 to move so that it points to the rowid given by P2.
-**
-** This is actually a deferred seek. Nothing actually happens until
-** the cursor is used to read a record. That way, if no reads
-** occur, no unnecessary I/O happens.
-*/
-case OP_Seek: { /* in2 */
- VdbeCursor *pC;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->pCursor!=0 );
- assert( pC->isTable );
- pC->nullRow = 0;
- pIn2 = &aMem[pOp->p2];
- pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
- pC->deferredMoveto = 1;
- break;
-}
-
-
-/* Opcode: Found P1 P2 P3 P4 *
-** Synopsis: key=r[P3@P4]
-**
-** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
-** P4>0 then register P3 is the first of P4 registers that form an unpacked
-** record.
-**
-** Cursor P1 is on an index btree. If the record identified by P3 and P4
-** is a prefix of any entry in P1 then a jump is made to P2 and
-** P1 is left pointing at the matching entry.
-**
-** This operation leaves the cursor in a state where it can be
-** advanced in the forward direction. The Next instruction will work,
-** but not the Prev instruction.
-**
-** See also: NotFound, NoConflict, NotExists. SeekGe
-*/
-/* Opcode: NotFound P1 P2 P3 P4 *
-** Synopsis: key=r[P3@P4]
-**
-** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
-** P4>0 then register P3 is the first of P4 registers that form an unpacked
-** record.
-**
-** Cursor P1 is on an index btree. If the record identified by P3 and P4
-** is not the prefix of any entry in P1 then a jump is made to P2. If P1
-** does contain an entry whose prefix matches the P3/P4 record then control
-** falls through to the next instruction and P1 is left pointing at the
-** matching entry.
-**
-** This operation leaves the cursor in a state where it cannot be
-** advanced in either direction. In other words, the Next and Prev
-** opcodes do not work after this operation.
-**
-** See also: Found, NotExists, NoConflict
-*/
-/* Opcode: NoConflict P1 P2 P3 P4 *
-** Synopsis: key=r[P3@P4]
-**
-** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
-** P4>0 then register P3 is the first of P4 registers that form an unpacked
-** record.
-**
-** Cursor P1 is on an index btree. If the record identified by P3 and P4
-** contains any NULL value, jump immediately to P2. If all terms of the
-** record are not-NULL then a check is done to determine if any row in the
-** P1 index btree has a matching key prefix. If there are no matches, jump
-** immediately to P2. If there is a match, fall through and leave the P1
-** cursor pointing to the matching row.
-**
-** This opcode is similar to OP_NotFound with the exceptions that the
-** branch is always taken if any part of the search key input is NULL.
-**
-** This operation leaves the cursor in a state where it cannot be
-** advanced in either direction. In other words, the Next and Prev
-** opcodes do not work after this operation.
-**
-** See also: NotFound, Found, NotExists
-*/
-case OP_NoConflict: /* jump, in3 */
-case OP_NotFound: /* jump, in3 */
-case OP_Found: { /* jump, in3 */
- int alreadyExists;
- int ii;
- VdbeCursor *pC;
- int res;
- char *pFree;
- UnpackedRecord *pIdxKey;
- UnpackedRecord r;
- char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
-
-#ifdef SQLITE_TEST
- if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
-#endif
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( pOp->p4type==P4_INT32 );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
-#ifdef SQLITE_DEBUG
- pC->seekOp = pOp->opcode;
-#endif
- pIn3 = &aMem[pOp->p3];
- assert( pC->pCursor!=0 );
- assert( pC->isTable==0 );
- pFree = 0; /* Not needed. Only used to suppress a compiler warning. */
- if( pOp->p4.i>0 ){
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)pOp->p4.i;
- r.aMem = pIn3;
- for(ii=0; ii<r.nField; ii++){
- assert( memIsValid(&r.aMem[ii]) );
- ExpandBlob(&r.aMem[ii]);
-#ifdef SQLITE_DEBUG
- if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
-#endif
- }
- pIdxKey = &r;
- }else{
- pIdxKey = sqlite3VdbeAllocUnpackedRecord(
- pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
- );
- if( pIdxKey==0 ) goto no_mem;
- assert( pIn3->flags & MEM_Blob );
- assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
- sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
- }
- pIdxKey->default_rc = 0;
- if( pOp->opcode==OP_NoConflict ){
- /* For the OP_NoConflict opcode, take the jump if any of the
- ** input fields are NULL, since any key with a NULL will not
- ** conflict */
- for(ii=0; ii<r.nField; ii++){
- if( r.aMem[ii].flags & MEM_Null ){
- pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
- break;
- }
- }
- }
- rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
- if( pOp->p4.i==0 ){
- sqlite3DbFree(db, pFree);
- }
- if( rc!=SQLITE_OK ){
- break;
- }
- pC->seekResult = res;
- alreadyExists = (res==0);
- pC->nullRow = 1-alreadyExists;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- if( pOp->opcode==OP_Found ){
- VdbeBranchTaken(alreadyExists!=0,2);
- if( alreadyExists ) pc = pOp->p2 - 1;
- }else{
- VdbeBranchTaken(alreadyExists==0,2);
- if( !alreadyExists ) pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: NotExists P1 P2 P3 * *
-** Synopsis: intkey=r[P3]
-**
-** P1 is the index of a cursor open on an SQL table btree (with integer
-** keys). P3 is an integer rowid. If P1 does not contain a record with
-** rowid P3 then jump immediately to P2. If P1 does contain a record
-** with rowid P3 then leave the cursor pointing at that record and fall
-** through to the next instruction.
-**
-** The OP_NotFound opcode performs the same operation on index btrees
-** (with arbitrary multi-value keys).
-**
-** This opcode leaves the cursor in a state where it cannot be advanced
-** in either direction. In other words, the Next and Prev opcodes will
-** not work following this opcode.
-**
-** See also: Found, NotFound, NoConflict
-*/
-case OP_NotExists: { /* jump, in3 */
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int res;
- u64 iKey;
-
- pIn3 = &aMem[pOp->p3];
- assert( pIn3->flags & MEM_Int );
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
-#ifdef SQLITE_DEBUG
- pC->seekOp = 0;
-#endif
- assert( pC->isTable );
- assert( pC->pseudoTableReg==0 );
- pCrsr = pC->pCursor;
- assert( pCrsr!=0 );
- res = 0;
- iKey = pIn3->u.i;
- rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
- pC->movetoTarget = iKey; /* Used by OP_Delete */
- pC->nullRow = 0;
- pC->cacheStatus = CACHE_STALE;
- pC->deferredMoveto = 0;
- VdbeBranchTaken(res!=0,2);
- if( res!=0 ){
- pc = pOp->p2 - 1;
- }
- pC->seekResult = res;
- break;
-}
-
-/* Opcode: Sequence P1 P2 * * *
-** Synopsis: r[P2]=cursor[P1].ctr++
-**
-** Find the next available sequence number for cursor P1.
-** Write the sequence number into register P2.
-** The sequence number on the cursor is incremented after this
-** instruction.
-*/
-case OP_Sequence: { /* out2-prerelease */
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( p->apCsr[pOp->p1]!=0 );
- pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
- break;
-}
-
-
-/* Opcode: NewRowid P1 P2 P3 * *
-** Synopsis: r[P2]=rowid
-**
-** Get a new integer record number (a.k.a "rowid") used as the key to a table.
-** The record number is not previously used as a key in the database
-** table that cursor P1 points to. The new record number is written
-** written to register P2.
-**
-** If P3>0 then P3 is a register in the root frame of this VDBE that holds
-** the largest previously generated record number. No new record numbers are
-** allowed to be less than this value. When this value reaches its maximum,
-** an SQLITE_FULL error is generated. The P3 register is updated with the '
-** generated record number. This P3 mechanism is used to help implement the
-** AUTOINCREMENT feature.
-*/
-case OP_NewRowid: { /* out2-prerelease */
- i64 v; /* The new rowid */
- VdbeCursor *pC; /* Cursor of table to get the new rowid */
- int res; /* Result of an sqlite3BtreeLast() */
- int cnt; /* Counter to limit the number of searches */
- Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
- VdbeFrame *pFrame; /* Root frame of VDBE */
-
- v = 0;
- res = 0;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- if( NEVER(pC->pCursor==0) ){
- /* The zero initialization above is all that is needed */
- }else{
- /* The next rowid or record number (different terms for the same
- ** thing) is obtained in a two-step algorithm.
- **
- ** First we attempt to find the largest existing rowid and add one
- ** to that. But if the largest existing rowid is already the maximum
- ** positive integer, we have to fall through to the second
- ** probabilistic algorithm
- **
- ** The second algorithm is to select a rowid at random and see if
- ** it already exists in the table. If it does not exist, we have
- ** succeeded. If the random rowid does exist, we select a new one
- ** and try again, up to 100 times.
- */
- assert( pC->isTable );
-
-#ifdef SQLITE_32BIT_ROWID
-# define MAX_ROWID 0x7fffffff
-#else
- /* Some compilers complain about constants of the form 0x7fffffffffffffff.
- ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
- ** to provide the constant while making all compilers happy.
- */
-# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
-#endif
-
- if( !pC->useRandomRowid ){
- rc = sqlite3BtreeLast(pC->pCursor, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res ){
- v = 1; /* IMP: R-61914-48074 */
- }else{
- assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
- rc = sqlite3BtreeKeySize(pC->pCursor, &v);
- assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
- if( v>=MAX_ROWID ){
- pC->useRandomRowid = 1;
- }else{
- v++; /* IMP: R-29538-34987 */
- }
- }
- }
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- if( pOp->p3 ){
- /* Assert that P3 is a valid memory cell. */
- assert( pOp->p3>0 );
- if( p->pFrame ){
- for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
- /* Assert that P3 is a valid memory cell. */
- assert( pOp->p3<=pFrame->nMem );
- pMem = &pFrame->aMem[pOp->p3];
- }else{
- /* Assert that P3 is a valid memory cell. */
- assert( pOp->p3<=(p->nMem-p->nCursor) );
- pMem = &aMem[pOp->p3];
- memAboutToChange(p, pMem);
- }
- assert( memIsValid(pMem) );
-
- REGISTER_TRACE(pOp->p3, pMem);
- sqlite3VdbeMemIntegerify(pMem);
- assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
- if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
- rc = SQLITE_FULL; /* IMP: R-12275-61338 */
- goto abort_due_to_error;
- }
- if( v<pMem->u.i+1 ){
- v = pMem->u.i + 1;
- }
- pMem->u.i = v;
- }
-#endif
- if( pC->useRandomRowid ){
- /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
- ** largest possible integer (9223372036854775807) then the database
- ** engine starts picking positive candidate ROWIDs at random until
- ** it finds one that is not previously used. */
- assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
- ** an AUTOINCREMENT table. */
- cnt = 0;
- do{
- sqlite3_randomness(sizeof(v), &v);
- v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
- }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
- 0, &res))==SQLITE_OK)
- && (res==0)
- && (++cnt<100));
- if( rc==SQLITE_OK && res==0 ){
- rc = SQLITE_FULL; /* IMP: R-38219-53002 */
- goto abort_due_to_error;
- }
- assert( v>0 ); /* EV: R-40812-03570 */
- }
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }
- pOut->u.i = v;
- break;
-}
-
-/* Opcode: Insert P1 P2 P3 P4 P5
-** Synopsis: intkey=r[P3] data=r[P2]
-**
-** Write an entry into the table of cursor P1. A new entry is
-** created if it doesn't already exist or the data for an existing
-** entry is overwritten. The data is the value MEM_Blob stored in register
-** number P2. The key is stored in register P3. The key must
-** be a MEM_Int.
