OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 15 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains C code routines that are called by the parser | |
13 ** to handle SELECT statements in SQLite. | |
14 */ | |
15 #include "sqliteInt.h" | |
16 | |
17 /* | |
18 ** Trace output macros | |
19 */ | |
20 #if SELECTTRACE_ENABLED | |
21 /***/ int sqlite3SelectTrace = 0; | |
22 # define SELECTTRACE(K,P,S,X) \ | |
23 if(sqlite3SelectTrace&(K)) \ | |
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S))
,\ | |
25 sqlite3DebugPrintf X | |
26 #else | |
27 # define SELECTTRACE(K,P,S,X) | |
28 #endif | |
29 | |
30 | |
31 /* | |
32 ** An instance of the following object is used to record information about | |
33 ** how to process the DISTINCT keyword, to simplify passing that information | |
34 ** into the selectInnerLoop() routine. | |
35 */ | |
36 typedef struct DistinctCtx DistinctCtx; | |
37 struct DistinctCtx { | |
38 u8 isTnct; /* True if the DISTINCT keyword is present */ | |
39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ | |
40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ | |
41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ | |
42 }; | |
43 | |
44 /* | |
45 ** An instance of the following object is used to record information about | |
46 ** the ORDER BY (or GROUP BY) clause of query is being coded. | |
47 */ | |
48 typedef struct SortCtx SortCtx; | |
49 struct SortCtx { | |
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ | |
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ | |
52 int iECursor; /* Cursor number for the sorter */ | |
53 int regReturn; /* Register holding block-output return address */ | |
54 int labelBkOut; /* Start label for the block-output subroutine */ | |
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ | |
56 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ | |
57 }; | |
58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ | |
59 | |
60 /* | |
61 ** Delete all the content of a Select structure but do not deallocate | |
62 ** the select structure itself. | |
63 */ | |
64 static void clearSelect(sqlite3 *db, Select *p){ | |
65 sqlite3ExprListDelete(db, p->pEList); | |
66 sqlite3SrcListDelete(db, p->pSrc); | |
67 sqlite3ExprDelete(db, p->pWhere); | |
68 sqlite3ExprListDelete(db, p->pGroupBy); | |
69 sqlite3ExprDelete(db, p->pHaving); | |
70 sqlite3ExprListDelete(db, p->pOrderBy); | |
71 sqlite3SelectDelete(db, p->pPrior); | |
72 sqlite3ExprDelete(db, p->pLimit); | |
73 sqlite3ExprDelete(db, p->pOffset); | |
74 sqlite3WithDelete(db, p->pWith); | |
75 } | |
76 | |
77 /* | |
78 ** Initialize a SelectDest structure. | |
79 */ | |
80 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ | |
81 pDest->eDest = (u8)eDest; | |
82 pDest->iSDParm = iParm; | |
83 pDest->affSdst = 0; | |
84 pDest->iSdst = 0; | |
85 pDest->nSdst = 0; | |
86 } | |
87 | |
88 | |
89 /* | |
90 ** Allocate a new Select structure and return a pointer to that | |
91 ** structure. | |
92 */ | |
93 Select *sqlite3SelectNew( | |
94 Parse *pParse, /* Parsing context */ | |
95 ExprList *pEList, /* which columns to include in the result */ | |
96 SrcList *pSrc, /* the FROM clause -- which tables to scan */ | |
97 Expr *pWhere, /* the WHERE clause */ | |
98 ExprList *pGroupBy, /* the GROUP BY clause */ | |
99 Expr *pHaving, /* the HAVING clause */ | |
100 ExprList *pOrderBy, /* the ORDER BY clause */ | |
101 u16 selFlags, /* Flag parameters, such as SF_Distinct */ | |
102 Expr *pLimit, /* LIMIT value. NULL means not used */ | |
103 Expr *pOffset /* OFFSET value. NULL means no offset */ | |
104 ){ | |
105 Select *pNew; | |
106 Select standin; | |
107 sqlite3 *db = pParse->db; | |
108 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); | |
109 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ | |
110 if( pNew==0 ){ | |
111 assert( db->mallocFailed ); | |
112 pNew = &standin; | |
113 memset(pNew, 0, sizeof(*pNew)); | |
114 } | |
115 if( pEList==0 ){ | |
116 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); | |
117 } | |
118 pNew->pEList = pEList; | |
119 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); | |
120 pNew->pSrc = pSrc; | |
121 pNew->pWhere = pWhere; | |
122 pNew->pGroupBy = pGroupBy; | |
123 pNew->pHaving = pHaving; | |
124 pNew->pOrderBy = pOrderBy; | |
125 pNew->selFlags = selFlags; | |
126 pNew->op = TK_SELECT; | |
127 pNew->pLimit = pLimit; | |
128 pNew->pOffset = pOffset; | |
129 assert( pOffset==0 || pLimit!=0 ); | |
130 pNew->addrOpenEphm[0] = -1; | |
131 pNew->addrOpenEphm[1] = -1; | |
132 if( db->mallocFailed ) { | |
133 clearSelect(db, pNew); | |
134 if( pNew!=&standin ) sqlite3DbFree(db, pNew); | |
135 pNew = 0; | |
136 }else{ | |
137 assert( pNew->pSrc!=0 || pParse->nErr>0 ); | |
138 } | |
139 assert( pNew!=&standin ); | |
140 return pNew; | |
141 } | |
142 | |
143 #if SELECTTRACE_ENABLED | |
144 /* | |
145 ** Set the name of a Select object | |
146 */ | |
147 void sqlite3SelectSetName(Select *p, const char *zName){ | |
148 if( p && zName ){ | |
149 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); | |
150 } | |
151 } | |
152 #endif | |
153 | |
154 | |
155 /* | |
156 ** Delete the given Select structure and all of its substructures. | |
157 */ | |
158 void sqlite3SelectDelete(sqlite3 *db, Select *p){ | |
159 if( p ){ | |
160 clearSelect(db, p); | |
161 sqlite3DbFree(db, p); | |
162 } | |
163 } | |
164 | |
165 /* | |
166 ** Return a pointer to the right-most SELECT statement in a compound. | |
167 */ | |
168 static Select *findRightmost(Select *p){ | |
169 while( p->pNext ) p = p->pNext; | |
170 return p; | |
171 } | |
172 | |
173 /* | |
174 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the | |
175 ** type of join. Return an integer constant that expresses that type | |
176 ** in terms of the following bit values: | |
177 ** | |
178 ** JT_INNER | |
179 ** JT_CROSS | |
180 ** JT_OUTER | |
181 ** JT_NATURAL | |
182 ** JT_LEFT | |
183 ** JT_RIGHT | |
184 ** | |
185 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. | |
186 ** | |
187 ** If an illegal or unsupported join type is seen, then still return | |
188 ** a join type, but put an error in the pParse structure. | |
189 */ | |
190 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ | |
191 int jointype = 0; | |
192 Token *apAll[3]; | |
193 Token *p; | |
194 /* 0123456789 123456789 123456789 123 */ | |
195 static const char zKeyText[] = "naturaleftouterightfullinnercross"; | |
196 static const struct { | |
197 u8 i; /* Beginning of keyword text in zKeyText[] */ | |
198 u8 nChar; /* Length of the keyword in characters */ | |
199 u8 code; /* Join type mask */ | |
200 } aKeyword[] = { | |
201 /* natural */ { 0, 7, JT_NATURAL }, | |
202 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, | |
203 /* outer */ { 10, 5, JT_OUTER }, | |
204 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, | |
205 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, | |
206 /* inner */ { 23, 5, JT_INNER }, | |
207 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, | |
208 }; | |
209 int i, j; | |
210 apAll[0] = pA; | |
211 apAll[1] = pB; | |
212 apAll[2] = pC; | |
213 for(i=0; i<3 && apAll[i]; i++){ | |
214 p = apAll[i]; | |
215 for(j=0; j<ArraySize(aKeyword); j++){ | |
216 if( p->n==aKeyword[j].nChar | |
217 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ | |
218 jointype |= aKeyword[j].code; | |
219 break; | |
220 } | |
221 } | |
222 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); | |
223 if( j>=ArraySize(aKeyword) ){ | |
224 jointype |= JT_ERROR; | |
225 break; | |
226 } | |
227 } | |
228 if( | |
229 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || | |
230 (jointype & JT_ERROR)!=0 | |
231 ){ | |
232 const char *zSp = " "; | |
233 assert( pB!=0 ); | |
234 if( pC==0 ){ zSp++; } | |
235 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " | |
236 "%T %T%s%T", pA, pB, zSp, pC); | |
237 jointype = JT_INNER; | |
238 }else if( (jointype & JT_OUTER)!=0 | |
239 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ | |
240 sqlite3ErrorMsg(pParse, | |
241 "RIGHT and FULL OUTER JOINs are not currently supported"); | |
242 jointype = JT_INNER; | |
243 } | |
244 return jointype; | |
245 } | |
246 | |
247 /* | |
248 ** Return the index of a column in a table. Return -1 if the column | |
249 ** is not contained in the table. | |
250 */ | |
251 static int columnIndex(Table *pTab, const char *zCol){ | |
252 int i; | |
253 for(i=0; i<pTab->nCol; i++){ | |
254 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; | |
255 } | |
256 return -1; | |
257 } | |
258 | |
259 /* | |
260 ** Search the first N tables in pSrc, from left to right, looking for a | |
261 ** table that has a column named zCol. | |
262 ** | |
263 ** When found, set *piTab and *piCol to the table index and column index | |
264 ** of the matching column and return TRUE. | |
265 ** | |
266 ** If not found, return FALSE. | |
267 */ | |
268 static int tableAndColumnIndex( | |
269 SrcList *pSrc, /* Array of tables to search */ | |
270 int N, /* Number of tables in pSrc->a[] to search */ | |
271 const char *zCol, /* Name of the column we are looking for */ | |
272 int *piTab, /* Write index of pSrc->a[] here */ | |
273 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ | |
274 ){ | |
275 int i; /* For looping over tables in pSrc */ | |
276 int iCol; /* Index of column matching zCol */ | |
277 | |
278 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ | |
279 for(i=0; i<N; i++){ | |
280 iCol = columnIndex(pSrc->a[i].pTab, zCol); | |
281 if( iCol>=0 ){ | |
282 if( piTab ){ | |
283 *piTab = i; | |
284 *piCol = iCol; | |
285 } | |
286 return 1; | |
287 } | |
288 } | |
289 return 0; | |
290 } | |
291 | |
292 /* | |
293 ** This function is used to add terms implied by JOIN syntax to the | |
294 ** WHERE clause expression of a SELECT statement. The new term, which | |
295 ** is ANDed with the existing WHERE clause, is of the form: | |
296 ** | |
297 ** (tab1.col1 = tab2.col2) | |
298 ** | |
299 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the | |
300 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is | |
301 ** column iColRight of tab2. | |
302 */ | |
303 static void addWhereTerm( | |
304 Parse *pParse, /* Parsing context */ | |
305 SrcList *pSrc, /* List of tables in FROM clause */ | |
306 int iLeft, /* Index of first table to join in pSrc */ | |
307 int iColLeft, /* Index of column in first table */ | |
308 int iRight, /* Index of second table in pSrc */ | |
309 int iColRight, /* Index of column in second table */ | |
310 int isOuterJoin, /* True if this is an OUTER join */ | |
311 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ | |
312 ){ | |
313 sqlite3 *db = pParse->db; | |
314 Expr *pE1; | |
315 Expr *pE2; | |
316 Expr *pEq; | |
317 | |
318 assert( iLeft<iRight ); | |
319 assert( pSrc->nSrc>iRight ); | |
320 assert( pSrc->a[iLeft].pTab ); | |
321 assert( pSrc->a[iRight].pTab ); | |
322 | |
323 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); | |
324 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); | |
325 | |
326 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); | |
327 if( pEq && isOuterJoin ){ | |
328 ExprSetProperty(pEq, EP_FromJoin); | |
329 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); | |
330 ExprSetVVAProperty(pEq, EP_NoReduce); | |
331 pEq->iRightJoinTable = (i16)pE2->iTable; | |
332 } | |
333 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); | |
334 } | |
335 | |
336 /* | |
337 ** Set the EP_FromJoin property on all terms of the given expression. | |
338 ** And set the Expr.iRightJoinTable to iTable for every term in the | |
339 ** expression. | |
340 ** | |
341 ** The EP_FromJoin property is used on terms of an expression to tell | |
342 ** the LEFT OUTER JOIN processing logic that this term is part of the | |
343 ** join restriction specified in the ON or USING clause and not a part | |
344 ** of the more general WHERE clause. These terms are moved over to the | |
345 ** WHERE clause during join processing but we need to remember that they | |
346 ** originated in the ON or USING clause. | |
347 ** | |
348 ** The Expr.iRightJoinTable tells the WHERE clause processing that the | |
349 ** expression depends on table iRightJoinTable even if that table is not | |
350 ** explicitly mentioned in the expression. That information is needed | |
351 ** for cases like this: | |
352 ** | |
353 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 | |
354 ** | |
355 ** The where clause needs to defer the handling of the t1.x=5 | |
356 ** term until after the t2 loop of the join. In that way, a | |
357 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not | |
358 ** defer the handling of t1.x=5, it will be processed immediately | |
359 ** after the t1 loop and rows with t1.x!=5 will never appear in | |
360 ** the output, which is incorrect. | |
361 */ | |
362 static void setJoinExpr(Expr *p, int iTable){ | |
363 while( p ){ | |
364 ExprSetProperty(p, EP_FromJoin); | |
365 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); | |
366 ExprSetVVAProperty(p, EP_NoReduce); | |
367 p->iRightJoinTable = (i16)iTable; | |
368 setJoinExpr(p->pLeft, iTable); | |
369 p = p->pRight; | |
370 } | |
371 } | |
372 | |
373 /* | |
374 ** This routine processes the join information for a SELECT statement. | |
375 ** ON and USING clauses are converted into extra terms of the WHERE clause. | |
376 ** NATURAL joins also create extra WHERE clause terms. | |
377 ** | |
378 ** The terms of a FROM clause are contained in the Select.pSrc structure. | |
379 ** The left most table is the first entry in Select.pSrc. The right-most | |
380 ** table is the last entry. The join operator is held in the entry to | |
381 ** the left. Thus entry 0 contains the join operator for the join between | |
382 ** entries 0 and 1. Any ON or USING clauses associated with the join are | |
383 ** also attached to the left entry. | |
384 ** | |
385 ** This routine returns the number of errors encountered. | |
386 */ | |
387 static int sqliteProcessJoin(Parse *pParse, Select *p){ | |
388 SrcList *pSrc; /* All tables in the FROM clause */ | |
389 int i, j; /* Loop counters */ | |
