Index: third_party/sqlite/sqlite-src-3080704/src/select.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/select.c b/third_party/sqlite/sqlite-src-3080704/src/select.c |
deleted file mode 100644 |
index 3b422f1100349609920c592ba6ab4e096d1ef2ff..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/select.c |
+++ /dev/null |
@@ -1,5517 +0,0 @@ |
-/* |
-** 2001 September 15 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** This file contains C code routines that are called by the parser |
-** to handle SELECT statements in SQLite. |
-*/ |
-#include "sqliteInt.h" |
- |
-/* |
-** Trace output macros |
-*/ |
-#if SELECTTRACE_ENABLED |
-/***/ int sqlite3SelectTrace = 0; |
-# define SELECTTRACE(K,P,S,X) \ |
- if(sqlite3SelectTrace&(K)) \ |
- sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\ |
- sqlite3DebugPrintf X |
-#else |
-# define SELECTTRACE(K,P,S,X) |
-#endif |
- |
- |
-/* |
-** An instance of the following object is used to record information about |
-** how to process the DISTINCT keyword, to simplify passing that information |
-** into the selectInnerLoop() routine. |
-*/ |
-typedef struct DistinctCtx DistinctCtx; |
-struct DistinctCtx { |
- u8 isTnct; /* True if the DISTINCT keyword is present */ |
- u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ |
- int tabTnct; /* Ephemeral table used for DISTINCT processing */ |
- int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ |
-}; |
- |
-/* |
-** An instance of the following object is used to record information about |
-** the ORDER BY (or GROUP BY) clause of query is being coded. |
-*/ |
-typedef struct SortCtx SortCtx; |
-struct SortCtx { |
- ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ |
- int nOBSat; /* Number of ORDER BY terms satisfied by indices */ |
- int iECursor; /* Cursor number for the sorter */ |
- int regReturn; /* Register holding block-output return address */ |
- int labelBkOut; /* Start label for the block-output subroutine */ |
- int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ |
- u8 sortFlags; /* Zero or more SORTFLAG_* bits */ |
-}; |
-#define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ |
- |
-/* |
-** Delete all the content of a Select structure but do not deallocate |
-** the select structure itself. |
-*/ |
-static void clearSelect(sqlite3 *db, Select *p){ |
- sqlite3ExprListDelete(db, p->pEList); |
- sqlite3SrcListDelete(db, p->pSrc); |
- sqlite3ExprDelete(db, p->pWhere); |
- sqlite3ExprListDelete(db, p->pGroupBy); |
- sqlite3ExprDelete(db, p->pHaving); |
- sqlite3ExprListDelete(db, p->pOrderBy); |
- sqlite3SelectDelete(db, p->pPrior); |
- sqlite3ExprDelete(db, p->pLimit); |
- sqlite3ExprDelete(db, p->pOffset); |
- sqlite3WithDelete(db, p->pWith); |
-} |
- |
-/* |
-** Initialize a SelectDest structure. |
-*/ |
-void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ |
- pDest->eDest = (u8)eDest; |
- pDest->iSDParm = iParm; |
- pDest->affSdst = 0; |
- pDest->iSdst = 0; |
- pDest->nSdst = 0; |
-} |
- |
- |
-/* |
-** Allocate a new Select structure and return a pointer to that |
-** structure. |
-*/ |
-Select *sqlite3SelectNew( |
- Parse *pParse, /* Parsing context */ |
- ExprList *pEList, /* which columns to include in the result */ |
- SrcList *pSrc, /* the FROM clause -- which tables to scan */ |
- Expr *pWhere, /* the WHERE clause */ |
- ExprList *pGroupBy, /* the GROUP BY clause */ |
- Expr *pHaving, /* the HAVING clause */ |
- ExprList *pOrderBy, /* the ORDER BY clause */ |
- u16 selFlags, /* Flag parameters, such as SF_Distinct */ |
- Expr *pLimit, /* LIMIT value. NULL means not used */ |
- Expr *pOffset /* OFFSET value. NULL means no offset */ |
-){ |
- Select *pNew; |
- Select standin; |
- sqlite3 *db = pParse->db; |
- pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); |
- assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ |
- if( pNew==0 ){ |
- assert( db->mallocFailed ); |
- pNew = &standin; |
- memset(pNew, 0, sizeof(*pNew)); |
- } |
- if( pEList==0 ){ |
- pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); |
- } |
- pNew->pEList = pEList; |
- if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); |
- pNew->pSrc = pSrc; |
- pNew->pWhere = pWhere; |
- pNew->pGroupBy = pGroupBy; |
- pNew->pHaving = pHaving; |
- pNew->pOrderBy = pOrderBy; |
- pNew->selFlags = selFlags; |
- pNew->op = TK_SELECT; |
- pNew->pLimit = pLimit; |
- pNew->pOffset = pOffset; |
- assert( pOffset==0 || pLimit!=0 ); |
- pNew->addrOpenEphm[0] = -1; |
- pNew->addrOpenEphm[1] = -1; |
- if( db->mallocFailed ) { |
- clearSelect(db, pNew); |
- if( pNew!=&standin ) sqlite3DbFree(db, pNew); |
- pNew = 0; |
- }else{ |
- assert( pNew->pSrc!=0 || pParse->nErr>0 ); |
- } |
- assert( pNew!=&standin ); |
- return pNew; |
-} |
- |
-#if SELECTTRACE_ENABLED |
-/* |
-** Set the name of a Select object |
-*/ |
-void sqlite3SelectSetName(Select *p, const char *zName){ |
- if( p && zName ){ |
- sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); |
- } |
-} |
-#endif |
- |
- |
-/* |
-** Delete the given Select structure and all of its substructures. |
-*/ |
-void sqlite3SelectDelete(sqlite3 *db, Select *p){ |
- if( p ){ |
- clearSelect(db, p); |
- sqlite3DbFree(db, p); |
- } |
-} |
- |
-/* |
-** Return a pointer to the right-most SELECT statement in a compound. |
-*/ |
-static Select *findRightmost(Select *p){ |
- while( p->pNext ) p = p->pNext; |
- return p; |
-} |
- |
-/* |
-** Given 1 to 3 identifiers preceding the JOIN keyword, determine the |
-** type of join. Return an integer constant that expresses that type |
-** in terms of the following bit values: |
-** |
-** JT_INNER |
-** JT_CROSS |
-** JT_OUTER |
-** JT_NATURAL |
-** JT_LEFT |
-** JT_RIGHT |
-** |
-** A full outer join is the combination of JT_LEFT and JT_RIGHT. |
-** |
-** If an illegal or unsupported join type is seen, then still return |
-** a join type, but put an error in the pParse structure. |
-*/ |
-int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ |
- int jointype = 0; |
- Token *apAll[3]; |
- Token *p; |
- /* 0123456789 123456789 123456789 123 */ |
- static const char zKeyText[] = "naturaleftouterightfullinnercross"; |
- static const struct { |
- u8 i; /* Beginning of keyword text in zKeyText[] */ |
- u8 nChar; /* Length of the keyword in characters */ |
- u8 code; /* Join type mask */ |
- } aKeyword[] = { |
- /* natural */ { 0, 7, JT_NATURAL }, |
- /* left */ { 6, 4, JT_LEFT|JT_OUTER }, |
- /* outer */ { 10, 5, JT_OUTER }, |
- /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, |
- /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, |
- /* inner */ { 23, 5, JT_INNER }, |
- /* cross */ { 28, 5, JT_INNER|JT_CROSS }, |
- }; |
- int i, j; |
- apAll[0] = pA; |
- apAll[1] = pB; |
- apAll[2] = pC; |
- for(i=0; i<3 && apAll[i]; i++){ |
- p = apAll[i]; |
- for(j=0; j<ArraySize(aKeyword); j++){ |
- if( p->n==aKeyword[j].nChar |
- && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ |
- jointype |= aKeyword[j].code; |
- break; |
- } |
- } |
- testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); |
- if( j>=ArraySize(aKeyword) ){ |
- jointype |= JT_ERROR; |
- break; |
- } |
- } |
- if( |
- (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || |
- (jointype & JT_ERROR)!=0 |
- ){ |
- const char *zSp = " "; |
- assert( pB!=0 ); |
- if( pC==0 ){ zSp++; } |
- sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " |
- "%T %T%s%T", pA, pB, zSp, pC); |
- jointype = JT_INNER; |
- }else if( (jointype & JT_OUTER)!=0 |
- && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ |
- sqlite3ErrorMsg(pParse, |
- "RIGHT and FULL OUTER JOINs are not currently supported"); |
- jointype = JT_INNER; |
- } |
- return jointype; |
-} |
- |
-/* |
-** Return the index of a column in a table. Return -1 if the column |
-** is not contained in the table. |
-*/ |
-static int columnIndex(Table *pTab, const char *zCol){ |
- int i; |
- for(i=0; i<pTab->nCol; i++){ |
- if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; |
- } |
- return -1; |
-} |
- |
-/* |
-** Search the first N tables in pSrc, from left to right, looking for a |
-** table that has a column named zCol. |
-** |
-** When found, set *piTab and *piCol to the table index and column index |
-** of the matching column and return TRUE. |
-** |
-** If not found, return FALSE. |
-*/ |
-static int tableAndColumnIndex( |
- SrcList *pSrc, /* Array of tables to search */ |
- int N, /* Number of tables in pSrc->a[] to search */ |
- const char *zCol, /* Name of the column we are looking for */ |
- int *piTab, /* Write index of pSrc->a[] here */ |
- int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ |
-){ |
- int i; /* For looping over tables in pSrc */ |
- int iCol; /* Index of column matching zCol */ |
- |
- assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ |
- for(i=0; i<N; i++){ |
- iCol = columnIndex(pSrc->a[i].pTab, zCol); |
- if( iCol>=0 ){ |
- if( piTab ){ |
- *piTab = i; |
- *piCol = iCol; |
- } |
- return 1; |
- } |
- } |
- return 0; |
-} |
- |
-/* |
-** This function is used to add terms implied by JOIN syntax to the |
-** WHERE clause expression of a SELECT statement. The new term, which |
-** is ANDed with the existing WHERE clause, is of the form: |
-** |
-** (tab1.col1 = tab2.col2) |
-** |
-** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the |
-** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is |
-** column iColRight of tab2. |
-*/ |
-static void addWhereTerm( |
- Parse *pParse, /* Parsing context */ |
- SrcList *pSrc, /* List of tables in FROM clause */ |
- int iLeft, /* Index of first table to join in pSrc */ |
- int iColLeft, /* Index of column in first table */ |
- int iRight, /* Index of second table in pSrc */ |
- int iColRight, /* Index of column in second table */ |
- int isOuterJoin, /* True if this is an OUTER join */ |
- Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ |
-){ |
- sqlite3 *db = pParse->db; |
- Expr *pE1; |
- Expr *pE2; |
- Expr *pEq; |
- |
- assert( iLeft<iRight ); |
- assert( pSrc->nSrc>iRight ); |
- assert( pSrc->a[iLeft].pTab ); |
- assert( pSrc->a[iRight].pTab ); |
- |
- pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); |
- pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); |
- |
- pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); |
- if( pEq && isOuterJoin ){ |
- ExprSetProperty(pEq, EP_FromJoin); |
- assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); |
- ExprSetVVAProperty(pEq, EP_NoReduce); |
- pEq->iRightJoinTable = (i16)pE2->iTable; |
- } |
- *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); |
-} |
- |
-/* |
-** Set the EP_FromJoin property on all terms of the given expression. |
-** And set the Expr.iRightJoinTable to iTable for every term in the |
-** expression. |
-** |
-** The EP_FromJoin property is used on terms of an expression to tell |
-** the LEFT OUTER JOIN processing logic that this term is part of the |
-** join restriction specified in the ON or USING clause and not a part |
-** of the more general WHERE clause. These terms are moved over to the |
-** WHERE clause during join processing but we need to remember that they |
-** originated in the ON or USING clause. |
-** |
-** The Expr.iRightJoinTable tells the WHERE clause processing that the |
-** expression depends on table iRightJoinTable even if that table is not |
-** explicitly mentioned in the expression. That information is needed |
-** for cases like this: |
-** |
-** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 |
-** |
-** The where clause needs to defer the handling of the t1.x=5 |
-** term until after the t2 loop of the join. In that way, a |
-** NULL t2 row will be inserted whenever t1.x!=5. If we do not |
-** defer the handling of t1.x=5, it will be processed immediately |
-** after the t1 loop and rows with t1.x!=5 will never appear in |
-** the output, which is incorrect. |
-*/ |
-static void setJoinExpr(Expr *p, int iTable){ |
- while( p ){ |
- ExprSetProperty(p, EP_FromJoin); |
- assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
- ExprSetVVAProperty(p, EP_NoReduce); |
- p->iRightJoinTable = (i16)iTable; |
- setJoinExpr(p->pLeft, iTable); |
- p = p->pRight; |
- } |
-} |
- |
-/* |
-** This routine processes the join information for a SELECT statement. |
-** ON and USING clauses are converted into extra terms of the WHERE clause. |
-** NATURAL joins also create extra WHERE clause terms. |
-** |
-** The terms of a FROM clause are contained in the Select.pSrc structure. |
-** The left most table is the first entry in Select.pSrc. The right-most |
-** table is the last entry. The join operator is held in the entry to |
-** the left. Thus entry 0 contains the join operator for the join between |
-** entries 0 and 1. Any ON or USING clauses associated with the join are |
-** also attached to the left entry. |
-** |
-** This routine returns the number of errors encountered. |
-*/ |
-static int sqliteProcessJoin(Parse *pParse, Select *p){ |
- SrcList *pSrc; /* All tables in the FROM clause */ |
- int i, j; /* Loop counters */ |
- struct SrcList_item *pLeft; /* Left table being joined */ |
- struct SrcList_item *pRight; /* Right table being joined */ |
- |
- pSrc = p->pSrc; |
- pLeft = &pSrc->a[0]; |
- pRight = &pLeft[1]; |
- for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ |
- Table *pLeftTab = pLeft->pTab; |
- Table *pRightTab = pRight->pTab; |
- int isOuter; |
- |
- if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; |
- isOuter = (pRight->jointype & JT_OUTER)!=0; |
- |
- /* When the NATURAL keyword is present, add WHERE clause terms for |
- ** every column that the two tables have in common. |
- */ |
- if( pRight->jointype & JT_NATURAL ){ |
- if( pRight->pOn || pRight->pUsing ){ |
- sqlite3ErrorMsg(pParse, "a NATURAL join may not have " |
- "an ON or USING clause", 0); |
- return 1; |
- } |
- for(j=0; j<pRightTab->nCol; j++){ |
- char *zName; /* Name of column in the right table */ |
- int iLeft; /* Matching left table */ |
- int iLeftCol; /* Matching column in the left table */ |
- |
- zName = pRightTab->aCol[j].zName; |
- if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ |
- addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, |
- isOuter, &p->pWhere); |
- } |
- } |
- } |
- |
- /* Disallow both ON and USING clauses in the same join |
- */ |
- if( pRight->pOn && pRight->pUsing ){ |
- sqlite3ErrorMsg(pParse, "cannot have both ON and USING " |
- "clauses in the same join"); |
- return 1; |
- } |
- |
- /* Add the ON clause to the end of the WHERE clause, connected by |
- ** an AND operator. |
- */ |
- if( pRight->pOn ){ |
- if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); |
- p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); |
- pRight->pOn = 0; |
- } |
- |
- /* Create extra terms on the WHERE clause for each column named |
- ** in the USING clause. Example: If the two tables to be joined are |
- ** A and B and the USING clause names X, Y, and Z, then add this |
- ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z |
- ** Report an error if any column mentioned in the USING clause is |
- ** not contained in both tables to be joined. |
- */ |
- if( pRight->pUsing ){ |
- IdList *pList = pRight->pUsing; |
- for(j=0; j<pList->nId; j++){ |
- char *zName; /* Name of the term in the USING clause */ |
- int iLeft; /* Table on the left with matching column name */ |
- int iLeftCol; /* Column number of matching column on the left */ |
- int iRightCol; /* Column number of matching column on the right */ |
- |
- zName = pList->a[j].zName; |
- iRightCol = columnIndex(pRightTab, zName); |
- if( iRightCol<0 |
- || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) |
- ){ |
- sqlite3ErrorMsg(pParse, "cannot join using column %s - column " |
- "not present in both tables", zName); |
- return 1; |
- } |
- addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, |
- isOuter, &p->pWhere); |
- } |
- } |
- } |
- return 0; |
-} |
- |
-/* Forward reference */ |
-static KeyInfo *keyInfoFromExprList( |
- Parse *pParse, /* Parsing context */ |
- ExprList *pList, /* Form the KeyInfo object from this ExprList */ |
- int iStart, /* Begin with this column of pList */ |
- int nExtra /* Add this many extra columns to the end */ |
-); |
- |
-/* |
-** Generate code that will push the record in registers regData |
-** through regData+nData-1 onto the sorter. |
-*/ |
-static void pushOntoSorter( |
- Parse *pParse, /* Parser context */ |
- SortCtx *pSort, /* Information about the ORDER BY clause */ |
- Select *pSelect, /* The whole SELECT statement */ |
- int regData, /* First register holding data to be sorted */ |
- int nData, /* Number of elements in the data array */ |
- int nPrefixReg /* No. of reg prior to regData available for use */ |
-){ |
- Vdbe *v = pParse->pVdbe; /* Stmt under construction */ |
- int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); |
- int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ |
- int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ |
- int regBase; /* Regs for sorter record */ |
- int regRecord = ++pParse->nMem; /* Assembled sorter record */ |
- int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ |
- int op; /* Opcode to add sorter record to sorter */ |
- |
- assert( bSeq==0 || bSeq==1 ); |
- if( nPrefixReg ){ |
- assert( nPrefixReg==nExpr+bSeq ); |
- regBase = regData - nExpr - bSeq; |
- }else{ |
- regBase = pParse->nMem + 1; |
- pParse->nMem += nBase; |
- } |
- sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); |
- if( bSeq ){ |
- sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); |
- } |
- if( nPrefixReg==0 ){ |
- sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); |
- } |
- |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); |
- if( nOBSat>0 ){ |
- int regPrevKey; /* The first nOBSat columns of the previous row */ |
- int addrFirst; /* Address of the OP_IfNot opcode */ |
- int addrJmp; /* Address of the OP_Jump opcode */ |
- VdbeOp *pOp; /* Opcode that opens the sorter */ |
- int nKey; /* Number of sorting key columns, including OP_Sequence */ |
- KeyInfo *pKI; /* Original KeyInfo on the sorter table */ |
- |
- regPrevKey = pParse->nMem+1; |
- pParse->nMem += pSort->nOBSat; |
- nKey = nExpr - pSort->nOBSat + bSeq; |
- if( bSeq ){ |
- addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); |
- }else{ |
- addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); |
- } |
- VdbeCoverage(v); |
- sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); |
- pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); |
- if( pParse->db->mallocFailed ) return; |
- pOp->p2 = nKey + nData; |
- pKI = pOp->p4.pKeyInfo; |
- memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ |
- sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); |
- pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); |
- addrJmp = sqlite3VdbeCurrentAddr(v); |
- sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); |
- pSort->labelBkOut = sqlite3VdbeMakeLabel(v); |
- pSort->regReturn = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); |
- sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); |
- sqlite3VdbeJumpHere(v, addrFirst); |
- sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); |
- sqlite3VdbeJumpHere(v, addrJmp); |
- } |
- if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
- op = OP_SorterInsert; |
- }else{ |
- op = OP_IdxInsert; |
- } |
- sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); |
- if( pSelect->iLimit ){ |
- int addr1, addr2; |
- int iLimit; |
- if( pSelect->iOffset ){ |
- iLimit = pSelect->iOffset+1; |
- }else{ |
- iLimit = pSelect->iLimit; |
- } |
- addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); |
- addr2 = sqlite3VdbeAddOp0(v, OP_Goto); |
- sqlite3VdbeJumpHere(v, addr1); |
- sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); |
- sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); |
- sqlite3VdbeJumpHere(v, addr2); |
- } |
-} |
- |
-/* |
-** Add code to implement the OFFSET |
-*/ |
-static void codeOffset( |
- Vdbe *v, /* Generate code into this VM */ |
- int iOffset, /* Register holding the offset counter */ |
- int iContinue /* Jump here to skip the current record */ |
-){ |
- if( iOffset>0 ){ |
- int addr; |
- addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); |
- VdbeComment((v, "skip OFFSET records")); |
- sqlite3VdbeJumpHere(v, addr); |
- } |
-} |
- |
-/* |
-** Add code that will check to make sure the N registers starting at iMem |
-** form a distinct entry. iTab is a sorting index that holds previously |
-** seen combinations of the N values. A new entry is made in iTab |
-** if the current N values are new. |
-** |
-** A jump to addrRepeat is made and the N+1 values are popped from the |
-** stack if the top N elements are not distinct. |
-*/ |
-static void codeDistinct( |
- Parse *pParse, /* Parsing and code generating context */ |
- int iTab, /* A sorting index used to test for distinctness */ |
- int addrRepeat, /* Jump to here if not distinct */ |
- int N, /* Number of elements */ |
- int iMem /* First element */ |
-){ |
- Vdbe *v; |
- int r1; |
- |
- v = pParse->pVdbe; |
- r1 = sqlite3GetTempReg(pParse); |
- sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); |
- sqlite3ReleaseTempReg(pParse, r1); |
-} |
- |
-#ifndef SQLITE_OMIT_SUBQUERY |
-/* |
-** Generate an error message when a SELECT is used within a subexpression |
-** (example: "a IN (SELECT * FROM table)") but it has more than 1 result |
-** column. We do this in a subroutine because the error used to occur |
-** in multiple places. (The error only occurs in one place now, but we |
-** retain the subroutine to minimize code disruption.) |
-*/ |
-static int checkForMultiColumnSelectError( |
- Parse *pParse, /* Parse context. */ |
- SelectDest *pDest, /* Destination of SELECT results */ |
- int nExpr /* Number of result columns returned by SELECT */ |
-){ |
- int eDest = pDest->eDest; |
- if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ |
- sqlite3ErrorMsg(pParse, "only a single result allowed for " |
- "a SELECT that is part of an expression"); |
- return 1; |
- }else{ |
- return 0; |
- } |
-} |
-#endif |
- |
-/* |
-** This routine generates the code for the inside of the inner loop |
-** of a SELECT. |
-** |
-** If srcTab is negative, then the pEList expressions |
-** are evaluated in order to get the data for this row. If srcTab is |
-** zero or more, then data is pulled from srcTab and pEList is used only |
-** to get number columns and the datatype for each column. |
-*/ |
-static void selectInnerLoop( |
- Parse *pParse, /* The parser context */ |
- Select *p, /* The complete select statement being coded */ |
- ExprList *pEList, /* List of values being extracted */ |
- int srcTab, /* Pull data from this table */ |
- SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ |
- DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ |
- SelectDest *pDest, /* How to dispose of the results */ |
- int iContinue, /* Jump here to continue with next row */ |
- int iBreak /* Jump here to break out of the inner loop */ |
-){ |
- Vdbe *v = pParse->pVdbe; |
- int i; |
- int hasDistinct; /* True if the DISTINCT keyword is present */ |
- int regResult; /* Start of memory holding result set */ |
- int eDest = pDest->eDest; /* How to dispose of results */ |
- int iParm = pDest->iSDParm; /* First argument to disposal method */ |
- int nResultCol; /* Number of result columns */ |
- int nPrefixReg = 0; /* Number of extra registers before regResult */ |
- |
- assert( v ); |
- assert( pEList!=0 ); |
- hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; |
- if( pSort && pSort->pOrderBy==0 ) pSort = 0; |
- if( pSort==0 && !hasDistinct ){ |
- assert( iContinue!=0 ); |
- codeOffset(v, p->iOffset, iContinue); |
- } |
- |
- /* Pull the requested columns. |
- */ |
- nResultCol = pEList->nExpr; |
- |
- if( pDest->iSdst==0 ){ |
- if( pSort ){ |
- nPrefixReg = pSort->pOrderBy->nExpr; |
- if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; |
- pParse->nMem += nPrefixReg; |
- } |
- pDest->iSdst = pParse->nMem+1; |
- pParse->nMem += nResultCol; |
- }else if( pDest->iSdst+nResultCol > pParse->nMem ){ |
- /* This is an error condition that can result, for example, when a SELECT |