-**
-** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
-** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
-** then rowid is stored for subsequent return by the
-** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
-**
-** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
-** the last seek operation (OP_NotExists) was a success, then this
-** operation will not attempt to find the appropriate row before doing
-** the insert but will instead overwrite the row that the cursor is
-** currently pointing to. Presumably, the prior OP_NotExists opcode
-** has already positioned the cursor correctly. This is an optimization
-** that boosts performance by avoiding redundant seeks.
-**
-** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
-** UPDATE operation. Otherwise (if the flag is clear) then this opcode
-** is part of an INSERT operation. The difference is only important to
-** the update hook.
-**
-** Parameter P4 may point to a string containing the table-name, or
-** may be NULL. If it is not NULL, then the update-hook
-** (sqlite3.xUpdateCallback) is invoked following a successful insert.
-**
-** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
-** allocated, then ownership of P2 is transferred to the pseudo-cursor
-** and register P2 becomes ephemeral. If the cursor is changed, the
-** value of register P2 will then change. Make sure this does not
-** cause any problems.)
-**
-** This instruction only works on tables. The equivalent instruction
-** for indices is OP_IdxInsert.
-*/
-/* Opcode: InsertInt P1 P2 P3 P4 P5
-** Synopsis: intkey=P3 data=r[P2]
-**
-** This works exactly like OP_Insert except that the key is the
-** integer value P3, not the value of the integer stored in register P3.
-*/
-case OP_Insert:
-case OP_InsertInt: {
- Mem *pData; /* MEM cell holding data for the record to be inserted */
- Mem *pKey; /* MEM cell holding key for the record */
- i64 iKey; /* The integer ROWID or key for the record to be inserted */
- VdbeCursor *pC; /* Cursor to table into which insert is written */
- int nZero; /* Number of zero-bytes to append */
- int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
- const char *zDb; /* database name - used by the update hook */
- const char *zTbl; /* Table name - used by the opdate hook */
- int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
-
- pData = &aMem[pOp->p2];
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( memIsValid(pData) );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->pCursor!=0 );
- assert( pC->pseudoTableReg==0 );
- assert( pC->isTable );
- REGISTER_TRACE(pOp->p2, pData);
-
- if( pOp->opcode==OP_Insert ){
- pKey = &aMem[pOp->p3];
- assert( pKey->flags & MEM_Int );
- assert( memIsValid(pKey) );
- REGISTER_TRACE(pOp->p3, pKey);
- iKey = pKey->u.i;
- }else{
- assert( pOp->opcode==OP_InsertInt );
- iKey = pOp->p3;
- }
-
- if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
- if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
- if( pData->flags & MEM_Null ){
- pData->z = 0;
- pData->n = 0;
- }else{
- assert( pData->flags & (MEM_Blob|MEM_Str) );
- }
- seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
- if( pData->flags & MEM_Zero ){
- nZero = pData->u.nZero;
- }else{
- nZero = 0;
- }
- rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
- pData->z, pData->n, nZero,
- (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
- );
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
-
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
- zDb = db->aDb[pC->iDb].zName;
- zTbl = pOp->p4.z;
- op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
- assert( pC->isTable );
- db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
- assert( pC->iDb>=0 );
- }
- break;
-}
-
-/* Opcode: Delete P1 P2 * P4 *
-**
-** Delete the record at which the P1 cursor is currently pointing.
-**
-** The cursor will be left pointing at either the next or the previous
-** record in the table. If it is left pointing at the next record, then
-** the next Next instruction will be a no-op. Hence it is OK to delete
-** a record from within a Next loop.
-**
-** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
-** incremented (otherwise not).
-**
-** P1 must not be pseudo-table. It has to be a real table with
-** multiple rows.
-**
-** If P4 is not NULL, then it is the name of the table that P1 is
-** pointing to. The update hook will be invoked, if it exists.
-** If P4 is not NULL then the P1 cursor must have been positioned
-** using OP_NotFound prior to invoking this opcode.
-*/
-case OP_Delete: {
- VdbeCursor *pC;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
- assert( pC->deferredMoveto==0 );
-
-#ifdef SQLITE_DEBUG
- /* The seek operation that positioned the cursor prior to OP_Delete will
- ** have also set the pC->movetoTarget field to the rowid of the row that
- ** is being deleted */
- if( pOp->p4.z && pC->isTable ){
- i64 iKey = 0;
- sqlite3BtreeKeySize(pC->pCursor, &iKey);
- assert( pC->movetoTarget==iKey );
- }
-#endif
-
- rc = sqlite3BtreeDelete(pC->pCursor);
- pC->cacheStatus = CACHE_STALE;
-
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
- db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
- db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
- assert( pC->iDb>=0 );
- }
- if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
- break;
-}
-/* Opcode: ResetCount * * * * *
-**
-** The value of the change counter is copied to the database handle
-** change counter (returned by subsequent calls to sqlite3_changes()).
-** Then the VMs internal change counter resets to 0.
-** This is used by trigger programs.
-*/
-case OP_ResetCount: {
- sqlite3VdbeSetChanges(db, p->nChange);
- p->nChange = 0;
- break;
-}
-
-/* Opcode: SorterCompare P1 P2 P3 P4
-** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
-**
-** P1 is a sorter cursor. This instruction compares a prefix of the
-** record blob in register P3 against a prefix of the entry that
-** the sorter cursor currently points to. Only the first P4 fields
-** of r[P3] and the sorter record are compared.
-**
-** If either P3 or the sorter contains a NULL in one of their significant
-** fields (not counting the P4 fields at the end which are ignored) then
-** the comparison is assumed to be equal.
-**
-** Fall through to next instruction if the two records compare equal to
-** each other. Jump to P2 if they are different.
-*/
-case OP_SorterCompare: {
- VdbeCursor *pC;
- int res;
- int nKeyCol;
-
- pC = p->apCsr[pOp->p1];
- assert( isSorter(pC) );
- assert( pOp->p4type==P4_INT32 );
- pIn3 = &aMem[pOp->p3];
- nKeyCol = pOp->p4.i;
- res = 0;
- rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
- VdbeBranchTaken(res!=0,2);
- if( res ){
- pc = pOp->p2-1;
- }
- break;
-};
-
-/* Opcode: SorterData P1 P2 P3 * *
-** Synopsis: r[P2]=data
-**
-** Write into register P2 the current sorter data for sorter cursor P1.
-** Then clear the column header cache on cursor P3.
-**
-** This opcode is normally use to move a record out of the sorter and into
-** a register that is the source for a pseudo-table cursor created using
-** OpenPseudo. That pseudo-table cursor is the one that is identified by
-** parameter P3. Clearing the P3 column cache as part of this opcode saves
-** us from having to issue a separate NullRow instruction to clear that cache.
-*/
-case OP_SorterData: {
- VdbeCursor *pC;
-
- pOut = &aMem[pOp->p2];
- pC = p->apCsr[pOp->p1];
- assert( isSorter(pC) );
- rc = sqlite3VdbeSorterRowkey(pC, pOut);
- assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
- break;
-}
-
-/* Opcode: RowData P1 P2 * * *
-** Synopsis: r[P2]=data
-**
-** Write into register P2 the complete row data for cursor P1.
-** There is no interpretation of the data.
-** It is just copied onto the P2 register exactly as
-** it is found in the database file.
-**
-** If the P1 cursor must be pointing to a valid row (not a NULL row)
-** of a real table, not a pseudo-table.
-*/
-/* Opcode: RowKey P1 P2 * * *
-** Synopsis: r[P2]=key
-**
-** Write into register P2 the complete row key for cursor P1.
-** There is no interpretation of the data.
-** The key is copied onto the P2 register exactly as
-** it is found in the database file.
-**
-** If the P1 cursor must be pointing to a valid row (not a NULL row)
-** of a real table, not a pseudo-table.
-*/
-case OP_RowKey:
-case OP_RowData: {
- VdbeCursor *pC;
- BtCursor *pCrsr;
- u32 n;
- i64 n64;
-
- pOut = &aMem[pOp->p2];
- memAboutToChange(p, pOut);
-
- /* Note that RowKey and RowData are really exactly the same instruction */
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( isSorter(pC)==0 );
- assert( pC->isTable || pOp->opcode!=OP_RowData );
- assert( pC->isTable==0 || pOp->opcode==OP_RowData );
- assert( pC!=0 );
- assert( pC->nullRow==0 );
- assert( pC->pseudoTableReg==0 );
- assert( pC->pCursor!=0 );
- pCrsr = pC->pCursor;
-
- /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
- ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
- ** the cursor. If this where not the case, on of the following assert()s
- ** would fail. Should this ever change (because of changes in the code
- ** generator) then the fix would be to insert a call to
- ** sqlite3VdbeCursorMoveto().
- */
- assert( pC->deferredMoveto==0 );
- assert( sqlite3BtreeCursorIsValid(pCrsr) );
-#if 0 /* Not required due to the previous to assert() statements */
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
-#endif
-
- if( pC->isTable==0 ){
- assert( !pC->isTable );
- VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
- assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
- if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- n = (u32)n64;
- }else{
- VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
- assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
- if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- }
- testcase( n==0 );
- if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
- goto no_mem;
- }
- pOut->n = n;
- MemSetTypeFlag(pOut, MEM_Blob);
- if( pC->isTable==0 ){
- rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
- }else{
- rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
- }
- pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
- UPDATE_MAX_BLOBSIZE(pOut);
- REGISTER_TRACE(pOp->p2, pOut);
- break;
-}
-
-/* Opcode: Rowid P1 P2 * * *
-** Synopsis: r[P2]=rowid
-**
-** Store in register P2 an integer which is the key of the table entry that
-** P1 is currently point to.
-**
-** P1 can be either an ordinary table or a virtual table. There used to
-** be a separate OP_VRowid opcode for use with virtual tables, but this
-** one opcode now works for both table types.