390 struct SrcList_item *pLeft; /* Left table being joined */ | |
391 struct SrcList_item *pRight; /* Right table being joined */ | |
392 | |
393 pSrc = p->pSrc; | |
394 pLeft = &pSrc->a[0]; | |
395 pRight = &pLeft[1]; | |
396 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ | |
397 Table *pLeftTab = pLeft->pTab; | |
398 Table *pRightTab = pRight->pTab; | |
399 int isOuter; | |
400 | |
401 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; | |
402 isOuter = (pRight->jointype & JT_OUTER)!=0; | |
403 | |
404 /* When the NATURAL keyword is present, add WHERE clause terms for | |
405 ** every column that the two tables have in common. | |
406 */ | |
407 if( pRight->jointype & JT_NATURAL ){ | |
408 if( pRight->pOn || pRight->pUsing ){ | |
409 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " | |
410 "an ON or USING clause", 0); | |
411 return 1; | |
412 } | |
413 for(j=0; j<pRightTab->nCol; j++){ | |
414 char *zName; /* Name of column in the right table */ | |
415 int iLeft; /* Matching left table */ | |
416 int iLeftCol; /* Matching column in the left table */ | |
417 | |
418 zName = pRightTab->aCol[j].zName; | |
419 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ | |
420 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, | |
421 isOuter, &p->pWhere); | |
422 } | |
423 } | |
424 } | |
425 | |
426 /* Disallow both ON and USING clauses in the same join | |
427 */ | |
428 if( pRight->pOn && pRight->pUsing ){ | |
429 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " | |
430 "clauses in the same join"); | |
431 return 1; | |
432 } | |
433 | |
434 /* Add the ON clause to the end of the WHERE clause, connected by | |
435 ** an AND operator. | |
436 */ | |
437 if( pRight->pOn ){ | |
438 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); | |
439 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); | |
440 pRight->pOn = 0; | |
441 } | |
442 | |
443 /* Create extra terms on the WHERE clause for each column named | |
444 ** in the USING clause. Example: If the two tables to be joined are | |
445 ** A and B and the USING clause names X, Y, and Z, then add this | |
446 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z | |
447 ** Report an error if any column mentioned in the USING clause is | |
448 ** not contained in both tables to be joined. | |
449 */ | |
450 if( pRight->pUsing ){ | |
451 IdList *pList = pRight->pUsing; | |
452 for(j=0; j<pList->nId; j++){ | |
453 char *zName; /* Name of the term in the USING clause */ | |
454 int iLeft; /* Table on the left with matching column name */ | |
455 int iLeftCol; /* Column number of matching column on the left */ | |
456 int iRightCol; /* Column number of matching column on the right */ | |
457 | |
458 zName = pList->a[j].zName; | |
459 iRightCol = columnIndex(pRightTab, zName); | |
460 if( iRightCol<0 | |
461 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) | |
462 ){ | |
463 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " | |
464 "not present in both tables", zName); | |
465 return 1; | |
466 } | |
467 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, | |
468 isOuter, &p->pWhere); | |
469 } | |
470 } | |
471 } | |
472 return 0; | |
473 } | |
474 | |
475 /* Forward reference */ | |
476 static KeyInfo *keyInfoFromExprList( | |
477 Parse *pParse, /* Parsing context */ | |
478 ExprList *pList, /* Form the KeyInfo object from this ExprList */ | |
479 int iStart, /* Begin with this column of pList */ | |
480 int nExtra /* Add this many extra columns to the end */ | |
481 ); | |
482 | |
483 /* | |
484 ** Generate code that will push the record in registers regData | |
485 ** through regData+nData-1 onto the sorter. | |
486 */ | |
487 static void pushOntoSorter( | |
488 Parse *pParse, /* Parser context */ | |
489 SortCtx *pSort, /* Information about the ORDER BY clause */ | |
490 Select *pSelect, /* The whole SELECT statement */ | |
491 int regData, /* First register holding data to be sorted */ | |
492 int nData, /* Number of elements in the data array */ | |
493 int nPrefixReg /* No. of reg prior to regData available for use */ | |
494 ){ | |
495 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ | |
496 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); | |
497 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ | |
498 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ | |
499 int regBase; /* Regs for sorter record */ | |
500 int regRecord = ++pParse->nMem; /* Assembled sorter record */ | |
501 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ | |
502 int op; /* Opcode to add sorter record to sorter */ | |
503 | |
504 assert( bSeq==0 || bSeq==1 ); | |
505 if( nPrefixReg ){ | |
506 assert( nPrefixReg==nExpr+bSeq ); | |
507 regBase = regData - nExpr - bSeq; | |
508 }else{ | |
509 regBase = pParse->nMem + 1; | |
510 pParse->nMem += nBase; | |
511 } | |
512 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); | |
513 if( bSeq ){ | |
514 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); | |
515 } | |
516 if( nPrefixReg==0 ){ | |
517 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); | |
518 } | |
519 | |
520 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); | |
521 if( nOBSat>0 ){ | |
522 int regPrevKey; /* The first nOBSat columns of the previous row */ | |
523 int addrFirst; /* Address of the OP_IfNot opcode */ | |
524 int addrJmp; /* Address of the OP_Jump opcode */ | |
525 VdbeOp *pOp; /* Opcode that opens the sorter */ | |
526 int nKey; /* Number of sorting key columns, including OP_Sequence */ | |
527 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ | |
528 | |
529 regPrevKey = pParse->nMem+1; | |
530 pParse->nMem += pSort->nOBSat; | |
531 nKey = nExpr - pSort->nOBSat + bSeq; | |
532 if( bSeq ){ | |
533 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); | |
534 }else{ | |
535 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); | |
536 } | |
537 VdbeCoverage(v); | |
538 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); | |
539 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); | |
540 if( pParse->db->mallocFailed ) return; | |
541 pOp->p2 = nKey + nData; | |
542 pKI = pOp->p4.pKeyInfo; | |
543 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ | |
544 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); | |
545 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); | |
546 addrJmp = sqlite3VdbeCurrentAddr(v); | |
547 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); | |
548 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); | |
549 pSort->regReturn = ++pParse->nMem; | |
550 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); | |
551 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); | |
552 sqlite3VdbeJumpHere(v, addrFirst); | |
553 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); | |
554 sqlite3VdbeJumpHere(v, addrJmp); | |
555 } | |
556 if( pSort->sortFlags & SORTFLAG_UseSorter ){ | |
557 op = OP_SorterInsert; | |
558 }else{ | |
559 op = OP_IdxInsert; | |
560 } | |
561 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); | |
562 if( pSelect->iLimit ){ | |
563 int addr1, addr2; | |
564 int iLimit; | |
565 if( pSelect->iOffset ){ | |
566 iLimit = pSelect->iOffset+1; | |
567 }else{ | |
568 iLimit = pSelect->iLimit; | |
569 } | |
570 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); | |
571 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); | |
572 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); | |
573 sqlite3VdbeJumpHere(v, addr1); | |
574 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); | |
575 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); | |
576 sqlite3VdbeJumpHere(v, addr2); | |
577 } | |
578 } | |
579 | |
580 /* | |
581 ** Add code to implement the OFFSET | |
582 */ | |
583 static void codeOffset( | |
584 Vdbe *v, /* Generate code into this VM */ | |
585 int iOffset, /* Register holding the offset counter */ | |
586 int iContinue /* Jump here to skip the current record */ | |
587 ){ | |
588 if( iOffset>0 ){ | |
589 int addr; | |
590 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); | |
591 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); | |
592 VdbeComment((v, "skip OFFSET records")); | |
593 sqlite3VdbeJumpHere(v, addr); | |
594 } | |
595 } | |
596 | |
597 /* | |
598 ** Add code that will check to make sure the N registers starting at iMem | |
599 ** form a distinct entry. iTab is a sorting index that holds previously | |
600 ** seen combinations of the N values. A new entry is made in iTab | |
601 ** if the current N values are new. | |
602 ** | |
603 ** A jump to addrRepeat is made and the N+1 values are popped from the | |
604 ** stack if the top N elements are not distinct. | |
605 */ | |
606 static void codeDistinct( | |
607 Parse *pParse, /* Parsing and code generating context */ | |
608 int iTab, /* A sorting index used to test for distinctness */ | |
609 int addrRepeat, /* Jump to here if not distinct */ | |
610 int N, /* Number of elements */ | |
611 int iMem /* First element */ | |
612 ){ | |
613 Vdbe *v; | |
614 int r1; | |
615 | |
616 v = pParse->pVdbe; | |
617 r1 = sqlite3GetTempReg(pParse); | |
618 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); | |
619 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); | |
620 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); | |
621 sqlite3ReleaseTempReg(pParse, r1); | |
622 } | |
623 | |
624 #ifndef SQLITE_OMIT_SUBQUERY | |
625 /* | |
626 ** Generate an error message when a SELECT is used within a subexpression | |
627 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result | |
628 ** column. We do this in a subroutine because the error used to occur | |
629 ** in multiple places. (The error only occurs in one place now, but we | |
630 ** retain the subroutine to minimize code disruption.) | |
631 */ | |
632 static int checkForMultiColumnSelectError( | |
633 Parse *pParse, /* Parse context. */ | |
634 SelectDest *pDest, /* Destination of SELECT results */ | |
635 int nExpr /* Number of result columns returned by SELECT */ | |
636 ){ | |
637 int eDest = pDest->eDest; | |
638 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ | |
639 sqlite3ErrorMsg(pParse, "only a single result allowed for " | |
640 "a SELECT that is part of an expression"); | |
641 return 1; | |
642 }else{ | |
643 return 0; | |
644 } | |
645 } | |
646 #endif | |
647 | |
648 /* | |
649 ** This routine generates the code for the inside of the inner loop | |
650 ** of a SELECT. | |
651 ** | |
652 ** If srcTab is negative, then the pEList expressions | |
653 ** are evaluated in order to get the data for this row. If srcTab is | |
654 ** zero or more, then data is pulled from srcTab and pEList is used only | |
655 ** to get number columns and the datatype for each column. | |
656 */ | |
657 static void selectInnerLoop( | |
658 Parse *pParse, /* The parser context */ | |
659 Select *p, /* The complete select statement being coded */ | |
660 ExprList *pEList, /* List of values being extracted */ | |
661 int srcTab, /* Pull data from this table */ | |
662 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ | |
663 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ | |
664 SelectDest *pDest, /* How to dispose of the results */ | |
665 int iContinue, /* Jump here to continue with next row */ | |
666 int iBreak /* Jump here to break out of the inner loop */ | |
667 ){ | |
668 Vdbe *v = pParse->pVdbe; | |
669 int i; | |
670 int hasDistinct; /* True if the DISTINCT keyword is present */ | |
671 int regResult; /* Start of memory holding result set */ | |
672 int eDest = pDest->eDest; /* How to dispose of results */ | |
673 int iParm = pDest->iSDParm; /* First argument to disposal method */ | |
674 int nResultCol; /* Number of result columns */ | |
675 int nPrefixReg = 0; /* Number of extra registers before regResult */ | |
676 | |
677 assert( v ); | |
678 assert( pEList!=0 ); | |
679 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; | |
680 if( pSort && pSort->pOrderBy==0 ) pSort = 0; | |
681 if( pSort==0 && !hasDistinct ){ | |
682 assert( iContinue!=0 ); | |
683 codeOffset(v, p->iOffset, iContinue); | |
684 } | |
685 | |
686 /* Pull the requested columns. | |
687 */ | |
688 nResultCol = pEList->nExpr; | |
689 | |
690 if( pDest->iSdst==0 ){ | |
691 if( pSort ){ | |
692 nPrefixReg = pSort->pOrderBy->nExpr; | |
693 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; | |
694 pParse->nMem += nPrefixReg; | |
695 } | |
696 pDest->iSdst = pParse->nMem+1; | |
697 pParse->nMem += nResultCol; | |
698 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ | |
699 /* This is an error condition that can result, for example, when a SELECT | |
700 ** on the right-hand side of an INSERT contains more result columns than | |
701 ** there are columns in the table on the left. The error will be caught | |
702 ** and reported later. But we need to make sure enough memory is allocated | |
703 ** to avoid other spurious errors in the meantime. */ | |
704 pParse->nMem += nResultCol; | |
705 } | |
706 pDest->nSdst = nResultCol; | |
707 regResult = pDest->iSdst; | |
708 if( srcTab>=0 ){ | |
709 for(i=0; i<nResultCol; i++){ | |
710 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); | |
711 VdbeComment((v, "%s", pEList->a[i].zName)); | |
712 } | |
713 }else if( eDest!=SRT_Exists ){ | |
714 /* If the destination is an EXISTS(...) expression, the actual | |
715 ** values returned by the SELECT are not required. | |
716 */ | |
717 sqlite3ExprCodeExprList(pParse, pEList, regResult, | |
718 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); | |
719 } | |
720 | |
721 /* If the DISTINCT keyword was present on the SELECT statement | |
722 ** and this row has been seen before, then do not make this row | |
723 ** part of the result. | |
724 */ | |
725 if( hasDistinct ){ | |
726 switch( pDistinct->eTnctType ){ | |
727 case WHERE_DISTINCT_ORDERED: { | |
728 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ | |
729 int iJump; /* Jump destination */ | |
730 int regPrev; /* Previous row content */ | |
731 | |
732 /* Allocate space for the previous row */ | |
733 regPrev = pParse->nMem+1; | |