- ** on the right-hand side of an INSERT contains more result columns than |
- ** there are columns in the table on the left. The error will be caught |
- ** and reported later. But we need to make sure enough memory is allocated |
- ** to avoid other spurious errors in the meantime. */ |
- pParse->nMem += nResultCol; |
- } |
- pDest->nSdst = nResultCol; |
- regResult = pDest->iSdst; |
- if( srcTab>=0 ){ |
- for(i=0; i<nResultCol; i++){ |
- sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); |
- VdbeComment((v, "%s", pEList->a[i].zName)); |
- } |
- }else if( eDest!=SRT_Exists ){ |
- /* If the destination is an EXISTS(...) expression, the actual |
- ** values returned by the SELECT are not required. |
- */ |
- sqlite3ExprCodeExprList(pParse, pEList, regResult, |
- (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); |
- } |
- |
- /* If the DISTINCT keyword was present on the SELECT statement |
- ** and this row has been seen before, then do not make this row |
- ** part of the result. |
- */ |
- if( hasDistinct ){ |
- switch( pDistinct->eTnctType ){ |
- case WHERE_DISTINCT_ORDERED: { |
- VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ |
- int iJump; /* Jump destination */ |
- int regPrev; /* Previous row content */ |
- |
- /* Allocate space for the previous row */ |
- regPrev = pParse->nMem+1; |
- pParse->nMem += nResultCol; |
- |
- /* Change the OP_OpenEphemeral coded earlier to an OP_Null |
- ** sets the MEM_Cleared bit on the first register of the |
- ** previous value. This will cause the OP_Ne below to always |
- ** fail on the first iteration of the loop even if the first |
- ** row is all NULLs. |
- */ |
- sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); |
- pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); |
- pOp->opcode = OP_Null; |
- pOp->p1 = 1; |
- pOp->p2 = regPrev; |
- |
- iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; |
- for(i=0; i<nResultCol; i++){ |
- CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); |
- if( i<nResultCol-1 ){ |
- sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); |
- VdbeCoverage(v); |
- }else{ |
- sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); |
- VdbeCoverage(v); |
- } |
- sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); |
- sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); |
- } |
- assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); |
- sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); |
- break; |
- } |
- |
- case WHERE_DISTINCT_UNIQUE: { |
- sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); |
- break; |
- } |
- |
- default: { |
- assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); |
- codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); |
- break; |
- } |
- } |
- if( pSort==0 ){ |
- codeOffset(v, p->iOffset, iContinue); |
- } |
- } |
- |
- switch( eDest ){ |
- /* In this mode, write each query result to the key of the temporary |
- ** table iParm. |
- */ |
-#ifndef SQLITE_OMIT_COMPOUND_SELECT |
- case SRT_Union: { |
- int r1; |
- r1 = sqlite3GetTempReg(pParse); |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
- sqlite3ReleaseTempReg(pParse, r1); |
- break; |
- } |
- |
- /* Construct a record from the query result, but instead of |
- ** saving that record, use it as a key to delete elements from |
- ** the temporary table iParm. |
- */ |
- case SRT_Except: { |
- sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); |
- break; |
- } |
-#endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
- |
- /* Store the result as data using a unique key. |
- */ |
- case SRT_Fifo: |
- case SRT_DistFifo: |
- case SRT_Table: |
- case SRT_EphemTab: { |
- int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); |
- testcase( eDest==SRT_Table ); |
- testcase( eDest==SRT_EphemTab ); |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); |
-#ifndef SQLITE_OMIT_CTE |
- if( eDest==SRT_DistFifo ){ |
- /* If the destination is DistFifo, then cursor (iParm+1) is open |
- ** on an ephemeral index. If the current row is already present |
- ** in the index, do not write it to the output. If not, add the |
- ** current row to the index and proceed with writing it to the |
- ** output table as well. */ |
- int addr = sqlite3VdbeCurrentAddr(v) + 4; |
- sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); |
- assert( pSort==0 ); |
- } |
-#endif |
- if( pSort ){ |
- pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); |
- }else{ |
- int r2 = sqlite3GetTempReg(pParse); |
- sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); |
- sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); |
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
- sqlite3ReleaseTempReg(pParse, r2); |
- } |
- sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); |
- break; |
- } |
- |
-#ifndef SQLITE_OMIT_SUBQUERY |
- /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
- ** then there should be a single item on the stack. Write this |
- ** item into the set table with bogus data. |
- */ |
- case SRT_Set: { |
- assert( nResultCol==1 ); |
- pDest->affSdst = |
- sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); |
- if( pSort ){ |
- /* At first glance you would think we could optimize out the |
- ** ORDER BY in this case since the order of entries in the set |
- ** does not matter. But there might be a LIMIT clause, in which |
- ** case the order does matter */ |
- pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); |
- }else{ |
- int r1 = sqlite3GetTempReg(pParse); |
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); |
- sqlite3ExprCacheAffinityChange(pParse, regResult, 1); |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
- sqlite3ReleaseTempReg(pParse, r1); |
- } |
- break; |
- } |
- |
- /* If any row exist in the result set, record that fact and abort. |
- */ |
- case SRT_Exists: { |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); |
- /* The LIMIT clause will terminate the loop for us */ |
- break; |
- } |
- |
- /* If this is a scalar select that is part of an expression, then |
- ** store the results in the appropriate memory cell and break out |
- ** of the scan loop. |
- */ |
- case SRT_Mem: { |
- assert( nResultCol==1 ); |
- if( pSort ){ |
- pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); |
- }else{ |
- assert( regResult==iParm ); |
- /* The LIMIT clause will jump out of the loop for us */ |
- } |
- break; |
- } |
-#endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
- |
- case SRT_Coroutine: /* Send data to a co-routine */ |
- case SRT_Output: { /* Return the results */ |
- testcase( eDest==SRT_Coroutine ); |
- testcase( eDest==SRT_Output ); |
- if( pSort ){ |
- pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); |
- }else if( eDest==SRT_Coroutine ){ |
- sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
- }else{ |
- sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); |
- sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); |
- } |
- break; |
- } |
- |
-#ifndef SQLITE_OMIT_CTE |
- /* Write the results into a priority queue that is order according to |
- ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an |
- ** index with pSO->nExpr+2 columns. Build a key using pSO for the first |
- ** pSO->nExpr columns, then make sure all keys are unique by adding a |
- ** final OP_Sequence column. The last column is the record as a blob. |
- */ |
- case SRT_DistQueue: |
- case SRT_Queue: { |
- int nKey; |
- int r1, r2, r3; |
- int addrTest = 0; |
- ExprList *pSO; |
- pSO = pDest->pOrderBy; |
- assert( pSO ); |
- nKey = pSO->nExpr; |
- r1 = sqlite3GetTempReg(pParse); |
- r2 = sqlite3GetTempRange(pParse, nKey+2); |
- r3 = r2+nKey+1; |
- if( eDest==SRT_DistQueue ){ |
- /* If the destination is DistQueue, then cursor (iParm+1) is open |
- ** on a second ephemeral index that holds all values every previously |
- ** added to the queue. */ |
- addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, |
- regResult, nResultCol); |
- VdbeCoverage(v); |
- } |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); |
- if( eDest==SRT_DistQueue ){ |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); |
- sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
- } |
- for(i=0; i<nKey; i++){ |
- sqlite3VdbeAddOp2(v, OP_SCopy, |
- regResult + pSO->a[i].u.x.iOrderByCol - 1, |
- r2+i); |
- } |
- sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
- if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); |
- sqlite3ReleaseTempReg(pParse, r1); |
- sqlite3ReleaseTempRange(pParse, r2, nKey+2); |
- break; |
- } |
-#endif /* SQLITE_OMIT_CTE */ |
- |
- |
- |
-#if !defined(SQLITE_OMIT_TRIGGER) |
- /* Discard the results. This is used for SELECT statements inside |
- ** the body of a TRIGGER. The purpose of such selects is to call |
- ** user-defined functions that have side effects. We do not care |
- ** about the actual results of the select. |
- */ |
- default: { |
- assert( eDest==SRT_Discard ); |
- break; |
- } |
-#endif |
- } |
- |
- /* Jump to the end of the loop if the LIMIT is reached. Except, if |
- ** there is a sorter, in which case the sorter has already limited |
- ** the output for us. |
- */ |
- if( pSort==0 && p->iLimit ){ |
- sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); |
- } |
-} |
- |
-/* |
-** Allocate a KeyInfo object sufficient for an index of N key columns and |
-** X extra columns. |
-*/ |
-KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ |
- KeyInfo *p = sqlite3DbMallocZero(0, |
- sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); |
- if( p ){ |
- p->aSortOrder = (u8*)&p->aColl[N+X]; |
- p->nField = (u16)N; |
- p->nXField = (u16)X; |
- p->enc = ENC(db); |
- p->db = db; |
- p->nRef = 1; |
- }else{ |
- db->mallocFailed = 1; |
- } |
- return p; |
-} |
- |
-/* |
-** Deallocate a KeyInfo object |
-*/ |
-void sqlite3KeyInfoUnref(KeyInfo *p){ |
- if( p ){ |
- assert( p->nRef>0 ); |
- p->nRef--; |
- if( p->nRef==0 ) sqlite3DbFree(0, p); |
- } |
-} |
- |
-/* |
-** Make a new pointer to a KeyInfo object |
-*/ |
-KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ |
- if( p ){ |
- assert( p->nRef>0 ); |
- p->nRef++; |
- } |
- return p; |
-} |
- |
-#ifdef SQLITE_DEBUG |
-/* |
-** Return TRUE if a KeyInfo object can be change. The KeyInfo object |
-** can only be changed if this is just a single reference to the object. |
-** |
-** This routine is used only inside of assert() statements. |
-*/ |
-int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } |
-#endif /* SQLITE_DEBUG */ |
- |
-/* |
-** Given an expression list, generate a KeyInfo structure that records |
-** the collating sequence for each expression in that expression list. |
-** |
-** If the ExprList is an ORDER BY or GROUP BY clause then the resulting |
-** KeyInfo structure is appropriate for initializing a virtual index to |
-** implement that clause. If the ExprList is the result set of a SELECT |
-** then the KeyInfo structure is appropriate for initializing a virtual |
-** index to implement a DISTINCT test. |
-** |
-** Space to hold the KeyInfo structure is obtained from malloc. The calling |
-** function is responsible for seeing that this structure is eventually |
-** freed. |
-*/ |
-static KeyInfo *keyInfoFromExprList( |
- Parse *pParse, /* Parsing context */ |
- ExprList *pList, /* Form the KeyInfo object from this ExprList */ |
- int iStart, /* Begin with this column of pList */ |
- int nExtra /* Add this many extra columns to the end */ |
-){ |
- int nExpr; |
- KeyInfo *pInfo; |
- struct ExprList_item *pItem; |
- sqlite3 *db = pParse->db; |
- int i; |
- |
- nExpr = pList->nExpr; |
- pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); |
- if( pInfo ){ |
- assert( sqlite3KeyInfoIsWriteable(pInfo) ); |
- for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ |
- CollSeq *pColl; |
- pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
- if( !pColl ) pColl = db->pDfltColl; |
- pInfo->aColl[i-iStart] = pColl; |
- pInfo->aSortOrder[i-iStart] = pItem->sortOrder; |
- } |
- } |
- return pInfo; |
-} |
- |
-#ifndef SQLITE_OMIT_COMPOUND_SELECT |
-/* |
-** Name of the connection operator, used for error messages. |
-*/ |
-static const char *selectOpName(int id){ |
- char *z; |
- switch( id ){ |
- case TK_ALL: z = "UNION ALL"; break; |
- case TK_INTERSECT: z = "INTERSECT"; break; |
- case TK_EXCEPT: z = "EXCEPT"; break; |
- default: z = "UNION"; break; |
- } |
- return z; |
-} |
-#endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
- |
-#ifndef SQLITE_OMIT_EXPLAIN |
-/* |
-** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function |
-** is a no-op. Otherwise, it adds a single row of output to the EQP result, |
-** where the caption is of the form: |
-** |
-** "USE TEMP B-TREE FOR xxx" |
-** |
-** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which |
-** is determined by the zUsage argument. |
-*/ |
-static void explainTempTable(Parse *pParse, const char *zUsage){ |
- if( pParse->explain==2 ){ |
- Vdbe *v = pParse->pVdbe; |
- char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); |
- sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); |
- } |
-} |
- |
-/* |
-** Assign expression b to lvalue a. A second, no-op, version of this macro |
-** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code |
-** in sqlite3Select() to assign values to structure member variables that |
-** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the |
-** code with #ifndef directives. |
-*/ |
-# define explainSetInteger(a, b) a = b |
- |
-#else |
-/* No-op versions of the explainXXX() functions and macros. */ |
-# define explainTempTable(y,z) |
-# define explainSetInteger(y,z) |
-#endif |
- |
-#if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) |
-/* |
-** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function |
-** is a no-op. Otherwise, it adds a single row of output to the EQP result, |
-** where the caption is of one of the two forms: |
-** |
-** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" |
-** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" |
-** |
-** where iSub1 and iSub2 are the integers passed as the corresponding |
-** function parameters, and op is the text representation of the parameter |
-** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, |
-** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is |
-** false, or the second form if it is true. |
-*/ |
-static void explainComposite( |
- Parse *pParse, /* Parse context */ |
- int op, /* One of TK_UNION, TK_EXCEPT etc. */ |
- int iSub1, /* Subquery id 1 */ |
- int iSub2, /* Subquery id 2 */ |
- int bUseTmp /* True if a temp table was used */ |
-){ |
- assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); |
- if( pParse->explain==2 ){ |
- Vdbe *v = pParse->pVdbe; |
- char *zMsg = sqlite3MPrintf( |
- pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, |
- bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) |
- ); |
- sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); |
- } |
-} |
-#else |
-/* No-op versions of the explainXXX() functions and macros. */ |
-# define explainComposite(v,w,x,y,z) |
-#endif |
- |
-/* |
-** If the inner loop was generated using a non-null pOrderBy argument, |
-** then the results were placed in a sorter. After the loop is terminated |
-** we need to run the sorter and output the results. The following |
-** routine generates the code needed to do that. |
-*/ |
-static void generateSortTail( |
- Parse *pParse, /* Parsing context */ |
- Select *p, /* The SELECT statement */ |
- SortCtx *pSort, /* Information on the ORDER BY clause */ |
- int nColumn, /* Number of columns of data */ |
- SelectDest *pDest /* Write the sorted results here */ |
-){ |
- Vdbe *v = pParse->pVdbe; /* The prepared statement */ |
- int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ |
- int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ |
- int addr; |
- int addrOnce = 0; |
- int iTab; |
- ExprList *pOrderBy = pSort->pOrderBy; |
- int eDest = pDest->eDest; |
- int iParm = pDest->iSDParm; |
- int regRow; |
- int regRowid; |
- int nKey; |
- int iSortTab; /* Sorter cursor to read from */ |
- int nSortData; /* Trailing values to read from sorter */ |
- int i; |
- int bSeq; /* True if sorter record includes seq. no. */ |
-#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
- struct ExprList_item *aOutEx = p->pEList->a; |
-#endif |
- |
- if( pSort->labelBkOut ){ |
- sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); |
- sqlite3VdbeResolveLabel(v, pSort->labelBkOut); |
- } |
- iTab = pSort->iECursor; |
- if( eDest==SRT_Output || eDest==SRT_Coroutine ){ |
- regRowid = 0; |
- regRow = pDest->iSdst; |
- nSortData = nColumn; |
- }else{ |
- regRowid = sqlite3GetTempReg(pParse); |
- regRow = sqlite3GetTempReg(pParse); |
- nSortData = 1; |
- } |
- nKey = pOrderBy->nExpr - pSort->nOBSat; |
- if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
- int regSortOut = ++pParse->nMem; |
- iSortTab = pParse->nTab++; |
- if( pSort->labelBkOut ){ |
- addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
- } |
- sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); |
- if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); |
- addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); |
- VdbeCoverage(v); |
- codeOffset(v, p->iOffset, addrContinue); |
- sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); |
- bSeq = 0; |
- }else{ |
- addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); |
- codeOffset(v, p->iOffset, addrContinue); |
- iSortTab = iTab; |
- bSeq = 1; |
- } |
- for(i=0; i<nSortData; i++){ |
- sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); |
- VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); |
- } |
- switch( eDest ){ |
- case SRT_Table: |
- case SRT_EphemTab: { |
- testcase( eDest==SRT_Table ); |
- testcase( eDest==SRT_EphemTab ); |
- sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); |
- sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); |
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
- break; |
- } |
-#ifndef SQLITE_OMIT_SUBQUERY |
- case SRT_Set: { |
- assert( nColumn==1 ); |
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, |
- &pDest->affSdst, 1); |
- sqlite3ExprCacheAffinityChange(pParse, regRow, 1); |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); |
- break; |
- } |
- case SRT_Mem: { |
- assert( nColumn==1 ); |
- sqlite3ExprCodeMove(pParse, regRow, iParm, 1); |
- /* The LIMIT clause will terminate the loop for us */ |
- break; |
- } |
-#endif |
- default: { |
- assert( eDest==SRT_Output || eDest==SRT_Coroutine ); |
- testcase( eDest==SRT_Output ); |
- testcase( eDest==SRT_Coroutine ); |
- if( eDest==SRT_Output ){ |
- sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); |
- sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); |
- }else{ |
- sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
- } |
- break; |
- } |
- } |
- if( regRowid ){ |
- sqlite3ReleaseTempReg(pParse, regRow); |
- sqlite3ReleaseTempReg(pParse, regRowid); |
- } |
- /* The bottom of the loop |
- */ |
- sqlite3VdbeResolveLabel(v, addrContinue); |
- if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
- sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); |
- }else{ |
- sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); |
- } |
- if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); |
- sqlite3VdbeResolveLabel(v, addrBreak); |
-} |
- |
-/* |
-** Return a pointer to a string containing the 'declaration type' of the |
-** expression pExpr. The string may be treated as static by the caller. |
-** |
-** Also try to estimate the size of the returned value and return that |
-** result in *pEstWidth. |
-** |
-** The declaration type is the exact datatype definition extracted from the |
-** original CREATE TABLE statement if the expression is a column. The |
-** declaration type for a ROWID field is INTEGER. Exactly when an expression |
-** is considered a column can be complex in the presence of subqueries. The |
-** result-set expression in all of the following SELECT statements is |
-** considered a column by this function. |
-** |
-** SELECT col FROM tbl; |
-** SELECT (SELECT col FROM tbl; |
-** SELECT (SELECT col FROM tbl); |
-** SELECT abc FROM (SELECT col AS abc FROM tbl); |
-** |
-** The declaration type for any expression other than a column is NULL. |
-** |
-** This routine has either 3 or 6 parameters depending on whether or not |
-** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. |
-*/ |
-#ifdef SQLITE_ENABLE_COLUMN_METADATA |
-# define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) |
-static const char *columnTypeImpl( |
- NameContext *pNC, |
- Expr *pExpr, |
- const char **pzOrigDb, |
- const char **pzOrigTab, |
- const char **pzOrigCol, |
- u8 *pEstWidth |
-){ |
- char const *zOrigDb = 0; |
- char const *zOrigTab = 0; |
- char const *zOrigCol = 0; |
-#else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ |
-# define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) |
-static const char *columnTypeImpl( |
- NameContext *pNC, |
- Expr *pExpr, |
- u8 *pEstWidth |
-){ |
-#endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ |
- char const *zType = 0; |
- int j; |
- u8 estWidth = 1; |
- |
- if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; |
- switch( pExpr->op ){ |
- case TK_AGG_COLUMN: |
- case TK_COLUMN: { |
- /* The expression is a column. Locate the table the column is being |
- ** extracted from in NameContext.pSrcList. This table may be real |
- ** database table or a subquery. |
- */ |
- Table *pTab = 0; /* Table structure column is extracted from */ |
- Select *pS = 0; /* Select the column is extracted from */ |
- int iCol = pExpr->iColumn; /* Index of column in pTab */ |
- testcase( pExpr->op==TK_AGG_COLUMN ); |
- testcase( pExpr->op==TK_COLUMN ); |
- while( pNC && !pTab ){ |
- SrcList *pTabList = pNC->pSrcList; |
- for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); |
- if( j<pTabList->nSrc ){ |
- pTab = pTabList->a[j].pTab; |
- pS = pTabList->a[j].pSelect; |
- }else{ |
- pNC = pNC->pNext; |
- } |
- } |
- |
- if( pTab==0 ){ |
- /* At one time, code such as "SELECT new.x" within a trigger would |
- ** cause this condition to run. Since then, we have restructured how |
- ** trigger code is generated and so this condition is no longer |
- ** possible. However, it can still be true for statements like |
- ** the following: |
- ** |
- ** CREATE TABLE t1(col INTEGER); |
- ** SELECT (SELECT t1.col) FROM FROM t1; |
- ** |
- ** when columnType() is called on the expression "t1.col" in the |
- ** sub-select. In this case, set the column type to NULL, even |
- ** though it should really be "INTEGER". |
- ** |
- ** This is not a problem, as the column type of "t1.col" is never |
- ** used. When columnType() is called on the expression |
- ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT |
- ** branch below. */ |
- break; |
- } |
- |
- assert( pTab && pExpr->pTab==pTab ); |
- if( pS ){ |
- /* The "table" is actually a sub-select or a view in the FROM clause |
- ** of the SELECT statement. Return the declaration type and origin |
- ** data for the result-set column of the sub-select. |
- */ |
- if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ |
- /* If iCol is less than zero, then the expression requests the |
- ** rowid of the sub-select or view. This expression is legal (see |
- ** test case misc2.2.2) - it always evaluates to NULL. |
- */ |
- NameContext sNC; |
- Expr *p = pS->pEList->a[iCol].pExpr; |
- sNC.pSrcList = pS->pSrc; |
- sNC.pNext = pNC; |
- sNC.pParse = pNC->pParse; |
- zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); |
- } |
- }else if( pTab->pSchema ){ |
- /* A real table */ |
- assert( !pS ); |
- if( iCol<0 ) iCol = pTab->iPKey; |
- assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
-#ifdef SQLITE_ENABLE_COLUMN_METADATA |
- if( iCol<0 ){ |
- zType = "INTEGER"; |
- zOrigCol = "rowid"; |
- }else{ |
- zType = pTab->aCol[iCol].zType; |
- zOrigCol = pTab->aCol[iCol].zName; |
- estWidth = pTab->aCol[iCol].szEst; |
- } |
- zOrigTab = pTab->zName; |
- if( pNC->pParse ){ |
- int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); |