-*/
-case OP_Rowid: { /* out2-prerelease */
- VdbeCursor *pC;
- i64 v;
- sqlite3_vtab *pVtab;
- const sqlite3_module *pModule;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->pseudoTableReg==0 || pC->nullRow );
- if( pC->nullRow ){
- pOut->flags = MEM_Null;
- break;
- }else if( pC->deferredMoveto ){
- v = pC->movetoTarget;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- }else if( pC->pVtabCursor ){
- pVtab = pC->pVtabCursor->pVtab;
- pModule = pVtab->pModule;
- assert( pModule->xRowid );
- rc = pModule->xRowid(pC->pVtabCursor, &v);
- sqlite3VtabImportErrmsg(p, pVtab);
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
- }else{
- assert( pC->pCursor!=0 );
- rc = sqlite3VdbeCursorRestore(pC);
- if( rc ) goto abort_due_to_error;
- if( pC->nullRow ){
- pOut->flags = MEM_Null;
- break;
- }
- rc = sqlite3BtreeKeySize(pC->pCursor, &v);
- assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
- }
- pOut->u.i = v;
- break;
-}
-
-/* Opcode: NullRow P1 * * * *
-**
-** Move the cursor P1 to a null row. Any OP_Column operations
-** that occur while the cursor is on the null row will always
-** write a NULL.
-*/
-case OP_NullRow: {
- VdbeCursor *pC;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- pC->nullRow = 1;
- pC->cacheStatus = CACHE_STALE;
- if( pC->pCursor ){
- sqlite3BtreeClearCursor(pC->pCursor);
- }
- break;
-}
-
-/* Opcode: Last P1 P2 * * *
-**
-** The next use of the Rowid or Column or Prev instruction for P1
-** will refer to the last entry in the database table or index.
-** If the table or index is empty and P2>0, then jump immediately to P2.
-** If P2 is 0 or if the table or index is not empty, fall through
-** to the following instruction.
-**
-** This opcode leaves the cursor configured to move in reverse order,
-** from the end toward the beginning. In other words, the cursor is
-** configured to use Prev, not Next.
-*/
-case OP_Last: { /* jump */
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int res;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- pCrsr = pC->pCursor;
- res = 0;
- assert( pCrsr!=0 );
- rc = sqlite3BtreeLast(pCrsr, &res);
- pC->nullRow = (u8)res;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
-#ifdef SQLITE_DEBUG
- pC->seekOp = OP_Last;
-#endif
- if( pOp->p2>0 ){
- VdbeBranchTaken(res!=0,2);
- if( res ) pc = pOp->p2 - 1;
- }
- break;
-}
-
-
-/* Opcode: Sort P1 P2 * * *
-**
-** This opcode does exactly the same thing as OP_Rewind except that
-** it increments an undocumented global variable used for testing.
-**
-** Sorting is accomplished by writing records into a sorting index,
-** then rewinding that index and playing it back from beginning to
-** end. We use the OP_Sort opcode instead of OP_Rewind to do the
-** rewinding so that the global variable will be incremented and
-** regression tests can determine whether or not the optimizer is
-** correctly optimizing out sorts.
-*/
-case OP_SorterSort: /* jump */
-case OP_Sort: { /* jump */
-#ifdef SQLITE_TEST
- sqlite3_sort_count++;
- sqlite3_search_count--;
-#endif
- p->aCounter[SQLITE_STMTSTATUS_SORT]++;
- /* Fall through into OP_Rewind */
-}
-/* Opcode: Rewind P1 P2 * * *
-**
-** The next use of the Rowid or Column or Next instruction for P1
-** will refer to the first entry in the database table or index.
-** If the table or index is empty and P2>0, then jump immediately to P2.
-** If P2 is 0 or if the table or index is not empty, fall through
-** to the following instruction.
-**
-** This opcode leaves the cursor configured to move in forward order,
-** from the beginning toward the end. In other words, the cursor is
-** configured to use Next, not Prev.
-*/
-case OP_Rewind: { /* jump */
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int res;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
- res = 1;
-#ifdef SQLITE_DEBUG
- pC->seekOp = OP_Rewind;
-#endif
- if( isSorter(pC) ){
- rc = sqlite3VdbeSorterRewind(pC, &res);
- }else{
- pCrsr = pC->pCursor;
- assert( pCrsr );
- rc = sqlite3BtreeFirst(pCrsr, &res);
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }
- pC->nullRow = (u8)res;
- assert( pOp->p2>0 && pOp->p2<p->nOp );
- VdbeBranchTaken(res!=0,2);
- if( res ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: Next P1 P2 P3 P4 P5
-**
-** Advance cursor P1 so that it points to the next key/data pair in its
-** table or index. If there are no more key/value pairs then fall through
-** to the following instruction. But if the cursor advance was successful,
-** jump immediately to P2.
-**
-** The Next opcode is only valid following an SeekGT, SeekGE, or
-** OP_Rewind opcode used to position the cursor. Next is not allowed
-** to follow SeekLT, SeekLE, or OP_Last.
-**
-** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
-** been opened prior to this opcode or the program will segfault.
-**
-** The P3 value is a hint to the btree implementation. If P3==1, that
-** means P1 is an SQL index and that this instruction could have been
-** omitted if that index had been unique. P3 is usually 0. P3 is
-** always either 0 or 1.
-**
-** P4 is always of type P4_ADVANCE. The function pointer points to
-** sqlite3BtreeNext().
-**
-** If P5 is positive and the jump is taken, then event counter
-** number P5-1 in the prepared statement is incremented.
-**
-** See also: Prev, NextIfOpen
-*/
-/* Opcode: NextIfOpen P1 P2 P3 P4 P5
-**
-** This opcode works just like Next except that if cursor P1 is not
-** open it behaves a no-op.
-*/
-/* Opcode: Prev P1 P2 P3 P4 P5
-**
-** Back up cursor P1 so that it points to the previous key/data pair in its
-** table or index. If there is no previous key/value pairs then fall through
-** to the following instruction. But if the cursor backup was successful,
-** jump immediately to P2.
-**
-**
-** The Prev opcode is only valid following an SeekLT, SeekLE, or
-** OP_Last opcode used to position the cursor. Prev is not allowed
-** to follow SeekGT, SeekGE, or OP_Rewind.
-**
-** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
-** not open then the behavior is undefined.
-**
-** The P3 value is a hint to the btree implementation. If P3==1, that
-** means P1 is an SQL index and that this instruction could have been
-** omitted if that index had been unique. P3 is usually 0. P3 is
-** always either 0 or 1.
-**
-** P4 is always of type P4_ADVANCE. The function pointer points to
-** sqlite3BtreePrevious().
-**
-** If P5 is positive and the jump is taken, then event counter
-** number P5-1 in the prepared statement is incremented.
-*/
-/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
-**
-** This opcode works just like Prev except that if cursor P1 is not
-** open it behaves a no-op.
-*/
-case OP_SorterNext: { /* jump */
- VdbeCursor *pC;
- int res;
-
- pC = p->apCsr[pOp->p1];
- assert( isSorter(pC) );
- res = 0;
- rc = sqlite3VdbeSorterNext(db, pC, &res);
- goto next_tail;
-case OP_PrevIfOpen: /* jump */
-case OP_NextIfOpen: /* jump */
- if( p->apCsr[pOp->p1]==0 ) break;
- /* Fall through */
-case OP_Prev: /* jump */
-case OP_Next: /* jump */
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( pOp->p5<ArraySize(p->aCounter) );
- pC = p->apCsr[pOp->p1];
- res = pOp->p3;
- assert( pC!=0 );
- assert( pC->deferredMoveto==0 );
- assert( pC->pCursor );
- assert( res==0 || (res==1 && pC->isTable==0) );
- testcase( res==1 );
- assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
- assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
- assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
- assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
-
- /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
- ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
- assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
- || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
- || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
- assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
- || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
- || pC->seekOp==OP_Last );
-
- rc = pOp->p4.xAdvance(pC->pCursor, &res);
-next_tail:
- pC->cacheStatus = CACHE_STALE;
- VdbeBranchTaken(res==0,2);
- if( res==0 ){
- pC->nullRow = 0;
- pc = pOp->p2 - 1;
- p->aCounter[pOp->p5]++;
-#ifdef SQLITE_TEST
- sqlite3_search_count++;
-#endif
- }else{
- pC->nullRow = 1;
- }
- goto check_for_interrupt;
-}
-
-/* Opcode: IdxInsert P1 P2 P3 * P5
-** Synopsis: key=r[P2]
-**
-** Register P2 holds an SQL index key made using the
-** MakeRecord instructions. This opcode writes that key
-** into the index P1. Data for the entry is nil.
-**
-** P3 is a flag that provides a hint to the b-tree layer that this
-** insert is likely to be an append.
-**
-** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
-** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
-** then the change counter is unchanged.
-**
-** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
-** just done a seek to the spot where the new entry is to be inserted.
-** This flag avoids doing an extra seek.
-**
-** This instruction only works for indices. The equivalent instruction
-** for tables is OP_Insert.
-*/
-case OP_SorterInsert: /* in2 */
-case OP_IdxInsert: { /* in2 */
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int nKey;
- const char *zKey;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
- pIn2 = &aMem[pOp->p2];
- assert( pIn2->flags & MEM_Blob );
- pCrsr = pC->pCursor;
- if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
- assert( pCrsr!=0 );
- assert( pC->isTable==0 );
- rc = ExpandBlob(pIn2);
- if( rc==SQLITE_OK ){
- if( isSorter(pC) ){
- rc = sqlite3VdbeSorterWrite(pC, pIn2);
- }else{
- nKey = pIn2->n;
- zKey = pIn2->z;
- rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
- ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
- );
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- }
- }
- break;
-}
-
-/* Opcode: IdxDelete P1 P2 P3 * *
-** Synopsis: key=r[P2@P3]
-**
-** The content of P3 registers starting at register P2 form
-** an unpacked index key. This opcode removes that entry from the
-** index opened by cursor P1.
-*/
-case OP_IdxDelete: {
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int res;
- UnpackedRecord r;
-
- assert( pOp->p3>0 );
- assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- pCrsr = pC->pCursor;
- assert( pCrsr!=0 );
- assert( pOp->p5==0 );
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)pOp->p3;
- r.default_rc = 0;
- r.aMem = &aMem[pOp->p2];
-#ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
-#endif
- rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
- if( rc==SQLITE_OK && res==0 ){
- rc = sqlite3BtreeDelete(pCrsr);
- }
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- break;
-}
-
-/* Opcode: IdxRowid P1 P2 * * *
-** Synopsis: r[P2]=rowid
-**
-** Write into register P2 an integer which is the last entry in the record at
-** the end of the index key pointed to by cursor P1. This integer should be
-** the rowid of the table entry to which this index entry points.