734 pParse->nMem += nResultCol; | |
735 | |
736 /* Change the OP_OpenEphemeral coded earlier to an OP_Null | |
737 ** sets the MEM_Cleared bit on the first register of the | |
738 ** previous value. This will cause the OP_Ne below to always | |
739 ** fail on the first iteration of the loop even if the first | |
740 ** row is all NULLs. | |
741 */ | |
742 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); | |
743 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); | |
744 pOp->opcode = OP_Null; | |
745 pOp->p1 = 1; | |
746 pOp->p2 = regPrev; | |
747 | |
748 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; | |
749 for(i=0; i<nResultCol; i++){ | |
750 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); | |
751 if( i<nResultCol-1 ){ | |
752 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); | |
753 VdbeCoverage(v); | |
754 }else{ | |
755 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); | |
756 VdbeCoverage(v); | |
757 } | |
758 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); | |
759 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); | |
760 } | |
761 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); | |
762 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); | |
763 break; | |
764 } | |
765 | |
766 case WHERE_DISTINCT_UNIQUE: { | |
767 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); | |
768 break; | |
769 } | |
770 | |
771 default: { | |
772 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); | |
773 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResul
t); | |
774 break; | |
775 } | |
776 } | |
777 if( pSort==0 ){ | |
778 codeOffset(v, p->iOffset, iContinue); | |
779 } | |
780 } | |
781 | |
782 switch( eDest ){ | |
783 /* In this mode, write each query result to the key of the temporary | |
784 ** table iParm. | |
785 */ | |
786 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
787 case SRT_Union: { | |
788 int r1; | |
789 r1 = sqlite3GetTempReg(pParse); | |
790 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); | |
791 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); | |
792 sqlite3ReleaseTempReg(pParse, r1); | |
793 break; | |
794 } | |
795 | |
796 /* Construct a record from the query result, but instead of | |
797 ** saving that record, use it as a key to delete elements from | |
798 ** the temporary table iParm. | |
799 */ | |
800 case SRT_Except: { | |
801 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); | |
802 break; | |
803 } | |
804 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ | |
805 | |
806 /* Store the result as data using a unique key. | |
807 */ | |
808 case SRT_Fifo: | |
809 case SRT_DistFifo: | |
810 case SRT_Table: | |
811 case SRT_EphemTab: { | |
812 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); | |
813 testcase( eDest==SRT_Table ); | |
814 testcase( eDest==SRT_EphemTab ); | |
815 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); | |
816 #ifndef SQLITE_OMIT_CTE | |
817 if( eDest==SRT_DistFifo ){ | |
818 /* If the destination is DistFifo, then cursor (iParm+1) is open | |
819 ** on an ephemeral index. If the current row is already present | |
820 ** in the index, do not write it to the output. If not, add the | |
821 ** current row to the index and proceed with writing it to the | |
822 ** output table as well. */ | |
823 int addr = sqlite3VdbeCurrentAddr(v) + 4; | |
824 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v)
; | |
825 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); | |
826 assert( pSort==0 ); | |
827 } | |
828 #endif | |
829 if( pSort ){ | |
830 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); | |
831 }else{ | |
832 int r2 = sqlite3GetTempReg(pParse); | |
833 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); | |
834 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); | |
835 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | |
836 sqlite3ReleaseTempReg(pParse, r2); | |
837 } | |
838 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); | |
839 break; | |
840 } | |
841 | |
842 #ifndef SQLITE_OMIT_SUBQUERY | |
843 /* If we are creating a set for an "expr IN (SELECT ...)" construct, | |
844 ** then there should be a single item on the stack. Write this | |
845 ** item into the set table with bogus data. | |
846 */ | |
847 case SRT_Set: { | |
848 assert( nResultCol==1 ); | |
849 pDest->affSdst = | |
850 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); | |
851 if( pSort ){ | |
852 /* At first glance you would think we could optimize out the | |
853 ** ORDER BY in this case since the order of entries in the set | |
854 ** does not matter. But there might be a LIMIT clause, in which | |
855 ** case the order does matter */ | |
856 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); | |
857 }else{ | |
858 int r1 = sqlite3GetTempReg(pParse); | |
859 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); | |
860 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); | |
861 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); | |
862 sqlite3ReleaseTempReg(pParse, r1); | |
863 } | |
864 break; | |
865 } | |
866 | |
867 /* If any row exist in the result set, record that fact and abort. | |
868 */ | |
869 case SRT_Exists: { | |
870 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); | |
871 /* The LIMIT clause will terminate the loop for us */ | |
872 break; | |
873 } | |
874 | |
875 /* If this is a scalar select that is part of an expression, then | |
876 ** store the results in the appropriate memory cell and break out | |
877 ** of the scan loop. | |
878 */ | |
879 case SRT_Mem: { | |
880 assert( nResultCol==1 ); | |
881 if( pSort ){ | |
882 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); | |
883 }else{ | |
884 assert( regResult==iParm ); | |
885 /* The LIMIT clause will jump out of the loop for us */ | |
886 } | |
887 break; | |
888 } | |
889 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ | |
890 | |
891 case SRT_Coroutine: /* Send data to a co-routine */ | |
892 case SRT_Output: { /* Return the results */ | |
893 testcase( eDest==SRT_Coroutine ); | |
894 testcase( eDest==SRT_Output ); | |
895 if( pSort ){ | |
896 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); | |
897 }else if( eDest==SRT_Coroutine ){ | |
898 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); | |
899 }else{ | |
900 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); | |
901 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); | |
902 } | |
903 break; | |
904 } | |
905 | |
906 #ifndef SQLITE_OMIT_CTE | |
907 /* Write the results into a priority queue that is order according to | |
908 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an | |
909 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first | |
910 ** pSO->nExpr columns, then make sure all keys are unique by adding a | |
911 ** final OP_Sequence column. The last column is the record as a blob. | |
912 */ | |
913 case SRT_DistQueue: | |
914 case SRT_Queue: { | |
915 int nKey; | |
916 int r1, r2, r3; | |
917 int addrTest = 0; | |
918 ExprList *pSO; | |
919 pSO = pDest->pOrderBy; | |
920 assert( pSO ); | |
921 nKey = pSO->nExpr; | |
922 r1 = sqlite3GetTempReg(pParse); | |
923 r2 = sqlite3GetTempRange(pParse, nKey+2); | |
924 r3 = r2+nKey+1; | |
925 if( eDest==SRT_DistQueue ){ | |
926 /* If the destination is DistQueue, then cursor (iParm+1) is open | |
927 ** on a second ephemeral index that holds all values every previously | |
928 ** added to the queue. */ | |
929 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, | |
930 regResult, nResultCol); | |
931 VdbeCoverage(v); | |
932 } | |
933 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); | |
934 if( eDest==SRT_DistQueue ){ | |
935 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); | |
936 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); | |
937 } | |
938 for(i=0; i<nKey; i++){ | |
939 sqlite3VdbeAddOp2(v, OP_SCopy, | |
940 regResult + pSO->a[i].u.x.iOrderByCol - 1, | |
941 r2+i); | |
942 } | |
943 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); | |
944 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); | |
945 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); | |
946 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); | |
947 sqlite3ReleaseTempReg(pParse, r1); | |
948 sqlite3ReleaseTempRange(pParse, r2, nKey+2); | |
949 break; | |
950 } | |
951 #endif /* SQLITE_OMIT_CTE */ | |
952 | |
953 | |
954 | |
955 #if !defined(SQLITE_OMIT_TRIGGER) | |
956 /* Discard the results. This is used for SELECT statements inside | |
957 ** the body of a TRIGGER. The purpose of such selects is to call | |
958 ** user-defined functions that have side effects. We do not care | |
959 ** about the actual results of the select. | |
960 */ | |
961 default: { | |
962 assert( eDest==SRT_Discard ); | |
963 break; | |
964 } | |
965 #endif | |
966 } | |
967 | |
968 /* Jump to the end of the loop if the LIMIT is reached. Except, if | |
969 ** there is a sorter, in which case the sorter has already limited | |
970 ** the output for us. | |
971 */ | |
972 if( pSort==0 && p->iLimit ){ | |
973 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); | |
974 } | |
975 } | |
976 | |
977 /* | |
978 ** Allocate a KeyInfo object sufficient for an index of N key columns and | |
979 ** X extra columns. | |
980 */ | |
981 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ | |
982 KeyInfo *p = sqlite3DbMallocZero(0, | |
983 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); | |
984 if( p ){ | |
985 p->aSortOrder = (u8*)&p->aColl[N+X]; | |
986 p->nField = (u16)N; | |
987 p->nXField = (u16)X; | |
988 p->enc = ENC(db); | |
989 p->db = db; | |
990 p->nRef = 1; | |
991 }else{ | |
992 db->mallocFailed = 1; | |
993 } | |
994 return p; | |
995 } | |
996 | |
997 /* | |
998 ** Deallocate a KeyInfo object | |
999 */ | |
1000 void sqlite3KeyInfoUnref(KeyInfo *p){ | |
1001 if( p ){ | |
1002 assert( p->nRef>0 ); | |
1003 p->nRef--; | |
1004 if( p->nRef==0 ) sqlite3DbFree(0, p); | |
1005 } | |
1006 } | |
1007 | |
1008 /* | |
1009 ** Make a new pointer to a KeyInfo object | |
1010 */ | |
1011 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ | |
1012 if( p ){ | |
1013 assert( p->nRef>0 ); | |
1014 p->nRef++; | |
1015 } | |
1016 return p; | |
1017 } | |
1018 | |
1019 #ifdef SQLITE_DEBUG | |
1020 /* | |
1021 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object | |
1022 ** can only be changed if this is just a single reference to the object. | |
1023 ** | |
1024 ** This routine is used only inside of assert() statements. | |
1025 */ | |
1026 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } | |
1027 #endif /* SQLITE_DEBUG */ | |
1028 | |
1029 /* | |
1030 ** Given an expression list, generate a KeyInfo structure that records | |
1031 ** the collating sequence for each expression in that expression list. | |
1032 ** | |
1033 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting | |
1034 ** KeyInfo structure is appropriate for initializing a virtual index to | |
1035 ** implement that clause. If the ExprList is the result set of a SELECT | |
1036 ** then the KeyInfo structure is appropriate for initializing a virtual | |
1037 ** index to implement a DISTINCT test. | |
1038 ** | |
1039 ** Space to hold the KeyInfo structure is obtained from malloc. The calling | |
1040 ** function is responsible for seeing that this structure is eventually | |
1041 ** freed. | |
1042 */ | |
1043 static KeyInfo *keyInfoFromExprList( | |
1044 Parse *pParse, /* Parsing context */ | |
1045 ExprList *pList, /* Form the KeyInfo object from this ExprList */ | |
1046 int iStart, /* Begin with this column of pList */ | |
1047 int nExtra /* Add this many extra columns to the end */ | |
1048 ){ | |
1049 int nExpr; | |
1050 KeyInfo *pInfo; | |
1051 struct ExprList_item *pItem; | |
1052 sqlite3 *db = pParse->db; | |
1053 int i; | |
1054 | |
1055 nExpr = pList->nExpr; | |
1056 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); | |
1057 if( pInfo ){ | |
1058 assert( sqlite3KeyInfoIsWriteable(pInfo) ); | |
1059 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ | |
1060 CollSeq *pColl; | |
1061 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); | |
1062 if( !pColl ) pColl = db->pDfltColl; | |
1063 pInfo->aColl[i-iStart] = pColl; | |
1064 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; | |
1065 } | |
1066 } | |
1067 return pInfo; | |
1068 } | |
1069 | |
1070 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
1071 /* | |
1072 ** Name of the connection operator, used for error messages. | |
1073 */ | |
1074 static const char *selectOpName(int id){ | |
1075 char *z; | |
1076 switch( id ){ | |
1077 case TK_ALL: z = "UNION ALL"; break; | |
1078 case TK_INTERSECT: z = "INTERSECT"; break; | |
1079 case TK_EXCEPT: z = "EXCEPT"; break; | |
1080 default: z = "UNION"; break; | |
1081 } | |
1082 return z; | |
1083 } | |
1084 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ | |
1085 | |
1086 #ifndef SQLITE_OMIT_EXPLAIN | |
1087 /* | |
1088 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function | |
1089 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, | |
1090 ** where the caption is of the form: | |
1091 ** | |
1092 ** "USE TEMP B-TREE FOR xxx" | |
1093 ** | |
1094 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which | |
1095 ** is determined by the zUsage argument. | |
1096 */ | |
1097 static void explainTempTable(Parse *pParse, const char *zUsage){ | |
1098 if( pParse->explain==2 ){ | |
1099 Vdbe *v = pParse->pVdbe; | |
1100 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); | |
1101 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); | |
1102 } | |
1103 } | |
1104 | |
1105 /* | |
1106 ** Assign expression b to lvalue a. A second, no-op, version of this macro | |
1107 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code | |
1108 ** in sqlite3Select() to assign values to structure member variables that | |
1109 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the | |
1110 ** code with #ifndef directives. | |
1111 */ | |
1112 # define explainSetInteger(a, b) a = b | |
1113 | |
1114 #else | |
1115 /* No-op versions of the explainXXX() functions and macros. */ | |