- zOrigDb = pNC->pParse->db->aDb[iDb].zName; |
- } |
-#else |
- if( iCol<0 ){ |
- zType = "INTEGER"; |
- }else{ |
- zType = pTab->aCol[iCol].zType; |
- estWidth = pTab->aCol[iCol].szEst; |
- } |
-#endif |
- } |
- break; |
- } |
-#ifndef SQLITE_OMIT_SUBQUERY |
- case TK_SELECT: { |
- /* The expression is a sub-select. Return the declaration type and |
- ** origin info for the single column in the result set of the SELECT |
- ** statement. |
- */ |
- NameContext sNC; |
- Select *pS = pExpr->x.pSelect; |
- Expr *p = pS->pEList->a[0].pExpr; |
- assert( ExprHasProperty(pExpr, EP_xIsSelect) ); |
- sNC.pSrcList = pS->pSrc; |
- sNC.pNext = pNC; |
- sNC.pParse = pNC->pParse; |
- zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); |
- break; |
- } |
-#endif |
- } |
- |
-#ifdef SQLITE_ENABLE_COLUMN_METADATA |
- if( pzOrigDb ){ |
- assert( pzOrigTab && pzOrigCol ); |
- *pzOrigDb = zOrigDb; |
- *pzOrigTab = zOrigTab; |
- *pzOrigCol = zOrigCol; |
- } |
-#endif |
- if( pEstWidth ) *pEstWidth = estWidth; |
- return zType; |
-} |
- |
-/* |
-** Generate code that will tell the VDBE the declaration types of columns |
-** in the result set. |
-*/ |
-static void generateColumnTypes( |
- Parse *pParse, /* Parser context */ |
- SrcList *pTabList, /* List of tables */ |
- ExprList *pEList /* Expressions defining the result set */ |
-){ |
-#ifndef SQLITE_OMIT_DECLTYPE |
- Vdbe *v = pParse->pVdbe; |
- int i; |
- NameContext sNC; |
- sNC.pSrcList = pTabList; |
- sNC.pParse = pParse; |
- for(i=0; i<pEList->nExpr; i++){ |
- Expr *p = pEList->a[i].pExpr; |
- const char *zType; |
-#ifdef SQLITE_ENABLE_COLUMN_METADATA |
- const char *zOrigDb = 0; |
- const char *zOrigTab = 0; |
- const char *zOrigCol = 0; |
- zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); |
- |
- /* The vdbe must make its own copy of the column-type and other |
- ** column specific strings, in case the schema is reset before this |
- ** virtual machine is deleted. |
- */ |
- sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); |
- sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); |
- sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); |
-#else |
- zType = columnType(&sNC, p, 0, 0, 0, 0); |
-#endif |
- sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); |
- } |
-#endif /* !defined(SQLITE_OMIT_DECLTYPE) */ |
-} |
- |
-/* |
-** Generate code that will tell the VDBE the names of columns |
-** in the result set. This information is used to provide the |
-** azCol[] values in the callback. |
-*/ |
-static void generateColumnNames( |
- Parse *pParse, /* Parser context */ |
- SrcList *pTabList, /* List of tables */ |
- ExprList *pEList /* Expressions defining the result set */ |
-){ |
- Vdbe *v = pParse->pVdbe; |
- int i, j; |
- sqlite3 *db = pParse->db; |
- int fullNames, shortNames; |
- |
-#ifndef SQLITE_OMIT_EXPLAIN |
- /* If this is an EXPLAIN, skip this step */ |
- if( pParse->explain ){ |
- return; |
- } |
-#endif |
- |
- if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; |
- pParse->colNamesSet = 1; |
- fullNames = (db->flags & SQLITE_FullColNames)!=0; |
- shortNames = (db->flags & SQLITE_ShortColNames)!=0; |
- sqlite3VdbeSetNumCols(v, pEList->nExpr); |
- for(i=0; i<pEList->nExpr; i++){ |
- Expr *p; |
- p = pEList->a[i].pExpr; |
- if( NEVER(p==0) ) continue; |
- if( pEList->a[i].zName ){ |
- char *zName = pEList->a[i].zName; |
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); |
- }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ |
- Table *pTab; |
- char *zCol; |
- int iCol = p->iColumn; |
- for(j=0; ALWAYS(j<pTabList->nSrc); j++){ |
- if( pTabList->a[j].iCursor==p->iTable ) break; |
- } |
- assert( j<pTabList->nSrc ); |
- pTab = pTabList->a[j].pTab; |
- if( iCol<0 ) iCol = pTab->iPKey; |
- assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
- if( iCol<0 ){ |
- zCol = "rowid"; |
- }else{ |
- zCol = pTab->aCol[iCol].zName; |
- } |
- if( !shortNames && !fullNames ){ |
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, |
- sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); |
- }else if( fullNames ){ |
- char *zName = 0; |
- zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); |
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); |
- }else{ |
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); |
- } |
- }else{ |
- const char *z = pEList->a[i].zSpan; |
- z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); |
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); |
- } |
- } |
- generateColumnTypes(pParse, pTabList, pEList); |
-} |
- |
-/* |
-** Given an expression list (which is really the list of expressions |
-** that form the result set of a SELECT statement) compute appropriate |
-** column names for a table that would hold the expression list. |
-** |
-** All column names will be unique. |
-** |
-** Only the column names are computed. Column.zType, Column.zColl, |
-** and other fields of Column are zeroed. |
-** |
-** Return SQLITE_OK on success. If a memory allocation error occurs, |
-** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. |
-*/ |
-static int selectColumnsFromExprList( |
- Parse *pParse, /* Parsing context */ |
- ExprList *pEList, /* Expr list from which to derive column names */ |
- i16 *pnCol, /* Write the number of columns here */ |
- Column **paCol /* Write the new column list here */ |
-){ |
- sqlite3 *db = pParse->db; /* Database connection */ |
- int i, j; /* Loop counters */ |
- int cnt; /* Index added to make the name unique */ |
- Column *aCol, *pCol; /* For looping over result columns */ |
- int nCol; /* Number of columns in the result set */ |
- Expr *p; /* Expression for a single result column */ |
- char *zName; /* Column name */ |
- int nName; /* Size of name in zName[] */ |
- |
- if( pEList ){ |
- nCol = pEList->nExpr; |
- aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); |
- testcase( aCol==0 ); |
- }else{ |
- nCol = 0; |
- aCol = 0; |
- } |
- *pnCol = nCol; |
- *paCol = aCol; |
- |
- for(i=0, pCol=aCol; i<nCol; i++, pCol++){ |
- /* Get an appropriate name for the column |
- */ |
- p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); |
- if( (zName = pEList->a[i].zName)!=0 ){ |
- /* If the column contains an "AS <name>" phrase, use <name> as the name */ |
- zName = sqlite3DbStrDup(db, zName); |
- }else{ |
- Expr *pColExpr = p; /* The expression that is the result column name */ |
- Table *pTab; /* Table associated with this expression */ |
- while( pColExpr->op==TK_DOT ){ |
- pColExpr = pColExpr->pRight; |
- assert( pColExpr!=0 ); |
- } |
- if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ |
- /* For columns use the column name name */ |
- int iCol = pColExpr->iColumn; |
- pTab = pColExpr->pTab; |
- if( iCol<0 ) iCol = pTab->iPKey; |
- zName = sqlite3MPrintf(db, "%s", |
- iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); |
- }else if( pColExpr->op==TK_ID ){ |
- assert( !ExprHasProperty(pColExpr, EP_IntValue) ); |
- zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); |
- }else{ |
- /* Use the original text of the column expression as its name */ |
- zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); |
- } |
- } |
- if( db->mallocFailed ){ |
- sqlite3DbFree(db, zName); |
- break; |
- } |
- |
- /* Make sure the column name is unique. If the name is not unique, |
- ** append an integer to the name so that it becomes unique. |
- */ |
- nName = sqlite3Strlen30(zName); |
- for(j=cnt=0; j<i; j++){ |
- if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ |
- char *zNewName; |
- int k; |
- for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} |
- if( k>=0 && zName[k]==':' ) nName = k; |
- zName[nName] = 0; |
- zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); |
- sqlite3DbFree(db, zName); |
- zName = zNewName; |
- j = -1; |
- if( zName==0 ) break; |
- } |
- } |
- pCol->zName = zName; |
- } |
- if( db->mallocFailed ){ |
- for(j=0; j<i; j++){ |
- sqlite3DbFree(db, aCol[j].zName); |
- } |
- sqlite3DbFree(db, aCol); |
- *paCol = 0; |
- *pnCol = 0; |
- return SQLITE_NOMEM; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Add type and collation information to a column list based on |
-** a SELECT statement. |
-** |
-** The column list presumably came from selectColumnNamesFromExprList(). |
-** The column list has only names, not types or collations. This |
-** routine goes through and adds the types and collations. |
-** |
-** This routine requires that all identifiers in the SELECT |
-** statement be resolved. |
-*/ |
-static void selectAddColumnTypeAndCollation( |
- Parse *pParse, /* Parsing contexts */ |
- Table *pTab, /* Add column type information to this table */ |
- Select *pSelect /* SELECT used to determine types and collations */ |
-){ |
- sqlite3 *db = pParse->db; |
- NameContext sNC; |
- Column *pCol; |
- CollSeq *pColl; |
- int i; |
- Expr *p; |
- struct ExprList_item *a; |
- u64 szAll = 0; |
- |
- assert( pSelect!=0 ); |
- assert( (pSelect->selFlags & SF_Resolved)!=0 ); |
- assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); |
- if( db->mallocFailed ) return; |
- memset(&sNC, 0, sizeof(sNC)); |
- sNC.pSrcList = pSelect->pSrc; |
- a = pSelect->pEList->a; |
- for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ |
- p = a[i].pExpr; |
- pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); |
- szAll += pCol->szEst; |
- pCol->affinity = sqlite3ExprAffinity(p); |
- if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; |
- pColl = sqlite3ExprCollSeq(pParse, p); |
- if( pColl ){ |
- pCol->zColl = sqlite3DbStrDup(db, pColl->zName); |
- } |
- } |
- pTab->szTabRow = sqlite3LogEst(szAll*4); |
-} |
- |
-/* |
-** Given a SELECT statement, generate a Table structure that describes |
-** the result set of that SELECT. |
-*/ |
-Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ |
- Table *pTab; |
- sqlite3 *db = pParse->db; |
- int savedFlags; |
- |
- savedFlags = db->flags; |
- db->flags &= ~SQLITE_FullColNames; |
- db->flags |= SQLITE_ShortColNames; |
- sqlite3SelectPrep(pParse, pSelect, 0); |
- if( pParse->nErr ) return 0; |
- while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
- db->flags = savedFlags; |
- pTab = sqlite3DbMallocZero(db, sizeof(Table) ); |
- if( pTab==0 ){ |
- return 0; |
- } |
- /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside |
- ** is disabled */ |
- assert( db->lookaside.bEnabled==0 ); |
- pTab->nRef = 1; |
- pTab->zName = 0; |
- pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
- selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); |
- selectAddColumnTypeAndCollation(pParse, pTab, pSelect); |
- pTab->iPKey = -1; |
- if( db->mallocFailed ){ |
- sqlite3DeleteTable(db, pTab); |
- return 0; |
- } |
- return pTab; |
-} |
- |
-/* |
-** Get a VDBE for the given parser context. Create a new one if necessary. |
-** If an error occurs, return NULL and leave a message in pParse. |
-*/ |
-Vdbe *sqlite3GetVdbe(Parse *pParse){ |
- Vdbe *v = pParse->pVdbe; |
- if( v==0 ){ |
- v = pParse->pVdbe = sqlite3VdbeCreate(pParse); |
- if( v ) sqlite3VdbeAddOp0(v, OP_Init); |
- if( pParse->pToplevel==0 |
- && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) |
- ){ |
- pParse->okConstFactor = 1; |
- } |
- |
- } |
- return v; |
-} |
- |
- |
-/* |
-** Compute the iLimit and iOffset fields of the SELECT based on the |
-** pLimit and pOffset expressions. pLimit and pOffset hold the expressions |
-** that appear in the original SQL statement after the LIMIT and OFFSET |
-** keywords. Or NULL if those keywords are omitted. iLimit and iOffset |
-** are the integer memory register numbers for counters used to compute |
-** the limit and offset. If there is no limit and/or offset, then |
-** iLimit and iOffset are negative. |
-** |
-** This routine changes the values of iLimit and iOffset only if |
-** a limit or offset is defined by pLimit and pOffset. iLimit and |
-** iOffset should have been preset to appropriate default values (zero) |
-** prior to calling this routine. |
-** |
-** The iOffset register (if it exists) is initialized to the value |
-** of the OFFSET. The iLimit register is initialized to LIMIT. Register |
-** iOffset+1 is initialized to LIMIT+OFFSET. |
-** |
-** Only if pLimit!=0 or pOffset!=0 do the limit registers get |
-** redefined. The UNION ALL operator uses this property to force |
-** the reuse of the same limit and offset registers across multiple |
-** SELECT statements. |
-*/ |
-static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ |
- Vdbe *v = 0; |
- int iLimit = 0; |
- int iOffset; |
- int addr1, n; |
- if( p->iLimit ) return; |
- |
- /* |
- ** "LIMIT -1" always shows all rows. There is some |
- ** controversy about what the correct behavior should be. |
- ** The current implementation interprets "LIMIT 0" to mean |
- ** no rows. |
- */ |
- sqlite3ExprCacheClear(pParse); |
- assert( p->pOffset==0 || p->pLimit!=0 ); |
- if( p->pLimit ){ |
- p->iLimit = iLimit = ++pParse->nMem; |
- v = sqlite3GetVdbe(pParse); |
- assert( v!=0 ); |
- if( sqlite3ExprIsInteger(p->pLimit, &n) ){ |
- sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); |
- VdbeComment((v, "LIMIT counter")); |
- if( n==0 ){ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); |
- }else if( n>=0 && p->nSelectRow>(u64)n ){ |
- p->nSelectRow = n; |
- } |
- }else{ |
- sqlite3ExprCode(pParse, p->pLimit, iLimit); |
- sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); |
- VdbeComment((v, "LIMIT counter")); |
- sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); |
- } |
- if( p->pOffset ){ |
- p->iOffset = iOffset = ++pParse->nMem; |
- pParse->nMem++; /* Allocate an extra register for limit+offset */ |
- sqlite3ExprCode(pParse, p->pOffset, iOffset); |
- sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); |
- VdbeComment((v, "OFFSET counter")); |
- addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); |
- sqlite3VdbeJumpHere(v, addr1); |
- sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); |
- VdbeComment((v, "LIMIT+OFFSET")); |
- addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); |
- sqlite3VdbeJumpHere(v, addr1); |
- } |
- } |
-} |
- |
-#ifndef SQLITE_OMIT_COMPOUND_SELECT |
-/* |
-** Return the appropriate collating sequence for the iCol-th column of |
-** the result set for the compound-select statement "p". Return NULL if |
-** the column has no default collating sequence. |
-** |
-** The collating sequence for the compound select is taken from the |
-** left-most term of the select that has a collating sequence. |
-*/ |
-static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ |
- CollSeq *pRet; |
- if( p->pPrior ){ |
- pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); |
- }else{ |
- pRet = 0; |
- } |
- assert( iCol>=0 ); |
- if( pRet==0 && iCol<p->pEList->nExpr ){ |
- pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); |
- } |
- return pRet; |
-} |
- |
-/* |
-** The select statement passed as the second parameter is a compound SELECT |
-** with an ORDER BY clause. This function allocates and returns a KeyInfo |
-** structure suitable for implementing the ORDER BY. |
-** |
-** Space to hold the KeyInfo structure is obtained from malloc. The calling |
-** function is responsible for ensuring that this structure is eventually |
-** freed. |
-*/ |
-static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ |
- ExprList *pOrderBy = p->pOrderBy; |
- int nOrderBy = p->pOrderBy->nExpr; |
- sqlite3 *db = pParse->db; |
- KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); |
- if( pRet ){ |
- int i; |
- for(i=0; i<nOrderBy; i++){ |
- struct ExprList_item *pItem = &pOrderBy->a[i]; |
- Expr *pTerm = pItem->pExpr; |
- CollSeq *pColl; |
- |
- if( pTerm->flags & EP_Collate ){ |
- pColl = sqlite3ExprCollSeq(pParse, pTerm); |
- }else{ |
- pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); |
- if( pColl==0 ) pColl = db->pDfltColl; |
- pOrderBy->a[i].pExpr = |
- sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); |
- } |
- assert( sqlite3KeyInfoIsWriteable(pRet) ); |
- pRet->aColl[i] = pColl; |
- pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; |
- } |
- } |
- |
- return pRet; |
-} |
- |
-#ifndef SQLITE_OMIT_CTE |
-/* |
-** This routine generates VDBE code to compute the content of a WITH RECURSIVE |
-** query of the form: |
-** |
-** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) |
-** \___________/ \_______________/ |
-** p->pPrior p |
-** |
-** |
-** There is exactly one reference to the recursive-table in the FROM clause |
-** of recursive-query, marked with the SrcList->a[].isRecursive flag. |
-** |
-** The setup-query runs once to generate an initial set of rows that go |
-** into a Queue table. Rows are extracted from the Queue table one by |
-** one. Each row extracted from Queue is output to pDest. Then the single |
-** extracted row (now in the iCurrent table) becomes the content of the |
-** recursive-table for a recursive-query run. The output of the recursive-query |
-** is added back into the Queue table. Then another row is extracted from Queue |
-** and the iteration continues until the Queue table is empty. |
-** |
-** If the compound query operator is UNION then no duplicate rows are ever |
-** inserted into the Queue table. The iDistinct table keeps a copy of all rows |
-** that have ever been inserted into Queue and causes duplicates to be |
-** discarded. If the operator is UNION ALL, then duplicates are allowed. |
-** |
-** If the query has an ORDER BY, then entries in the Queue table are kept in |
-** ORDER BY order and the first entry is extracted for each cycle. Without |
-** an ORDER BY, the Queue table is just a FIFO. |
-** |
-** If a LIMIT clause is provided, then the iteration stops after LIMIT rows |
-** have been output to pDest. A LIMIT of zero means to output no rows and a |
-** negative LIMIT means to output all rows. If there is also an OFFSET clause |
-** with a positive value, then the first OFFSET outputs are discarded rather |
-** than being sent to pDest. The LIMIT count does not begin until after OFFSET |
-** rows have been skipped. |
-*/ |
-static void generateWithRecursiveQuery( |
- Parse *pParse, /* Parsing context */ |
- Select *p, /* The recursive SELECT to be coded */ |
- SelectDest *pDest /* What to do with query results */ |
-){ |
- SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ |
- int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ |
- Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ |
- Select *pSetup = p->pPrior; /* The setup query */ |
- int addrTop; /* Top of the loop */ |
- int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ |
- int iCurrent = 0; /* The Current table */ |
- int regCurrent; /* Register holding Current table */ |
- int iQueue; /* The Queue table */ |
- int iDistinct = 0; /* To ensure unique results if UNION */ |
- int eDest = SRT_Fifo; /* How to write to Queue */ |
- SelectDest destQueue; /* SelectDest targetting the Queue table */ |
- int i; /* Loop counter */ |
- int rc; /* Result code */ |
- ExprList *pOrderBy; /* The ORDER BY clause */ |
- Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ |
- int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ |
- |
- /* Obtain authorization to do a recursive query */ |
- if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; |
- |
- /* Process the LIMIT and OFFSET clauses, if they exist */ |
- addrBreak = sqlite3VdbeMakeLabel(v); |
- computeLimitRegisters(pParse, p, addrBreak); |
- pLimit = p->pLimit; |
- pOffset = p->pOffset; |
- regLimit = p->iLimit; |
- regOffset = p->iOffset; |
- p->pLimit = p->pOffset = 0; |
- p->iLimit = p->iOffset = 0; |
- pOrderBy = p->pOrderBy; |
- |
- /* Locate the cursor number of the Current table */ |
- for(i=0; ALWAYS(i<pSrc->nSrc); i++){ |
- if( pSrc->a[i].isRecursive ){ |
- iCurrent = pSrc->a[i].iCursor; |
- break; |
- } |
- } |
- |
- /* Allocate cursors numbers for Queue and Distinct. The cursor number for |
- ** the Distinct table must be exactly one greater than Queue in order |
- ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ |
- iQueue = pParse->nTab++; |
- if( p->op==TK_UNION ){ |
- eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; |
- iDistinct = pParse->nTab++; |
- }else{ |
- eDest = pOrderBy ? SRT_Queue : SRT_Fifo; |
- } |
- sqlite3SelectDestInit(&destQueue, eDest, iQueue); |
- |
- /* Allocate cursors for Current, Queue, and Distinct. */ |
- regCurrent = ++pParse->nMem; |
- sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); |
- if( pOrderBy ){ |
- KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); |
- sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, |
- (char*)pKeyInfo, P4_KEYINFO); |
- destQueue.pOrderBy = pOrderBy; |
- }else{ |
- sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); |
- } |
- VdbeComment((v, "Queue table")); |
- if( iDistinct ){ |
- p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); |
- p->selFlags |= SF_UsesEphemeral; |
- } |
- |
- /* Detach the ORDER BY clause from the compound SELECT */ |
- p->pOrderBy = 0; |
- |
- /* Store the results of the setup-query in Queue. */ |
- pSetup->pNext = 0; |
- rc = sqlite3Select(pParse, pSetup, &destQueue); |
- pSetup->pNext = p; |
- if( rc ) goto end_of_recursive_query; |
- |
- /* Find the next row in the Queue and output that row */ |
- addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); |
- |
- /* Transfer the next row in Queue over to Current */ |
- sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ |
- if( pOrderBy ){ |
- sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); |
- }else{ |
- sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); |
- } |
- sqlite3VdbeAddOp1(v, OP_Delete, iQueue); |
- |
- /* Output the single row in Current */ |
- addrCont = sqlite3VdbeMakeLabel(v); |
- codeOffset(v, regOffset, addrCont); |
- selectInnerLoop(pParse, p, p->pEList, iCurrent, |
- 0, 0, pDest, addrCont, addrBreak); |
- if( regLimit ){ |
- sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); |
- VdbeCoverage(v); |
- } |
- sqlite3VdbeResolveLabel(v, addrCont); |
- |
- /* Execute the recursive SELECT taking the single row in Current as |
- ** the value for the recursive-table. Store the results in the Queue. |
- */ |
- p->pPrior = 0; |
- sqlite3Select(pParse, p, &destQueue); |
- assert( p->pPrior==0 ); |
- p->pPrior = pSetup; |
- |
- /* Keep running the loop until the Queue is empty */ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); |
- sqlite3VdbeResolveLabel(v, addrBreak); |
- |
-end_of_recursive_query: |
- sqlite3ExprListDelete(pParse->db, p->pOrderBy); |
- p->pOrderBy = pOrderBy; |
- p->pLimit = pLimit; |
- p->pOffset = pOffset; |
- return; |
-} |
-#endif /* SQLITE_OMIT_CTE */ |
- |
-/* Forward references */ |
-static int multiSelectOrderBy( |
- Parse *pParse, /* Parsing context */ |
- Select *p, /* The right-most of SELECTs to be coded */ |
- SelectDest *pDest /* What to do with query results */ |
-); |
- |
- |
-/* |
-** This routine is called to process a compound query form from |
-** two or more separate queries using UNION, UNION ALL, EXCEPT, or |
-** INTERSECT |
-** |
-** "p" points to the right-most of the two queries. the query on the |
-** left is p->pPrior. The left query could also be a compound query |
-** in which case this routine will be called recursively. |
-** |
-** The results of the total query are to be written into a destination |
-** of type eDest with parameter iParm. |
-** |
-** Example 1: Consider a three-way compound SQL statement. |
-** |
-** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 |
-** |
-** This statement is parsed up as follows: |
-** |
-** SELECT c FROM t3 |
-** | |
-** `-----> SELECT b FROM t2 |
-** | |
-** `------> SELECT a FROM t1 |
-** |
-** The arrows in the diagram above represent the Select.pPrior pointer. |
-** So if this routine is called with p equal to the t3 query, then |
-** pPrior will be the t2 query. p->op will be TK_UNION in this case. |
-** |
-** Notice that because of the way SQLite parses compound SELECTs, the |
-** individual selects always group from left to right. |
-*/ |
-static int multiSelect( |
- Parse *pParse, /* Parsing context */ |
- Select *p, /* The right-most of SELECTs to be coded */ |
- SelectDest *pDest /* What to do with query results */ |
-){ |