-**
-** See also: Rowid, MakeRecord.
-*/
-case OP_IdxRowid: { /* out2-prerelease */
- BtCursor *pCrsr;
- VdbeCursor *pC;
- i64 rowid;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- pCrsr = pC->pCursor;
- assert( pCrsr!=0 );
- pOut->flags = MEM_Null;
- assert( pC->isTable==0 );
- assert( pC->deferredMoveto==0 );
-
- /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
- ** out from under the cursor. That will never happend for an IdxRowid
- ** opcode, hence the NEVER() arround the check of the return value.
- */
- rc = sqlite3VdbeCursorRestore(pC);
- if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
-
- if( !pC->nullRow ){
- rowid = 0; /* Not needed. Only used to silence a warning. */
- rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pOut->u.i = rowid;
- pOut->flags = MEM_Int;
- }
- break;
-}
-
-/* Opcode: IdxGE P1 P2 P3 P4 P5
-** Synopsis: key=r[P3@P4]
-**
-** The P4 register values beginning with P3 form an unpacked index
-** key that omits the PRIMARY KEY. Compare this key value against the index
-** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
-** fields at the end.
-**
-** If the P1 index entry is greater than or equal to the key value
-** then jump to P2. Otherwise fall through to the next instruction.
-*/
-/* Opcode: IdxGT P1 P2 P3 P4 P5
-** Synopsis: key=r[P3@P4]
-**
-** The P4 register values beginning with P3 form an unpacked index
-** key that omits the PRIMARY KEY. Compare this key value against the index
-** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
-** fields at the end.
-**
-** If the P1 index entry is greater than the key value
-** then jump to P2. Otherwise fall through to the next instruction.
-*/
-/* Opcode: IdxLT P1 P2 P3 P4 P5
-** Synopsis: key=r[P3@P4]
-**
-** The P4 register values beginning with P3 form an unpacked index
-** key that omits the PRIMARY KEY or ROWID. Compare this key value against
-** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
-** ROWID on the P1 index.
-**
-** If the P1 index entry is less than the key value then jump to P2.
-** Otherwise fall through to the next instruction.
-*/
-/* Opcode: IdxLE P1 P2 P3 P4 P5
-** Synopsis: key=r[P3@P4]
-**
-** The P4 register values beginning with P3 form an unpacked index
-** key that omits the PRIMARY KEY or ROWID. Compare this key value against
-** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
-** ROWID on the P1 index.
-**
-** If the P1 index entry is less than or equal to the key value then jump
-** to P2. Otherwise fall through to the next instruction.
-*/
-case OP_IdxLE: /* jump */
-case OP_IdxGT: /* jump */
-case OP_IdxLT: /* jump */
-case OP_IdxGE: { /* jump */
- VdbeCursor *pC;
- int res;
- UnpackedRecord r;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->isOrdered );
- assert( pC->pCursor!=0);
- assert( pC->deferredMoveto==0 );
- assert( pOp->p5==0 || pOp->p5==1 );
- assert( pOp->p4type==P4_INT32 );
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)pOp->p4.i;
- if( pOp->opcode<OP_IdxLT ){
- assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
- r.default_rc = -1;
- }else{
- assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
- r.default_rc = 0;
- }
- r.aMem = &aMem[pOp->p3];
-#ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
-#endif
- res = 0; /* Not needed. Only used to silence a warning. */
- rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
- assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
- if( (pOp->opcode&1)==(OP_IdxLT&1) ){
- assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
- res = -res;
- }else{
- assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
- res++;
- }
- VdbeBranchTaken(res>0,2);
- if( res>0 ){
- pc = pOp->p2 - 1 ;
- }
- break;
-}
-
-/* Opcode: Destroy P1 P2 P3 * *
-**
-** Delete an entire database table or index whose root page in the database
-** file is given by P1.
-**
-** The table being destroyed is in the main database file if P3==0. If
-** P3==1 then the table to be clear is in the auxiliary database file
-** that is used to store tables create using CREATE TEMPORARY TABLE.
-**
-** If AUTOVACUUM is enabled then it is possible that another root page
-** might be moved into the newly deleted root page in order to keep all
-** root pages contiguous at the beginning of the database. The former
-** value of the root page that moved - its value before the move occurred -
-** is stored in register P2. If no page
-** movement was required (because the table being dropped was already
-** the last one in the database) then a zero is stored in register P2.
-** If AUTOVACUUM is disabled then a zero is stored in register P2.
-**
-** See also: Clear
-*/
-case OP_Destroy: { /* out2-prerelease */
- int iMoved;
- int iCnt;
- Vdbe *pVdbe;
- int iDb;
-
- assert( p->readOnly==0 );
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- iCnt = 0;
- for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
- if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
- && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
- ){
- iCnt++;
- }
- }
-#else
- iCnt = db->nVdbeRead;
-#endif
- pOut->flags = MEM_Null;
- if( iCnt>1 ){
- rc = SQLITE_LOCKED;
- p->errorAction = OE_Abort;
- }else{
- iDb = pOp->p3;
- assert( iCnt==1 );
- assert( DbMaskTest(p->btreeMask, iDb) );
- iMoved = 0; /* Not needed. Only to silence a warning. */
- rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
- pOut->flags = MEM_Int;
- pOut->u.i = iMoved;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( rc==SQLITE_OK && iMoved!=0 ){
- sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
- /* All OP_Destroy operations occur on the same btree */
- assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
- resetSchemaOnFault = iDb+1;
- }
-#endif
- }
- break;
-}
-
-/* Opcode: Clear P1 P2 P3
-**
-** Delete all contents of the database table or index whose root page
-** in the database file is given by P1. But, unlike Destroy, do not
-** remove the table or index from the database file.
-**
-** The table being clear is in the main database file if P2==0. If
-** P2==1 then the table to be clear is in the auxiliary database file
-** that is used to store tables create using CREATE TEMPORARY TABLE.
-**
-** If the P3 value is non-zero, then the table referred to must be an
-** intkey table (an SQL table, not an index). In this case the row change
-** count is incremented by the number of rows in the table being cleared.
-** If P3 is greater than zero, then the value stored in register P3 is
-** also incremented by the number of rows in the table being cleared.
-**
-** See also: Destroy
-*/
-case OP_Clear: {
- int nChange;
-
- nChange = 0;
- assert( p->readOnly==0 );
- assert( DbMaskTest(p->btreeMask, pOp->p2) );
- rc = sqlite3BtreeClearTable(
- db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
- );
- if( pOp->p3 ){
- p->nChange += nChange;
- if( pOp->p3>0 ){
- assert( memIsValid(&aMem[pOp->p3]) );
- memAboutToChange(p, &aMem[pOp->p3]);
- aMem[pOp->p3].u.i += nChange;
- }
- }
- break;
-}
-
-/* Opcode: ResetSorter P1 * * * *
-**
-** Delete all contents from the ephemeral table or sorter
-** that is open on cursor P1.
-**
-** This opcode only works for cursors used for sorting and
-** opened with OP_OpenEphemeral or OP_SorterOpen.
-*/
-case OP_ResetSorter: {
- VdbeCursor *pC;
-
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- if( pC->pSorter ){
- sqlite3VdbeSorterReset(db, pC->pSorter);
- }else{
- assert( pC->isEphemeral );
- rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
- }
- break;
-}
-
-/* Opcode: CreateTable P1 P2 * * *
-** Synopsis: r[P2]=root iDb=P1
-**
-** Allocate a new table in the main database file if P1==0 or in the
-** auxiliary database file if P1==1 or in an attached database if
-** P1>1. Write the root page number of the new table into
-** register P2
-**
-** The difference between a table and an index is this: A table must
-** have a 4-byte integer key and can have arbitrary data. An index
-** has an arbitrary key but no data.
-**
-** See also: CreateIndex
-*/
-/* Opcode: CreateIndex P1 P2 * * *
-** Synopsis: r[P2]=root iDb=P1
-**
-** Allocate a new index in the main database file if P1==0 or in the
-** auxiliary database file if P1==1 or in an attached database if
-** P1>1. Write the root page number of the new table into
-** register P2.
-**
-** See documentation on OP_CreateTable for additional information.
-*/
-case OP_CreateIndex: /* out2-prerelease */
-case OP_CreateTable: { /* out2-prerelease */
- int pgno;
- int flags;
- Db *pDb;
-
- pgno = 0;
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( DbMaskTest(p->btreeMask, pOp->p1) );
- assert( p->readOnly==0 );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
- if( pOp->opcode==OP_CreateTable ){
- /* flags = BTREE_INTKEY; */
- flags = BTREE_INTKEY;
- }else{
- flags = BTREE_BLOBKEY;
- }
- rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
- pOut->u.i = pgno;
- break;
-}
-
-/* Opcode: ParseSchema P1 * * P4 *
-**
-** Read and parse all entries from the SQLITE_MASTER table of database P1
-** that match the WHERE clause P4.
-**
-** This opcode invokes the parser to create a new virtual machine,
-** then runs the new virtual machine. It is thus a re-entrant opcode.
-*/
-case OP_ParseSchema: {
- int iDb;
- const char *zMaster;
- char *zSql;
- InitData initData;
-
- /* Any prepared statement that invokes this opcode will hold mutexes
- ** on every btree. This is a prerequisite for invoking
- ** sqlite3InitCallback().
- */
-#ifdef SQLITE_DEBUG
- for(iDb=0; iDb<db->nDb; iDb++){
- assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
- }
-#endif
-
- iDb = pOp->p1;
- assert( iDb>=0 && iDb<db->nDb );
- assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
- /* Used to be a conditional */ {
- zMaster = SCHEMA_TABLE(iDb);
- initData.db = db;
- initData.iDb = pOp->p1;
- initData.pzErrMsg = &p->zErrMsg;
- zSql = sqlite3MPrintf(db,
- "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
- db->aDb[iDb].zName, zMaster, pOp->p4.z);
- if( zSql==0 ){
- rc = SQLITE_NOMEM;
- }else{
- assert( db->init.busy==0 );
- db->init.busy = 1;
- initData.rc = SQLITE_OK;
- assert( !db->mallocFailed );
- rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
- if( rc==SQLITE_OK ) rc = initData.rc;
- sqlite3DbFree(db, zSql);
- db->init.busy = 0;
- }
- }
- if( rc ) sqlite3ResetAllSchemasOfConnection(db);
- if( rc==SQLITE_NOMEM ){
- goto no_mem;
- }
- break;
-}
-
-#if !defined(SQLITE_OMIT_ANALYZE)
-/* Opcode: LoadAnalysis P1 * * * *
-**
-** Read the sqlite_stat1 table for database P1 and load the content
-** of that table into the internal index hash table. This will cause
-** the analysis to be used when preparing all subsequent queries.