1116 # define explainTempTable(y,z) | |
1117 # define explainSetInteger(y,z) | |
1118 #endif | |
1119 | |
1120 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) | |
1121 /* | |
1122 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function | |
1123 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, | |
1124 ** where the caption is of one of the two forms: | |
1125 ** | |
1126 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" | |
1127 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" | |
1128 ** | |
1129 ** where iSub1 and iSub2 are the integers passed as the corresponding | |
1130 ** function parameters, and op is the text representation of the parameter | |
1131 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, | |
1132 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is | |
1133 ** false, or the second form if it is true. | |
1134 */ | |
1135 static void explainComposite( | |
1136 Parse *pParse, /* Parse context */ | |
1137 int op, /* One of TK_UNION, TK_EXCEPT etc. */ | |
1138 int iSub1, /* Subquery id 1 */ | |
1139 int iSub2, /* Subquery id 2 */ | |
1140 int bUseTmp /* True if a temp table was used */ | |
1141 ){ | |
1142 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); | |
1143 if( pParse->explain==2 ){ | |
1144 Vdbe *v = pParse->pVdbe; | |
1145 char *zMsg = sqlite3MPrintf( | |
1146 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, | |
1147 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) | |
1148 ); | |
1149 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); | |
1150 } | |
1151 } | |
1152 #else | |
1153 /* No-op versions of the explainXXX() functions and macros. */ | |
1154 # define explainComposite(v,w,x,y,z) | |
1155 #endif | |
1156 | |
1157 /* | |
1158 ** If the inner loop was generated using a non-null pOrderBy argument, | |
1159 ** then the results were placed in a sorter. After the loop is terminated | |
1160 ** we need to run the sorter and output the results. The following | |
1161 ** routine generates the code needed to do that. | |
1162 */ | |
1163 static void generateSortTail( | |
1164 Parse *pParse, /* Parsing context */ | |
1165 Select *p, /* The SELECT statement */ | |
1166 SortCtx *pSort, /* Information on the ORDER BY clause */ | |
1167 int nColumn, /* Number of columns of data */ | |
1168 SelectDest *pDest /* Write the sorted results here */ | |
1169 ){ | |
1170 Vdbe *v = pParse->pVdbe; /* The prepared statement */ | |
1171 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ | |
1172 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ | |
1173 int addr; | |
1174 int addrOnce = 0; | |
1175 int iTab; | |
1176 ExprList *pOrderBy = pSort->pOrderBy; | |
1177 int eDest = pDest->eDest; | |
1178 int iParm = pDest->iSDParm; | |
1179 int regRow; | |
1180 int regRowid; | |
1181 int nKey; | |
1182 int iSortTab; /* Sorter cursor to read from */ | |
1183 int nSortData; /* Trailing values to read from sorter */ | |
1184 int i; | |
1185 int bSeq; /* True if sorter record includes seq. no. */ | |
1186 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | |
1187 struct ExprList_item *aOutEx = p->pEList->a; | |
1188 #endif | |
1189 | |
1190 if( pSort->labelBkOut ){ | |
1191 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); | |
1192 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); | |
1193 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); | |
1194 } | |
1195 iTab = pSort->iECursor; | |
1196 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ | |
1197 regRowid = 0; | |
1198 regRow = pDest->iSdst; | |
1199 nSortData = nColumn; | |
1200 }else{ | |
1201 regRowid = sqlite3GetTempReg(pParse); | |
1202 regRow = sqlite3GetTempReg(pParse); | |
1203 nSortData = 1; | |
1204 } | |
1205 nKey = pOrderBy->nExpr - pSort->nOBSat; | |
1206 if( pSort->sortFlags & SORTFLAG_UseSorter ){ | |
1207 int regSortOut = ++pParse->nMem; | |
1208 iSortTab = pParse->nTab++; | |
1209 if( pSort->labelBkOut ){ | |
1210 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
1211 } | |
1212 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); | |
1213 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); | |
1214 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); | |
1215 VdbeCoverage(v); | |
1216 codeOffset(v, p->iOffset, addrContinue); | |
1217 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); | |
1218 bSeq = 0; | |
1219 }else{ | |
1220 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); | |
1221 codeOffset(v, p->iOffset, addrContinue); | |
1222 iSortTab = iTab; | |
1223 bSeq = 1; | |
1224 } | |
1225 for(i=0; i<nSortData; i++){ | |
1226 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); | |
1227 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); | |
1228 } | |
1229 switch( eDest ){ | |
1230 case SRT_Table: | |
1231 case SRT_EphemTab: { | |
1232 testcase( eDest==SRT_Table ); | |
1233 testcase( eDest==SRT_EphemTab ); | |
1234 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); | |
1235 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); | |
1236 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | |
1237 break; | |
1238 } | |
1239 #ifndef SQLITE_OMIT_SUBQUERY | |
1240 case SRT_Set: { | |
1241 assert( nColumn==1 ); | |
1242 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, | |
1243 &pDest->affSdst, 1); | |
1244 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); | |
1245 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); | |
1246 break; | |
1247 } | |
1248 case SRT_Mem: { | |
1249 assert( nColumn==1 ); | |
1250 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); | |
1251 /* The LIMIT clause will terminate the loop for us */ | |
1252 break; | |
1253 } | |
1254 #endif | |
1255 default: { | |
1256 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); | |
1257 testcase( eDest==SRT_Output ); | |
1258 testcase( eDest==SRT_Coroutine ); | |
1259 if( eDest==SRT_Output ){ | |
1260 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); | |
1261 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); | |
1262 }else{ | |
1263 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); | |
1264 } | |
1265 break; | |
1266 } | |
1267 } | |
1268 if( regRowid ){ | |
1269 sqlite3ReleaseTempReg(pParse, regRow); | |
1270 sqlite3ReleaseTempReg(pParse, regRowid); | |
1271 } | |
1272 /* The bottom of the loop | |
1273 */ | |
1274 sqlite3VdbeResolveLabel(v, addrContinue); | |
1275 if( pSort->sortFlags & SORTFLAG_UseSorter ){ | |
1276 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); | |
1277 }else{ | |
1278 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); | |
1279 } | |
1280 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); | |
1281 sqlite3VdbeResolveLabel(v, addrBreak); | |
1282 } | |
1283 | |
1284 /* | |
1285 ** Return a pointer to a string containing the 'declaration type' of the | |
1286 ** expression pExpr. The string may be treated as static by the caller. | |
1287 ** | |
1288 ** Also try to estimate the size of the returned value and return that | |
1289 ** result in *pEstWidth. | |
1290 ** | |
1291 ** The declaration type is the exact datatype definition extracted from the | |
1292 ** original CREATE TABLE statement if the expression is a column. The | |
1293 ** declaration type for a ROWID field is INTEGER. Exactly when an expression | |
1294 ** is considered a column can be complex in the presence of subqueries. The | |
1295 ** result-set expression in all of the following SELECT statements is | |
1296 ** considered a column by this function. | |
1297 ** | |
1298 ** SELECT col FROM tbl; | |
1299 ** SELECT (SELECT col FROM tbl; | |
1300 ** SELECT (SELECT col FROM tbl); | |
1301 ** SELECT abc FROM (SELECT col AS abc FROM tbl); | |
1302 ** | |
1303 ** The declaration type for any expression other than a column is NULL. | |
1304 ** | |
1305 ** This routine has either 3 or 6 parameters depending on whether or not | |
1306 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. | |
1307 */ | |
1308 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
1309 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) | |
1310 static const char *columnTypeImpl( | |
1311 NameContext *pNC, | |
1312 Expr *pExpr, | |
1313 const char **pzOrigDb, | |
1314 const char **pzOrigTab, | |
1315 const char **pzOrigCol, | |
1316 u8 *pEstWidth | |
1317 ){ | |
1318 char const *zOrigDb = 0; | |
1319 char const *zOrigTab = 0; | |
1320 char const *zOrigCol = 0; | |
1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ | |
1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) | |
1323 static const char *columnTypeImpl( | |
1324 NameContext *pNC, | |
1325 Expr *pExpr, | |
1326 u8 *pEstWidth | |
1327 ){ | |
1328 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ | |
1329 char const *zType = 0; | |
1330 int j; | |
1331 u8 estWidth = 1; | |
1332 | |
1333 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; | |
1334 switch( pExpr->op ){ | |
1335 case TK_AGG_COLUMN: | |
1336 case TK_COLUMN: { | |
1337 /* The expression is a column. Locate the table the column is being | |
1338 ** extracted from in NameContext.pSrcList. This table may be real | |
1339 ** database table or a subquery. | |
1340 */ | |
1341 Table *pTab = 0; /* Table structure column is extracted from */ | |
1342 Select *pS = 0; /* Select the column is extracted from */ | |
1343 int iCol = pExpr->iColumn; /* Index of column in pTab */ | |
1344 testcase( pExpr->op==TK_AGG_COLUMN ); | |
1345 testcase( pExpr->op==TK_COLUMN ); | |
1346 while( pNC && !pTab ){ | |
1347 SrcList *pTabList = pNC->pSrcList; | |
1348 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); | |
1349 if( j<pTabList->nSrc ){ | |
1350 pTab = pTabList->a[j].pTab; | |
1351 pS = pTabList->a[j].pSelect; | |
1352 }else{ | |
1353 pNC = pNC->pNext; | |
1354 } | |
1355 } | |
1356 | |
1357 if( pTab==0 ){ | |
1358 /* At one time, code such as "SELECT new.x" within a trigger would | |
1359 ** cause this condition to run. Since then, we have restructured how | |
1360 ** trigger code is generated and so this condition is no longer | |
1361 ** possible. However, it can still be true for statements like | |
1362 ** the following: | |
1363 ** | |
1364 ** CREATE TABLE t1(col INTEGER); | |
1365 ** SELECT (SELECT t1.col) FROM FROM t1; | |
1366 ** | |
1367 ** when columnType() is called on the expression "t1.col" in the | |
1368 ** sub-select. In this case, set the column type to NULL, even | |
1369 ** though it should really be "INTEGER". | |
1370 ** | |
1371 ** This is not a problem, as the column type of "t1.col" is never | |
1372 ** used. When columnType() is called on the expression | |
1373 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT | |
1374 ** branch below. */ | |
1375 break; | |
1376 } | |
1377 | |
1378 assert( pTab && pExpr->pTab==pTab ); | |
1379 if( pS ){ | |
1380 /* The "table" is actually a sub-select or a view in the FROM clause | |
1381 ** of the SELECT statement. Return the declaration type and origin | |
1382 ** data for the result-set column of the sub-select. | |
1383 */ | |
1384 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ | |
1385 /* If iCol is less than zero, then the expression requests the | |
1386 ** rowid of the sub-select or view. This expression is legal (see | |
1387 ** test case misc2.2.2) - it always evaluates to NULL. | |
1388 */ | |
1389 NameContext sNC; | |
1390 Expr *p = pS->pEList->a[iCol].pExpr; | |
1391 sNC.pSrcList = pS->pSrc; | |
1392 sNC.pNext = pNC; | |
1393 sNC.pParse = pNC->pParse; | |
1394 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); | |
1395 } | |
1396 }else if( pTab->pSchema ){ | |
1397 /* A real table */ | |
1398 assert( !pS ); | |
1399 if( iCol<0 ) iCol = pTab->iPKey; | |
1400 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); | |
1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
1402 if( iCol<0 ){ | |
1403 zType = "INTEGER"; | |
1404 zOrigCol = "rowid"; | |
1405 }else{ | |
1406 zType = pTab->aCol[iCol].zType; | |
1407 zOrigCol = pTab->aCol[iCol].zName; | |
1408 estWidth = pTab->aCol[iCol].szEst; | |
1409 } | |
1410 zOrigTab = pTab->zName; | |
1411 if( pNC->pParse ){ | |
1412 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); | |
1413 zOrigDb = pNC->pParse->db->aDb[iDb].zName; | |
1414 } | |
1415 #else | |
1416 if( iCol<0 ){ | |
1417 zType = "INTEGER"; | |
1418 }else{ | |
1419 zType = pTab->aCol[iCol].zType; | |
1420 estWidth = pTab->aCol[iCol].szEst; | |
1421 } | |
1422 #endif | |
1423 } | |
1424 break; | |
1425 } | |
1426 #ifndef SQLITE_OMIT_SUBQUERY | |
1427 case TK_SELECT: { | |
1428 /* The expression is a sub-select. Return the declaration type and | |
1429 ** origin info for the single column in the result set of the SELECT | |
1430 ** statement. | |
1431 */ | |
1432 NameContext sNC; | |
1433 Select *pS = pExpr->x.pSelect; | |
1434 Expr *p = pS->pEList->a[0].pExpr; | |
1435 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); | |
1436 sNC.pSrcList = pS->pSrc; | |
1437 sNC.pNext = pNC; | |
1438 sNC.pParse = pNC->pParse; | |
1439 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); | |
1440 break; | |
1441 } | |
1442 #endif | |
1443 } | |
1444 | |
1445 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
1446 if( pzOrigDb ){ | |
1447 assert( pzOrigTab && pzOrigCol ); | |
1448 *pzOrigDb = zOrigDb; | |
1449 *pzOrigTab = zOrigTab; | |
1450 *pzOrigCol = zOrigCol; | |
1451 } | |
1452 #endif | |
1453 if( pEstWidth ) *pEstWidth = estWidth; | |
1454 return zType; | |
1455 } | |
1456 | |
1457 /* | |
1458 ** Generate code that will tell the VDBE the declaration types of columns | |
1459 ** in the result set. | |
1460 */ | |
1461 static void generateColumnTypes( | |
1462 Parse *pParse, /* Parser context */ | |
1463 SrcList *pTabList, /* List of tables */ | |
1464 ExprList *pEList /* Expressions defining the result set */ | |
1465 ){ | |
1466 #ifndef SQLITE_OMIT_DECLTYPE | |
1467 Vdbe *v = pParse->pVdbe; | |
1468 int i; | |
1469 NameContext sNC; | |
1470 sNC.pSrcList = pTabList; | |
1471 sNC.pParse = pParse; | |
1472 for(i=0; i<pEList->nExpr; i++){ | |
1473 Expr *p = pEList->a[i].pExpr; | |
1474 const char *zType; | |
1475 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