- int rc = SQLITE_OK; /* Success code from a subroutine */ |
- Select *pPrior; /* Another SELECT immediately to our left */ |
- Vdbe *v; /* Generate code to this VDBE */ |
- SelectDest dest; /* Alternative data destination */ |
- Select *pDelete = 0; /* Chain of simple selects to delete */ |
- sqlite3 *db; /* Database connection */ |
-#ifndef SQLITE_OMIT_EXPLAIN |
- int iSub1 = 0; /* EQP id of left-hand query */ |
- int iSub2 = 0; /* EQP id of right-hand query */ |
-#endif |
- |
- /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only |
- ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. |
- */ |
- assert( p && p->pPrior ); /* Calling function guarantees this much */ |
- assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); |
- db = pParse->db; |
- pPrior = p->pPrior; |
- dest = *pDest; |
- if( pPrior->pOrderBy ){ |
- sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", |
- selectOpName(p->op)); |
- rc = 1; |
- goto multi_select_end; |
- } |
- if( pPrior->pLimit ){ |
- sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", |
- selectOpName(p->op)); |
- rc = 1; |
- goto multi_select_end; |
- } |
- |
- v = sqlite3GetVdbe(pParse); |
- assert( v!=0 ); /* The VDBE already created by calling function */ |
- |
- /* Create the destination temporary table if necessary |
- */ |
- if( dest.eDest==SRT_EphemTab ){ |
- assert( p->pEList ); |
- sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); |
- sqlite3VdbeChangeP5(v, BTREE_UNORDERED); |
- dest.eDest = SRT_Table; |
- } |
- |
- /* Make sure all SELECTs in the statement have the same number of elements |
- ** in their result sets. |
- */ |
- assert( p->pEList && pPrior->pEList ); |
- if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ |
- if( p->selFlags & SF_Values ){ |
- sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); |
- }else{ |
- sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" |
- " do not have the same number of result columns", selectOpName(p->op)); |
- } |
- rc = 1; |
- goto multi_select_end; |
- } |
- |
-#ifndef SQLITE_OMIT_CTE |
- if( p->selFlags & SF_Recursive ){ |
- generateWithRecursiveQuery(pParse, p, &dest); |
- }else |
-#endif |
- |
- /* Compound SELECTs that have an ORDER BY clause are handled separately. |
- */ |
- if( p->pOrderBy ){ |
- return multiSelectOrderBy(pParse, p, pDest); |
- }else |
- |
- /* Generate code for the left and right SELECT statements. |
- */ |
- switch( p->op ){ |
- case TK_ALL: { |
- int addr = 0; |
- int nLimit; |
- assert( !pPrior->pLimit ); |
- pPrior->iLimit = p->iLimit; |
- pPrior->iOffset = p->iOffset; |
- pPrior->pLimit = p->pLimit; |
- pPrior->pOffset = p->pOffset; |
- explainSetInteger(iSub1, pParse->iNextSelectId); |
- rc = sqlite3Select(pParse, pPrior, &dest); |
- p->pLimit = 0; |
- p->pOffset = 0; |
- if( rc ){ |
- goto multi_select_end; |
- } |
- p->pPrior = 0; |
- p->iLimit = pPrior->iLimit; |
- p->iOffset = pPrior->iOffset; |
- if( p->iLimit ){ |
- addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); |
- VdbeComment((v, "Jump ahead if LIMIT reached")); |
- } |
- explainSetInteger(iSub2, pParse->iNextSelectId); |
- rc = sqlite3Select(pParse, p, &dest); |
- testcase( rc!=SQLITE_OK ); |
- pDelete = p->pPrior; |
- p->pPrior = pPrior; |
- p->nSelectRow += pPrior->nSelectRow; |
- if( pPrior->pLimit |
- && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) |
- && nLimit>0 && p->nSelectRow > (u64)nLimit |
- ){ |
- p->nSelectRow = nLimit; |
- } |
- if( addr ){ |
- sqlite3VdbeJumpHere(v, addr); |
- } |
- break; |
- } |
- case TK_EXCEPT: |
- case TK_UNION: { |
- int unionTab; /* Cursor number of the temporary table holding result */ |
- u8 op = 0; /* One of the SRT_ operations to apply to self */ |
- int priorOp; /* The SRT_ operation to apply to prior selects */ |
- Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ |
- int addr; |
- SelectDest uniondest; |
- |
- testcase( p->op==TK_EXCEPT ); |
- testcase( p->op==TK_UNION ); |
- priorOp = SRT_Union; |
- if( dest.eDest==priorOp ){ |
- /* We can reuse a temporary table generated by a SELECT to our |
- ** right. |
- */ |
- assert( p->pLimit==0 ); /* Not allowed on leftward elements */ |
- assert( p->pOffset==0 ); /* Not allowed on leftward elements */ |
- unionTab = dest.iSDParm; |
- }else{ |
- /* We will need to create our own temporary table to hold the |
- ** intermediate results. |
- */ |
- unionTab = pParse->nTab++; |
- assert( p->pOrderBy==0 ); |
- addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); |
- assert( p->addrOpenEphm[0] == -1 ); |
- p->addrOpenEphm[0] = addr; |
- findRightmost(p)->selFlags |= SF_UsesEphemeral; |
- assert( p->pEList ); |
- } |
- |
- /* Code the SELECT statements to our left |
- */ |
- assert( !pPrior->pOrderBy ); |
- sqlite3SelectDestInit(&uniondest, priorOp, unionTab); |
- explainSetInteger(iSub1, pParse->iNextSelectId); |
- rc = sqlite3Select(pParse, pPrior, &uniondest); |
- if( rc ){ |
- goto multi_select_end; |
- } |
- |
- /* Code the current SELECT statement |
- */ |
- if( p->op==TK_EXCEPT ){ |
- op = SRT_Except; |
- }else{ |
- assert( p->op==TK_UNION ); |
- op = SRT_Union; |
- } |
- p->pPrior = 0; |
- pLimit = p->pLimit; |
- p->pLimit = 0; |
- pOffset = p->pOffset; |
- p->pOffset = 0; |
- uniondest.eDest = op; |
- explainSetInteger(iSub2, pParse->iNextSelectId); |
- rc = sqlite3Select(pParse, p, &uniondest); |
- testcase( rc!=SQLITE_OK ); |
- /* Query flattening in sqlite3Select() might refill p->pOrderBy. |
- ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ |
- sqlite3ExprListDelete(db, p->pOrderBy); |
- pDelete = p->pPrior; |
- p->pPrior = pPrior; |
- p->pOrderBy = 0; |
- if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; |
- sqlite3ExprDelete(db, p->pLimit); |
- p->pLimit = pLimit; |
- p->pOffset = pOffset; |
- p->iLimit = 0; |
- p->iOffset = 0; |
- |
- /* Convert the data in the temporary table into whatever form |
- ** it is that we currently need. |
- */ |
- assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); |
- if( dest.eDest!=priorOp ){ |
- int iCont, iBreak, iStart; |
- assert( p->pEList ); |
- if( dest.eDest==SRT_Output ){ |
- Select *pFirst = p; |
- while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
- generateColumnNames(pParse, 0, pFirst->pEList); |
- } |
- iBreak = sqlite3VdbeMakeLabel(v); |
- iCont = sqlite3VdbeMakeLabel(v); |
- computeLimitRegisters(pParse, p, iBreak); |
- sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); |
- iStart = sqlite3VdbeCurrentAddr(v); |
- selectInnerLoop(pParse, p, p->pEList, unionTab, |
- 0, 0, &dest, iCont, iBreak); |
- sqlite3VdbeResolveLabel(v, iCont); |
- sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); |
- sqlite3VdbeResolveLabel(v, iBreak); |
- sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); |
- } |
- break; |
- } |
- default: assert( p->op==TK_INTERSECT ); { |
- int tab1, tab2; |
- int iCont, iBreak, iStart; |
- Expr *pLimit, *pOffset; |
- int addr; |
- SelectDest intersectdest; |
- int r1; |
- |
- /* INTERSECT is different from the others since it requires |
- ** two temporary tables. Hence it has its own case. Begin |
- ** by allocating the tables we will need. |
- */ |
- tab1 = pParse->nTab++; |
- tab2 = pParse->nTab++; |
- assert( p->pOrderBy==0 ); |
- |
- addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); |
- assert( p->addrOpenEphm[0] == -1 ); |
- p->addrOpenEphm[0] = addr; |
- findRightmost(p)->selFlags |= SF_UsesEphemeral; |
- assert( p->pEList ); |
- |
- /* Code the SELECTs to our left into temporary table "tab1". |
- */ |
- sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); |
- explainSetInteger(iSub1, pParse->iNextSelectId); |
- rc = sqlite3Select(pParse, pPrior, &intersectdest); |
- if( rc ){ |
- goto multi_select_end; |
- } |
- |
- /* Code the current SELECT into temporary table "tab2" |
- */ |
- addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); |
- assert( p->addrOpenEphm[1] == -1 ); |
- p->addrOpenEphm[1] = addr; |
- p->pPrior = 0; |
- pLimit = p->pLimit; |
- p->pLimit = 0; |
- pOffset = p->pOffset; |
- p->pOffset = 0; |
- intersectdest.iSDParm = tab2; |
- explainSetInteger(iSub2, pParse->iNextSelectId); |
- rc = sqlite3Select(pParse, p, &intersectdest); |
- testcase( rc!=SQLITE_OK ); |
- pDelete = p->pPrior; |
- p->pPrior = pPrior; |
- if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; |
- sqlite3ExprDelete(db, p->pLimit); |
- p->pLimit = pLimit; |
- p->pOffset = pOffset; |
- |
- /* Generate code to take the intersection of the two temporary |
- ** tables. |
- */ |
- assert( p->pEList ); |
- if( dest.eDest==SRT_Output ){ |
- Select *pFirst = p; |
- while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
- generateColumnNames(pParse, 0, pFirst->pEList); |
- } |
- iBreak = sqlite3VdbeMakeLabel(v); |
- iCont = sqlite3VdbeMakeLabel(v); |
- computeLimitRegisters(pParse, p, iBreak); |
- sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); |
- r1 = sqlite3GetTempReg(pParse); |
- iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); |
- sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); |
- sqlite3ReleaseTempReg(pParse, r1); |
- selectInnerLoop(pParse, p, p->pEList, tab1, |
- 0, 0, &dest, iCont, iBreak); |
- sqlite3VdbeResolveLabel(v, iCont); |
- sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); |
- sqlite3VdbeResolveLabel(v, iBreak); |
- sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); |
- sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); |
- break; |
- } |
- } |
- |
- explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); |
- |
- /* Compute collating sequences used by |
- ** temporary tables needed to implement the compound select. |
- ** Attach the KeyInfo structure to all temporary tables. |
- ** |
- ** This section is run by the right-most SELECT statement only. |
- ** SELECT statements to the left always skip this part. The right-most |
- ** SELECT might also skip this part if it has no ORDER BY clause and |
- ** no temp tables are required. |
- */ |
- if( p->selFlags & SF_UsesEphemeral ){ |
- int i; /* Loop counter */ |
- KeyInfo *pKeyInfo; /* Collating sequence for the result set */ |
- Select *pLoop; /* For looping through SELECT statements */ |
- CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ |
- int nCol; /* Number of columns in result set */ |
- |
- assert( p->pNext==0 ); |
- nCol = p->pEList->nExpr; |
- pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); |
- if( !pKeyInfo ){ |
- rc = SQLITE_NOMEM; |
- goto multi_select_end; |
- } |
- for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ |
- *apColl = multiSelectCollSeq(pParse, p, i); |
- if( 0==*apColl ){ |
- *apColl = db->pDfltColl; |
- } |
- } |
- |
- for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
- for(i=0; i<2; i++){ |
- int addr = pLoop->addrOpenEphm[i]; |
- if( addr<0 ){ |
- /* If [0] is unused then [1] is also unused. So we can |
- ** always safely abort as soon as the first unused slot is found */ |
- assert( pLoop->addrOpenEphm[1]<0 ); |
- break; |
- } |
- sqlite3VdbeChangeP2(v, addr, nCol); |
- sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), |
- P4_KEYINFO); |
- pLoop->addrOpenEphm[i] = -1; |
- } |
- } |
- sqlite3KeyInfoUnref(pKeyInfo); |
- } |
- |
-multi_select_end: |
- pDest->iSdst = dest.iSdst; |
- pDest->nSdst = dest.nSdst; |
- sqlite3SelectDelete(db, pDelete); |
- return rc; |
-} |
-#endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
- |
-/* |
-** Code an output subroutine for a coroutine implementation of a |
-** SELECT statment. |
-** |
-** The data to be output is contained in pIn->iSdst. There are |
-** pIn->nSdst columns to be output. pDest is where the output should |
-** be sent. |
-** |
-** regReturn is the number of the register holding the subroutine |
-** return address. |
-** |
-** If regPrev>0 then it is the first register in a vector that |
-** records the previous output. mem[regPrev] is a flag that is false |
-** if there has been no previous output. If regPrev>0 then code is |
-** generated to suppress duplicates. pKeyInfo is used for comparing |
-** keys. |
-** |
-** If the LIMIT found in p->iLimit is reached, jump immediately to |
-** iBreak. |
-*/ |
-static int generateOutputSubroutine( |
- Parse *pParse, /* Parsing context */ |
- Select *p, /* The SELECT statement */ |
- SelectDest *pIn, /* Coroutine supplying data */ |
- SelectDest *pDest, /* Where to send the data */ |
- int regReturn, /* The return address register */ |
- int regPrev, /* Previous result register. No uniqueness if 0 */ |
- KeyInfo *pKeyInfo, /* For comparing with previous entry */ |
- int iBreak /* Jump here if we hit the LIMIT */ |
-){ |
- Vdbe *v = pParse->pVdbe; |
- int iContinue; |
- int addr; |
- |
- addr = sqlite3VdbeCurrentAddr(v); |
- iContinue = sqlite3VdbeMakeLabel(v); |
- |
- /* Suppress duplicates for UNION, EXCEPT, and INTERSECT |
- */ |
- if( regPrev ){ |
- int j1, j2; |
- j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); |
- j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, |
- (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); |
- sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); |
- sqlite3VdbeJumpHere(v, j1); |
- sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); |
- } |
- if( pParse->db->mallocFailed ) return 0; |
- |
- /* Suppress the first OFFSET entries if there is an OFFSET clause |
- */ |
- codeOffset(v, p->iOffset, iContinue); |
- |
- switch( pDest->eDest ){ |
- /* Store the result as data using a unique key. |
- */ |
- case SRT_Table: |
- case SRT_EphemTab: { |
- int r1 = sqlite3GetTempReg(pParse); |
- int r2 = sqlite3GetTempReg(pParse); |
- testcase( pDest->eDest==SRT_Table ); |
- testcase( pDest->eDest==SRT_EphemTab ); |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); |
- sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); |
- sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); |
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
- sqlite3ReleaseTempReg(pParse, r2); |
- sqlite3ReleaseTempReg(pParse, r1); |
- break; |
- } |
- |
-#ifndef SQLITE_OMIT_SUBQUERY |
- /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
- ** then there should be a single item on the stack. Write this |
- ** item into the set table with bogus data. |
- */ |
- case SRT_Set: { |
- int r1; |
- assert( pIn->nSdst==1 ); |
- pDest->affSdst = |
- sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); |
- r1 = sqlite3GetTempReg(pParse); |
- sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); |
- sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); |
- sqlite3ReleaseTempReg(pParse, r1); |
- break; |
- } |
- |
-#if 0 /* Never occurs on an ORDER BY query */ |
- /* If any row exist in the result set, record that fact and abort. |
- */ |
- case SRT_Exists: { |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); |
- /* The LIMIT clause will terminate the loop for us */ |
- break; |
- } |
-#endif |
- |
- /* If this is a scalar select that is part of an expression, then |
- ** store the results in the appropriate memory cell and break out |
- ** of the scan loop. |
- */ |
- case SRT_Mem: { |
- assert( pIn->nSdst==1 ); |
- sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); |
- /* The LIMIT clause will jump out of the loop for us */ |
- break; |
- } |
-#endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
- |
- /* The results are stored in a sequence of registers |
- ** starting at pDest->iSdst. Then the co-routine yields. |
- */ |
- case SRT_Coroutine: { |
- if( pDest->iSdst==0 ){ |
- pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); |
- pDest->nSdst = pIn->nSdst; |
- } |
- sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); |
- sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
- break; |
- } |
- |
- /* If none of the above, then the result destination must be |
- ** SRT_Output. This routine is never called with any other |
- ** destination other than the ones handled above or SRT_Output. |
- ** |
- ** For SRT_Output, results are stored in a sequence of registers. |
- ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to |
- ** return the next row of result. |
- */ |
- default: { |
- assert( pDest->eDest==SRT_Output ); |
- sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); |
- sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); |
- break; |
- } |
- } |
- |
- /* Jump to the end of the loop if the LIMIT is reached. |
- */ |
- if( p->iLimit ){ |
- sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); |
- } |
- |
- /* Generate the subroutine return |
- */ |
- sqlite3VdbeResolveLabel(v, iContinue); |
- sqlite3VdbeAddOp1(v, OP_Return, regReturn); |
- |
- return addr; |
-} |
- |
-/* |
-** Alternative compound select code generator for cases when there |
-** is an ORDER BY clause. |
-** |
-** We assume a query of the following form: |
-** |
-** <selectA> <operator> <selectB> ORDER BY <orderbylist> |
-** |
-** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea |
-** is to code both <selectA> and <selectB> with the ORDER BY clause as |
-** co-routines. Then run the co-routines in parallel and merge the results |
-** into the output. In addition to the two coroutines (called selectA and |
-** selectB) there are 7 subroutines: |
-** |
-** outA: Move the output of the selectA coroutine into the output |
-** of the compound query. |
-** |
-** outB: Move the output of the selectB coroutine into the output |
-** of the compound query. (Only generated for UNION and |
-** UNION ALL. EXCEPT and INSERTSECT never output a row that |
-** appears only in B.) |
-** |
-** AltB: Called when there is data from both coroutines and A<B. |
-** |
-** AeqB: Called when there is data from both coroutines and A==B. |
-** |
-** AgtB: Called when there is data from both coroutines and A>B. |
-** |
-** EofA: Called when data is exhausted from selectA. |
-** |
-** EofB: Called when data is exhausted from selectB. |
-** |
-** The implementation of the latter five subroutines depend on which |
-** <operator> is used: |
-** |
-** |
-** UNION ALL UNION EXCEPT INTERSECT |
-** ------------- ----------------- -------------- ----------------- |
-** AltB: outA, nextA outA, nextA outA, nextA nextA |
-** |
-** AeqB: outA, nextA nextA nextA outA, nextA |
-** |
-** AgtB: outB, nextB outB, nextB nextB nextB |
-** |
-** EofA: outB, nextB outB, nextB halt halt |
-** |
-** EofB: outA, nextA outA, nextA outA, nextA halt |
-** |
-** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA |
-** causes an immediate jump to EofA and an EOF on B following nextB causes |
-** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or |
-** following nextX causes a jump to the end of the select processing. |
-** |
-** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled |
-** within the output subroutine. The regPrev register set holds the previously |
-** output value. A comparison is made against this value and the output |
-** is skipped if the next results would be the same as the previous. |
-** |
-** The implementation plan is to implement the two coroutines and seven |
-** subroutines first, then put the control logic at the bottom. Like this: |
-** |
-** goto Init |
-** coA: coroutine for left query (A) |
-** coB: coroutine for right query (B) |
-** outA: output one row of A |
-** outB: output one row of B (UNION and UNION ALL only) |
-** EofA: ... |
-** EofB: ... |
-** AltB: ... |
-** AeqB: ... |
-** AgtB: ... |
-** Init: initialize coroutine registers |
-** yield coA |
-** if eof(A) goto EofA |
-** yield coB |
-** if eof(B) goto EofB |
-** Cmpr: Compare A, B |
-** Jump AltB, AeqB, AgtB |
-** End: ... |
-** |
-** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not |
-** actually called using Gosub and they do not Return. EofA and EofB loop |
-** until all data is exhausted then jump to the "end" labe. AltB, AeqB, |
-** and AgtB jump to either L2 or to one of EofA or EofB. |
-*/ |
-#ifndef SQLITE_OMIT_COMPOUND_SELECT |
-static int multiSelectOrderBy( |
- Parse *pParse, /* Parsing context */ |
- Select *p, /* The right-most of SELECTs to be coded */ |
- SelectDest *pDest /* What to do with query results */ |
-){ |
- int i, j; /* Loop counters */ |
- Select *pPrior; /* Another SELECT immediately to our left */ |
- Vdbe *v; /* Generate code to this VDBE */ |
- SelectDest destA; /* Destination for coroutine A */ |
- SelectDest destB; /* Destination for coroutine B */ |
- int regAddrA; /* Address register for select-A coroutine */ |
- int regAddrB; /* Address register for select-B coroutine */ |
- int addrSelectA; /* Address of the select-A coroutine */ |
- int addrSelectB; /* Address of the select-B coroutine */ |
- int regOutA; /* Address register for the output-A subroutine */ |
- int regOutB; /* Address register for the output-B subroutine */ |
- int addrOutA; /* Address of the output-A subroutine */ |
- int addrOutB = 0; /* Address of the output-B subroutine */ |
- int addrEofA; /* Address of the select-A-exhausted subroutine */ |
- int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ |
- int addrEofB; /* Address of the select-B-exhausted subroutine */ |
- int addrAltB; /* Address of the A<B subroutine */ |
- int addrAeqB; /* Address of the A==B subroutine */ |
- int addrAgtB; /* Address of the A>B subroutine */ |
- int regLimitA; /* Limit register for select-A */ |
- int regLimitB; /* Limit register for select-A */ |
- int regPrev; /* A range of registers to hold previous output */ |
- int savedLimit; /* Saved value of p->iLimit */ |
- int savedOffset; /* Saved value of p->iOffset */ |
- int labelCmpr; /* Label for the start of the merge algorithm */ |
- int labelEnd; /* Label for the end of the overall SELECT stmt */ |
- int j1; /* Jump instructions that get retargetted */ |
- int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ |
- KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ |
- KeyInfo *pKeyMerge; /* Comparison information for merging rows */ |
- sqlite3 *db; /* Database connection */ |
- ExprList *pOrderBy; /* The ORDER BY clause */ |
- int nOrderBy; /* Number of terms in the ORDER BY clause */ |
- int *aPermute; /* Mapping from ORDER BY terms to result set columns */ |
-#ifndef SQLITE_OMIT_EXPLAIN |
- int iSub1; /* EQP id of left-hand query */ |
- int iSub2; /* EQP id of right-hand query */ |
-#endif |
- |
- assert( p->pOrderBy!=0 ); |
- assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ |
- db = pParse->db; |
- v = pParse->pVdbe; |
- assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ |
- labelEnd = sqlite3VdbeMakeLabel(v); |
- labelCmpr = sqlite3VdbeMakeLabel(v); |
- |
- |
- /* Patch up the ORDER BY clause |
- */ |
- op = p->op; |
- pPrior = p->pPrior; |
- assert( pPrior->pOrderBy==0 ); |
- pOrderBy = p->pOrderBy; |
- assert( pOrderBy ); |
- nOrderBy = pOrderBy->nExpr; |
- |
- /* For operators other than UNION ALL we have to make sure that |
- ** the ORDER BY clause covers every term of the result set. Add |
- ** terms to the ORDER BY clause as necessary. |
- */ |
- if( op!=TK_ALL ){ |
- for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ |
- struct ExprList_item *pItem; |
- for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ |
- assert( pItem->u.x.iOrderByCol>0 ); |
- if( pItem->u.x.iOrderByCol==i ) break; |
- } |
- if( j==nOrderBy ){ |
- Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); |
- if( pNew==0 ) return SQLITE_NOMEM; |
- pNew->flags |= EP_IntValue; |
- pNew->u.iValue = i; |
- pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); |
- if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; |
- } |
- } |
- } |
- |
- /* Compute the comparison permutation and keyinfo that is used with |
- ** the permutation used to determine if the next |
- ** row of results comes from selectA or selectB. Also add explicit |
- ** collations to the ORDER BY clause terms so that when the subqueries |
- ** to the right and the left are evaluated, they use the correct |
- ** collation. |
- */ |
- aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); |
- if( aPermute ){ |
- struct ExprList_item *pItem; |
- for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ |
- assert( pItem->u.x.iOrderByCol>0 |
- && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); |
- aPermute[i] = pItem->u.x.iOrderByCol - 1; |