-*/
-case OP_LoadAnalysis: {
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- rc = sqlite3AnalysisLoad(db, pOp->p1);
- break;
-}
-#endif /* !defined(SQLITE_OMIT_ANALYZE) */
-
-/* Opcode: DropTable P1 * * P4 *
-**
-** Remove the internal (in-memory) data structures that describe
-** the table named P4 in database P1. This is called after a table
-** is dropped from disk (using the Destroy opcode) in order to keep
-** the internal representation of the
-** schema consistent with what is on disk.
-*/
-case OP_DropTable: {
- sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
- break;
-}
-
-/* Opcode: DropIndex P1 * * P4 *
-**
-** Remove the internal (in-memory) data structures that describe
-** the index named P4 in database P1. This is called after an index
-** is dropped from disk (using the Destroy opcode)
-** in order to keep the internal representation of the
-** schema consistent with what is on disk.
-*/
-case OP_DropIndex: {
- sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
- break;
-}
-
-/* Opcode: DropTrigger P1 * * P4 *
-**
-** Remove the internal (in-memory) data structures that describe
-** the trigger named P4 in database P1. This is called after a trigger
-** is dropped from disk (using the Destroy opcode) in order to keep
-** the internal representation of the
-** schema consistent with what is on disk.
-*/
-case OP_DropTrigger: {
- sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
- break;
-}
-
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/* Opcode: IntegrityCk P1 P2 P3 * P5
-**
-** Do an analysis of the currently open database. Store in
-** register P1 the text of an error message describing any problems.
-** If no problems are found, store a NULL in register P1.
-**
-** The register P3 contains the maximum number of allowed errors.
-** At most reg(P3) errors will be reported.
-** In other words, the analysis stops as soon as reg(P1) errors are
-** seen. Reg(P1) is updated with the number of errors remaining.
-**
-** The root page numbers of all tables in the database are integer
-** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
-** total.
-**
-** If P5 is not zero, the check is done on the auxiliary database
-** file, not the main database file.
-**
-** This opcode is used to implement the integrity_check pragma.
-*/
-case OP_IntegrityCk: {
- int nRoot; /* Number of tables to check. (Number of root pages.) */
- int *aRoot; /* Array of rootpage numbers for tables to be checked */
- int j; /* Loop counter */
- int nErr; /* Number of errors reported */
- char *z; /* Text of the error report */
- Mem *pnErr; /* Register keeping track of errors remaining */
-
- assert( p->bIsReader );
- nRoot = pOp->p2;
- assert( nRoot>0 );
- aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
- if( aRoot==0 ) goto no_mem;
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- pnErr = &aMem[pOp->p3];
- assert( (pnErr->flags & MEM_Int)!=0 );
- assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
- pIn1 = &aMem[pOp->p1];
- for(j=0; j<nRoot; j++){
- aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
- }
- aRoot[j] = 0;
- assert( pOp->p5<db->nDb );
- assert( DbMaskTest(p->btreeMask, pOp->p5) );
- z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
- (int)pnErr->u.i, &nErr);
- sqlite3DbFree(db, aRoot);
- pnErr->u.i -= nErr;
- sqlite3VdbeMemSetNull(pIn1);
- if( nErr==0 ){
- assert( z==0 );
- }else if( z==0 ){
- goto no_mem;
- }else{
- sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
- }
- UPDATE_MAX_BLOBSIZE(pIn1);
- sqlite3VdbeChangeEncoding(pIn1, encoding);
- break;
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-/* Opcode: RowSetAdd P1 P2 * * *
-** Synopsis: rowset(P1)=r[P2]
-**
-** Insert the integer value held by register P2 into a boolean index
-** held in register P1.
-**
-** An assertion fails if P2 is not an integer.
-*/
-case OP_RowSetAdd: { /* in1, in2 */
- pIn1 = &aMem[pOp->p1];
- pIn2 = &aMem[pOp->p2];
- assert( (pIn2->flags & MEM_Int)!=0 );
- if( (pIn1->flags & MEM_RowSet)==0 ){
- sqlite3VdbeMemSetRowSet(pIn1);
- if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
- }
- sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
- break;
-}
-
-/* Opcode: RowSetRead P1 P2 P3 * *
-** Synopsis: r[P3]=rowset(P1)
-**
-** Extract the smallest value from boolean index P1 and put that value into
-** register P3. Or, if boolean index P1 is initially empty, leave P3
-** unchanged and jump to instruction P2.
-*/
-case OP_RowSetRead: { /* jump, in1, out3 */
- i64 val;
-
- pIn1 = &aMem[pOp->p1];
- if( (pIn1->flags & MEM_RowSet)==0
- || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
- ){
- /* The boolean index is empty */
- sqlite3VdbeMemSetNull(pIn1);
- pc = pOp->p2 - 1;
- VdbeBranchTaken(1,2);
- }else{
- /* A value was pulled from the index */
- sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
- VdbeBranchTaken(0,2);
- }
- goto check_for_interrupt;
-}
-
-/* Opcode: RowSetTest P1 P2 P3 P4
-** Synopsis: if r[P3] in rowset(P1) goto P2
-**
-** Register P3 is assumed to hold a 64-bit integer value. If register P1
-** contains a RowSet object and that RowSet object contains
-** the value held in P3, jump to register P2. Otherwise, insert the
-** integer in P3 into the RowSet and continue on to the
-** next opcode.
-**
-** The RowSet object is optimized for the case where successive sets
-** of integers, where each set contains no duplicates. Each set
-** of values is identified by a unique P4 value. The first set
-** must have P4==0, the final set P4=-1. P4 must be either -1 or
-** non-negative. For non-negative values of P4 only the lower 4
-** bits are significant.
-**
-** This allows optimizations: (a) when P4==0 there is no need to test
-** the rowset object for P3, as it is guaranteed not to contain it,
-** (b) when P4==-1 there is no need to insert the value, as it will
-** never be tested for, and (c) when a value that is part of set X is
-** inserted, there is no need to search to see if the same value was
-** previously inserted as part of set X (only if it was previously
-** inserted as part of some other set).
-*/
-case OP_RowSetTest: { /* jump, in1, in3 */
- int iSet;
- int exists;
-
- pIn1 = &aMem[pOp->p1];
- pIn3 = &aMem[pOp->p3];
- iSet = pOp->p4.i;
- assert( pIn3->flags&MEM_Int );
-
- /* If there is anything other than a rowset object in memory cell P1,
- ** delete it now and initialize P1 with an empty rowset
- */
- if( (pIn1->flags & MEM_RowSet)==0 ){
- sqlite3VdbeMemSetRowSet(pIn1);
- if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
- }
-
- assert( pOp->p4type==P4_INT32 );
- assert( iSet==-1 || iSet>=0 );
- if( iSet ){
- exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
- VdbeBranchTaken(exists!=0,2);
- if( exists ){
- pc = pOp->p2 - 1;
- break;
- }
- }
- if( iSet>=0 ){
- sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
- }
- break;
-}
-
-
-#ifndef SQLITE_OMIT_TRIGGER
-
-/* Opcode: Program P1 P2 P3 P4 P5
-**
-** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
-**
-** P1 contains the address of the memory cell that contains the first memory
-** cell in an array of values used as arguments to the sub-program. P2
-** contains the address to jump to if the sub-program throws an IGNORE
-** exception using the RAISE() function. Register P3 contains the address
-** of a memory cell in this (the parent) VM that is used to allocate the
-** memory required by the sub-vdbe at runtime.
-**
-** P4 is a pointer to the VM containing the trigger program.
-**
-** If P5 is non-zero, then recursive program invocation is enabled.
-*/
-case OP_Program: { /* jump */
- int nMem; /* Number of memory registers for sub-program */
- int nByte; /* Bytes of runtime space required for sub-program */
- Mem *pRt; /* Register to allocate runtime space */
- Mem *pMem; /* Used to iterate through memory cells */
- Mem *pEnd; /* Last memory cell in new array */
- VdbeFrame *pFrame; /* New vdbe frame to execute in */
- SubProgram *pProgram; /* Sub-program to execute */
- void *t; /* Token identifying trigger */
-
- pProgram = pOp->p4.pProgram;
- pRt = &aMem[pOp->p3];
- assert( pProgram->nOp>0 );
-
- /* If the p5 flag is clear, then recursive invocation of triggers is
- ** disabled for backwards compatibility (p5 is set if this sub-program
- ** is really a trigger, not a foreign key action, and the flag set
- ** and cleared by the "PRAGMA recursive_triggers" command is clear).
- **
- ** It is recursive invocation of triggers, at the SQL level, that is
- ** disabled. In some cases a single trigger may generate more than one
- ** SubProgram (if the trigger may be executed with more than one different
- ** ON CONFLICT algorithm). SubProgram structures associated with a
- ** single trigger all have the same value for the SubProgram.token
- ** variable. */
- if( pOp->p5 ){
- t = pProgram->token;
- for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
- if( pFrame ) break;
- }
-
- if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
- rc = SQLITE_ERROR;
- sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
- break;
- }
-
- /* Register pRt is used to store the memory required to save the state
- ** of the current program, and the memory required at runtime to execute
- ** the trigger program. If this trigger has been fired before, then pRt
- ** is already allocated. Otherwise, it must be initialized. */
- if( (pRt->flags&MEM_Frame)==0 ){
- /* SubProgram.nMem is set to the number of memory cells used by the
- ** program stored in SubProgram.aOp. As well as these, one memory
- ** cell is required for each cursor used by the program. Set local
- ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
- */
- nMem = pProgram->nMem + pProgram->nCsr;
- nByte = ROUND8(sizeof(VdbeFrame))
- + nMem * sizeof(Mem)
- + pProgram->nCsr * sizeof(VdbeCursor *)
- + pProgram->nOnce * sizeof(u8);
- pFrame = sqlite3DbMallocZero(db, nByte);
- if( !pFrame ){
- goto no_mem;
- }
- sqlite3VdbeMemRelease(pRt);
- pRt->flags = MEM_Frame;
- pRt->u.pFrame = pFrame;
-
- pFrame->v = p;
- pFrame->nChildMem = nMem;
- pFrame->nChildCsr = pProgram->nCsr;
- pFrame->pc = pc;
- pFrame->aMem = p->aMem;
- pFrame->nMem = p->nMem;
- pFrame->apCsr = p->apCsr;
- pFrame->nCursor = p->nCursor;
- pFrame->aOp = p->aOp;
- pFrame->nOp = p->nOp;
- pFrame->token = pProgram->token;
- pFrame->aOnceFlag = p->aOnceFlag;
- pFrame->nOnceFlag = p->nOnceFlag;
-
- pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
- for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
- pMem->flags = MEM_Undefined;
- pMem->db = db;
- }
- }else{
- pFrame = pRt->u.pFrame;
- assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
- assert( pProgram->nCsr==pFrame->nChildCsr );
- assert( pc==pFrame->pc );
- }
-
- p->nFrame++;
- pFrame->pParent = p->pFrame;
- pFrame->lastRowid = lastRowid;
- pFrame->nChange = p->nChange;
- p->nChange = 0;
- p->pFrame = pFrame;
- p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
- p->nMem = pFrame->nChildMem;
- p->nCursor = (u16)pFrame->nChildCsr;
- p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
- p->aOp = aOp = pProgram->aOp;
- p->nOp = pProgram->nOp;
- p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
- p->nOnceFlag = pProgram->nOnce;
- pc = -1;
- memset(p->aOnceFlag, 0, p->nOnceFlag);
-
- break;
-}
-
-/* Opcode: Param P1 P2 * * *
-**
-** This opcode is only ever present in sub-programs called via the
-** OP_Program instruction. Copy a value currently stored in a memory
-** cell of the calling (parent) frame to cell P2 in the current frames
-** address space. This is used by trigger programs to access the new.*
-** and old.* values.