1476 const char *zOrigDb = 0; | |
1477 const char *zOrigTab = 0; | |
1478 const char *zOrigCol = 0; | |
1479 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); | |
1480 | |
1481 /* The vdbe must make its own copy of the column-type and other | |
1482 ** column specific strings, in case the schema is reset before this | |
1483 ** virtual machine is deleted. | |
1484 */ | |
1485 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); | |
1486 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); | |
1487 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); | |
1488 #else | |
1489 zType = columnType(&sNC, p, 0, 0, 0, 0); | |
1490 #endif | |
1491 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); | |
1492 } | |
1493 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ | |
1494 } | |
1495 | |
1496 /* | |
1497 ** Generate code that will tell the VDBE the names of columns | |
1498 ** in the result set. This information is used to provide the | |
1499 ** azCol[] values in the callback. | |
1500 */ | |
1501 static void generateColumnNames( | |
1502 Parse *pParse, /* Parser context */ | |
1503 SrcList *pTabList, /* List of tables */ | |
1504 ExprList *pEList /* Expressions defining the result set */ | |
1505 ){ | |
1506 Vdbe *v = pParse->pVdbe; | |
1507 int i, j; | |
1508 sqlite3 *db = pParse->db; | |
1509 int fullNames, shortNames; | |
1510 | |
1511 #ifndef SQLITE_OMIT_EXPLAIN | |
1512 /* If this is an EXPLAIN, skip this step */ | |
1513 if( pParse->explain ){ | |
1514 return; | |
1515 } | |
1516 #endif | |
1517 | |
1518 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; | |
1519 pParse->colNamesSet = 1; | |
1520 fullNames = (db->flags & SQLITE_FullColNames)!=0; | |
1521 shortNames = (db->flags & SQLITE_ShortColNames)!=0; | |
1522 sqlite3VdbeSetNumCols(v, pEList->nExpr); | |
1523 for(i=0; i<pEList->nExpr; i++){ | |
1524 Expr *p; | |
1525 p = pEList->a[i].pExpr; | |
1526 if( NEVER(p==0) ) continue; | |
1527 if( pEList->a[i].zName ){ | |
1528 char *zName = pEList->a[i].zName; | |
1529 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); | |
1530 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ | |
1531 Table *pTab; | |
1532 char *zCol; | |
1533 int iCol = p->iColumn; | |
1534 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ | |
1535 if( pTabList->a[j].iCursor==p->iTable ) break; | |
1536 } | |
1537 assert( j<pTabList->nSrc ); | |
1538 pTab = pTabList->a[j].pTab; | |
1539 if( iCol<0 ) iCol = pTab->iPKey; | |
1540 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); | |
1541 if( iCol<0 ){ | |
1542 zCol = "rowid"; | |
1543 }else{ | |
1544 zCol = pTab->aCol[iCol].zName; | |
1545 } | |
1546 if( !shortNames && !fullNames ){ | |
1547 sqlite3VdbeSetColName(v, i, COLNAME_NAME, | |
1548 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); | |
1549 }else if( fullNames ){ | |
1550 char *zName = 0; | |
1551 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); | |
1552 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); | |
1553 }else{ | |
1554 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); | |
1555 } | |
1556 }else{ | |
1557 const char *z = pEList->a[i].zSpan; | |
1558 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); | |
1559 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); | |
1560 } | |
1561 } | |
1562 generateColumnTypes(pParse, pTabList, pEList); | |
1563 } | |
1564 | |
1565 /* | |
1566 ** Given an expression list (which is really the list of expressions | |
1567 ** that form the result set of a SELECT statement) compute appropriate | |
1568 ** column names for a table that would hold the expression list. | |
1569 ** | |
1570 ** All column names will be unique. | |
1571 ** | |
1572 ** Only the column names are computed. Column.zType, Column.zColl, | |
1573 ** and other fields of Column are zeroed. | |
1574 ** | |
1575 ** Return SQLITE_OK on success. If a memory allocation error occurs, | |
1576 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. | |
1577 */ | |
1578 static int selectColumnsFromExprList( | |
1579 Parse *pParse, /* Parsing context */ | |
1580 ExprList *pEList, /* Expr list from which to derive column names */ | |
1581 i16 *pnCol, /* Write the number of columns here */ | |
1582 Column **paCol /* Write the new column list here */ | |
1583 ){ | |
1584 sqlite3 *db = pParse->db; /* Database connection */ | |
1585 int i, j; /* Loop counters */ | |
1586 int cnt; /* Index added to make the name unique */ | |
1587 Column *aCol, *pCol; /* For looping over result columns */ | |
1588 int nCol; /* Number of columns in the result set */ | |
1589 Expr *p; /* Expression for a single result column */ | |
1590 char *zName; /* Column name */ | |
1591 int nName; /* Size of name in zName[] */ | |
1592 | |
1593 if( pEList ){ | |
1594 nCol = pEList->nExpr; | |
1595 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); | |
1596 testcase( aCol==0 ); | |
1597 }else{ | |
1598 nCol = 0; | |
1599 aCol = 0; | |
1600 } | |
1601 *pnCol = nCol; | |
1602 *paCol = aCol; | |
1603 | |
1604 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ | |
1605 /* Get an appropriate name for the column | |
1606 */ | |
1607 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); | |
1608 if( (zName = pEList->a[i].zName)!=0 ){ | |
1609 /* If the column contains an "AS <name>" phrase, use <name> as the name */ | |
1610 zName = sqlite3DbStrDup(db, zName); | |
1611 }else{ | |
1612 Expr *pColExpr = p; /* The expression that is the result column name */ | |
1613 Table *pTab; /* Table associated with this expression */ | |
1614 while( pColExpr->op==TK_DOT ){ | |
1615 pColExpr = pColExpr->pRight; | |
1616 assert( pColExpr!=0 ); | |
1617 } | |
1618 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ | |
1619 /* For columns use the column name name */ | |
1620 int iCol = pColExpr->iColumn; | |
1621 pTab = pColExpr->pTab; | |
1622 if( iCol<0 ) iCol = pTab->iPKey; | |
1623 zName = sqlite3MPrintf(db, "%s", | |
1624 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); | |
1625 }else if( pColExpr->op==TK_ID ){ | |
1626 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); | |
1627 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); | |
1628 }else{ | |
1629 /* Use the original text of the column expression as its name */ | |
1630 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); | |
1631 } | |
1632 } | |
1633 if( db->mallocFailed ){ | |
1634 sqlite3DbFree(db, zName); | |
1635 break; | |
1636 } | |
1637 | |
1638 /* Make sure the column name is unique. If the name is not unique, | |
1639 ** append an integer to the name so that it becomes unique. | |
1640 */ | |
1641 nName = sqlite3Strlen30(zName); | |
1642 for(j=cnt=0; j<i; j++){ | |
1643 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ | |
1644 char *zNewName; | |
1645 int k; | |
1646 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} | |
1647 if( k>=0 && zName[k]==':' ) nName = k; | |
1648 zName[nName] = 0; | |
1649 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); | |
1650 sqlite3DbFree(db, zName); | |
1651 zName = zNewName; | |
1652 j = -1; | |
1653 if( zName==0 ) break; | |
1654 } | |
1655 } | |
1656 pCol->zName = zName; | |
1657 } | |
1658 if( db->mallocFailed ){ | |
1659 for(j=0; j<i; j++){ | |
1660 sqlite3DbFree(db, aCol[j].zName); | |
1661 } | |
1662 sqlite3DbFree(db, aCol); | |
1663 *paCol = 0; | |
1664 *pnCol = 0; | |
1665 return SQLITE_NOMEM; | |
1666 } | |
1667 return SQLITE_OK; | |
1668 } | |
1669 | |
1670 /* | |
1671 ** Add type and collation information to a column list based on | |
1672 ** a SELECT statement. | |
1673 ** | |
1674 ** The column list presumably came from selectColumnNamesFromExprList(). | |
1675 ** The column list has only names, not types or collations. This | |
1676 ** routine goes through and adds the types and collations. | |
1677 ** | |
1678 ** This routine requires that all identifiers in the SELECT | |
1679 ** statement be resolved. | |
1680 */ | |
1681 static void selectAddColumnTypeAndCollation( | |
1682 Parse *pParse, /* Parsing contexts */ | |
1683 Table *pTab, /* Add column type information to this table */ | |
1684 Select *pSelect /* SELECT used to determine types and collations */ | |
1685 ){ | |
1686 sqlite3 *db = pParse->db; | |
1687 NameContext sNC; | |
1688 Column *pCol; | |
1689 CollSeq *pColl; | |
1690 int i; | |
1691 Expr *p; | |
1692 struct ExprList_item *a; | |
1693 u64 szAll = 0; | |
1694 | |
1695 assert( pSelect!=0 ); | |
1696 assert( (pSelect->selFlags & SF_Resolved)!=0 ); | |
1697 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); | |
1698 if( db->mallocFailed ) return; | |
1699 memset(&sNC, 0, sizeof(sNC)); | |
1700 sNC.pSrcList = pSelect->pSrc; | |
1701 a = pSelect->pEList->a; | |
1702 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ | |
1703 p = a[i].pExpr; | |
1704 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); | |
1705 szAll += pCol->szEst; | |
1706 pCol->affinity = sqlite3ExprAffinity(p); | |
1707 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; | |
1708 pColl = sqlite3ExprCollSeq(pParse, p); | |
1709 if( pColl ){ | |
1710 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); | |
1711 } | |
1712 } | |
1713 pTab->szTabRow = sqlite3LogEst(szAll*4); | |
1714 } | |
1715 | |
1716 /* | |
1717 ** Given a SELECT statement, generate a Table structure that describes | |
1718 ** the result set of that SELECT. | |
1719 */ | |
1720 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ | |
1721 Table *pTab; | |
1722 sqlite3 *db = pParse->db; | |
1723 int savedFlags; | |
1724 | |
1725 savedFlags = db->flags; | |
1726 db->flags &= ~SQLITE_FullColNames; | |
1727 db->flags |= SQLITE_ShortColNames; | |
1728 sqlite3SelectPrep(pParse, pSelect, 0); | |
1729 if( pParse->nErr ) return 0; | |
1730 while( pSelect->pPrior ) pSelect = pSelect->pPrior; | |
1731 db->flags = savedFlags; | |
1732 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); | |
1733 if( pTab==0 ){ | |
1734 return 0; | |
1735 } | |
1736 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside | |
1737 ** is disabled */ | |
1738 assert( db->lookaside.bEnabled==0 ); | |
1739 pTab->nRef = 1; | |
1740 pTab->zName = 0; | |
1741 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); | |
1742 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); | |
1743 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); | |
1744 pTab->iPKey = -1; | |
1745 if( db->mallocFailed ){ | |
1746 sqlite3DeleteTable(db, pTab); | |
1747 return 0; | |
1748 } | |
1749 return pTab; | |
1750 } | |
1751 | |
1752 /* | |
1753 ** Get a VDBE for the given parser context. Create a new one if necessary. | |
1754 ** If an error occurs, return NULL and leave a message in pParse. | |
1755 */ | |
1756 Vdbe *sqlite3GetVdbe(Parse *pParse){ | |
1757 Vdbe *v = pParse->pVdbe; | |
1758 if( v==0 ){ | |
1759 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); | |
1760 if( v ) sqlite3VdbeAddOp0(v, OP_Init); | |
1761 if( pParse->pToplevel==0 | |
1762 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) | |
1763 ){ | |
1764 pParse->okConstFactor = 1; | |
1765 } | |
1766 | |
1767 } | |
1768 return v; | |
1769 } | |
1770 | |
1771 | |
1772 /* | |
1773 ** Compute the iLimit and iOffset fields of the SELECT based on the | |
1774 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions | |
1775 ** that appear in the original SQL statement after the LIMIT and OFFSET | |
1776 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset | |
1777 ** are the integer memory register numbers for counters used to compute | |
1778 ** the limit and offset. If there is no limit and/or offset, then | |
1779 ** iLimit and iOffset are negative. | |
1780 ** | |
1781 ** This routine changes the values of iLimit and iOffset only if | |
1782 ** a limit or offset is defined by pLimit and pOffset. iLimit and | |
1783 ** iOffset should have been preset to appropriate default values (zero) | |
1784 ** prior to calling this routine. | |
1785 ** | |
1786 ** The iOffset register (if it exists) is initialized to the value | |
1787 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register | |
1788 ** iOffset+1 is initialized to LIMIT+OFFSET. | |
1789 ** | |
1790 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get | |
1791 ** redefined. The UNION ALL operator uses this property to force | |
1792 ** the reuse of the same limit and offset registers across multiple | |
1793 ** SELECT statements. | |
1794 */ | |
1795 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ | |
1796 Vdbe *v = 0; | |
1797 int iLimit = 0; | |
1798 int iOffset; | |
1799 int addr1, n; | |
1800 if( p->iLimit ) return; | |
1801 | |
1802 /* | |
1803 ** "LIMIT -1" always shows all rows. There is some | |
1804 ** controversy about what the correct behavior should be. | |
1805 ** The current implementation interprets "LIMIT 0" to mean | |
1806 ** no rows. | |
1807 */ | |
1808 sqlite3ExprCacheClear(pParse); | |
1809 assert( p->pOffset==0 || p->pLimit!=0 ); | |
1810 if( p->pLimit ){ | |
1811 p->iLimit = iLimit = ++pParse->nMem; | |
1812 v = sqlite3GetVdbe(pParse); | |
1813 assert( v!=0 ); | |
1814 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ | |
1815 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); | |
1816 VdbeComment((v, "LIMIT counter")); | |
1817 if( n==0 ){ | |
1818 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); | |
1819 }else if( n>=0 && p->nSelectRow>(u64)n ){ | |
1820 p->nSelectRow = n; | |
1821 } | |
1822 }else{ | |
1823 sqlite3ExprCode(pParse, p->pLimit, iLimit); | |
1824 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); | |
1825 VdbeComment((v, "LIMIT counter")); | |
1826 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); | |
1827 } | |
1828 if( p->pOffset ){ | |
1829 p->iOffset = iOffset = ++pParse->nMem; | |
1830 pParse->nMem++; /* Allocate an extra register for limit+offset */ | |
1831 sqlite3ExprCode(pParse, p->pOffset, iOffset); | |
1832 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); | |
1833 VdbeComment((v, "OFFSET counter")); | |
1834 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); | |
1835 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); | |
1836 sqlite3VdbeJumpHere(v, addr1); | |