- } |
- pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); |
- }else{ |
- pKeyMerge = 0; |
- } |
- |
- /* Reattach the ORDER BY clause to the query. |
- */ |
- p->pOrderBy = pOrderBy; |
- pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); |
- |
- /* Allocate a range of temporary registers and the KeyInfo needed |
- ** for the logic that removes duplicate result rows when the |
- ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). |
- */ |
- if( op==TK_ALL ){ |
- regPrev = 0; |
- }else{ |
- int nExpr = p->pEList->nExpr; |
- assert( nOrderBy>=nExpr || db->mallocFailed ); |
- regPrev = pParse->nMem+1; |
- pParse->nMem += nExpr+1; |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); |
- pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); |
- if( pKeyDup ){ |
- assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); |
- for(i=0; i<nExpr; i++){ |
- pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); |
- pKeyDup->aSortOrder[i] = 0; |
- } |
- } |
- } |
- |
- /* Separate the left and the right query from one another |
- */ |
- p->pPrior = 0; |
- pPrior->pNext = 0; |
- sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); |
- if( pPrior->pPrior==0 ){ |
- sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); |
- } |
- |
- /* Compute the limit registers */ |
- computeLimitRegisters(pParse, p, labelEnd); |
- if( p->iLimit && op==TK_ALL ){ |
- regLimitA = ++pParse->nMem; |
- regLimitB = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, |
- regLimitA); |
- sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); |
- }else{ |
- regLimitA = regLimitB = 0; |
- } |
- sqlite3ExprDelete(db, p->pLimit); |
- p->pLimit = 0; |
- sqlite3ExprDelete(db, p->pOffset); |
- p->pOffset = 0; |
- |
- regAddrA = ++pParse->nMem; |
- regAddrB = ++pParse->nMem; |
- regOutA = ++pParse->nMem; |
- regOutB = ++pParse->nMem; |
- sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); |
- sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); |
- |
- /* Generate a coroutine to evaluate the SELECT statement to the |
- ** left of the compound operator - the "A" select. |
- */ |
- addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; |
- j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); |
- VdbeComment((v, "left SELECT")); |
- pPrior->iLimit = regLimitA; |
- explainSetInteger(iSub1, pParse->iNextSelectId); |
- sqlite3Select(pParse, pPrior, &destA); |
- sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); |
- sqlite3VdbeJumpHere(v, j1); |
- |
- /* Generate a coroutine to evaluate the SELECT statement on |
- ** the right - the "B" select |
- */ |
- addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; |
- j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); |
- VdbeComment((v, "right SELECT")); |
- savedLimit = p->iLimit; |
- savedOffset = p->iOffset; |
- p->iLimit = regLimitB; |
- p->iOffset = 0; |
- explainSetInteger(iSub2, pParse->iNextSelectId); |
- sqlite3Select(pParse, p, &destB); |
- p->iLimit = savedLimit; |
- p->iOffset = savedOffset; |
- sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); |
- |
- /* Generate a subroutine that outputs the current row of the A |
- ** select as the next output row of the compound select. |
- */ |
- VdbeNoopComment((v, "Output routine for A")); |
- addrOutA = generateOutputSubroutine(pParse, |
- p, &destA, pDest, regOutA, |
- regPrev, pKeyDup, labelEnd); |
- |
- /* Generate a subroutine that outputs the current row of the B |
- ** select as the next output row of the compound select. |
- */ |
- if( op==TK_ALL || op==TK_UNION ){ |
- VdbeNoopComment((v, "Output routine for B")); |
- addrOutB = generateOutputSubroutine(pParse, |
- p, &destB, pDest, regOutB, |
- regPrev, pKeyDup, labelEnd); |
- } |
- sqlite3KeyInfoUnref(pKeyDup); |
- |
- /* Generate a subroutine to run when the results from select A |
- ** are exhausted and only data in select B remains. |
- */ |
- if( op==TK_EXCEPT || op==TK_INTERSECT ){ |
- addrEofA_noB = addrEofA = labelEnd; |
- }else{ |
- VdbeNoopComment((v, "eof-A subroutine")); |
- addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
- addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); |
- VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); |
- p->nSelectRow += pPrior->nSelectRow; |
- } |
- |
- /* Generate a subroutine to run when the results from select B |
- ** are exhausted and only data in select A remains. |
- */ |
- if( op==TK_INTERSECT ){ |
- addrEofB = addrEofA; |
- if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; |
- }else{ |
- VdbeNoopComment((v, "eof-B subroutine")); |
- addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
- sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); |
- } |
- |
- /* Generate code to handle the case of A<B |
- */ |
- VdbeNoopComment((v, "A-lt-B subroutine")); |
- addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
- sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
- |
- /* Generate code to handle the case of A==B |
- */ |
- if( op==TK_ALL ){ |
- addrAeqB = addrAltB; |
- }else if( op==TK_INTERSECT ){ |
- addrAeqB = addrAltB; |
- addrAltB++; |
- }else{ |
- VdbeNoopComment((v, "A-eq-B subroutine")); |
- addrAeqB = |
- sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
- } |
- |
- /* Generate code to handle the case of A>B |
- */ |
- VdbeNoopComment((v, "A-gt-B subroutine")); |
- addrAgtB = sqlite3VdbeCurrentAddr(v); |
- if( op==TK_ALL || op==TK_UNION ){ |
- sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
- } |
- sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
- |
- /* This code runs once to initialize everything. |
- */ |
- sqlite3VdbeJumpHere(v, j1); |
- sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); |
- |
- /* Implement the main merge loop |
- */ |
- sqlite3VdbeResolveLabel(v, labelCmpr); |
- sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); |
- sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, |
- (char*)pKeyMerge, P4_KEYINFO); |
- sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); |
- sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); |
- |
- /* Jump to the this point in order to terminate the query. |
- */ |
- sqlite3VdbeResolveLabel(v, labelEnd); |
- |
- /* Set the number of output columns |
- */ |
- if( pDest->eDest==SRT_Output ){ |
- Select *pFirst = pPrior; |
- while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
- generateColumnNames(pParse, 0, pFirst->pEList); |
- } |
- |
- /* Reassembly the compound query so that it will be freed correctly |
- ** by the calling function */ |
- if( p->pPrior ){ |
- sqlite3SelectDelete(db, p->pPrior); |
- } |
- p->pPrior = pPrior; |
- pPrior->pNext = p; |
- |
- /*** TBD: Insert subroutine calls to close cursors on incomplete |
- **** subqueries ****/ |
- explainComposite(pParse, p->op, iSub1, iSub2, 0); |
- return SQLITE_OK; |
-} |
-#endif |
- |
-#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
-/* Forward Declarations */ |
-static void substExprList(sqlite3*, ExprList*, int, ExprList*); |
-static void substSelect(sqlite3*, Select *, int, ExprList *); |
- |
-/* |
-** Scan through the expression pExpr. Replace every reference to |
-** a column in table number iTable with a copy of the iColumn-th |
-** entry in pEList. (But leave references to the ROWID column |
-** unchanged.) |
-** |
-** This routine is part of the flattening procedure. A subquery |
-** whose result set is defined by pEList appears as entry in the |
-** FROM clause of a SELECT such that the VDBE cursor assigned to that |
-** FORM clause entry is iTable. This routine make the necessary |
-** changes to pExpr so that it refers directly to the source table |
-** of the subquery rather the result set of the subquery. |
-*/ |
-static Expr *substExpr( |
- sqlite3 *db, /* Report malloc errors to this connection */ |
- Expr *pExpr, /* Expr in which substitution occurs */ |
- int iTable, /* Table to be substituted */ |
- ExprList *pEList /* Substitute expressions */ |
-){ |
- if( pExpr==0 ) return 0; |
- if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ |
- if( pExpr->iColumn<0 ){ |
- pExpr->op = TK_NULL; |
- }else{ |
- Expr *pNew; |
- assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); |
- assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
- pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); |
- sqlite3ExprDelete(db, pExpr); |
- pExpr = pNew; |
- } |
- }else{ |
- pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); |
- pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); |
- if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
- substSelect(db, pExpr->x.pSelect, iTable, pEList); |
- }else{ |
- substExprList(db, pExpr->x.pList, iTable, pEList); |
- } |
- } |
- return pExpr; |
-} |
-static void substExprList( |
- sqlite3 *db, /* Report malloc errors here */ |
- ExprList *pList, /* List to scan and in which to make substitutes */ |
- int iTable, /* Table to be substituted */ |
- ExprList *pEList /* Substitute values */ |
-){ |
- int i; |
- if( pList==0 ) return; |
- for(i=0; i<pList->nExpr; i++){ |
- pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); |
- } |
-} |
-static void substSelect( |
- sqlite3 *db, /* Report malloc errors here */ |
- Select *p, /* SELECT statement in which to make substitutions */ |
- int iTable, /* Table to be replaced */ |
- ExprList *pEList /* Substitute values */ |
-){ |
- SrcList *pSrc; |
- struct SrcList_item *pItem; |
- int i; |
- if( !p ) return; |
- substExprList(db, p->pEList, iTable, pEList); |
- substExprList(db, p->pGroupBy, iTable, pEList); |
- substExprList(db, p->pOrderBy, iTable, pEList); |
- p->pHaving = substExpr(db, p->pHaving, iTable, pEList); |
- p->pWhere = substExpr(db, p->pWhere, iTable, pEList); |
- substSelect(db, p->pPrior, iTable, pEList); |
- pSrc = p->pSrc; |
- assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ |
- if( ALWAYS(pSrc) ){ |
- for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ |
- substSelect(db, pItem->pSelect, iTable, pEList); |
- } |
- } |
-} |
-#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
- |
-#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
-/* |
-** This routine attempts to flatten subqueries as a performance optimization. |
-** This routine returns 1 if it makes changes and 0 if no flattening occurs. |
-** |
-** To understand the concept of flattening, consider the following |
-** query: |
-** |
-** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 |
-** |
-** The default way of implementing this query is to execute the |
-** subquery first and store the results in a temporary table, then |
-** run the outer query on that temporary table. This requires two |
-** passes over the data. Furthermore, because the temporary table |
-** has no indices, the WHERE clause on the outer query cannot be |
-** optimized. |
-** |
-** This routine attempts to rewrite queries such as the above into |
-** a single flat select, like this: |
-** |
-** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 |
-** |
-** The code generated for this simplification gives the same result |
-** but only has to scan the data once. And because indices might |
-** exist on the table t1, a complete scan of the data might be |
-** avoided. |
-** |
-** Flattening is only attempted if all of the following are true: |
-** |
-** (1) The subquery and the outer query do not both use aggregates. |
-** |
-** (2) The subquery is not an aggregate or the outer query is not a join. |
-** |
-** (3) The subquery is not the right operand of a left outer join |
-** (Originally ticket #306. Strengthened by ticket #3300) |
-** |
-** (4) The subquery is not DISTINCT. |
-** |
-** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT |
-** sub-queries that were excluded from this optimization. Restriction |
-** (4) has since been expanded to exclude all DISTINCT subqueries. |
-** |
-** (6) The subquery does not use aggregates or the outer query is not |
-** DISTINCT. |
-** |
-** (7) The subquery has a FROM clause. TODO: For subqueries without |
-** A FROM clause, consider adding a FROM close with the special |
-** table sqlite_once that consists of a single row containing a |
-** single NULL. |
-** |
-** (8) The subquery does not use LIMIT or the outer query is not a join. |
-** |
-** (9) The subquery does not use LIMIT or the outer query does not use |
-** aggregates. |
-** |
-** (**) Restriction (10) was removed from the code on 2005-02-05 but we |
-** accidently carried the comment forward until 2014-09-15. Original |
-** text: "The subquery does not use aggregates or the outer query does not |
-** use LIMIT." |
-** |
-** (11) The subquery and the outer query do not both have ORDER BY clauses. |
-** |
-** (**) Not implemented. Subsumed into restriction (3). Was previously |
-** a separate restriction deriving from ticket #350. |
-** |
-** (13) The subquery and outer query do not both use LIMIT. |
-** |
-** (14) The subquery does not use OFFSET. |
-** |
-** (15) The outer query is not part of a compound select or the |
-** subquery does not have a LIMIT clause. |
-** (See ticket #2339 and ticket [02a8e81d44]). |
-** |
-** (16) The outer query is not an aggregate or the subquery does |
-** not contain ORDER BY. (Ticket #2942) This used to not matter |
-** until we introduced the group_concat() function. |
-** |
-** (17) The sub-query is not a compound select, or it is a UNION ALL |
-** compound clause made up entirely of non-aggregate queries, and |
-** the parent query: |
-** |
-** * is not itself part of a compound select, |
-** * is not an aggregate or DISTINCT query, and |
-** * is not a join |
-** |
-** The parent and sub-query may contain WHERE clauses. Subject to |
-** rules (11), (13) and (14), they may also contain ORDER BY, |
-** LIMIT and OFFSET clauses. The subquery cannot use any compound |
-** operator other than UNION ALL because all the other compound |
-** operators have an implied DISTINCT which is disallowed by |
-** restriction (4). |
-** |
-** Also, each component of the sub-query must return the same number |
-** of result columns. This is actually a requirement for any compound |
-** SELECT statement, but all the code here does is make sure that no |
-** such (illegal) sub-query is flattened. The caller will detect the |
-** syntax error and return a detailed message. |
-** |
-** (18) If the sub-query is a compound select, then all terms of the |
-** ORDER by clause of the parent must be simple references to |
-** columns of the sub-query. |
-** |
-** (19) The subquery does not use LIMIT or the outer query does not |
-** have a WHERE clause. |
-** |
-** (20) If the sub-query is a compound select, then it must not use |
-** an ORDER BY clause. Ticket #3773. We could relax this constraint |
-** somewhat by saying that the terms of the ORDER BY clause must |
-** appear as unmodified result columns in the outer query. But we |
-** have other optimizations in mind to deal with that case. |
-** |
-** (21) The subquery does not use LIMIT or the outer query is not |
-** DISTINCT. (See ticket [752e1646fc]). |
-** |
-** (22) The subquery is not a recursive CTE. |
-** |
-** (23) The parent is not a recursive CTE, or the sub-query is not a |
-** compound query. This restriction is because transforming the |
-** parent to a compound query confuses the code that handles |
-** recursive queries in multiSelect(). |
-** |
-** (24) The subquery is not an aggregate that uses the built-in min() or |
-** or max() functions. (Without this restriction, a query like: |
-** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily |
-** return the value X for which Y was maximal.) |
-** |
-** |
-** In this routine, the "p" parameter is a pointer to the outer query. |
-** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query |
-** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. |
-** |
-** If flattening is not attempted, this routine is a no-op and returns 0. |
-** If flattening is attempted this routine returns 1. |
-** |
-** All of the expression analysis must occur on both the outer query and |
-** the subquery before this routine runs. |
-*/ |
-static int flattenSubquery( |
- Parse *pParse, /* Parsing context */ |
- Select *p, /* The parent or outer SELECT statement */ |
- int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ |
- int isAgg, /* True if outer SELECT uses aggregate functions */ |
- int subqueryIsAgg /* True if the subquery uses aggregate functions */ |
-){ |
- const char *zSavedAuthContext = pParse->zAuthContext; |
- Select *pParent; |
- Select *pSub; /* The inner query or "subquery" */ |
- Select *pSub1; /* Pointer to the rightmost select in sub-query */ |
- SrcList *pSrc; /* The FROM clause of the outer query */ |
- SrcList *pSubSrc; /* The FROM clause of the subquery */ |
- ExprList *pList; /* The result set of the outer query */ |
- int iParent; /* VDBE cursor number of the pSub result set temp table */ |
- int i; /* Loop counter */ |
- Expr *pWhere; /* The WHERE clause */ |
- struct SrcList_item *pSubitem; /* The subquery */ |
- sqlite3 *db = pParse->db; |
- |
- /* Check to see if flattening is permitted. Return 0 if not. |
- */ |
- assert( p!=0 ); |
- assert( p->pPrior==0 ); /* Unable to flatten compound queries */ |
- if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; |
- pSrc = p->pSrc; |
- assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); |
- pSubitem = &pSrc->a[iFrom]; |
- iParent = pSubitem->iCursor; |
- pSub = pSubitem->pSelect; |
- assert( pSub!=0 ); |
- if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ |
- if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ |
- pSubSrc = pSub->pSrc; |
- assert( pSubSrc ); |
- /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, |
- ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET |
- ** because they could be computed at compile-time. But when LIMIT and OFFSET |
- ** became arbitrary expressions, we were forced to add restrictions (13) |
- ** and (14). */ |
- if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ |
- if( pSub->pOffset ) return 0; /* Restriction (14) */ |
- if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ |
- return 0; /* Restriction (15) */ |
- } |
- if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ |
- if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ |
- if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ |
- return 0; /* Restrictions (8)(9) */ |
- } |
- if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ |
- return 0; /* Restriction (6) */ |
- } |
- if( p->pOrderBy && pSub->pOrderBy ){ |
- return 0; /* Restriction (11) */ |
- } |
- if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ |
- if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ |
- if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ |
- return 0; /* Restriction (21) */ |
- } |
- testcase( pSub->selFlags & SF_Recursive ); |
- testcase( pSub->selFlags & SF_MinMaxAgg ); |
- if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ |
- return 0; /* Restrictions (22) and (24) */ |
- } |
- if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ |
- return 0; /* Restriction (23) */ |
- } |
- |
- /* OBSOLETE COMMENT 1: |
- ** Restriction 3: If the subquery is a join, make sure the subquery is |
- ** not used as the right operand of an outer join. Examples of why this |
- ** is not allowed: |
- ** |
- ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
- ** |
- ** If we flatten the above, we would get |
- ** |
- ** (t1 LEFT OUTER JOIN t2) JOIN t3 |
- ** |
- ** which is not at all the same thing. |
- ** |
- ** OBSOLETE COMMENT 2: |
- ** Restriction 12: If the subquery is the right operand of a left outer |
- ** join, make sure the subquery has no WHERE clause. |
- ** An examples of why this is not allowed: |
- ** |
- ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) |
- ** |
- ** If we flatten the above, we would get |
- ** |
- ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 |
- ** |
- ** But the t2.x>0 test will always fail on a NULL row of t2, which |
- ** effectively converts the OUTER JOIN into an INNER JOIN. |
- ** |
- ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: |
- ** Ticket #3300 shows that flattening the right term of a LEFT JOIN |
- ** is fraught with danger. Best to avoid the whole thing. If the |
- ** subquery is the right term of a LEFT JOIN, then do not flatten. |
- */ |
- if( (pSubitem->jointype & JT_OUTER)!=0 ){ |
- return 0; |
- } |
- |
- /* Restriction 17: If the sub-query is a compound SELECT, then it must |
- ** use only the UNION ALL operator. And none of the simple select queries |
- ** that make up the compound SELECT are allowed to be aggregate or distinct |
- ** queries. |
- */ |
- if( pSub->pPrior ){ |
- if( pSub->pOrderBy ){ |
- return 0; /* Restriction 20 */ |
- } |
- if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ |
- return 0; |
- } |
- for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ |
- testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
- testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
- assert( pSub->pSrc!=0 ); |
- if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 |
- || (pSub1->pPrior && pSub1->op!=TK_ALL) |
- || pSub1->pSrc->nSrc<1 |
- || pSub->pEList->nExpr!=pSub1->pEList->nExpr |
- ){ |
- return 0; |
- } |
- testcase( pSub1->pSrc->nSrc>1 ); |
- } |
- |
- /* Restriction 18. */ |
- if( p->pOrderBy ){ |
- int ii; |
- for(ii=0; ii<p->pOrderBy->nExpr; ii++){ |
- if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; |
- } |
- } |
- } |
- |
- /***** If we reach this point, flattening is permitted. *****/ |
- SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", |
- pSub->zSelName, pSub, iFrom)); |
- |
- /* Authorize the subquery */ |
- pParse->zAuthContext = pSubitem->zName; |
- TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); |
- testcase( i==SQLITE_DENY ); |
- pParse->zAuthContext = zSavedAuthContext; |
- |
- /* If the sub-query is a compound SELECT statement, then (by restrictions |
- ** 17 and 18 above) it must be a UNION ALL and the parent query must |
- ** be of the form: |
- ** |
- ** SELECT <expr-list> FROM (<sub-query>) <where-clause> |
- ** |
- ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block |
- ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or |
- ** OFFSET clauses and joins them to the left-hand-side of the original |
- ** using UNION ALL operators. In this case N is the number of simple |
- ** select statements in the compound sub-query. |
- ** |
- ** Example: |
- ** |
- ** SELECT a+1 FROM ( |
- ** SELECT x FROM tab |
- ** UNION ALL |
- ** SELECT y FROM tab |
- ** UNION ALL |
- ** SELECT abs(z*2) FROM tab2 |
- ** ) WHERE a!=5 ORDER BY 1 |
- ** |
- ** Transformed into: |
- ** |
- ** SELECT x+1 FROM tab WHERE x+1!=5 |
- ** UNION ALL |
- ** SELECT y+1 FROM tab WHERE y+1!=5 |
- ** UNION ALL |
- ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 |
- ** ORDER BY 1 |
- ** |
- ** We call this the "compound-subquery flattening". |
- */ |
- for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ |
- Select *pNew; |
- ExprList *pOrderBy = p->pOrderBy; |
- Expr *pLimit = p->pLimit; |
- Expr *pOffset = p->pOffset; |
- Select *pPrior = p->pPrior; |
- p->pOrderBy = 0; |
- p->pSrc = 0; |
- p->pPrior = 0; |
- p->pLimit = 0; |
- p->pOffset = 0; |
- pNew = sqlite3SelectDup(db, p, 0); |
- sqlite3SelectSetName(pNew, pSub->zSelName); |
- p->pOffset = pOffset; |
- p->pLimit = pLimit; |
- p->pOrderBy = pOrderBy; |
- p->pSrc = pSrc; |
- p->op = TK_ALL; |
- if( pNew==0 ){ |
- p->pPrior = pPrior; |
- }else{ |
- pNew->pPrior = pPrior; |
- if( pPrior ) pPrior->pNext = pNew; |
- pNew->pNext = p; |
- p->pPrior = pNew; |
- SELECTTRACE(2,pParse,p, |
- ("compound-subquery flattener creates %s.%p as peer\n", |
- pNew->zSelName, pNew)); |
- } |
- if( db->mallocFailed ) return 1; |
- } |
- |
- /* Begin flattening the iFrom-th entry of the FROM clause |
- ** in the outer query. |
- */ |
- pSub = pSub1 = pSubitem->pSelect; |
- |
- /* Delete the transient table structure associated with the |
- ** subquery |
- */ |
- sqlite3DbFree(db, pSubitem->zDatabase); |
- sqlite3DbFree(db, pSubitem->zName); |
- sqlite3DbFree(db, pSubitem->zAlias); |
- pSubitem->zDatabase = 0; |