-**
-** The address of the cell in the parent frame is determined by adding
-** the value of the P1 argument to the value of the P1 argument to the
-** calling OP_Program instruction.
-*/
-case OP_Param: { /* out2-prerelease */
- VdbeFrame *pFrame;
- Mem *pIn;
- pFrame = p->pFrame;
- pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
- sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
- break;
-}
-
-#endif /* #ifndef SQLITE_OMIT_TRIGGER */
-
-#ifndef SQLITE_OMIT_FOREIGN_KEY
-/* Opcode: FkCounter P1 P2 * * *
-** Synopsis: fkctr[P1]+=P2
-**
-** Increment a "constraint counter" by P2 (P2 may be negative or positive).
-** If P1 is non-zero, the database constraint counter is incremented
-** (deferred foreign key constraints). Otherwise, if P1 is zero, the
-** statement counter is incremented (immediate foreign key constraints).
-*/
-case OP_FkCounter: {
- if( db->flags & SQLITE_DeferFKs ){
- db->nDeferredImmCons += pOp->p2;
- }else if( pOp->p1 ){
- db->nDeferredCons += pOp->p2;
- }else{
- p->nFkConstraint += pOp->p2;
- }
- break;
-}
-
-/* Opcode: FkIfZero P1 P2 * * *
-** Synopsis: if fkctr[P1]==0 goto P2
-**
-** This opcode tests if a foreign key constraint-counter is currently zero.
-** If so, jump to instruction P2. Otherwise, fall through to the next
-** instruction.
-**
-** If P1 is non-zero, then the jump is taken if the database constraint-counter
-** is zero (the one that counts deferred constraint violations). If P1 is
-** zero, the jump is taken if the statement constraint-counter is zero
-** (immediate foreign key constraint violations).
-*/
-case OP_FkIfZero: { /* jump */
- if( pOp->p1 ){
- VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
- if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
- }else{
- VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
- if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
- }
- break;
-}
-#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
-/* Opcode: MemMax P1 P2 * * *
-** Synopsis: r[P1]=max(r[P1],r[P2])
-**
-** P1 is a register in the root frame of this VM (the root frame is
-** different from the current frame if this instruction is being executed
-** within a sub-program). Set the value of register P1 to the maximum of
-** its current value and the value in register P2.
-**
-** This instruction throws an error if the memory cell is not initially
-** an integer.
-*/
-case OP_MemMax: { /* in2 */
- VdbeFrame *pFrame;
- if( p->pFrame ){
- for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
- pIn1 = &pFrame->aMem[pOp->p1];
- }else{
- pIn1 = &aMem[pOp->p1];
- }
- assert( memIsValid(pIn1) );
- sqlite3VdbeMemIntegerify(pIn1);
- pIn2 = &aMem[pOp->p2];
- sqlite3VdbeMemIntegerify(pIn2);
- if( pIn1->u.i<pIn2->u.i){
- pIn1->u.i = pIn2->u.i;
- }
- break;
-}
-#endif /* SQLITE_OMIT_AUTOINCREMENT */
-
-/* Opcode: IfPos P1 P2 * * *
-** Synopsis: if r[P1]>0 goto P2
-**
-** If the value of register P1 is 1 or greater, jump to P2.
-**
-** It is illegal to use this instruction on a register that does
-** not contain an integer. An assertion fault will result if you try.
-*/
-case OP_IfPos: { /* jump, in1 */
- pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags&MEM_Int );
- VdbeBranchTaken( pIn1->u.i>0, 2);
- if( pIn1->u.i>0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: IfNeg P1 P2 P3 * *
-** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
-**
-** Register P1 must contain an integer. Add literal P3 to the value in
-** register P1 then if the value of register P1 is less than zero, jump to P2.
-*/
-case OP_IfNeg: { /* jump, in1 */
- pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags&MEM_Int );
- pIn1->u.i += pOp->p3;
- VdbeBranchTaken(pIn1->u.i<0, 2);
- if( pIn1->u.i<0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: IfZero P1 P2 P3 * *
-** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
-**
-** The register P1 must contain an integer. Add literal P3 to the
-** value in register P1. If the result is exactly 0, jump to P2.
-*/
-case OP_IfZero: { /* jump, in1 */
- pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags&MEM_Int );
- pIn1->u.i += pOp->p3;
- VdbeBranchTaken(pIn1->u.i==0, 2);
- if( pIn1->u.i==0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: AggStep * P2 P3 P4 P5
-** Synopsis: accum=r[P3] step(r[P2@P5])
-**
-** Execute the step function for an aggregate. The
-** function has P5 arguments. P4 is a pointer to the FuncDef
-** structure that specifies the function. Use register
-** P3 as the accumulator.
-**
-** The P5 arguments are taken from register P2 and its
-** successors.
-*/
-case OP_AggStep: {
- int n;
- int i;
- Mem *pMem;
- Mem *pRec;
- Mem t;
- sqlite3_context ctx;
- sqlite3_value **apVal;
-
- n = pOp->p5;
- assert( n>=0 );
- pRec = &aMem[pOp->p2];
- apVal = p->apArg;
- assert( apVal || n==0 );
- for(i=0; i<n; i++, pRec++){
- assert( memIsValid(pRec) );
- apVal[i] = pRec;
- memAboutToChange(p, pRec);
- }
- ctx.pFunc = pOp->p4.pFunc;
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- ctx.pMem = pMem = &aMem[pOp->p3];
- pMem->n++;
- sqlite3VdbeMemInit(&t, db, MEM_Null);
- ctx.pOut = &t;
- ctx.isError = 0;
- ctx.pVdbe = p;
- ctx.iOp = pc;
- ctx.skipFlag = 0;
- (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t));
- rc = ctx.isError;
- }
- if( ctx.skipFlag ){
- assert( pOp[-1].opcode==OP_CollSeq );
- i = pOp[-1].p1;
- if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
- }
- sqlite3VdbeMemRelease(&t);
- break;
-}
-
-/* Opcode: AggFinal P1 P2 * P4 *
-** Synopsis: accum=r[P1] N=P2
-**
-** Execute the finalizer function for an aggregate. P1 is
-** the memory location that is the accumulator for the aggregate.
-**
-** P2 is the number of arguments that the step function takes and
-** P4 is a pointer to the FuncDef for this function. The P2
-** argument is not used by this opcode. It is only there to disambiguate
-** functions that can take varying numbers of arguments. The
-** P4 argument is only needed for the degenerate case where
-** the step function was not previously called.
-*/
-case OP_AggFinal: {
- Mem *pMem;
- assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
- pMem = &aMem[pOp->p1];
- assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
- rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
- if( rc ){
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
- }
- sqlite3VdbeChangeEncoding(pMem, encoding);
- UPDATE_MAX_BLOBSIZE(pMem);
- if( sqlite3VdbeMemTooBig(pMem) ){
- goto too_big;
- }
- break;
-}
-
-#ifndef SQLITE_OMIT_WAL
-/* Opcode: Checkpoint P1 P2 P3 * *
-**
-** Checkpoint database P1. This is a no-op if P1 is not currently in
-** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
-** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
-** SQLITE_BUSY or not, respectively. Write the number of pages in the
-** WAL after the checkpoint into mem[P3+1] and the number of pages
-** in the WAL that have been checkpointed after the checkpoint
-** completes into mem[P3+2]. However on an error, mem[P3+1] and
-** mem[P3+2] are initialized to -1.
-*/
-case OP_Checkpoint: {
- int i; /* Loop counter */
- int aRes[3]; /* Results */
- Mem *pMem; /* Write results here */
-
- assert( p->readOnly==0 );
- aRes[0] = 0;
- aRes[1] = aRes[2] = -1;
- assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
- || pOp->p2==SQLITE_CHECKPOINT_FULL
- || pOp->p2==SQLITE_CHECKPOINT_RESTART
- );
- rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
- if( rc==SQLITE_BUSY ){
- rc = SQLITE_OK;
- aRes[0] = 1;
- }
- for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
- sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
- }
- break;
-};
-#endif
-
-#ifndef SQLITE_OMIT_PRAGMA
-/* Opcode: JournalMode P1 P2 P3 * *
-**
-** Change the journal mode of database P1 to P3. P3 must be one of the
-** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
-** modes (delete, truncate, persist, off and memory), this is a simple
-** operation. No IO is required.
-**
-** If changing into or out of WAL mode the procedure is more complicated.
-**
-** Write a string containing the final journal-mode to register P2.
-*/
-case OP_JournalMode: { /* out2-prerelease */
- Btree *pBt; /* Btree to change journal mode of */
- Pager *pPager; /* Pager associated with pBt */
- int eNew; /* New journal mode */
- int eOld; /* The old journal mode */
-#ifndef SQLITE_OMIT_WAL
- const char *zFilename; /* Name of database file for pPager */
-#endif
-
- eNew = pOp->p3;
- assert( eNew==PAGER_JOURNALMODE_DELETE
- || eNew==PAGER_JOURNALMODE_TRUNCATE
- || eNew==PAGER_JOURNALMODE_PERSIST
- || eNew==PAGER_JOURNALMODE_OFF
- || eNew==PAGER_JOURNALMODE_MEMORY
- || eNew==PAGER_JOURNALMODE_WAL
- || eNew==PAGER_JOURNALMODE_QUERY
- );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( p->readOnly==0 );
-
- pBt = db->aDb[pOp->p1].pBt;
- pPager = sqlite3BtreePager(pBt);
- eOld = sqlite3PagerGetJournalMode(pPager);
- if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
- if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
-
-#ifndef SQLITE_OMIT_WAL
- zFilename = sqlite3PagerFilename(pPager, 1);
-
- /* Do not allow a transition to journal_mode=WAL for a database
- ** in temporary storage or if the VFS does not support shared memory
- */
- if( eNew==PAGER_JOURNALMODE_WAL
- && (sqlite3Strlen30(zFilename)==0 /* Temp file */
- || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
- ){
- eNew = eOld;
- }
-
- if( (eNew!=eOld)
- && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
- ){
- if( !db->autoCommit || db->nVdbeRead>1 ){
- rc = SQLITE_ERROR;
- sqlite3SetString(&p->zErrMsg, db,
- "cannot change %s wal mode from within a transaction",
- (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
- );
- break;
- }else{
-
- if( eOld==PAGER_JOURNALMODE_WAL ){
- /* If leaving WAL mode, close the log file. If successful, the call
- ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
- ** file. An EXCLUSIVE lock may still be held on the database file
- ** after a successful return.