1837 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); | |
1838 VdbeComment((v, "LIMIT+OFFSET")); | |
1839 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); | |
1840 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); | |
1841 sqlite3VdbeJumpHere(v, addr1); | |
1842 } | |
1843 } | |
1844 } | |
1845 | |
1846 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
1847 /* | |
1848 ** Return the appropriate collating sequence for the iCol-th column of | |
1849 ** the result set for the compound-select statement "p". Return NULL if | |
1850 ** the column has no default collating sequence. | |
1851 ** | |
1852 ** The collating sequence for the compound select is taken from the | |
1853 ** left-most term of the select that has a collating sequence. | |
1854 */ | |
1855 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ | |
1856 CollSeq *pRet; | |
1857 if( p->pPrior ){ | |
1858 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); | |
1859 }else{ | |
1860 pRet = 0; | |
1861 } | |
1862 assert( iCol>=0 ); | |
1863 if( pRet==0 && iCol<p->pEList->nExpr ){ | |
1864 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); | |
1865 } | |
1866 return pRet; | |
1867 } | |
1868 | |
1869 /* | |
1870 ** The select statement passed as the second parameter is a compound SELECT | |
1871 ** with an ORDER BY clause. This function allocates and returns a KeyInfo | |
1872 ** structure suitable for implementing the ORDER BY. | |
1873 ** | |
1874 ** Space to hold the KeyInfo structure is obtained from malloc. The calling | |
1875 ** function is responsible for ensuring that this structure is eventually | |
1876 ** freed. | |
1877 */ | |
1878 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ | |
1879 ExprList *pOrderBy = p->pOrderBy; | |
1880 int nOrderBy = p->pOrderBy->nExpr; | |
1881 sqlite3 *db = pParse->db; | |
1882 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); | |
1883 if( pRet ){ | |
1884 int i; | |
1885 for(i=0; i<nOrderBy; i++){ | |
1886 struct ExprList_item *pItem = &pOrderBy->a[i]; | |
1887 Expr *pTerm = pItem->pExpr; | |
1888 CollSeq *pColl; | |
1889 | |
1890 if( pTerm->flags & EP_Collate ){ | |
1891 pColl = sqlite3ExprCollSeq(pParse, pTerm); | |
1892 }else{ | |
1893 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); | |
1894 if( pColl==0 ) pColl = db->pDfltColl; | |
1895 pOrderBy->a[i].pExpr = | |
1896 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); | |
1897 } | |
1898 assert( sqlite3KeyInfoIsWriteable(pRet) ); | |
1899 pRet->aColl[i] = pColl; | |
1900 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; | |
1901 } | |
1902 } | |
1903 | |
1904 return pRet; | |
1905 } | |
1906 | |
1907 #ifndef SQLITE_OMIT_CTE | |
1908 /* | |
1909 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE | |
1910 ** query of the form: | |
1911 ** | |
1912 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) | |
1913 ** \___________/ \_______________/ | |
1914 ** p->pPrior p | |
1915 ** | |
1916 ** | |
1917 ** There is exactly one reference to the recursive-table in the FROM clause | |
1918 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. | |
1919 ** | |
1920 ** The setup-query runs once to generate an initial set of rows that go | |
1921 ** into a Queue table. Rows are extracted from the Queue table one by | |
1922 ** one. Each row extracted from Queue is output to pDest. Then the single | |
1923 ** extracted row (now in the iCurrent table) becomes the content of the | |
1924 ** recursive-table for a recursive-query run. The output of the recursive-query | |
1925 ** is added back into the Queue table. Then another row is extracted from Queue | |
1926 ** and the iteration continues until the Queue table is empty. | |
1927 ** | |
1928 ** If the compound query operator is UNION then no duplicate rows are ever | |
1929 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows | |
1930 ** that have ever been inserted into Queue and causes duplicates to be | |
1931 ** discarded. If the operator is UNION ALL, then duplicates are allowed. | |
1932 ** | |
1933 ** If the query has an ORDER BY, then entries in the Queue table are kept in | |
1934 ** ORDER BY order and the first entry is extracted for each cycle. Without | |
1935 ** an ORDER BY, the Queue table is just a FIFO. | |
1936 ** | |
1937 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows | |
1938 ** have been output to pDest. A LIMIT of zero means to output no rows and a | |
1939 ** negative LIMIT means to output all rows. If there is also an OFFSET clause | |
1940 ** with a positive value, then the first OFFSET outputs are discarded rather | |
1941 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET | |
1942 ** rows have been skipped. | |
1943 */ | |
1944 static void generateWithRecursiveQuery( | |
1945 Parse *pParse, /* Parsing context */ | |
1946 Select *p, /* The recursive SELECT to be coded */ | |
1947 SelectDest *pDest /* What to do with query results */ | |
1948 ){ | |
1949 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ | |
1950 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ | |
1951 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ | |
1952 Select *pSetup = p->pPrior; /* The setup query */ | |
1953 int addrTop; /* Top of the loop */ | |
1954 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ | |
1955 int iCurrent = 0; /* The Current table */ | |
1956 int regCurrent; /* Register holding Current table */ | |
1957 int iQueue; /* The Queue table */ | |
1958 int iDistinct = 0; /* To ensure unique results if UNION */ | |
1959 int eDest = SRT_Fifo; /* How to write to Queue */ | |
1960 SelectDest destQueue; /* SelectDest targetting the Queue table */ | |
1961 int i; /* Loop counter */ | |
1962 int rc; /* Result code */ | |
1963 ExprList *pOrderBy; /* The ORDER BY clause */ | |
1964 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ | |
1965 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ | |
1966 | |
1967 /* Obtain authorization to do a recursive query */ | |
1968 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; | |
1969 | |
1970 /* Process the LIMIT and OFFSET clauses, if they exist */ | |
1971 addrBreak = sqlite3VdbeMakeLabel(v); | |
1972 computeLimitRegisters(pParse, p, addrBreak); | |
1973 pLimit = p->pLimit; | |
1974 pOffset = p->pOffset; | |
1975 regLimit = p->iLimit; | |
1976 regOffset = p->iOffset; | |
1977 p->pLimit = p->pOffset = 0; | |
1978 p->iLimit = p->iOffset = 0; | |
1979 pOrderBy = p->pOrderBy; | |
1980 | |
1981 /* Locate the cursor number of the Current table */ | |
1982 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ | |
1983 if( pSrc->a[i].isRecursive ){ | |
1984 iCurrent = pSrc->a[i].iCursor; | |
1985 break; | |
1986 } | |
1987 } | |
1988 | |
1989 /* Allocate cursors numbers for Queue and Distinct. The cursor number for | |
1990 ** the Distinct table must be exactly one greater than Queue in order | |
1991 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ | |
1992 iQueue = pParse->nTab++; | |
1993 if( p->op==TK_UNION ){ | |
1994 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; | |
1995 iDistinct = pParse->nTab++; | |
1996 }else{ | |
1997 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; | |
1998 } | |
1999 sqlite3SelectDestInit(&destQueue, eDest, iQueue); | |
2000 | |
2001 /* Allocate cursors for Current, Queue, and Distinct. */ | |
2002 regCurrent = ++pParse->nMem; | |
2003 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); | |
2004 if( pOrderBy ){ | |
2005 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); | |
2006 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, | |
2007 (char*)pKeyInfo, P4_KEYINFO); | |
2008 destQueue.pOrderBy = pOrderBy; | |
2009 }else{ | |
2010 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); | |
2011 } | |
2012 VdbeComment((v, "Queue table")); | |
2013 if( iDistinct ){ | |
2014 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); | |
2015 p->selFlags |= SF_UsesEphemeral; | |
2016 } | |
2017 | |
2018 /* Detach the ORDER BY clause from the compound SELECT */ | |
2019 p->pOrderBy = 0; | |
2020 | |
2021 /* Store the results of the setup-query in Queue. */ | |
2022 pSetup->pNext = 0; | |
2023 rc = sqlite3Select(pParse, pSetup, &destQueue); | |
2024 pSetup->pNext = p; | |
2025 if( rc ) goto end_of_recursive_query; | |
2026 | |
2027 /* Find the next row in the Queue and output that row */ | |
2028 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); | |
2029 | |
2030 /* Transfer the next row in Queue over to Current */ | |
2031 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ | |
2032 if( pOrderBy ){ | |
2033 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); | |
2034 }else{ | |
2035 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); | |
2036 } | |
2037 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); | |
2038 | |
2039 /* Output the single row in Current */ | |
2040 addrCont = sqlite3VdbeMakeLabel(v); | |
2041 codeOffset(v, regOffset, addrCont); | |
2042 selectInnerLoop(pParse, p, p->pEList, iCurrent, | |
2043 0, 0, pDest, addrCont, addrBreak); | |
2044 if( regLimit ){ | |
2045 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); | |
2046 VdbeCoverage(v); | |
2047 } | |
2048 sqlite3VdbeResolveLabel(v, addrCont); | |
2049 | |
2050 /* Execute the recursive SELECT taking the single row in Current as | |
2051 ** the value for the recursive-table. Store the results in the Queue. | |
2052 */ | |
2053 p->pPrior = 0; | |
2054 sqlite3Select(pParse, p, &destQueue); | |
2055 assert( p->pPrior==0 ); | |
2056 p->pPrior = pSetup; | |
2057 | |
2058 /* Keep running the loop until the Queue is empty */ | |
2059 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); | |
2060 sqlite3VdbeResolveLabel(v, addrBreak); | |
2061 | |
2062 end_of_recursive_query: | |
2063 sqlite3ExprListDelete(pParse->db, p->pOrderBy); | |
2064 p->pOrderBy = pOrderBy; | |
2065 p->pLimit = pLimit; | |
2066 p->pOffset = pOffset; | |
2067 return; | |
2068 } | |
2069 #endif /* SQLITE_OMIT_CTE */ | |
2070 | |
2071 /* Forward references */ | |
2072 static int multiSelectOrderBy( | |
2073 Parse *pParse, /* Parsing context */ | |
2074 Select *p, /* The right-most of SELECTs to be coded */ | |
2075 SelectDest *pDest /* What to do with query results */ | |
2076 ); | |
2077 | |
2078 | |
2079 /* | |
2080 ** This routine is called to process a compound query form from | |
2081 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or | |
2082 ** INTERSECT | |
2083 ** | |
2084 ** "p" points to the right-most of the two queries. the query on the | |
2085 ** left is p->pPrior. The left query could also be a compound query | |
2086 ** in which case this routine will be called recursively. | |
2087 ** | |
2088 ** The results of the total query are to be written into a destination | |
2089 ** of type eDest with parameter iParm. | |
2090 ** | |
2091 ** Example 1: Consider a three-way compound SQL statement. | |
2092 ** | |
2093 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 | |
2094 ** | |
2095 ** This statement is parsed up as follows: | |
2096 ** | |
2097 ** SELECT c FROM t3 | |
2098 ** | | |
2099 ** `-----> SELECT b FROM t2 | |
2100 ** | | |
2101 ** `------> SELECT a FROM t1 | |
2102 ** | |
2103 ** The arrows in the diagram above represent the Select.pPrior pointer. | |
2104 ** So if this routine is called with p equal to the t3 query, then | |
2105 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. | |
2106 ** | |
2107 ** Notice that because of the way SQLite parses compound SELECTs, the | |
2108 ** individual selects always group from left to right. | |
2109 */ | |
2110 static int multiSelect( | |
2111 Parse *pParse, /* Parsing context */ | |
2112 Select *p, /* The right-most of SELECTs to be coded */ | |
2113 SelectDest *pDest /* What to do with query results */ | |
2114 ){ | |
2115 int rc = SQLITE_OK; /* Success code from a subroutine */ | |
2116 Select *pPrior; /* Another SELECT immediately to our left */ | |
2117 Vdbe *v; /* Generate code to this VDBE */ | |
2118 SelectDest dest; /* Alternative data destination */ | |
2119 Select *pDelete = 0; /* Chain of simple selects to delete */ | |
2120 sqlite3 *db; /* Database connection */ | |
2121 #ifndef SQLITE_OMIT_EXPLAIN | |
2122 int iSub1 = 0; /* EQP id of left-hand query */ | |
2123 int iSub2 = 0; /* EQP id of right-hand query */ | |
2124 #endif | |
2125 | |
2126 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only | |
2127 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. | |
2128 */ | |
2129 assert( p && p->pPrior ); /* Calling function guarantees this much */ | |
2130 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); | |
2131 db = pParse->db; | |
2132 pPrior = p->pPrior; | |
2133 dest = *pDest; | |
2134 if( pPrior->pOrderBy ){ | |
2135 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", | |
2136 selectOpName(p->op)); | |
2137 rc = 1; | |
2138 goto multi_select_end; | |
2139 } | |
2140 if( pPrior->pLimit ){ | |
2141 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", | |
2142 selectOpName(p->op)); | |
2143 rc = 1; | |
2144 goto multi_select_end; | |
2145 } | |
2146 | |
2147 v = sqlite3GetVdbe(pParse); | |
2148 assert( v!=0 ); /* The VDBE already created by calling function */ | |
2149 | |
2150 /* Create the destination temporary table if necessary | |
2151 */ | |
2152 if( dest.eDest==SRT_EphemTab ){ | |
2153 assert( p->pEList ); | |
2154 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); | |
2155 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); | |
2156 dest.eDest = SRT_Table; | |
2157 } | |
2158 | |
2159 /* Make sure all SELECTs in the statement have the same number of elements | |
2160 ** in their result sets. | |
2161 */ | |
2162 assert( p->pEList && pPrior->pEList ); | |
2163 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ | |
2164 if( p->selFlags & SF_Values ){ | |
2165 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); | |
2166 }else{ | |
2167 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" | |
2168 " do not have the same number of result columns", selectOpName(p->op)); | |
2169 } | |
2170 rc = 1; | |
2171 goto multi_select_end; | |
2172 } | |
2173 | |
2174 #ifndef SQLITE_OMIT_CTE | |