- pSubitem->zName = 0; |
- pSubitem->zAlias = 0; |
- pSubitem->pSelect = 0; |
- |
- /* Defer deleting the Table object associated with the |
- ** subquery until code generation is |
- ** complete, since there may still exist Expr.pTab entries that |
- ** refer to the subquery even after flattening. Ticket #3346. |
- ** |
- ** pSubitem->pTab is always non-NULL by test restrictions and tests above. |
- */ |
- if( ALWAYS(pSubitem->pTab!=0) ){ |
- Table *pTabToDel = pSubitem->pTab; |
- if( pTabToDel->nRef==1 ){ |
- Parse *pToplevel = sqlite3ParseToplevel(pParse); |
- pTabToDel->pNextZombie = pToplevel->pZombieTab; |
- pToplevel->pZombieTab = pTabToDel; |
- }else{ |
- pTabToDel->nRef--; |
- } |
- pSubitem->pTab = 0; |
- } |
- |
- /* The following loop runs once for each term in a compound-subquery |
- ** flattening (as described above). If we are doing a different kind |
- ** of flattening - a flattening other than a compound-subquery flattening - |
- ** then this loop only runs once. |
- ** |
- ** This loop moves all of the FROM elements of the subquery into the |
- ** the FROM clause of the outer query. Before doing this, remember |
- ** the cursor number for the original outer query FROM element in |
- ** iParent. The iParent cursor will never be used. Subsequent code |
- ** will scan expressions looking for iParent references and replace |
- ** those references with expressions that resolve to the subquery FROM |
- ** elements we are now copying in. |
- */ |
- for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ |
- int nSubSrc; |
- u8 jointype = 0; |
- pSubSrc = pSub->pSrc; /* FROM clause of subquery */ |
- nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ |
- pSrc = pParent->pSrc; /* FROM clause of the outer query */ |
- |
- if( pSrc ){ |
- assert( pParent==p ); /* First time through the loop */ |
- jointype = pSubitem->jointype; |
- }else{ |
- assert( pParent!=p ); /* 2nd and subsequent times through the loop */ |
- pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); |
- if( pSrc==0 ){ |
- assert( db->mallocFailed ); |
- break; |
- } |
- } |
- |
- /* The subquery uses a single slot of the FROM clause of the outer |
- ** query. If the subquery has more than one element in its FROM clause, |
- ** then expand the outer query to make space for it to hold all elements |
- ** of the subquery. |
- ** |
- ** Example: |
- ** |
- ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; |
- ** |
- ** The outer query has 3 slots in its FROM clause. One slot of the |
- ** outer query (the middle slot) is used by the subquery. The next |
- ** block of code will expand the out query to 4 slots. The middle |
- ** slot is expanded to two slots in order to make space for the |
- ** two elements in the FROM clause of the subquery. |
- */ |
- if( nSubSrc>1 ){ |
- pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); |
- if( db->mallocFailed ){ |
- break; |
- } |
- } |
- |
- /* Transfer the FROM clause terms from the subquery into the |
- ** outer query. |
- */ |
- for(i=0; i<nSubSrc; i++){ |
- sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); |
- pSrc->a[i+iFrom] = pSubSrc->a[i]; |
- memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); |
- } |
- pSrc->a[iFrom].jointype = jointype; |
- |
- /* Now begin substituting subquery result set expressions for |
- ** references to the iParent in the outer query. |
- ** |
- ** Example: |
- ** |
- ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; |
- ** \ \_____________ subquery __________/ / |
- ** \_____________________ outer query ______________________________/ |
- ** |
- ** We look at every expression in the outer query and every place we see |
- ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". |
- */ |
- pList = pParent->pEList; |
- for(i=0; i<pList->nExpr; i++){ |
- if( pList->a[i].zName==0 ){ |
- char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); |
- sqlite3Dequote(zName); |
- pList->a[i].zName = zName; |
- } |
- } |
- substExprList(db, pParent->pEList, iParent, pSub->pEList); |
- if( isAgg ){ |
- substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); |
- pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); |
- } |
- if( pSub->pOrderBy ){ |
- /* At this point, any non-zero iOrderByCol values indicate that the |
- ** ORDER BY column expression is identical to the iOrderByCol'th |
- ** expression returned by SELECT statement pSub. Since these values |
- ** do not necessarily correspond to columns in SELECT statement pParent, |
- ** zero them before transfering the ORDER BY clause. |
- ** |
- ** Not doing this may cause an error if a subsequent call to this |
- ** function attempts to flatten a compound sub-query into pParent |
- ** (the only way this can happen is if the compound sub-query is |
- ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ |
- ExprList *pOrderBy = pSub->pOrderBy; |
- for(i=0; i<pOrderBy->nExpr; i++){ |
- pOrderBy->a[i].u.x.iOrderByCol = 0; |
- } |
- assert( pParent->pOrderBy==0 ); |
- assert( pSub->pPrior==0 ); |
- pParent->pOrderBy = pOrderBy; |
- pSub->pOrderBy = 0; |
- }else if( pParent->pOrderBy ){ |
- substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); |
- } |
- if( pSub->pWhere ){ |
- pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); |
- }else{ |
- pWhere = 0; |
- } |
- if( subqueryIsAgg ){ |
- assert( pParent->pHaving==0 ); |
- pParent->pHaving = pParent->pWhere; |
- pParent->pWhere = pWhere; |
- pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); |
- pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, |
- sqlite3ExprDup(db, pSub->pHaving, 0)); |
- assert( pParent->pGroupBy==0 ); |
- pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); |
- }else{ |
- pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); |
- pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); |
- } |
- |
- /* The flattened query is distinct if either the inner or the |
- ** outer query is distinct. |
- */ |
- pParent->selFlags |= pSub->selFlags & SF_Distinct; |
- |
- /* |
- ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; |
- ** |
- ** One is tempted to try to add a and b to combine the limits. But this |
- ** does not work if either limit is negative. |
- */ |
- if( pSub->pLimit ){ |
- pParent->pLimit = pSub->pLimit; |
- pSub->pLimit = 0; |
- } |
- } |
- |
- /* Finially, delete what is left of the subquery and return |
- ** success. |
- */ |
- sqlite3SelectDelete(db, pSub1); |
- |
-#if SELECTTRACE_ENABLED |
- if( sqlite3SelectTrace & 0x100 ){ |
- sqlite3DebugPrintf("After flattening:\n"); |
- sqlite3TreeViewSelect(0, p, 0); |
- } |
-#endif |
- |
- return 1; |
-} |
-#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
- |
-/* |
-** Based on the contents of the AggInfo structure indicated by the first |
-** argument, this function checks if the following are true: |
-** |
-** * the query contains just a single aggregate function, |
-** * the aggregate function is either min() or max(), and |
-** * the argument to the aggregate function is a column value. |
-** |
-** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX |
-** is returned as appropriate. Also, *ppMinMax is set to point to the |
-** list of arguments passed to the aggregate before returning. |
-** |
-** Or, if the conditions above are not met, *ppMinMax is set to 0 and |
-** WHERE_ORDERBY_NORMAL is returned. |
-*/ |
-static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ |
- int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ |
- |
- *ppMinMax = 0; |
- if( pAggInfo->nFunc==1 ){ |
- Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ |
- ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ |
- |
- assert( pExpr->op==TK_AGG_FUNCTION ); |
- if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ |
- const char *zFunc = pExpr->u.zToken; |
- if( sqlite3StrICmp(zFunc, "min")==0 ){ |
- eRet = WHERE_ORDERBY_MIN; |
- *ppMinMax = pEList; |
- }else if( sqlite3StrICmp(zFunc, "max")==0 ){ |
- eRet = WHERE_ORDERBY_MAX; |
- *ppMinMax = pEList; |
- } |
- } |
- } |
- |
- assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); |
- return eRet; |
-} |
- |
-/* |
-** The select statement passed as the first argument is an aggregate query. |
-** The second argument is the associated aggregate-info object. This |
-** function tests if the SELECT is of the form: |
-** |
-** SELECT count(*) FROM <tbl> |
-** |
-** where table is a database table, not a sub-select or view. If the query |
-** does match this pattern, then a pointer to the Table object representing |
-** <tbl> is returned. Otherwise, 0 is returned. |
-*/ |
-static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ |
- Table *pTab; |
- Expr *pExpr; |
- |
- assert( !p->pGroupBy ); |
- |
- if( p->pWhere || p->pEList->nExpr!=1 |
- || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect |
- ){ |
- return 0; |
- } |
- pTab = p->pSrc->a[0].pTab; |
- pExpr = p->pEList->a[0].pExpr; |
- assert( pTab && !pTab->pSelect && pExpr ); |
- |
- if( IsVirtual(pTab) ) return 0; |
- if( pExpr->op!=TK_AGG_FUNCTION ) return 0; |
- if( NEVER(pAggInfo->nFunc==0) ) return 0; |
- if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; |
- if( pExpr->flags&EP_Distinct ) return 0; |
- |
- return pTab; |
-} |
- |
-/* |
-** If the source-list item passed as an argument was augmented with an |
-** INDEXED BY clause, then try to locate the specified index. If there |
-** was such a clause and the named index cannot be found, return |
-** SQLITE_ERROR and leave an error in pParse. Otherwise, populate |
-** pFrom->pIndex and return SQLITE_OK. |
-*/ |
-int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ |
- if( pFrom->pTab && pFrom->zIndex ){ |
- Table *pTab = pFrom->pTab; |
- char *zIndex = pFrom->zIndex; |
- Index *pIdx; |
- for(pIdx=pTab->pIndex; |
- pIdx && sqlite3StrICmp(pIdx->zName, zIndex); |
- pIdx=pIdx->pNext |
- ); |
- if( !pIdx ){ |
- sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); |
- pParse->checkSchema = 1; |
- return SQLITE_ERROR; |
- } |
- pFrom->pIndex = pIdx; |
- } |
- return SQLITE_OK; |
-} |
-/* |
-** Detect compound SELECT statements that use an ORDER BY clause with |
-** an alternative collating sequence. |
-** |
-** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... |
-** |
-** These are rewritten as a subquery: |
-** |
-** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) |
-** ORDER BY ... COLLATE ... |
-** |
-** This transformation is necessary because the multiSelectOrderBy() routine |
-** above that generates the code for a compound SELECT with an ORDER BY clause |
-** uses a merge algorithm that requires the same collating sequence on the |
-** result columns as on the ORDER BY clause. See ticket |
-** http://www.sqlite.org/src/info/6709574d2a |
-** |
-** This transformation is only needed for EXCEPT, INTERSECT, and UNION. |
-** The UNION ALL operator works fine with multiSelectOrderBy() even when |
-** there are COLLATE terms in the ORDER BY. |
-*/ |
-static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ |
- int i; |
- Select *pNew; |
- Select *pX; |
- sqlite3 *db; |
- struct ExprList_item *a; |
- SrcList *pNewSrc; |
- Parse *pParse; |
- Token dummy; |
- |
- if( p->pPrior==0 ) return WRC_Continue; |
- if( p->pOrderBy==0 ) return WRC_Continue; |
- for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} |
- if( pX==0 ) return WRC_Continue; |
- a = p->pOrderBy->a; |
- for(i=p->pOrderBy->nExpr-1; i>=0; i--){ |
- if( a[i].pExpr->flags & EP_Collate ) break; |
- } |
- if( i<0 ) return WRC_Continue; |
- |
- /* If we reach this point, that means the transformation is required. */ |
- |
- pParse = pWalker->pParse; |
- db = pParse->db; |
- pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); |
- if( pNew==0 ) return WRC_Abort; |
- memset(&dummy, 0, sizeof(dummy)); |
- pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); |
- if( pNewSrc==0 ) return WRC_Abort; |
- *pNew = *p; |
- p->pSrc = pNewSrc; |
- p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); |
- p->op = TK_SELECT; |
- p->pWhere = 0; |
- pNew->pGroupBy = 0; |
- pNew->pHaving = 0; |
- pNew->pOrderBy = 0; |
- p->pPrior = 0; |
- p->pNext = 0; |
- p->selFlags &= ~SF_Compound; |
- assert( pNew->pPrior!=0 ); |
- pNew->pPrior->pNext = pNew; |
- pNew->pLimit = 0; |
- pNew->pOffset = 0; |
- return WRC_Continue; |
-} |
- |
-#ifndef SQLITE_OMIT_CTE |
-/* |
-** Argument pWith (which may be NULL) points to a linked list of nested |
-** WITH contexts, from inner to outermost. If the table identified by |
-** FROM clause element pItem is really a common-table-expression (CTE) |
-** then return a pointer to the CTE definition for that table. Otherwise |
-** return NULL. |
-** |
-** If a non-NULL value is returned, set *ppContext to point to the With |
-** object that the returned CTE belongs to. |
-*/ |
-static struct Cte *searchWith( |
- With *pWith, /* Current outermost WITH clause */ |
- struct SrcList_item *pItem, /* FROM clause element to resolve */ |
- With **ppContext /* OUT: WITH clause return value belongs to */ |
-){ |
- const char *zName; |
- if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ |
- With *p; |
- for(p=pWith; p; p=p->pOuter){ |
- int i; |
- for(i=0; i<p->nCte; i++){ |
- if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ |
- *ppContext = p; |
- return &p->a[i]; |
- } |
- } |
- } |
- } |
- return 0; |
-} |
- |
-/* The code generator maintains a stack of active WITH clauses |
-** with the inner-most WITH clause being at the top of the stack. |
-** |
-** This routine pushes the WITH clause passed as the second argument |
-** onto the top of the stack. If argument bFree is true, then this |
-** WITH clause will never be popped from the stack. In this case it |
-** should be freed along with the Parse object. In other cases, when |
-** bFree==0, the With object will be freed along with the SELECT |
-** statement with which it is associated. |
-*/ |
-void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ |
- assert( bFree==0 || pParse->pWith==0 ); |
- if( pWith ){ |
- pWith->pOuter = pParse->pWith; |
- pParse->pWith = pWith; |
- pParse->bFreeWith = bFree; |
- } |
-} |
- |
-/* |
-** This function checks if argument pFrom refers to a CTE declared by |
-** a WITH clause on the stack currently maintained by the parser. And, |
-** if currently processing a CTE expression, if it is a recursive |
-** reference to the current CTE. |
-** |
-** If pFrom falls into either of the two categories above, pFrom->pTab |
-** and other fields are populated accordingly. The caller should check |
-** (pFrom->pTab!=0) to determine whether or not a successful match |
-** was found. |
-** |
-** Whether or not a match is found, SQLITE_OK is returned if no error |
-** occurs. If an error does occur, an error message is stored in the |
-** parser and some error code other than SQLITE_OK returned. |
-*/ |
-static int withExpand( |
- Walker *pWalker, |
- struct SrcList_item *pFrom |
-){ |
- Parse *pParse = pWalker->pParse; |
- sqlite3 *db = pParse->db; |
- struct Cte *pCte; /* Matched CTE (or NULL if no match) */ |
- With *pWith; /* WITH clause that pCte belongs to */ |
- |
- assert( pFrom->pTab==0 ); |
- |
- pCte = searchWith(pParse->pWith, pFrom, &pWith); |
- if( pCte ){ |
- Table *pTab; |
- ExprList *pEList; |
- Select *pSel; |
- Select *pLeft; /* Left-most SELECT statement */ |
- int bMayRecursive; /* True if compound joined by UNION [ALL] */ |
- With *pSavedWith; /* Initial value of pParse->pWith */ |
- |
- /* If pCte->zErr is non-NULL at this point, then this is an illegal |
- ** recursive reference to CTE pCte. Leave an error in pParse and return |
- ** early. If pCte->zErr is NULL, then this is not a recursive reference. |
- ** In this case, proceed. */ |
- if( pCte->zErr ){ |
- sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); |
- return SQLITE_ERROR; |
- } |
- |
- assert( pFrom->pTab==0 ); |
- pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); |
- if( pTab==0 ) return WRC_Abort; |
- pTab->nRef = 1; |
- pTab->zName = sqlite3DbStrDup(db, pCte->zName); |
- pTab->iPKey = -1; |
- pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
- pTab->tabFlags |= TF_Ephemeral; |
- pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); |
- if( db->mallocFailed ) return SQLITE_NOMEM; |
- assert( pFrom->pSelect ); |
- |
- /* Check if this is a recursive CTE. */ |
- pSel = pFrom->pSelect; |
- bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); |
- if( bMayRecursive ){ |
- int i; |
- SrcList *pSrc = pFrom->pSelect->pSrc; |
- for(i=0; i<pSrc->nSrc; i++){ |
- struct SrcList_item *pItem = &pSrc->a[i]; |
- if( pItem->zDatabase==0 |
- && pItem->zName!=0 |
- && 0==sqlite3StrICmp(pItem->zName, pCte->zName) |
- ){ |
- pItem->pTab = pTab; |
- pItem->isRecursive = 1; |
- pTab->nRef++; |
- pSel->selFlags |= SF_Recursive; |
- } |
- } |
- } |
- |
- /* Only one recursive reference is permitted. */ |
- if( pTab->nRef>2 ){ |
- sqlite3ErrorMsg( |
- pParse, "multiple references to recursive table: %s", pCte->zName |
- ); |
- return SQLITE_ERROR; |
- } |
- assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); |
- |
- pCte->zErr = "circular reference: %s"; |
- pSavedWith = pParse->pWith; |
- pParse->pWith = pWith; |
- sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); |
- |
- for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); |
- pEList = pLeft->pEList; |
- if( pCte->pCols ){ |
- if( pEList->nExpr!=pCte->pCols->nExpr ){ |
- sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", |
- pCte->zName, pEList->nExpr, pCte->pCols->nExpr |
- ); |
- pParse->pWith = pSavedWith; |
- return SQLITE_ERROR; |
- } |
- pEList = pCte->pCols; |
- } |
- |
- selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); |
- if( bMayRecursive ){ |
- if( pSel->selFlags & SF_Recursive ){ |
- pCte->zErr = "multiple recursive references: %s"; |
- }else{ |
- pCte->zErr = "recursive reference in a subquery: %s"; |
- } |
- sqlite3WalkSelect(pWalker, pSel); |
- } |
- pCte->zErr = 0; |
- pParse->pWith = pSavedWith; |
- } |
- |
- return SQLITE_OK; |
-} |
-#endif |
- |
-#ifndef SQLITE_OMIT_CTE |
-/* |
-** If the SELECT passed as the second argument has an associated WITH |
-** clause, pop it from the stack stored as part of the Parse object. |
-** |
-** This function is used as the xSelectCallback2() callback by |
-** sqlite3SelectExpand() when walking a SELECT tree to resolve table |
-** names and other FROM clause elements. |
-*/ |
-static void selectPopWith(Walker *pWalker, Select *p){ |
- Parse *pParse = pWalker->pParse; |
- With *pWith = findRightmost(p)->pWith; |
- if( pWith!=0 ){ |
- assert( pParse->pWith==pWith ); |
- pParse->pWith = pWith->pOuter; |
- } |
-} |
-#else |
-#define selectPopWith 0 |
-#endif |
- |
-/* |
-** This routine is a Walker callback for "expanding" a SELECT statement. |
-** "Expanding" means to do the following: |
-** |
-** (1) Make sure VDBE cursor numbers have been assigned to every |
-** element of the FROM clause. |
-** |
-** (2) Fill in the pTabList->a[].pTab fields in the SrcList that |
-** defines FROM clause. When views appear in the FROM clause, |
-** fill pTabList->a[].pSelect with a copy of the SELECT statement |
-** that implements the view. A copy is made of the view's SELECT |
-** statement so that we can freely modify or delete that statement |
-** without worrying about messing up the persistent representation |
-** of the view. |
-** |
-** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword |
-** on joins and the ON and USING clause of joins. |
-** |
-** (4) Scan the list of columns in the result set (pEList) looking |
-** for instances of the "*" operator or the TABLE.* operator. |
-** If found, expand each "*" to be every column in every table |
-** and TABLE.* to be every column in TABLE. |
-** |
-*/ |
-static int selectExpander(Walker *pWalker, Select *p){ |
- Parse *pParse = pWalker->pParse; |
- int i, j, k; |
- SrcList *pTabList; |
- ExprList *pEList; |
- struct SrcList_item *pFrom; |
- sqlite3 *db = pParse->db; |
- Expr *pE, *pRight, *pExpr; |
- u16 selFlags = p->selFlags; |
- |
- p->selFlags |= SF_Expanded; |
- if( db->mallocFailed ){ |
- return WRC_Abort; |
- } |
- if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ |
- return WRC_Prune; |
- } |
- pTabList = p->pSrc; |
- pEList = p->pEList; |
- sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); |
- |
- /* Make sure cursor numbers have been assigned to all entries in |
- ** the FROM clause of the SELECT statement. |
- */ |
- sqlite3SrcListAssignCursors(pParse, pTabList); |
- |
- /* Look up every table named in the FROM clause of the select. If |
- ** an entry of the FROM clause is a subquery instead of a table or view, |
- ** then create a transient table structure to describe the subquery. |
- */ |
- for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
- Table *pTab; |
- assert( pFrom->isRecursive==0 || pFrom->pTab ); |
- if( pFrom->isRecursive ) continue; |
- if( pFrom->pTab!=0 ){ |
- /* This statement has already been prepared. There is no need |
- ** to go further. */ |
- assert( i==0 ); |
-#ifndef SQLITE_OMIT_CTE |
- selectPopWith(pWalker, p); |
-#endif |
- return WRC_Prune; |
- } |
-#ifndef SQLITE_OMIT_CTE |
- if( withExpand(pWalker, pFrom) ) return WRC_Abort; |
- if( pFrom->pTab ) {} else |
-#endif |
- if( pFrom->zName==0 ){ |
-#ifndef SQLITE_OMIT_SUBQUERY |
- Select *pSel = pFrom->pSelect; |
- /* A sub-query in the FROM clause of a SELECT */ |
- assert( pSel!=0 ); |
- assert( pFrom->pTab==0 ); |
- sqlite3WalkSelect(pWalker, pSel); |
- pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); |
- if( pTab==0 ) return WRC_Abort; |
- pTab->nRef = 1; |
- pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); |
- while( pSel->pPrior ){ pSel = pSel->pPrior; } |
- selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); |
- pTab->iPKey = -1; |
- pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
- pTab->tabFlags |= TF_Ephemeral; |
-#endif |
- }else{ |
- /* An ordinary table or view name in the FROM clause */ |
- assert( pFrom->pTab==0 ); |
- pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); |
- if( pTab==0 ) return WRC_Abort; |
- if( pTab->nRef==0xffff ){ |
- sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", |
- pTab->zName); |
- pFrom->pTab = 0; |
- return WRC_Abort; |
- } |
- pTab->nRef++; |
-#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) |
- if( pTab->pSelect || IsVirtual(pTab) ){ |
- /* We reach here if the named table is a really a view */ |
- if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; |
- assert( pFrom->pSelect==0 ); |
- pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); |
- sqlite3SelectSetName(pFrom->pSelect, pTab->zName); |
- sqlite3WalkSelect(pWalker, pFrom->pSelect); |
- } |
-#endif |
- } |
- |
- /* Locate the index named by the INDEXED BY clause, if any. */ |
- if( sqlite3IndexedByLookup(pParse, pFrom) ){ |
- return WRC_Abort; |
- } |
- } |
- |
- /* Process NATURAL keywords, and ON and USING clauses of joins. |
- */ |
- if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ |
- return WRC_Abort; |
- } |
- |
- /* For every "*" that occurs in the column list, insert the names of |
- ** all columns in all tables. And for every TABLE.* insert the names |
- ** of all columns in TABLE. The parser inserted a special expression |
- ** with the TK_ALL operator for each "*" that it found in the column list. |
- ** The following code just has to locate the TK_ALL expressions and expand |
- ** each one to the list of all columns in all tables. |
- ** |
- ** The first loop just checks to see if there are any "*" operators |
- ** that need expanding. |
- */ |
- for(k=0; k<pEList->nExpr; k++){ |
- pE = pEList->a[k].pExpr; |
- if( pE->op==TK_ALL ) break; |
- assert( pE->op!=TK_DOT || pE->pRight!=0 ); |
- assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); |
- if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; |
- } |
- if( k<pEList->nExpr ){ |
- /* |
- ** If we get here it means the result set contains one or more "*" |
- ** operators that need to be expanded. Loop through each expression |
- ** in the result set and expand them one by one. |
- */ |
- struct ExprList_item *a = pEList->a; |
- ExprList *pNew = 0; |