- */
- rc = sqlite3PagerCloseWal(pPager);
- if( rc==SQLITE_OK ){
- sqlite3PagerSetJournalMode(pPager, eNew);
- }
- }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
- /* Cannot transition directly from MEMORY to WAL. Use mode OFF
- ** as an intermediate */
- sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
- }
-
- /* Open a transaction on the database file. Regardless of the journal
- ** mode, this transaction always uses a rollback journal.
- */
- assert( sqlite3BtreeIsInTrans(pBt)==0 );
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
- }
- }
- }
-#endif /* ifndef SQLITE_OMIT_WAL */
-
- if( rc ){
- eNew = eOld;
- }
- eNew = sqlite3PagerSetJournalMode(pPager, eNew);
-
- pOut = &aMem[pOp->p2];
- pOut->flags = MEM_Str|MEM_Static|MEM_Term;
- pOut->z = (char *)sqlite3JournalModename(eNew);
- pOut->n = sqlite3Strlen30(pOut->z);
- pOut->enc = SQLITE_UTF8;
- sqlite3VdbeChangeEncoding(pOut, encoding);
- break;
-};
-#endif /* SQLITE_OMIT_PRAGMA */
-
-#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
-/* Opcode: Vacuum * * * * *
-**
-** Vacuum the entire database. This opcode will cause other virtual
-** machines to be created and run. It may not be called from within
-** a transaction.
-*/
-case OP_Vacuum: {
- assert( p->readOnly==0 );
- rc = sqlite3RunVacuum(&p->zErrMsg, db);
- break;
-}
-#endif
-
-#if !defined(SQLITE_OMIT_AUTOVACUUM)
-/* Opcode: IncrVacuum P1 P2 * * *
-**
-** Perform a single step of the incremental vacuum procedure on
-** the P1 database. If the vacuum has finished, jump to instruction
-** P2. Otherwise, fall through to the next instruction.
-*/
-case OP_IncrVacuum: { /* jump */
- Btree *pBt;
-
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( DbMaskTest(p->btreeMask, pOp->p1) );
- assert( p->readOnly==0 );
- pBt = db->aDb[pOp->p1].pBt;
- rc = sqlite3BtreeIncrVacuum(pBt);
- VdbeBranchTaken(rc==SQLITE_DONE,2);
- if( rc==SQLITE_DONE ){
- pc = pOp->p2 - 1;
- rc = SQLITE_OK;
- }
- break;
-}
-#endif
-
-/* Opcode: Expire P1 * * * *
-**
-** Cause precompiled statements to expire. When an expired statement
-** is executed using sqlite3_step() it will either automatically
-** reprepare itself (if it was originally created using sqlite3_prepare_v2())
-** or it will fail with SQLITE_SCHEMA.
-**
-** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
-** then only the currently executing statement is expired.
-*/
-case OP_Expire: {
- if( !pOp->p1 ){
- sqlite3ExpirePreparedStatements(db);
- }else{
- p->expired = 1;
- }
- break;
-}
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/* Opcode: TableLock P1 P2 P3 P4 *
-** Synopsis: iDb=P1 root=P2 write=P3
-**
-** Obtain a lock on a particular table. This instruction is only used when
-** the shared-cache feature is enabled.
-**
-** P1 is the index of the database in sqlite3.aDb[] of the database
-** on which the lock is acquired. A readlock is obtained if P3==0 or
-** a write lock if P3==1.
-**
-** P2 contains the root-page of the table to lock.
-**
-** P4 contains a pointer to the name of the table being locked. This is only
-** used to generate an error message if the lock cannot be obtained.
-*/
-case OP_TableLock: {
- u8 isWriteLock = (u8)pOp->p3;
- if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
- int p1 = pOp->p1;
- assert( p1>=0 && p1<db->nDb );
- assert( DbMaskTest(p->btreeMask, p1) );
- assert( isWriteLock==0 || isWriteLock==1 );
- rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
- if( (rc&0xFF)==SQLITE_LOCKED ){
- const char *z = pOp->p4.z;
- sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
- }
- }
- break;
-}
-#endif /* SQLITE_OMIT_SHARED_CACHE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VBegin * * * P4 *
-**
-** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
-** xBegin method for that table.
-**
-** Also, whether or not P4 is set, check that this is not being called from
-** within a callback to a virtual table xSync() method. If it is, the error
-** code will be set to SQLITE_LOCKED.
-*/
-case OP_VBegin: {
- VTable *pVTab;
- pVTab = pOp->p4.pVtab;
- rc = sqlite3VtabBegin(db, pVTab);
- if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VCreate P1 * * P4 *
-**
-** P4 is the name of a virtual table in database P1. Call the xCreate method
-** for that table.
-*/
-case OP_VCreate: {
- rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VDestroy P1 * * P4 *
-**
-** P4 is the name of a virtual table in database P1. Call the xDestroy method
-** of that table.
-*/
-case OP_VDestroy: {
- p->inVtabMethod = 2;
- rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
- p->inVtabMethod = 0;
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VOpen P1 * * P4 *
-**
-** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
-** P1 is a cursor number. This opcode opens a cursor to the virtual
-** table and stores that cursor in P1.
-*/
-case OP_VOpen: {
- VdbeCursor *pCur;
- sqlite3_vtab_cursor *pVtabCursor;
- sqlite3_vtab *pVtab;
- sqlite3_module *pModule;
-
- assert( p->bIsReader );
- pCur = 0;
- pVtabCursor = 0;
- pVtab = pOp->p4.pVtab->pVtab;
- pModule = (sqlite3_module *)pVtab->pModule;
- assert(pVtab && pModule);
- rc = pModule->xOpen(pVtab, &pVtabCursor);
- sqlite3VtabImportErrmsg(p, pVtab);
- if( SQLITE_OK==rc ){
- /* Initialize sqlite3_vtab_cursor base class */
- pVtabCursor->pVtab = pVtab;
-
- /* Initialize vdbe cursor object */
- pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
- if( pCur ){
- pCur->pVtabCursor = pVtabCursor;
- }else{
- db->mallocFailed = 1;
- pModule->xClose(pVtabCursor);
- }
- }
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VFilter P1 P2 P3 P4 *
-** Synopsis: iplan=r[P3] zplan='P4'
-**
-** P1 is a cursor opened using VOpen. P2 is an address to jump to if
-** the filtered result set is empty.
-**
-** P4 is either NULL or a string that was generated by the xBestIndex
-** method of the module. The interpretation of the P4 string is left
-** to the module implementation.
-**
-** This opcode invokes the xFilter method on the virtual table specified
-** by P1. The integer query plan parameter to xFilter is stored in register
-** P3. Register P3+1 stores the argc parameter to be passed to the
-** xFilter method. Registers P3+2..P3+1+argc are the argc
-** additional parameters which are passed to
-** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
-**
-** A jump is made to P2 if the result set after filtering would be empty.
-*/
-case OP_VFilter: { /* jump */
- int nArg;
- int iQuery;
- const sqlite3_module *pModule;
- Mem *pQuery;
- Mem *pArgc;
- sqlite3_vtab_cursor *pVtabCursor;
- sqlite3_vtab *pVtab;
- VdbeCursor *pCur;
- int res;
- int i;
- Mem **apArg;
-
- pQuery = &aMem[pOp->p3];
- pArgc = &pQuery[1];
- pCur = p->apCsr[pOp->p1];
- assert( memIsValid(pQuery) );
- REGISTER_TRACE(pOp->p3, pQuery);
- assert( pCur->pVtabCursor );
- pVtabCursor = pCur->pVtabCursor;
- pVtab = pVtabCursor->pVtab;
- pModule = pVtab->pModule;
-
- /* Grab the index number and argc parameters */
- assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
- nArg = (int)pArgc->u.i;
- iQuery = (int)pQuery->u.i;
-
- /* Invoke the xFilter method */
- {
- res = 0;
- apArg = p->apArg;
- for(i = 0; i<nArg; i++){
- apArg[i] = &pArgc[i+1];
- }
-
- p->inVtabMethod = 1;
- rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
- p->inVtabMethod = 0;
- sqlite3VtabImportErrmsg(p, pVtab);
- if( rc==SQLITE_OK ){
- res = pModule->xEof(pVtabCursor);
- }
- VdbeBranchTaken(res!=0,2);
- if( res ){
- pc = pOp->p2 - 1;
- }
- }
- pCur->nullRow = 0;
-
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VColumn P1 P2 P3 * *
-** Synopsis: r[P3]=vcolumn(P2)
-**
-** Store the value of the P2-th column of
-** the row of the virtual-table that the
-** P1 cursor is pointing to into register P3.
-*/
-case OP_VColumn: {
- sqlite3_vtab *pVtab;
- const sqlite3_module *pModule;
- Mem *pDest;
- sqlite3_context sContext;
-
- VdbeCursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- pDest = &aMem[pOp->p3];
- memAboutToChange(p, pDest);
- if( pCur->nullRow ){
- sqlite3VdbeMemSetNull(pDest);
- break;
- }
- pVtab = pCur->pVtabCursor->pVtab;
- pModule = pVtab->pModule;
- assert( pModule->xColumn );
- memset(&sContext, 0, sizeof(sContext));
- sContext.pOut = pDest;
- MemSetTypeFlag(pDest, MEM_Null);
- rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
- sqlite3VtabImportErrmsg(p, pVtab);
- if( sContext.isError ){
- rc = sContext.isError;
- }
- sqlite3VdbeChangeEncoding(pDest, encoding);
- REGISTER_TRACE(pOp->p3, pDest);
- UPDATE_MAX_BLOBSIZE(pDest);
-
- if( sqlite3VdbeMemTooBig(pDest) ){
- goto too_big;
- }
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VNext P1 P2 * * *
-**
-** Advance virtual table P1 to the next row in its result set and
-** jump to instruction P2. Or, if the virtual table has reached
-** the end of its result set, then fall through to the next instruction.