2175 if( p->selFlags & SF_Recursive ){ | |
2176 generateWithRecursiveQuery(pParse, p, &dest); | |
2177 }else | |
2178 #endif | |
2179 | |
2180 /* Compound SELECTs that have an ORDER BY clause are handled separately. | |
2181 */ | |
2182 if( p->pOrderBy ){ | |
2183 return multiSelectOrderBy(pParse, p, pDest); | |
2184 }else | |
2185 | |
2186 /* Generate code for the left and right SELECT statements. | |
2187 */ | |
2188 switch( p->op ){ | |
2189 case TK_ALL: { | |
2190 int addr = 0; | |
2191 int nLimit; | |
2192 assert( !pPrior->pLimit ); | |
2193 pPrior->iLimit = p->iLimit; | |
2194 pPrior->iOffset = p->iOffset; | |
2195 pPrior->pLimit = p->pLimit; | |
2196 pPrior->pOffset = p->pOffset; | |
2197 explainSetInteger(iSub1, pParse->iNextSelectId); | |
2198 rc = sqlite3Select(pParse, pPrior, &dest); | |
2199 p->pLimit = 0; | |
2200 p->pOffset = 0; | |
2201 if( rc ){ | |
2202 goto multi_select_end; | |
2203 } | |
2204 p->pPrior = 0; | |
2205 p->iLimit = pPrior->iLimit; | |
2206 p->iOffset = pPrior->iOffset; | |
2207 if( p->iLimit ){ | |
2208 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); | |
2209 VdbeComment((v, "Jump ahead if LIMIT reached")); | |
2210 } | |
2211 explainSetInteger(iSub2, pParse->iNextSelectId); | |
2212 rc = sqlite3Select(pParse, p, &dest); | |
2213 testcase( rc!=SQLITE_OK ); | |
2214 pDelete = p->pPrior; | |
2215 p->pPrior = pPrior; | |
2216 p->nSelectRow += pPrior->nSelectRow; | |
2217 if( pPrior->pLimit | |
2218 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) | |
2219 && nLimit>0 && p->nSelectRow > (u64)nLimit | |
2220 ){ | |
2221 p->nSelectRow = nLimit; | |
2222 } | |
2223 if( addr ){ | |
2224 sqlite3VdbeJumpHere(v, addr); | |
2225 } | |
2226 break; | |
2227 } | |
2228 case TK_EXCEPT: | |
2229 case TK_UNION: { | |
2230 int unionTab; /* Cursor number of the temporary table holding result */ | |
2231 u8 op = 0; /* One of the SRT_ operations to apply to self */ | |
2232 int priorOp; /* The SRT_ operation to apply to prior selects */ | |
2233 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ | |
2234 int addr; | |
2235 SelectDest uniondest; | |
2236 | |
2237 testcase( p->op==TK_EXCEPT ); | |
2238 testcase( p->op==TK_UNION ); | |
2239 priorOp = SRT_Union; | |
2240 if( dest.eDest==priorOp ){ | |
2241 /* We can reuse a temporary table generated by a SELECT to our | |
2242 ** right. | |
2243 */ | |
2244 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ | |
2245 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ | |
2246 unionTab = dest.iSDParm; | |
2247 }else{ | |
2248 /* We will need to create our own temporary table to hold the | |
2249 ** intermediate results. | |
2250 */ | |
2251 unionTab = pParse->nTab++; | |
2252 assert( p->pOrderBy==0 ); | |
2253 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); | |
2254 assert( p->addrOpenEphm[0] == -1 ); | |
2255 p->addrOpenEphm[0] = addr; | |
2256 findRightmost(p)->selFlags |= SF_UsesEphemeral; | |
2257 assert( p->pEList ); | |
2258 } | |
2259 | |
2260 /* Code the SELECT statements to our left | |
2261 */ | |
2262 assert( !pPrior->pOrderBy ); | |
2263 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); | |
2264 explainSetInteger(iSub1, pParse->iNextSelectId); | |
2265 rc = sqlite3Select(pParse, pPrior, &uniondest); | |
2266 if( rc ){ | |
2267 goto multi_select_end; | |
2268 } | |
2269 | |
2270 /* Code the current SELECT statement | |
2271 */ | |
2272 if( p->op==TK_EXCEPT ){ | |
2273 op = SRT_Except; | |
2274 }else{ | |
2275 assert( p->op==TK_UNION ); | |
2276 op = SRT_Union; | |
2277 } | |
2278 p->pPrior = 0; | |
2279 pLimit = p->pLimit; | |
2280 p->pLimit = 0; | |
2281 pOffset = p->pOffset; | |
2282 p->pOffset = 0; | |
2283 uniondest.eDest = op; | |
2284 explainSetInteger(iSub2, pParse->iNextSelectId); | |
2285 rc = sqlite3Select(pParse, p, &uniondest); | |
2286 testcase( rc!=SQLITE_OK ); | |
2287 /* Query flattening in sqlite3Select() might refill p->pOrderBy. | |
2288 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ | |
2289 sqlite3ExprListDelete(db, p->pOrderBy); | |
2290 pDelete = p->pPrior; | |
2291 p->pPrior = pPrior; | |
2292 p->pOrderBy = 0; | |
2293 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; | |
2294 sqlite3ExprDelete(db, p->pLimit); | |
2295 p->pLimit = pLimit; | |
2296 p->pOffset = pOffset; | |
2297 p->iLimit = 0; | |
2298 p->iOffset = 0; | |
2299 | |
2300 /* Convert the data in the temporary table into whatever form | |
2301 ** it is that we currently need. | |
2302 */ | |
2303 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); | |
2304 if( dest.eDest!=priorOp ){ | |
2305 int iCont, iBreak, iStart; | |
2306 assert( p->pEList ); | |
2307 if( dest.eDest==SRT_Output ){ | |
2308 Select *pFirst = p; | |
2309 while( pFirst->pPrior ) pFirst = pFirst->pPrior; | |
2310 generateColumnNames(pParse, 0, pFirst->pEList); | |
2311 } | |
2312 iBreak = sqlite3VdbeMakeLabel(v); | |
2313 iCont = sqlite3VdbeMakeLabel(v); | |
2314 computeLimitRegisters(pParse, p, iBreak); | |
2315 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); | |
2316 iStart = sqlite3VdbeCurrentAddr(v); | |
2317 selectInnerLoop(pParse, p, p->pEList, unionTab, | |
2318 0, 0, &dest, iCont, iBreak); | |
2319 sqlite3VdbeResolveLabel(v, iCont); | |
2320 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); | |
2321 sqlite3VdbeResolveLabel(v, iBreak); | |
2322 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); | |
2323 } | |
2324 break; | |
2325 } | |
2326 default: assert( p->op==TK_INTERSECT ); { | |
2327 int tab1, tab2; | |
2328 int iCont, iBreak, iStart; | |
2329 Expr *pLimit, *pOffset; | |
2330 int addr; | |
2331 SelectDest intersectdest; | |
2332 int r1; | |
2333 | |
2334 /* INTERSECT is different from the others since it requires | |
2335 ** two temporary tables. Hence it has its own case. Begin | |
2336 ** by allocating the tables we will need. | |
2337 */ | |
2338 tab1 = pParse->nTab++; | |
2339 tab2 = pParse->nTab++; | |
2340 assert( p->pOrderBy==0 ); | |
2341 | |
2342 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); | |
2343 assert( p->addrOpenEphm[0] == -1 ); | |
2344 p->addrOpenEphm[0] = addr; | |
2345 findRightmost(p)->selFlags |= SF_UsesEphemeral; | |
2346 assert( p->pEList ); | |
2347 | |
2348 /* Code the SELECTs to our left into temporary table "tab1". | |
2349 */ | |
2350 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); | |
2351 explainSetInteger(iSub1, pParse->iNextSelectId); | |
2352 rc = sqlite3Select(pParse, pPrior, &intersectdest); | |
2353 if( rc ){ | |
2354 goto multi_select_end; | |
2355 } | |
2356 | |
2357 /* Code the current SELECT into temporary table "tab2" | |
2358 */ | |
2359 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); | |
2360 assert( p->addrOpenEphm[1] == -1 ); | |
2361 p->addrOpenEphm[1] = addr; | |
2362 p->pPrior = 0; | |
2363 pLimit = p->pLimit; | |
2364 p->pLimit = 0; | |
2365 pOffset = p->pOffset; | |
2366 p->pOffset = 0; | |
2367 intersectdest.iSDParm = tab2; | |
2368 explainSetInteger(iSub2, pParse->iNextSelectId); | |
2369 rc = sqlite3Select(pParse, p, &intersectdest); | |
2370 testcase( rc!=SQLITE_OK ); | |
2371 pDelete = p->pPrior; | |
2372 p->pPrior = pPrior; | |
2373 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; | |
2374 sqlite3ExprDelete(db, p->pLimit); | |
2375 p->pLimit = pLimit; | |
2376 p->pOffset = pOffset; | |
2377 | |
2378 /* Generate code to take the intersection of the two temporary | |
2379 ** tables. | |
2380 */ | |
2381 assert( p->pEList ); | |
2382 if( dest.eDest==SRT_Output ){ | |
2383 Select *pFirst = p; | |
2384 while( pFirst->pPrior ) pFirst = pFirst->pPrior; | |
2385 generateColumnNames(pParse, 0, pFirst->pEList); | |
2386 } | |
2387 iBreak = sqlite3VdbeMakeLabel(v); | |
2388 iCont = sqlite3VdbeMakeLabel(v); | |
2389 computeLimitRegisters(pParse, p, iBreak); | |
2390 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); | |
2391 r1 = sqlite3GetTempReg(pParse); | |
2392 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); | |
2393 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); | |
2394 sqlite3ReleaseTempReg(pParse, r1); | |
2395 selectInnerLoop(pParse, p, p->pEList, tab1, | |
2396 0, 0, &dest, iCont, iBreak); | |
2397 sqlite3VdbeResolveLabel(v, iCont); | |
2398 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); | |
2399 sqlite3VdbeResolveLabel(v, iBreak); | |
2400 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); | |
2401 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); | |
2402 break; | |
2403 } | |
2404 } | |
2405 | |
2406 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); | |
2407 | |
2408 /* Compute collating sequences used by | |
2409 ** temporary tables needed to implement the compound select. | |
2410 ** Attach the KeyInfo structure to all temporary tables. | |
2411 ** | |
2412 ** This section is run by the right-most SELECT statement only. | |
2413 ** SELECT statements to the left always skip this part. The right-most | |
2414 ** SELECT might also skip this part if it has no ORDER BY clause and | |
2415 ** no temp tables are required. | |
2416 */ | |
2417 if( p->selFlags & SF_UsesEphemeral ){ | |
2418 int i; /* Loop counter */ | |
2419 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ | |
2420 Select *pLoop; /* For looping through SELECT statements */ | |
2421 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ | |
2422 int nCol; /* Number of columns in result set */ | |
2423 | |
2424 assert( p->pNext==0 ); | |
2425 nCol = p->pEList->nExpr; | |
2426 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); | |
2427 if( !pKeyInfo ){ | |
2428 rc = SQLITE_NOMEM; | |
2429 goto multi_select_end; | |
2430 } | |
2431 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ | |
2432 *apColl = multiSelectCollSeq(pParse, p, i); | |
2433 if( 0==*apColl ){ | |
2434 *apColl = db->pDfltColl; | |
2435 } | |
2436 } | |
2437 | |
2438 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ | |
2439 for(i=0; i<2; i++){ | |
2440 int addr = pLoop->addrOpenEphm[i]; | |
2441 if( addr<0 ){ | |
2442 /* If [0] is unused then [1] is also unused. So we can | |
2443 ** always safely abort as soon as the first unused slot is found */ | |
2444 assert( pLoop->addrOpenEphm[1]<0 ); | |
2445 break; | |
2446 } | |
2447 sqlite3VdbeChangeP2(v, addr, nCol); | |
2448 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), | |
2449 P4_KEYINFO); | |
2450 pLoop->addrOpenEphm[i] = -1; | |
2451 } | |
2452 } | |
2453 sqlite3KeyInfoUnref(pKeyInfo); | |
2454 } | |
2455 | |
2456 multi_select_end: | |
2457 pDest->iSdst = dest.iSdst; | |
2458 pDest->nSdst = dest.nSdst; | |
2459 sqlite3SelectDelete(db, pDelete); | |
2460 return rc; | |
2461 } | |
2462 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ | |
2463 | |
2464 /* | |
2465 ** Code an output subroutine for a coroutine implementation of a | |
2466 ** SELECT statment. | |
2467 ** | |
2468 ** The data to be output is contained in pIn->iSdst. There are | |
2469 ** pIn->nSdst columns to be output. pDest is where the output should | |
2470 ** be sent. | |
2471 ** | |
2472 ** regReturn is the number of the register holding the subroutine | |
2473 ** return address. | |
2474 ** | |
2475 ** If regPrev>0 then it is the first register in a vector that | |
2476 ** records the previous output. mem[regPrev] is a flag that is false | |
2477 ** if there has been no previous output. If regPrev>0 then code is | |
2478 ** generated to suppress duplicates. pKeyInfo is used for comparing | |
2479 ** keys. | |
2480 ** | |
2481 ** If the LIMIT found in p->iLimit is reached, jump immediately to | |
2482 ** iBreak. | |
2483 */ | |
2484 static int generateOutputSubroutine( | |
2485 Parse *pParse, /* Parsing context */ | |
2486 Select *p, /* The SELECT statement */ | |
2487 SelectDest *pIn, /* Coroutine supplying data */ | |
2488 SelectDest *pDest, /* Where to send the data */ | |
2489 int regReturn, /* The return address register */ | |
2490 int regPrev, /* Previous result register. No uniqueness if 0 */ | |
2491 KeyInfo *pKeyInfo, /* For comparing with previous entry */ | |
2492 int iBreak /* Jump here if we hit the LIMIT */ | |
2493 ){ | |
2494 Vdbe *v = pParse->pVdbe; | |
2495 int iContinue; | |
2496 int addr; | |
2497 | |
2498 addr = sqlite3VdbeCurrentAddr(v); | |
2499 iContinue = sqlite3VdbeMakeLabel(v); | |
2500 | |
2501 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT | |
2502 */ | |
2503 if( regPrev ){ | |
2504 int j1, j2; | |
2505 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); | |
2506 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, | |
2507 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); | |
2508 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); | |
2509 sqlite3VdbeJumpHere(v, j1); | |
2510 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); | |
2511 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); | |
2512 } | |
2513 if( pParse->db->mallocFailed ) return 0; | |
2514 | |
2515 /* Suppress the first OFFSET entries if there is an OFFSET clause | |
2516 */ | |
2517 codeOffset(v, p->iOffset, iContinue); | |
2518 | |
2519 switch( pDest->eDest ){ | |
2520 /* Store the result as data using a unique key. | |
2521 */ | |
2522 case SRT_Table: | |
2523 case SRT_EphemTab: { | |
2524 int r1 = sqlite3GetTempReg(pParse); | |
2525 int r2 = sqlite3GetTempReg(pParse); | |
2526 testcase( pDest->eDest==SRT_Table ); | |
2527 testcase( pDest->eDest==SRT_EphemTab ); | |
2528 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); | |
2529 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); | |
2530 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); | |
2531 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | |
2532 sqlite3ReleaseTempReg(pParse, r2); | |
2533 sqlite3ReleaseTempReg(pParse, r1); | |
2534 break; | |
2535 } | |
2536 | |
2537 #ifndef SQLITE_OMIT_SUBQUERY | |
2538 /* If we are creating a set for an "expr IN (SELECT ...)" construct, | |
2539 ** then there should be a single item on the stack. Write this | |
2540 ** item into the set table with bogus data. | |
2541 */ | |
2542 case SRT_Set: { | |
2543 int r1; | |
2544 assert( pIn->nSdst==1 ); | |
2545 pDest->affSdst = | |
2546 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); | |