- int flags = pParse->db->flags; |
- int longNames = (flags & SQLITE_FullColNames)!=0 |
- && (flags & SQLITE_ShortColNames)==0; |
- |
- /* When processing FROM-clause subqueries, it is always the case |
- ** that full_column_names=OFF and short_column_names=ON. The |
- ** sqlite3ResultSetOfSelect() routine makes it so. */ |
- assert( (p->selFlags & SF_NestedFrom)==0 |
- || ((flags & SQLITE_FullColNames)==0 && |
- (flags & SQLITE_ShortColNames)!=0) ); |
- |
- for(k=0; k<pEList->nExpr; k++){ |
- pE = a[k].pExpr; |
- pRight = pE->pRight; |
- assert( pE->op!=TK_DOT || pRight!=0 ); |
- if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ |
- /* This particular expression does not need to be expanded. |
- */ |
- pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); |
- if( pNew ){ |
- pNew->a[pNew->nExpr-1].zName = a[k].zName; |
- pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; |
- a[k].zName = 0; |
- a[k].zSpan = 0; |
- } |
- a[k].pExpr = 0; |
- }else{ |
- /* This expression is a "*" or a "TABLE.*" and needs to be |
- ** expanded. */ |
- int tableSeen = 0; /* Set to 1 when TABLE matches */ |
- char *zTName = 0; /* text of name of TABLE */ |
- if( pE->op==TK_DOT ){ |
- assert( pE->pLeft!=0 ); |
- assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); |
- zTName = pE->pLeft->u.zToken; |
- } |
- for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
- Table *pTab = pFrom->pTab; |
- Select *pSub = pFrom->pSelect; |
- char *zTabName = pFrom->zAlias; |
- const char *zSchemaName = 0; |
- int iDb; |
- if( zTabName==0 ){ |
- zTabName = pTab->zName; |
- } |
- if( db->mallocFailed ) break; |
- if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ |
- pSub = 0; |
- if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ |
- continue; |
- } |
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
- zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; |
- } |
- for(j=0; j<pTab->nCol; j++){ |
- char *zName = pTab->aCol[j].zName; |
- char *zColname; /* The computed column name */ |
- char *zToFree; /* Malloced string that needs to be freed */ |
- Token sColname; /* Computed column name as a token */ |
- |
- assert( zName ); |
- if( zTName && pSub |
- && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 |
- ){ |
- continue; |
- } |
- |
- /* If a column is marked as 'hidden' (currently only possible |
- ** for virtual tables), do not include it in the expanded |
- ** result-set list. |
- */ |
- if( IsHiddenColumn(&pTab->aCol[j]) ){ |
- assert(IsVirtual(pTab)); |
- continue; |
- } |
- tableSeen = 1; |
- |
- if( i>0 && zTName==0 ){ |
- if( (pFrom->jointype & JT_NATURAL)!=0 |
- && tableAndColumnIndex(pTabList, i, zName, 0, 0) |
- ){ |
- /* In a NATURAL join, omit the join columns from the |
- ** table to the right of the join */ |
- continue; |
- } |
- if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ |
- /* In a join with a USING clause, omit columns in the |
- ** using clause from the table on the right. */ |
- continue; |
- } |
- } |
- pRight = sqlite3Expr(db, TK_ID, zName); |
- zColname = zName; |
- zToFree = 0; |
- if( longNames || pTabList->nSrc>1 ){ |
- Expr *pLeft; |
- pLeft = sqlite3Expr(db, TK_ID, zTabName); |
- pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); |
- if( zSchemaName ){ |
- pLeft = sqlite3Expr(db, TK_ID, zSchemaName); |
- pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); |
- } |
- if( longNames ){ |
- zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); |
- zToFree = zColname; |
- } |
- }else{ |
- pExpr = pRight; |
- } |
- pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); |
- sColname.z = zColname; |
- sColname.n = sqlite3Strlen30(zColname); |
- sqlite3ExprListSetName(pParse, pNew, &sColname, 0); |
- if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ |
- struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; |
- if( pSub ){ |
- pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); |
- testcase( pX->zSpan==0 ); |
- }else{ |
- pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", |
- zSchemaName, zTabName, zColname); |
- testcase( pX->zSpan==0 ); |
- } |
- pX->bSpanIsTab = 1; |
- } |
- sqlite3DbFree(db, zToFree); |
- } |
- } |
- if( !tableSeen ){ |
- if( zTName ){ |
- sqlite3ErrorMsg(pParse, "no such table: %s", zTName); |
- }else{ |
- sqlite3ErrorMsg(pParse, "no tables specified"); |
- } |
- } |
- } |
- } |
- sqlite3ExprListDelete(db, pEList); |
- p->pEList = pNew; |
- } |
-#if SQLITE_MAX_COLUMN |
- if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
- sqlite3ErrorMsg(pParse, "too many columns in result set"); |
- } |
-#endif |
- return WRC_Continue; |
-} |
- |
-/* |
-** No-op routine for the parse-tree walker. |
-** |
-** When this routine is the Walker.xExprCallback then expression trees |
-** are walked without any actions being taken at each node. Presumably, |
-** when this routine is used for Walker.xExprCallback then |
-** Walker.xSelectCallback is set to do something useful for every |
-** subquery in the parser tree. |
-*/ |
-static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ |
- UNUSED_PARAMETER2(NotUsed, NotUsed2); |
- return WRC_Continue; |
-} |
- |
-/* |
-** This routine "expands" a SELECT statement and all of its subqueries. |
-** For additional information on what it means to "expand" a SELECT |
-** statement, see the comment on the selectExpand worker callback above. |
-** |
-** Expanding a SELECT statement is the first step in processing a |
-** SELECT statement. The SELECT statement must be expanded before |
-** name resolution is performed. |
-** |
-** If anything goes wrong, an error message is written into pParse. |
-** The calling function can detect the problem by looking at pParse->nErr |
-** and/or pParse->db->mallocFailed. |
-*/ |
-static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ |
- Walker w; |
- memset(&w, 0, sizeof(w)); |
- w.xExprCallback = exprWalkNoop; |
- w.pParse = pParse; |
- if( pParse->hasCompound ){ |
- w.xSelectCallback = convertCompoundSelectToSubquery; |
- sqlite3WalkSelect(&w, pSelect); |
- } |
- w.xSelectCallback = selectExpander; |
- w.xSelectCallback2 = selectPopWith; |
- sqlite3WalkSelect(&w, pSelect); |
-} |
- |
- |
-#ifndef SQLITE_OMIT_SUBQUERY |
-/* |
-** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() |
-** interface. |
-** |
-** For each FROM-clause subquery, add Column.zType and Column.zColl |
-** information to the Table structure that represents the result set |
-** of that subquery. |
-** |
-** The Table structure that represents the result set was constructed |
-** by selectExpander() but the type and collation information was omitted |
-** at that point because identifiers had not yet been resolved. This |
-** routine is called after identifier resolution. |
-*/ |
-static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ |
- Parse *pParse; |
- int i; |
- SrcList *pTabList; |
- struct SrcList_item *pFrom; |
- |
- assert( p->selFlags & SF_Resolved ); |
- if( (p->selFlags & SF_HasTypeInfo)==0 ){ |
- p->selFlags |= SF_HasTypeInfo; |
- pParse = pWalker->pParse; |
- pTabList = p->pSrc; |
- for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
- Table *pTab = pFrom->pTab; |
- if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ |
- /* A sub-query in the FROM clause of a SELECT */ |
- Select *pSel = pFrom->pSelect; |
- if( pSel ){ |
- while( pSel->pPrior ) pSel = pSel->pPrior; |
- selectAddColumnTypeAndCollation(pParse, pTab, pSel); |
- } |
- } |
- } |
- } |
-} |
-#endif |
- |
- |
-/* |
-** This routine adds datatype and collating sequence information to |
-** the Table structures of all FROM-clause subqueries in a |
-** SELECT statement. |
-** |
-** Use this routine after name resolution. |
-*/ |
-static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ |
-#ifndef SQLITE_OMIT_SUBQUERY |
- Walker w; |
- memset(&w, 0, sizeof(w)); |
- w.xSelectCallback2 = selectAddSubqueryTypeInfo; |
- w.xExprCallback = exprWalkNoop; |
- w.pParse = pParse; |
- sqlite3WalkSelect(&w, pSelect); |
-#endif |
-} |
- |
- |
-/* |
-** This routine sets up a SELECT statement for processing. The |
-** following is accomplished: |
-** |
-** * VDBE Cursor numbers are assigned to all FROM-clause terms. |
-** * Ephemeral Table objects are created for all FROM-clause subqueries. |
-** * ON and USING clauses are shifted into WHERE statements |
-** * Wildcards "*" and "TABLE.*" in result sets are expanded. |
-** * Identifiers in expression are matched to tables. |
-** |
-** This routine acts recursively on all subqueries within the SELECT. |
-*/ |
-void sqlite3SelectPrep( |
- Parse *pParse, /* The parser context */ |
- Select *p, /* The SELECT statement being coded. */ |
- NameContext *pOuterNC /* Name context for container */ |
-){ |
- sqlite3 *db; |
- if( NEVER(p==0) ) return; |
- db = pParse->db; |
- if( db->mallocFailed ) return; |
- if( p->selFlags & SF_HasTypeInfo ) return; |
- sqlite3SelectExpand(pParse, p); |
- if( pParse->nErr || db->mallocFailed ) return; |
- sqlite3ResolveSelectNames(pParse, p, pOuterNC); |
- if( pParse->nErr || db->mallocFailed ) return; |
- sqlite3SelectAddTypeInfo(pParse, p); |
-} |
- |
-/* |
-** Reset the aggregate accumulator. |
-** |
-** The aggregate accumulator is a set of memory cells that hold |
-** intermediate results while calculating an aggregate. This |
-** routine generates code that stores NULLs in all of those memory |
-** cells. |
-*/ |
-static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
- Vdbe *v = pParse->pVdbe; |
- int i; |
- struct AggInfo_func *pFunc; |
- int nReg = pAggInfo->nFunc + pAggInfo->nColumn; |
- if( nReg==0 ) return; |
-#ifdef SQLITE_DEBUG |
- /* Verify that all AggInfo registers are within the range specified by |
- ** AggInfo.mnReg..AggInfo.mxReg */ |
- assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); |
- for(i=0; i<pAggInfo->nColumn; i++){ |
- assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg |
- && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); |
- } |
- for(i=0; i<pAggInfo->nFunc; i++){ |
- assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg |
- && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); |
- } |
-#endif |
- sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); |
- for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ |
- if( pFunc->iDistinct>=0 ){ |
- Expr *pE = pFunc->pExpr; |
- assert( !ExprHasProperty(pE, EP_xIsSelect) ); |
- if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ |
- sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " |
- "argument"); |
- pFunc->iDistinct = -1; |
- }else{ |
- KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); |
- sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, |
- (char*)pKeyInfo, P4_KEYINFO); |
- } |
- } |
- } |
-} |
- |
-/* |
-** Invoke the OP_AggFinalize opcode for every aggregate function |
-** in the AggInfo structure. |
-*/ |
-static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ |
- Vdbe *v = pParse->pVdbe; |
- int i; |
- struct AggInfo_func *pF; |
- for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
- ExprList *pList = pF->pExpr->x.pList; |
- assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); |
- sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, |
- (void*)pF->pFunc, P4_FUNCDEF); |
- } |
-} |
- |
-/* |
-** Update the accumulator memory cells for an aggregate based on |
-** the current cursor position. |
-*/ |
-static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
- Vdbe *v = pParse->pVdbe; |
- int i; |
- int regHit = 0; |
- int addrHitTest = 0; |
- struct AggInfo_func *pF; |
- struct AggInfo_col *pC; |
- |
- pAggInfo->directMode = 1; |
- for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
- int nArg; |
- int addrNext = 0; |
- int regAgg; |
- ExprList *pList = pF->pExpr->x.pList; |
- assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); |
- if( pList ){ |
- nArg = pList->nExpr; |
- regAgg = sqlite3GetTempRange(pParse, nArg); |
- sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); |
- }else{ |
- nArg = 0; |
- regAgg = 0; |
- } |
- if( pF->iDistinct>=0 ){ |
- addrNext = sqlite3VdbeMakeLabel(v); |
- assert( nArg==1 ); |
- codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); |
- } |
- if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
- CollSeq *pColl = 0; |
- struct ExprList_item *pItem; |
- int j; |
- assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ |
- for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ |
- pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
- } |
- if( !pColl ){ |
- pColl = pParse->db->pDfltColl; |
- } |
- if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; |
- sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); |
- } |
- sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, |
- (void*)pF->pFunc, P4_FUNCDEF); |
- sqlite3VdbeChangeP5(v, (u8)nArg); |
- sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); |
- sqlite3ReleaseTempRange(pParse, regAgg, nArg); |
- if( addrNext ){ |
- sqlite3VdbeResolveLabel(v, addrNext); |
- sqlite3ExprCacheClear(pParse); |
- } |
- } |
- |
- /* Before populating the accumulator registers, clear the column cache. |
- ** Otherwise, if any of the required column values are already present |
- ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value |
- ** to pC->iMem. But by the time the value is used, the original register |
- ** may have been used, invalidating the underlying buffer holding the |
- ** text or blob value. See ticket [883034dcb5]. |
- ** |
- ** Another solution would be to change the OP_SCopy used to copy cached |
- ** values to an OP_Copy. |
- */ |
- if( regHit ){ |
- addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); |
- } |
- sqlite3ExprCacheClear(pParse); |
- for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ |
- sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); |
- } |
- pAggInfo->directMode = 0; |
- sqlite3ExprCacheClear(pParse); |
- if( addrHitTest ){ |
- sqlite3VdbeJumpHere(v, addrHitTest); |
- } |
-} |
- |
-/* |
-** Add a single OP_Explain instruction to the VDBE to explain a simple |
-** count(*) query ("SELECT count(*) FROM pTab"). |
-*/ |
-#ifndef SQLITE_OMIT_EXPLAIN |
-static void explainSimpleCount( |
- Parse *pParse, /* Parse context */ |
- Table *pTab, /* Table being queried */ |
- Index *pIdx /* Index used to optimize scan, or NULL */ |
-){ |
- if( pParse->explain==2 ){ |
- int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); |
- char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", |
- pTab->zName, |
- bCover ? " USING COVERING INDEX " : "", |
- bCover ? pIdx->zName : "" |
- ); |
- sqlite3VdbeAddOp4( |
- pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC |
- ); |
- } |
-} |
-#else |
-# define explainSimpleCount(a,b,c) |
-#endif |
- |
-/* |
-** Generate code for the SELECT statement given in the p argument. |
-** |
-** The results are returned according to the SelectDest structure. |
-** See comments in sqliteInt.h for further information. |
-** |
-** This routine returns the number of errors. If any errors are |
-** encountered, then an appropriate error message is left in |
-** pParse->zErrMsg. |
-** |
-** This routine does NOT free the Select structure passed in. The |
-** calling function needs to do that. |
-*/ |
-int sqlite3Select( |
- Parse *pParse, /* The parser context */ |
- Select *p, /* The SELECT statement being coded. */ |
- SelectDest *pDest /* What to do with the query results */ |
-){ |
- int i, j; /* Loop counters */ |
- WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ |
- Vdbe *v; /* The virtual machine under construction */ |
- int isAgg; /* True for select lists like "count(*)" */ |
- ExprList *pEList; /* List of columns to extract. */ |
- SrcList *pTabList; /* List of tables to select from */ |
- Expr *pWhere; /* The WHERE clause. May be NULL */ |
- ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ |
- Expr *pHaving; /* The HAVING clause. May be NULL */ |
- int rc = 1; /* Value to return from this function */ |
- DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ |
- SortCtx sSort; /* Info on how to code the ORDER BY clause */ |
- AggInfo sAggInfo; /* Information used by aggregate queries */ |
- int iEnd; /* Address of the end of the query */ |
- sqlite3 *db; /* The database connection */ |
- |
-#ifndef SQLITE_OMIT_EXPLAIN |
- int iRestoreSelectId = pParse->iSelectId; |
- pParse->iSelectId = pParse->iNextSelectId++; |
-#endif |
- |
- db = pParse->db; |
- if( p==0 || db->mallocFailed || pParse->nErr ){ |
- return 1; |
- } |
- if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; |
- memset(&sAggInfo, 0, sizeof(sAggInfo)); |
-#if SELECTTRACE_ENABLED |
- pParse->nSelectIndent++; |
- SELECTTRACE(1,pParse,p, ("begin processing:\n")); |
- if( sqlite3SelectTrace & 0x100 ){ |
- sqlite3TreeViewSelect(0, p, 0); |
- } |
-#endif |
- |
- assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); |
- assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); |
- assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); |
- assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); |
- if( IgnorableOrderby(pDest) ){ |
- assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || |
- pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || |
- pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || |
- pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); |
- /* If ORDER BY makes no difference in the output then neither does |
- ** DISTINCT so it can be removed too. */ |
- sqlite3ExprListDelete(db, p->pOrderBy); |
- p->pOrderBy = 0; |
- p->selFlags &= ~SF_Distinct; |
- } |
- sqlite3SelectPrep(pParse, p, 0); |
- memset(&sSort, 0, sizeof(sSort)); |
- sSort.pOrderBy = p->pOrderBy; |
- pTabList = p->pSrc; |
- pEList = p->pEList; |
- if( pParse->nErr || db->mallocFailed ){ |
- goto select_end; |
- } |
- isAgg = (p->selFlags & SF_Aggregate)!=0; |
- assert( pEList!=0 ); |
- |
- /* Begin generating code. |
- */ |
- v = sqlite3GetVdbe(pParse); |
- if( v==0 ) goto select_end; |
- |
- /* If writing to memory or generating a set |
- ** only a single column may be output. |
- */ |
-#ifndef SQLITE_OMIT_SUBQUERY |
- if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ |
- goto select_end; |
- } |
-#endif |
- |
- /* Generate code for all sub-queries in the FROM clause |
- */ |
-#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
- for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ |
- struct SrcList_item *pItem = &pTabList->a[i]; |
- SelectDest dest; |
- Select *pSub = pItem->pSelect; |
- int isAggSub; |
- |
- if( pSub==0 ) continue; |
- |
- /* Sometimes the code for a subquery will be generated more than |
- ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, |
- ** for example. In that case, do not regenerate the code to manifest |
- ** a view or the co-routine to implement a view. The first instance |
- ** is sufficient, though the subroutine to manifest the view does need |
- ** to be invoked again. */ |
- if( pItem->addrFillSub ){ |
- if( pItem->viaCoroutine==0 ){ |
- sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); |
- } |
- continue; |
- } |
- |
- /* Increment Parse.nHeight by the height of the largest expression |
- ** tree referred to by this, the parent select. The child select |
- ** may contain expression trees of at most |
- ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit |
- ** more conservative than necessary, but much easier than enforcing |
- ** an exact limit. |
- */ |
- pParse->nHeight += sqlite3SelectExprHeight(p); |
- |
- isAggSub = (pSub->selFlags & SF_Aggregate)!=0; |
- if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ |
- /* This subquery can be absorbed into its parent. */ |
- if( isAggSub ){ |
- isAgg = 1; |
- p->selFlags |= SF_Aggregate; |
- } |
- i = -1; |
- }else if( pTabList->nSrc==1 |
- && OptimizationEnabled(db, SQLITE_SubqCoroutine) |
- ){ |
- /* Implement a co-routine that will return a single row of the result |
- ** set on each invocation. |
- */ |
- int addrTop = sqlite3VdbeCurrentAddr(v)+1; |
- pItem->regReturn = ++pParse->nMem; |
- sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); |
- VdbeComment((v, "%s", pItem->pTab->zName)); |
- pItem->addrFillSub = addrTop; |
- sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); |
- explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); |
- sqlite3Select(pParse, pSub, &dest); |
- pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); |
- pItem->viaCoroutine = 1; |
- pItem->regResult = dest.iSdst; |
- sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); |
- sqlite3VdbeJumpHere(v, addrTop-1); |
- sqlite3ClearTempRegCache(pParse); |
- }else{ |
- /* Generate a subroutine that will fill an ephemeral table with |
- ** the content of this subquery. pItem->addrFillSub will point |
- ** to the address of the generated subroutine. pItem->regReturn |
- ** is a register allocated to hold the subroutine return address |
- */ |
- int topAddr; |
- int onceAddr = 0; |
- int retAddr; |
- assert( pItem->addrFillSub==0 ); |
- pItem->regReturn = ++pParse->nMem; |
- topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); |
- pItem->addrFillSub = topAddr+1; |
- if( pItem->isCorrelated==0 ){ |
- /* If the subquery is not correlated and if we are not inside of |
- ** a trigger, then we only need to compute the value of the subquery |
- ** once. */ |
- onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
- VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); |
- }else{ |
- VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); |
- } |
- sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); |
- explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); |
- sqlite3Select(pParse, pSub, &dest); |
- pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); |
- if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); |
- retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); |
- VdbeComment((v, "end %s", pItem->pTab->zName)); |
- sqlite3VdbeChangeP1(v, topAddr, retAddr); |
- sqlite3ClearTempRegCache(pParse); |
- } |
- if( /*pParse->nErr ||*/ db->mallocFailed ){ |
- goto select_end; |
- } |
- pParse->nHeight -= sqlite3SelectExprHeight(p); |
- pTabList = p->pSrc; |
- if( !IgnorableOrderby(pDest) ){ |
- sSort.pOrderBy = p->pOrderBy; |
- } |
- } |
- pEList = p->pEList; |
-#endif |
- pWhere = p->pWhere; |
- pGroupBy = p->pGroupBy; |
- pHaving = p->pHaving; |
- sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; |
- |
-#ifndef SQLITE_OMIT_COMPOUND_SELECT |
- /* If there is are a sequence of queries, do the earlier ones first. |
- */ |
- if( p->pPrior ){ |
- rc = multiSelect(pParse, p, pDest); |
- explainSetInteger(pParse->iSelectId, iRestoreSelectId); |
-#if SELECTTRACE_ENABLED |
- SELECTTRACE(1,pParse,p,("end compound-select processing\n")); |
- pParse->nSelectIndent--; |
-#endif |
- return rc; |
- } |
-#endif |
- |
- /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and |
- ** if the select-list is the same as the ORDER BY list, then this query |
- ** can be rewritten as a GROUP BY. In other words, this: |
- ** |
- ** SELECT DISTINCT xyz FROM ... ORDER BY xyz |
- ** |
- ** is transformed to: |
- ** |
- ** SELECT xyz FROM ... GROUP BY xyz |
- ** |
- ** The second form is preferred as a single index (or temp-table) may be |
- ** used for both the ORDER BY and DISTINCT processing. As originally |
- ** written the query must use a temp-table for at least one of the ORDER |
- ** BY and DISTINCT, and an index or separate temp-table for the other. |
- */ |
- if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct |
- && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 |
- ){ |
- p->selFlags &= ~SF_Distinct; |
- p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); |
- pGroupBy = p->pGroupBy; |
- sSort.pOrderBy = 0; |
- /* Notice that even thought SF_Distinct has been cleared from p->selFlags, |
- ** the sDistinct.isTnct is still set. Hence, isTnct represents the |
- ** original setting of the SF_Distinct flag, not the current setting */ |
- assert( sDistinct.isTnct ); |
- } |
- |
- /* If there is an ORDER BY clause, then this sorting |
- ** index might end up being unused if the data can be |
- ** extracted in pre-sorted order. If that is the case, then the |