-*/
-case OP_VNext: { /* jump */
- sqlite3_vtab *pVtab;
- const sqlite3_module *pModule;
- int res;
- VdbeCursor *pCur;
-
- res = 0;
- pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- if( pCur->nullRow ){
- break;
- }
- pVtab = pCur->pVtabCursor->pVtab;
- pModule = pVtab->pModule;
- assert( pModule->xNext );
-
- /* Invoke the xNext() method of the module. There is no way for the
- ** underlying implementation to return an error if one occurs during
- ** xNext(). Instead, if an error occurs, true is returned (indicating that
- ** data is available) and the error code returned when xColumn or
- ** some other method is next invoked on the save virtual table cursor.
- */
- p->inVtabMethod = 1;
- rc = pModule->xNext(pCur->pVtabCursor);
- p->inVtabMethod = 0;
- sqlite3VtabImportErrmsg(p, pVtab);
- if( rc==SQLITE_OK ){
- res = pModule->xEof(pCur->pVtabCursor);
- }
- VdbeBranchTaken(!res,2);
- if( !res ){
- /* If there is data, jump to P2 */
- pc = pOp->p2 - 1;
- }
- goto check_for_interrupt;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VRename P1 * * P4 *
-**
-** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
-** This opcode invokes the corresponding xRename method. The value
-** in register P1 is passed as the zName argument to the xRename method.
-*/
-case OP_VRename: {
- sqlite3_vtab *pVtab;
- Mem *pName;
-
- pVtab = pOp->p4.pVtab->pVtab;
- pName = &aMem[pOp->p1];
- assert( pVtab->pModule->xRename );
- assert( memIsValid(pName) );
- assert( p->readOnly==0 );
- REGISTER_TRACE(pOp->p1, pName);
- assert( pName->flags & MEM_Str );
- testcase( pName->enc==SQLITE_UTF8 );
- testcase( pName->enc==SQLITE_UTF16BE );
- testcase( pName->enc==SQLITE_UTF16LE );
- rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
- if( rc==SQLITE_OK ){
- rc = pVtab->pModule->xRename(pVtab, pName->z);
- sqlite3VtabImportErrmsg(p, pVtab);
- p->expired = 0;
- }
- break;
-}
-#endif
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VUpdate P1 P2 P3 P4 P5
-** Synopsis: data=r[P3@P2]
-**
-** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
-** This opcode invokes the corresponding xUpdate method. P2 values
-** are contiguous memory cells starting at P3 to pass to the xUpdate
-** invocation. The value in register (P3+P2-1) corresponds to the
-** p2th element of the argv array passed to xUpdate.
-**
-** The xUpdate method will do a DELETE or an INSERT or both.
-** The argv[0] element (which corresponds to memory cell P3)
-** is the rowid of a row to delete. If argv[0] is NULL then no
-** deletion occurs. The argv[1] element is the rowid of the new
-** row. This can be NULL to have the virtual table select the new
-** rowid for itself. The subsequent elements in the array are
-** the values of columns in the new row.
-**
-** If P2==1 then no insert is performed. argv[0] is the rowid of
-** a row to delete.
-**
-** P1 is a boolean flag. If it is set to true and the xUpdate call
-** is successful, then the value returned by sqlite3_last_insert_rowid()
-** is set to the value of the rowid for the row just inserted.
-**
-** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
-** apply in the case of a constraint failure on an insert or update.
-*/
-case OP_VUpdate: {
- sqlite3_vtab *pVtab;
- sqlite3_module *pModule;
- int nArg;
- int i;
- sqlite_int64 rowid;
- Mem **apArg;
- Mem *pX;
-
- assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
- || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
- );
- assert( p->readOnly==0 );
- pVtab = pOp->p4.pVtab->pVtab;
- pModule = (sqlite3_module *)pVtab->pModule;
- nArg = pOp->p2;
- assert( pOp->p4type==P4_VTAB );
- if( ALWAYS(pModule->xUpdate) ){
- u8 vtabOnConflict = db->vtabOnConflict;
- apArg = p->apArg;
- pX = &aMem[pOp->p3];
- for(i=0; i<nArg; i++){
- assert( memIsValid(pX) );
- memAboutToChange(p, pX);
- apArg[i] = pX;
- pX++;
- }
- db->vtabOnConflict = pOp->p5;
- rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
- db->vtabOnConflict = vtabOnConflict;
- sqlite3VtabImportErrmsg(p, pVtab);
- if( rc==SQLITE_OK && pOp->p1 ){
- assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
- db->lastRowid = lastRowid = rowid;
- }
- if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
- if( pOp->p5==OE_Ignore ){
- rc = SQLITE_OK;
- }else{
- p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
- }
- }else{
- p->nChange++;
- }
- }
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-/* Opcode: Pagecount P1 P2 * * *
-**
-** Write the current number of pages in database P1 to memory cell P2.
-*/
-case OP_Pagecount: { /* out2-prerelease */
- pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
- break;
-}
-#endif
-
-
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-/* Opcode: MaxPgcnt P1 P2 P3 * *
-**
-** Try to set the maximum page count for database P1 to the value in P3.
-** Do not let the maximum page count fall below the current page count and
-** do not change the maximum page count value if P3==0.
-**
-** Store the maximum page count after the change in register P2.
-*/
-case OP_MaxPgcnt: { /* out2-prerelease */
- unsigned int newMax;
- Btree *pBt;
-
- pBt = db->aDb[pOp->p1].pBt;
- newMax = 0;
- if( pOp->p3 ){
- newMax = sqlite3BtreeLastPage(pBt);
- if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
- }
- pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
- break;
-}
-#endif
-
-
-/* Opcode: Init * P2 * P4 *
-** Synopsis: Start at P2
-**
-** Programs contain a single instance of this opcode as the very first
-** opcode.
-**
-** If tracing is enabled (by the sqlite3_trace()) interface, then
-** the UTF-8 string contained in P4 is emitted on the trace callback.
-** Or if P4 is blank, use the string returned by sqlite3_sql().
-**
-** If P2 is not zero, jump to instruction P2.
-*/
-case OP_Init: { /* jump */
- char *zTrace;
- char *z;
-
- if( pOp->p2 ){
- pc = pOp->p2 - 1;
- }
-#ifndef SQLITE_OMIT_TRACE
- if( db->xTrace
- && !p->doingRerun
- && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
- ){
- z = sqlite3VdbeExpandSql(p, zTrace);
- db->xTrace(db->pTraceArg, z);
- sqlite3DbFree(db, z);
- }
-#ifdef SQLITE_USE_FCNTL_TRACE
- zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
- if( zTrace ){
- int i;
- for(i=0; i<db->nDb; i++){
- if( DbMaskTest(p->btreeMask, i)==0 ) continue;
- sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
- }
- }
-#endif /* SQLITE_USE_FCNTL_TRACE */
-#ifdef SQLITE_DEBUG
- if( (db->flags & SQLITE_SqlTrace)!=0
- && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
- ){
- sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
- }
-#endif /* SQLITE_DEBUG */
-#endif /* SQLITE_OMIT_TRACE */
- break;
-}
-
-
-/* Opcode: Noop * * * * *
-**
-** Do nothing. This instruction is often useful as a jump
-** destination.
-*/
-/*
-** The magic Explain opcode are only inserted when explain==2 (which
-** is to say when the EXPLAIN QUERY PLAN syntax is used.)
-** This opcode records information from the optimizer. It is the
-** the same as a no-op. This opcodesnever appears in a real VM program.
-*/
-default: { /* This is really OP_Noop and OP_Explain */
- assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
- break;
-}
-
-/*****************************************************************************
-** The cases of the switch statement above this line should all be indented
-** by 6 spaces. But the left-most 6 spaces have been removed to improve the
-** readability. From this point on down, the normal indentation rules are
-** restored.
-*****************************************************************************/
- }
-
-#ifdef VDBE_PROFILE
- {
- u64 endTime = sqlite3Hwtime();
- if( endTime>start ) pOp->cycles += endTime - start;
- pOp->cnt++;
- }
-#endif
-
- /* The following code adds nothing to the actual functionality
- ** of the program. It is only here for testing and debugging.
- ** On the other hand, it does burn CPU cycles every time through
- ** the evaluator loop. So we can leave it out when NDEBUG is defined.
- */
-#ifndef NDEBUG
- assert( pc>=-1 && pc<p->nOp );
-
-#ifdef SQLITE_DEBUG
- if( db->flags & SQLITE_VdbeTrace ){
- if( rc!=0 ) printf("rc=%d\n",rc);
- if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
- registerTrace(pOp->p2, &aMem[pOp->p2]);
- }
- if( pOp->opflags & OPFLG_OUT3 ){
- registerTrace(pOp->p3, &aMem[pOp->p3]);
- }
- }
-#endif /* SQLITE_DEBUG */
-#endif /* NDEBUG */
- } /* The end of the for(;;) loop the loops through opcodes */
-
- /* If we reach this point, it means that execution is finished with
- ** an error of some kind.
- */
-vdbe_error_halt:
- assert( rc );
- p->rc = rc;
- testcase( sqlite3GlobalConfig.xLog!=0 );
- sqlite3_log(rc, "statement aborts at %d: [%s] %s",
- pc, p->zSql, p->zErrMsg);
- sqlite3VdbeHalt(p);
- if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
- rc = SQLITE_ERROR;
- if( resetSchemaOnFault>0 ){
- sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
- }
-
- /* This is the only way out of this procedure. We have to
- ** release the mutexes on btrees that were acquired at the
- ** top. */
-vdbe_return:
- db->lastRowid = lastRowid;
- testcase( nVmStep>0 );
- p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
- sqlite3VdbeLeave(p);
- return rc;
-
- /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
- ** is encountered.
- */
-too_big:
- sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
- rc = SQLITE_TOOBIG;
- goto vdbe_error_halt;
-
- /* Jump to here if a malloc() fails.
- */
-no_mem:
- db->mallocFailed = 1;
- sqlite3SetString(&p->zErrMsg, db, "out of memory");
- rc = SQLITE_NOMEM;
- goto vdbe_error_halt;
-
- /* Jump to here for any other kind of fatal error. The "rc" variable
- ** should hold the error number.
- */
-abort_due_to_error:
- assert( p->zErrMsg==0 );
- if( db->mallocFailed ) rc = SQLITE_NOMEM;
- if( rc!=SQLITE_IOERR_NOMEM ){
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
- }
- goto vdbe_error_halt;
-
- /* Jump to here if the sqlite3_interrupt() API sets the interrupt
- ** flag.
- */
-abort_due_to_interrupt:
- assert( db->u1.isInterrupted );
- rc = SQLITE_INTERRUPT;
- p->rc = rc;
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
- goto vdbe_error_halt;
-}
« no previous file with comments | « third_party/sqlite/sqlite-src-3080704/src/vdbe.h ('k') | third_party/sqlite/sqlite-src-3080704/src/vdbeInt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698