- ** OP_OpenEphemeral instruction will be changed to an OP_Noop once |
- ** we figure out that the sorting index is not needed. The addrSortIndex |
- ** variable is used to facilitate that change. |
- */ |
- if( sSort.pOrderBy ){ |
- KeyInfo *pKeyInfo; |
- pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); |
- sSort.iECursor = pParse->nTab++; |
- sSort.addrSortIndex = |
- sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
- sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, |
- (char*)pKeyInfo, P4_KEYINFO |
- ); |
- }else{ |
- sSort.addrSortIndex = -1; |
- } |
- |
- /* If the output is destined for a temporary table, open that table. |
- */ |
- if( pDest->eDest==SRT_EphemTab ){ |
- sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); |
- } |
- |
- /* Set the limiter. |
- */ |
- iEnd = sqlite3VdbeMakeLabel(v); |
- p->nSelectRow = LARGEST_INT64; |
- computeLimitRegisters(pParse, p, iEnd); |
- if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ |
- sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; |
- sSort.sortFlags |= SORTFLAG_UseSorter; |
- } |
- |
- /* Open a virtual index to use for the distinct set. |
- */ |
- if( p->selFlags & SF_Distinct ){ |
- sDistinct.tabTnct = pParse->nTab++; |
- sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
- sDistinct.tabTnct, 0, 0, |
- (char*)keyInfoFromExprList(pParse, p->pEList,0,0), |
- P4_KEYINFO); |
- sqlite3VdbeChangeP5(v, BTREE_UNORDERED); |
- sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; |
- }else{ |
- sDistinct.eTnctType = WHERE_DISTINCT_NOOP; |
- } |
- |
- if( !isAgg && pGroupBy==0 ){ |
- /* No aggregate functions and no GROUP BY clause */ |
- u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); |
- |
- /* Begin the database scan. */ |
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, |
- p->pEList, wctrlFlags, 0); |
- if( pWInfo==0 ) goto select_end; |
- if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ |
- p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); |
- } |
- if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ |
- sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); |
- } |
- if( sSort.pOrderBy ){ |
- sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); |
- if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ |
- sSort.pOrderBy = 0; |
- } |
- } |
- |
- /* If sorting index that was created by a prior OP_OpenEphemeral |
- ** instruction ended up not being needed, then change the OP_OpenEphemeral |
- ** into an OP_Noop. |
- */ |
- if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ |
- sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); |
- } |
- |
- /* Use the standard inner loop. */ |
- selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, |
- sqlite3WhereContinueLabel(pWInfo), |
- sqlite3WhereBreakLabel(pWInfo)); |
- |
- /* End the database scan loop. |
- */ |
- sqlite3WhereEnd(pWInfo); |
- }else{ |
- /* This case when there exist aggregate functions or a GROUP BY clause |
- ** or both */ |
- NameContext sNC; /* Name context for processing aggregate information */ |
- int iAMem; /* First Mem address for storing current GROUP BY */ |
- int iBMem; /* First Mem address for previous GROUP BY */ |
- int iUseFlag; /* Mem address holding flag indicating that at least |
- ** one row of the input to the aggregator has been |
- ** processed */ |
- int iAbortFlag; /* Mem address which causes query abort if positive */ |
- int groupBySort; /* Rows come from source in GROUP BY order */ |
- int addrEnd; /* End of processing for this SELECT */ |
- int sortPTab = 0; /* Pseudotable used to decode sorting results */ |
- int sortOut = 0; /* Output register from the sorter */ |
- int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ |
- |
- /* Remove any and all aliases between the result set and the |
- ** GROUP BY clause. |
- */ |
- if( pGroupBy ){ |
- int k; /* Loop counter */ |
- struct ExprList_item *pItem; /* For looping over expression in a list */ |
- |
- for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ |
- pItem->u.x.iAlias = 0; |
- } |
- for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ |
- pItem->u.x.iAlias = 0; |
- } |
- if( p->nSelectRow>100 ) p->nSelectRow = 100; |
- }else{ |
- p->nSelectRow = 1; |
- } |
- |
- |
- /* If there is both a GROUP BY and an ORDER BY clause and they are |
- ** identical, then it may be possible to disable the ORDER BY clause |
- ** on the grounds that the GROUP BY will cause elements to come out |
- ** in the correct order. It also may not - the GROUP BY may use a |
- ** database index that causes rows to be grouped together as required |
- ** but not actually sorted. Either way, record the fact that the |
- ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp |
- ** variable. */ |
- if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ |
- orderByGrp = 1; |
- } |
- |
- /* Create a label to jump to when we want to abort the query */ |
- addrEnd = sqlite3VdbeMakeLabel(v); |
- |
- /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
- ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the |
- ** SELECT statement. |
- */ |
- memset(&sNC, 0, sizeof(sNC)); |
- sNC.pParse = pParse; |
- sNC.pSrcList = pTabList; |
- sNC.pAggInfo = &sAggInfo; |
- sAggInfo.mnReg = pParse->nMem+1; |
- sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; |
- sAggInfo.pGroupBy = pGroupBy; |
- sqlite3ExprAnalyzeAggList(&sNC, pEList); |
- sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); |
- if( pHaving ){ |
- sqlite3ExprAnalyzeAggregates(&sNC, pHaving); |
- } |
- sAggInfo.nAccumulator = sAggInfo.nColumn; |
- for(i=0; i<sAggInfo.nFunc; i++){ |
- assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); |
- sNC.ncFlags |= NC_InAggFunc; |
- sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); |
- sNC.ncFlags &= ~NC_InAggFunc; |
- } |
- sAggInfo.mxReg = pParse->nMem; |
- if( db->mallocFailed ) goto select_end; |
- |
- /* Processing for aggregates with GROUP BY is very different and |
- ** much more complex than aggregates without a GROUP BY. |
- */ |
- if( pGroupBy ){ |
- KeyInfo *pKeyInfo; /* Keying information for the group by clause */ |
- int j1; /* A-vs-B comparision jump */ |
- int addrOutputRow; /* Start of subroutine that outputs a result row */ |
- int regOutputRow; /* Return address register for output subroutine */ |
- int addrSetAbort; /* Set the abort flag and return */ |
- int addrTopOfLoop; /* Top of the input loop */ |
- int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ |
- int addrReset; /* Subroutine for resetting the accumulator */ |
- int regReset; /* Return address register for reset subroutine */ |
- |
- /* If there is a GROUP BY clause we might need a sorting index to |
- ** implement it. Allocate that sorting index now. If it turns out |
- ** that we do not need it after all, the OP_SorterOpen instruction |
- ** will be converted into a Noop. |
- */ |
- sAggInfo.sortingIdx = pParse->nTab++; |
- pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); |
- addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, |
- sAggInfo.sortingIdx, sAggInfo.nSortingColumn, |
- 0, (char*)pKeyInfo, P4_KEYINFO); |
- |
- /* Initialize memory locations used by GROUP BY aggregate processing |
- */ |
- iUseFlag = ++pParse->nMem; |
- iAbortFlag = ++pParse->nMem; |
- regOutputRow = ++pParse->nMem; |
- addrOutputRow = sqlite3VdbeMakeLabel(v); |
- regReset = ++pParse->nMem; |
- addrReset = sqlite3VdbeMakeLabel(v); |
- iAMem = pParse->nMem + 1; |
- pParse->nMem += pGroupBy->nExpr; |
- iBMem = pParse->nMem + 1; |
- pParse->nMem += pGroupBy->nExpr; |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); |
- VdbeComment((v, "clear abort flag")); |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); |
- VdbeComment((v, "indicate accumulator empty")); |
- sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); |
- |
- /* Begin a loop that will extract all source rows in GROUP BY order. |
- ** This might involve two separate loops with an OP_Sort in between, or |
- ** it might be a single loop that uses an index to extract information |
- ** in the right order to begin with. |
- */ |
- sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, |
- WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 |
- ); |
- if( pWInfo==0 ) goto select_end; |
- if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ |
- /* The optimizer is able to deliver rows in group by order so |
- ** we do not have to sort. The OP_OpenEphemeral table will be |
- ** cancelled later because we still need to use the pKeyInfo |
- */ |
- groupBySort = 0; |
- }else{ |
- /* Rows are coming out in undetermined order. We have to push |
- ** each row into a sorting index, terminate the first loop, |
- ** then loop over the sorting index in order to get the output |
- ** in sorted order |
- */ |
- int regBase; |
- int regRecord; |
- int nCol; |
- int nGroupBy; |
- |
- explainTempTable(pParse, |
- (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? |
- "DISTINCT" : "GROUP BY"); |
- |
- groupBySort = 1; |
- nGroupBy = pGroupBy->nExpr; |
- nCol = nGroupBy; |
- j = nGroupBy; |
- for(i=0; i<sAggInfo.nColumn; i++){ |
- if( sAggInfo.aCol[i].iSorterColumn>=j ){ |
- nCol++; |
- j++; |
- } |
- } |
- regBase = sqlite3GetTempRange(pParse, nCol); |
- sqlite3ExprCacheClear(pParse); |
- sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); |
- j = nGroupBy; |
- for(i=0; i<sAggInfo.nColumn; i++){ |
- struct AggInfo_col *pCol = &sAggInfo.aCol[i]; |
- if( pCol->iSorterColumn>=j ){ |
- int r1 = j + regBase; |
- int r2; |
- |
- r2 = sqlite3ExprCodeGetColumn(pParse, |
- pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); |
- if( r1!=r2 ){ |
- sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); |
- } |
- j++; |
- } |
- } |
- regRecord = sqlite3GetTempReg(pParse); |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); |
- sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); |
- sqlite3ReleaseTempReg(pParse, regRecord); |
- sqlite3ReleaseTempRange(pParse, regBase, nCol); |
- sqlite3WhereEnd(pWInfo); |
- sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; |
- sortOut = sqlite3GetTempReg(pParse); |
- sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); |
- sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); |
- VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); |
- sAggInfo.useSortingIdx = 1; |
- sqlite3ExprCacheClear(pParse); |
- |
- } |
- |
- /* If the index or temporary table used by the GROUP BY sort |
- ** will naturally deliver rows in the order required by the ORDER BY |
- ** clause, cancel the ephemeral table open coded earlier. |
- ** |
- ** This is an optimization - the correct answer should result regardless. |
- ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to |
- ** disable this optimization for testing purposes. */ |
- if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) |
- && (groupBySort || sqlite3WhereIsSorted(pWInfo)) |
- ){ |
- sSort.pOrderBy = 0; |
- sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); |
- } |
- |
- /* Evaluate the current GROUP BY terms and store in b0, b1, b2... |
- ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) |
- ** Then compare the current GROUP BY terms against the GROUP BY terms |
- ** from the previous row currently stored in a0, a1, a2... |
- */ |
- addrTopOfLoop = sqlite3VdbeCurrentAddr(v); |
- sqlite3ExprCacheClear(pParse); |
- if( groupBySort ){ |
- sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab); |
- } |
- for(j=0; j<pGroupBy->nExpr; j++){ |
- if( groupBySort ){ |
- sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); |
- }else{ |
- sAggInfo.directMode = 1; |
- sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); |
- } |
- } |
- sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, |
- (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); |
- j1 = sqlite3VdbeCurrentAddr(v); |
- sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); |
- |
- /* Generate code that runs whenever the GROUP BY changes. |
- ** Changes in the GROUP BY are detected by the previous code |
- ** block. If there were no changes, this block is skipped. |
- ** |
- ** This code copies current group by terms in b0,b1,b2,... |
- ** over to a0,a1,a2. It then calls the output subroutine |
- ** and resets the aggregate accumulator registers in preparation |
- ** for the next GROUP BY batch. |
- */ |
- sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); |
- sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
- VdbeComment((v, "output one row")); |
- sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); |
- VdbeComment((v, "check abort flag")); |
- sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
- VdbeComment((v, "reset accumulator")); |
- |
- /* Update the aggregate accumulators based on the content of |
- ** the current row |
- */ |
- sqlite3VdbeJumpHere(v, j1); |
- updateAccumulator(pParse, &sAggInfo); |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); |
- VdbeComment((v, "indicate data in accumulator")); |
- |
- /* End of the loop |
- */ |
- if( groupBySort ){ |
- sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); |
- VdbeCoverage(v); |
- }else{ |
- sqlite3WhereEnd(pWInfo); |
- sqlite3VdbeChangeToNoop(v, addrSortingIdx); |
- } |
- |
- /* Output the final row of result |
- */ |
- sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
- VdbeComment((v, "output final row")); |
- |
- /* Jump over the subroutines |
- */ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); |
- |
- /* Generate a subroutine that outputs a single row of the result |
- ** set. This subroutine first looks at the iUseFlag. If iUseFlag |
- ** is less than or equal to zero, the subroutine is a no-op. If |
- ** the processing calls for the query to abort, this subroutine |
- ** increments the iAbortFlag memory location before returning in |
- ** order to signal the caller to abort. |
- */ |
- addrSetAbort = sqlite3VdbeCurrentAddr(v); |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); |
- VdbeComment((v, "set abort flag")); |
- sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
- sqlite3VdbeResolveLabel(v, addrOutputRow); |
- addrOutputRow = sqlite3VdbeCurrentAddr(v); |
- sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); |
- VdbeComment((v, "Groupby result generator entry point")); |
- sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
- finalizeAggFunctions(pParse, &sAggInfo); |
- sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); |
- selectInnerLoop(pParse, p, p->pEList, -1, &sSort, |
- &sDistinct, pDest, |
- addrOutputRow+1, addrSetAbort); |
- sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
- VdbeComment((v, "end groupby result generator")); |
- |
- /* Generate a subroutine that will reset the group-by accumulator |
- */ |
- sqlite3VdbeResolveLabel(v, addrReset); |
- resetAccumulator(pParse, &sAggInfo); |
- sqlite3VdbeAddOp1(v, OP_Return, regReset); |
- |
- } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ |
- else { |
- ExprList *pDel = 0; |
-#ifndef SQLITE_OMIT_BTREECOUNT |
- Table *pTab; |
- if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ |
- /* If isSimpleCount() returns a pointer to a Table structure, then |
- ** the SQL statement is of the form: |
- ** |
- ** SELECT count(*) FROM <tbl> |
- ** |
- ** where the Table structure returned represents table <tbl>. |
- ** |
- ** This statement is so common that it is optimized specially. The |
- ** OP_Count instruction is executed either on the intkey table that |
- ** contains the data for table <tbl> or on one of its indexes. It |
- ** is better to execute the op on an index, as indexes are almost |
- ** always spread across less pages than their corresponding tables. |
- */ |
- const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
- const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ |
- Index *pIdx; /* Iterator variable */ |
- KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ |
- Index *pBest = 0; /* Best index found so far */ |
- int iRoot = pTab->tnum; /* Root page of scanned b-tree */ |
- |
- sqlite3CodeVerifySchema(pParse, iDb); |
- sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
- |
- /* Search for the index that has the lowest scan cost. |
- ** |
- ** (2011-04-15) Do not do a full scan of an unordered index. |
- ** |
- ** (2013-10-03) Do not count the entries in a partial index. |
- ** |
- ** In practice the KeyInfo structure will not be used. It is only |
- ** passed to keep OP_OpenRead happy. |
- */ |
- if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); |
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
- if( pIdx->bUnordered==0 |
- && pIdx->szIdxRow<pTab->szTabRow |
- && pIdx->pPartIdxWhere==0 |
- && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) |
- ){ |
- pBest = pIdx; |
- } |
- } |
- if( pBest ){ |
- iRoot = pBest->tnum; |
- pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); |
- } |
- |
- /* Open a read-only cursor, execute the OP_Count, close the cursor. */ |
- sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); |
- if( pKeyInfo ){ |
- sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); |
- } |
- sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); |
- sqlite3VdbeAddOp1(v, OP_Close, iCsr); |
- explainSimpleCount(pParse, pTab, pBest); |
- }else |
-#endif /* SQLITE_OMIT_BTREECOUNT */ |
- { |
- /* Check if the query is of one of the following forms: |
- ** |
- ** SELECT min(x) FROM ... |
- ** SELECT max(x) FROM ... |
- ** |
- ** If it is, then ask the code in where.c to attempt to sort results |
- ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. |
- ** If where.c is able to produce results sorted in this order, then |
- ** add vdbe code to break out of the processing loop after the |
- ** first iteration (since the first iteration of the loop is |
- ** guaranteed to operate on the row with the minimum or maximum |
- ** value of x, the only row required). |
- ** |
- ** A special flag must be passed to sqlite3WhereBegin() to slightly |
- ** modify behavior as follows: |
- ** |
- ** + If the query is a "SELECT min(x)", then the loop coded by |
- ** where.c should not iterate over any values with a NULL value |
- ** for x. |
- ** |
- ** + The optimizer code in where.c (the thing that decides which |
- ** index or indices to use) should place a different priority on |
- ** satisfying the 'ORDER BY' clause than it does in other cases. |
- ** Refer to code and comments in where.c for details. |
- */ |
- ExprList *pMinMax = 0; |
- u8 flag = WHERE_ORDERBY_NORMAL; |
- |
- assert( p->pGroupBy==0 ); |
- assert( flag==0 ); |
- if( p->pHaving==0 ){ |
- flag = minMaxQuery(&sAggInfo, &pMinMax); |
- } |
- assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); |
- |
- if( flag ){ |
- pMinMax = sqlite3ExprListDup(db, pMinMax, 0); |
- pDel = pMinMax; |
- if( pMinMax && !db->mallocFailed ){ |
- pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; |
- pMinMax->a[0].pExpr->op = TK_COLUMN; |
- } |
- } |
- |
- /* This case runs if the aggregate has no GROUP BY clause. The |
- ** processing is much simpler since there is only a single row |
- ** of output. |
- */ |
- resetAccumulator(pParse, &sAggInfo); |
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); |
- if( pWInfo==0 ){ |
- sqlite3ExprListDelete(db, pDel); |
- goto select_end; |
- } |
- updateAccumulator(pParse, &sAggInfo); |
- assert( pMinMax==0 || pMinMax->nExpr==1 ); |
- if( sqlite3WhereIsOrdered(pWInfo)>0 ){ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); |
- VdbeComment((v, "%s() by index", |
- (flag==WHERE_ORDERBY_MIN?"min":"max"))); |
- } |
- sqlite3WhereEnd(pWInfo); |
- finalizeAggFunctions(pParse, &sAggInfo); |
- } |
- |
- sSort.pOrderBy = 0; |
- sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); |
- selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, |
- pDest, addrEnd, addrEnd); |
- sqlite3ExprListDelete(db, pDel); |
- } |
- sqlite3VdbeResolveLabel(v, addrEnd); |
- |
- } /* endif aggregate query */ |
- |
- if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ |
- explainTempTable(pParse, "DISTINCT"); |
- } |
- |
- /* If there is an ORDER BY clause, then we need to sort the results |
- ** and send them to the callback one by one. |
- */ |
- if( sSort.pOrderBy ){ |
- explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); |
- generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); |
- } |
- |
- /* Jump here to skip this query |
- */ |
- sqlite3VdbeResolveLabel(v, iEnd); |
- |
- /* The SELECT was successfully coded. Set the return code to 0 |
- ** to indicate no errors. |
- */ |
- rc = 0; |
- |
- /* Control jumps to here if an error is encountered above, or upon |
- ** successful coding of the SELECT. |
- */ |
-select_end: |
- explainSetInteger(pParse->iSelectId, iRestoreSelectId); |
- |
- /* Identify column names if results of the SELECT are to be output. |
- */ |
- if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ |
- generateColumnNames(pParse, pTabList, pEList); |
- } |
- |
- sqlite3DbFree(db, sAggInfo.aCol); |
- sqlite3DbFree(db, sAggInfo.aFunc); |
-#if SELECTTRACE_ENABLED |
- SELECTTRACE(1,pParse,p,("end processing\n")); |
- pParse->nSelectIndent--; |
-#endif |
- return rc; |
-} |
- |
-#ifdef SQLITE_DEBUG |
-/* |
-** Generate a human-readable description of a the Select object. |
-*/ |
-void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ |
- int n = 0; |
- pView = sqlite3TreeViewPush(pView, moreToFollow); |
- sqlite3TreeViewLine(pView, "SELECT%s%s", |
- ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), |
- ((p->selFlags & SF_Aggregate) ? " agg_flag" : "") |
- ); |
- if( p->pSrc && p->pSrc->nSrc ) n++; |
- if( p->pWhere ) n++; |
- if( p->pGroupBy ) n++; |
- if( p->pHaving ) n++; |
- if( p->pOrderBy ) n++; |
- if( p->pLimit ) n++; |
- if( p->pOffset ) n++; |
- if( p->pPrior ) n++; |
- sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); |
- if( p->pSrc && p->pSrc->nSrc ){ |
- int i; |
- pView = sqlite3TreeViewPush(pView, (n--)>0); |
- sqlite3TreeViewLine(pView, "FROM"); |
- for(i=0; i<p->pSrc->nSrc; i++){ |
- struct SrcList_item *pItem = &p->pSrc->a[i]; |
- StrAccum x; |
- char zLine[100]; |
- sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); |
- sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); |
- if( pItem->zDatabase ){ |
- sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); |
- }else if( pItem->zName ){ |
- sqlite3XPrintf(&x, 0, " %s", pItem->zName); |
- } |
- if( pItem->pTab ){ |
- sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); |
- } |
- if( pItem->zAlias ){ |
- sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); |
- } |
- if( pItem->jointype & JT_LEFT ){ |
- sqlite3XPrintf(&x, 0, " LEFT-JOIN"); |
- } |
- sqlite3StrAccumFinish(&x); |
- sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); |
- if( pItem->pSelect ){ |
- sqlite3TreeViewSelect(pView, pItem->pSelect, 0); |
- } |
- sqlite3TreeViewPop(pView); |
- } |
- sqlite3TreeViewPop(pView); |
- } |
- if( p->pWhere ){ |
- sqlite3TreeViewItem(pView, "WHERE", (n--)>0); |
- sqlite3TreeViewExpr(pView, p->pWhere, 0); |
- sqlite3TreeViewPop(pView); |
- } |
- if( p->pGroupBy ){ |
- sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); |
- } |
- if( p->pHaving ){ |
- sqlite3TreeViewItem(pView, "HAVING", (n--)>0); |
- sqlite3TreeViewExpr(pView, p->pHaving, 0); |
- sqlite3TreeViewPop(pView); |
- } |
- if( p->pOrderBy ){ |
- sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); |
- } |
- if( p->pLimit ){ |
- sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); |
- sqlite3TreeViewExpr(pView, p->pLimit, 0); |
- sqlite3TreeViewPop(pView); |
- } |
- if( p->pOffset ){ |
- sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); |
- sqlite3TreeViewExpr(pView, p->pOffset, 0); |
- sqlite3TreeViewPop(pView); |
- } |
- if( p->pPrior ){ |
- const char *zOp = "UNION"; |
- switch( p->op ){ |
- case TK_ALL: zOp = "UNION ALL"; break; |
- case TK_INTERSECT: zOp = "INTERSECT"; break; |
- case TK_EXCEPT: zOp = "EXCEPT"; break; |
- } |
- sqlite3TreeViewItem(pView, zOp, (n--)>0); |
- sqlite3TreeViewSelect(pView, p->pPrior, 0); |
- sqlite3TreeViewPop(pView); |
- } |
- sqlite3TreeViewPop(pView); |
-} |
-#endif /* SQLITE_DEBUG */ |