2547 r1 = sqlite3GetTempReg(pParse); | |
2548 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); | |
2549 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); | |
2550 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); | |
2551 sqlite3ReleaseTempReg(pParse, r1); | |
2552 break; | |
2553 } | |
2554 | |
2555 #if 0 /* Never occurs on an ORDER BY query */ | |
2556 /* If any row exist in the result set, record that fact and abort. | |
2557 */ | |
2558 case SRT_Exists: { | |
2559 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); | |
2560 /* The LIMIT clause will terminate the loop for us */ | |
2561 break; | |
2562 } | |
2563 #endif | |
2564 | |
2565 /* If this is a scalar select that is part of an expression, then | |
2566 ** store the results in the appropriate memory cell and break out | |
2567 ** of the scan loop. | |
2568 */ | |
2569 case SRT_Mem: { | |
2570 assert( pIn->nSdst==1 ); | |
2571 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); | |
2572 /* The LIMIT clause will jump out of the loop for us */ | |
2573 break; | |
2574 } | |
2575 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ | |
2576 | |
2577 /* The results are stored in a sequence of registers | |
2578 ** starting at pDest->iSdst. Then the co-routine yields. | |
2579 */ | |
2580 case SRT_Coroutine: { | |
2581 if( pDest->iSdst==0 ){ | |
2582 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); | |
2583 pDest->nSdst = pIn->nSdst; | |
2584 } | |
2585 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); | |
2586 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); | |
2587 break; | |
2588 } | |
2589 | |
2590 /* If none of the above, then the result destination must be | |
2591 ** SRT_Output. This routine is never called with any other | |
2592 ** destination other than the ones handled above or SRT_Output. | |
2593 ** | |
2594 ** For SRT_Output, results are stored in a sequence of registers. | |
2595 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to | |
2596 ** return the next row of result. | |
2597 */ | |
2598 default: { | |
2599 assert( pDest->eDest==SRT_Output ); | |
2600 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); | |
2601 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); | |
2602 break; | |
2603 } | |
2604 } | |
2605 | |
2606 /* Jump to the end of the loop if the LIMIT is reached. | |
2607 */ | |
2608 if( p->iLimit ){ | |
2609 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); | |
2610 } | |
2611 | |
2612 /* Generate the subroutine return | |
2613 */ | |
2614 sqlite3VdbeResolveLabel(v, iContinue); | |
2615 sqlite3VdbeAddOp1(v, OP_Return, regReturn); | |
2616 | |
2617 return addr; | |
2618 } | |
2619 | |
2620 /* | |
2621 ** Alternative compound select code generator for cases when there | |
2622 ** is an ORDER BY clause. | |
2623 ** | |
2624 ** We assume a query of the following form: | |
2625 ** | |
2626 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> | |
2627 ** | |
2628 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea | |
2629 ** is to code both <selectA> and <selectB> with the ORDER BY clause as | |
2630 ** co-routines. Then run the co-routines in parallel and merge the results | |
2631 ** into the output. In addition to the two coroutines (called selectA and | |
2632 ** selectB) there are 7 subroutines: | |
2633 ** | |
2634 ** outA: Move the output of the selectA coroutine into the output | |
2635 ** of the compound query. | |
2636 ** | |
2637 ** outB: Move the output of the selectB coroutine into the output | |
2638 ** of the compound query. (Only generated for UNION and | |
2639 ** UNION ALL. EXCEPT and INSERTSECT never output a row that | |
2640 ** appears only in B.) | |
2641 ** | |
2642 ** AltB: Called when there is data from both coroutines and A<B. | |
2643 ** | |
2644 ** AeqB: Called when there is data from both coroutines and A==B. | |
2645 ** | |
2646 ** AgtB: Called when there is data from both coroutines and A>B. | |
2647 ** | |
2648 ** EofA: Called when data is exhausted from selectA. | |
2649 ** | |
2650 ** EofB: Called when data is exhausted from selectB. | |
2651 ** | |
2652 ** The implementation of the latter five subroutines depend on which | |
2653 ** <operator> is used: | |
2654 ** | |
2655 ** | |
2656 ** UNION ALL UNION EXCEPT INTERSECT | |
2657 ** ------------- ----------------- -------------- ----------------- | |
2658 ** AltB: outA, nextA outA, nextA outA, nextA nextA | |
2659 ** | |
2660 ** AeqB: outA, nextA nextA nextA outA, nextA | |
2661 ** | |
2662 ** AgtB: outB, nextB outB, nextB nextB nextB | |
2663 ** | |
2664 ** EofA: outB, nextB outB, nextB halt halt | |
2665 ** | |
2666 ** EofB: outA, nextA outA, nextA outA, nextA halt | |
2667 ** | |
2668 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA | |
2669 ** causes an immediate jump to EofA and an EOF on B following nextB causes | |
2670 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or | |
2671 ** following nextX causes a jump to the end of the select processing. | |
2672 ** | |
2673 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled | |
2674 ** within the output subroutine. The regPrev register set holds the previously | |
2675 ** output value. A comparison is made against this value and the output | |
2676 ** is skipped if the next results would be the same as the previous. | |
2677 ** | |
2678 ** The implementation plan is to implement the two coroutines and seven | |
2679 ** subroutines first, then put the control logic at the bottom. Like this: | |
2680 ** | |
2681 ** goto Init | |
2682 ** coA: coroutine for left query (A) | |
2683 ** coB: coroutine for right query (B) | |
2684 ** outA: output one row of A | |
2685 ** outB: output one row of B (UNION and UNION ALL only) | |
2686 ** EofA: ... | |
2687 ** EofB: ... | |
2688 ** AltB: ... | |
2689 ** AeqB: ... | |
2690 ** AgtB: ... | |
2691 ** Init: initialize coroutine registers | |
2692 ** yield coA | |
2693 ** if eof(A) goto EofA | |
2694 ** yield coB | |
2695 ** if eof(B) goto EofB | |
2696 ** Cmpr: Compare A, B | |
2697 ** Jump AltB, AeqB, AgtB | |
2698 ** End: ... | |
2699 ** | |
2700 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not | |
2701 ** actually called using Gosub and they do not Return. EofA and EofB loop | |
2702 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, | |
2703 ** and AgtB jump to either L2 or to one of EofA or EofB. | |
2704 */ | |
2705 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
2706 static int multiSelectOrderBy( | |
2707 Parse *pParse, /* Parsing context */ | |
2708 Select *p, /* The right-most of SELECTs to be coded */ | |
2709 SelectDest *pDest /* What to do with query results */ | |
2710 ){ | |
2711 int i, j; /* Loop counters */ | |
2712 Select *pPrior; /* Another SELECT immediately to our left */ | |
2713 Vdbe *v; /* Generate code to this VDBE */ | |
2714 SelectDest destA; /* Destination for coroutine A */ | |
2715 SelectDest destB; /* Destination for coroutine B */ | |
2716 int regAddrA; /* Address register for select-A coroutine */ | |
2717 int regAddrB; /* Address register for select-B coroutine */ | |
2718 int addrSelectA; /* Address of the select-A coroutine */ | |
2719 int addrSelectB; /* Address of the select-B coroutine */ | |
2720 int regOutA; /* Address register for the output-A subroutine */ | |
2721 int regOutB; /* Address register for the output-B subroutine */ | |
2722 int addrOutA; /* Address of the output-A subroutine */ | |
2723 int addrOutB = 0; /* Address of the output-B subroutine */ | |
2724 int addrEofA; /* Address of the select-A-exhausted subroutine */ | |
2725 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ | |
2726 int addrEofB; /* Address of the select-B-exhausted subroutine */ | |
2727 int addrAltB; /* Address of the A<B subroutine */ | |
2728 int addrAeqB; /* Address of the A==B subroutine */ | |
2729 int addrAgtB; /* Address of the A>B subroutine */ | |
2730 int regLimitA; /* Limit register for select-A */ | |
2731 int regLimitB; /* Limit register for select-A */ | |
2732 int regPrev; /* A range of registers to hold previous output */ | |
2733 int savedLimit; /* Saved value of p->iLimit */ | |
2734 int savedOffset; /* Saved value of p->iOffset */ | |
2735 int labelCmpr; /* Label for the start of the merge algorithm */ | |
2736 int labelEnd; /* Label for the end of the overall SELECT stmt */ | |
2737 int j1; /* Jump instructions that get retargetted */ | |
2738 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ | |
2739 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ | |
2740 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ | |
2741 sqlite3 *db; /* Database connection */ | |
2742 ExprList *pOrderBy; /* The ORDER BY clause */ | |
2743 int nOrderBy; /* Number of terms in the ORDER BY clause */ | |
2744 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ | |
2745 #ifndef SQLITE_OMIT_EXPLAIN | |
2746 int iSub1; /* EQP id of left-hand query */ | |
2747 int iSub2; /* EQP id of right-hand query */ | |
2748 #endif | |
2749 | |
2750 assert( p->pOrderBy!=0 ); | |
2751 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ | |
2752 db = pParse->db; | |
2753 v = pParse->pVdbe; | |
2754 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ | |
2755 labelEnd = sqlite3VdbeMakeLabel(v); | |
2756 labelCmpr = sqlite3VdbeMakeLabel(v); | |
2757 | |
2758 | |
2759 /* Patch up the ORDER BY clause | |
2760 */ | |
2761 op = p->op; | |
2762 pPrior = p->pPrior; | |
2763 assert( pPrior->pOrderBy==0 ); | |
2764 pOrderBy = p->pOrderBy; | |
2765 assert( pOrderBy ); | |
2766 nOrderBy = pOrderBy->nExpr; | |
2767 | |
2768 /* For operators other than UNION ALL we have to make sure that | |
2769 ** the ORDER BY clause covers every term of the result set. Add | |
2770 ** terms to the ORDER BY clause as necessary. | |
2771 */ | |
2772 if( op!=TK_ALL ){ | |
2773 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ | |
2774 struct ExprList_item *pItem; | |
2775 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ | |
2776 assert( pItem->u.x.iOrderByCol>0 ); | |
2777 if( pItem->u.x.iOrderByCol==i ) break; | |
2778 } | |
2779 if( j==nOrderBy ){ | |
2780 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); | |
2781 if( pNew==0 ) return SQLITE_NOMEM; | |
2782 pNew->flags |= EP_IntValue; | |
2783 pNew->u.iValue = i; | |
2784 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); | |
2785 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; | |
2786 } | |
2787 } | |
2788 } | |
2789 | |
2790 /* Compute the comparison permutation and keyinfo that is used with | |
2791 ** the permutation used to determine if the next | |
2792 ** row of results comes from selectA or selectB. Also add explicit | |
2793 ** collations to the ORDER BY clause terms so that when the subqueries | |
2794 ** to the right and the left are evaluated, they use the correct | |
2795 ** collation. | |
2796 */ | |
2797 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); | |
2798 if( aPermute ){ | |
2799 struct ExprList_item *pItem; | |
2800 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ | |
2801 assert( pItem->u.x.iOrderByCol>0 | |
2802 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); | |
2803 aPermute[i] = pItem->u.x.iOrderByCol - 1; | |
2804 } | |
2805 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); | |
2806 }else{ | |
2807 pKeyMerge = 0; | |
2808 } | |
2809 | |
2810 /* Reattach the ORDER BY clause to the query. | |
2811 */ | |
2812 p->pOrderBy = pOrderBy; | |
2813 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); | |
2814 | |
2815 /* Allocate a range of temporary registers and the KeyInfo needed | |
2816 ** for the logic that removes duplicate result rows when the | |
2817 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). | |
2818 */ | |
2819 if( op==TK_ALL ){ | |
2820 regPrev = 0; | |
2821 }else{ | |
2822 int nExpr = p->pEList->nExpr; | |
2823 assert( nOrderBy>=nExpr || db->mallocFailed ); | |
2824 regPrev = pParse->nMem+1; | |
2825 pParse->nMem += nExpr+1; | |
2826 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); | |
2827 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); | |
2828 if( pKeyDup ){ | |
2829 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); | |
2830 for(i=0; i<nExpr; i++){ | |
2831 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); | |
2832 pKeyDup->aSortOrder[i] = 0; | |
2833 } | |
2834 } | |
2835 } | |
2836 | |
2837 /* Separate the left and the right query from one another | |
2838 */ | |
2839 p->pPrior = 0; | |
2840 pPrior->pNext = 0; | |
2841 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); | |
2842 if( pPrior->pPrior==0 ){ | |
2843 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); | |
2844 } | |
2845 | |
2846 /* Compute the limit registers */ | |
2847 computeLimitRegisters(pParse, p, labelEnd); | |
2848 if( p->iLimit && op==TK_ALL ){ | |
2849 regLimitA = ++pParse->nMem; | |
2850 regLimitB = ++pParse->nMem; | |
2851 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, | |
2852 regLimitA); | |
2853 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); | |
2854 }else{ | |
2855 regLimitA = regLimitB = 0; | |
2856 } | |
2857 sqlite3ExprDelete(db, p->pLimit); | |
2858 p->pLimit = 0; | |
2859 sqlite3ExprDelete(db, p->pOffset); | |
2860 p->pOffset = 0; | |
2861 | |
2862 regAddrA = ++pParse->nMem; | |
2863 regAddrB = ++pParse->nMem; | |
2864 regOutA = ++pParse->nMem; | |
2865 regOutB = ++pParse->nMem; | |
2866 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); | |
2867 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); | |
2868 | |
2869 /* Generate a coroutine to evaluate the SELECT statement to the | |
2870 ** left of the compound operator - the "A" select. | |
2871 */ | |
2872 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; | |
2873 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); | |
2874 VdbeComment((v, "left SELECT")); | |
2875 pPrior->iLimit = regLimitA; | |
2876 explainSetInteger(iSub1, pParse->iNextSelectId); | |
2877 sqlite3Select(pParse, pPrior, &destA); | |
2878 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); | |
2879 sqlite3VdbeJumpHere(v, j1); | |
2880 | |
2881 /* Generate a coroutine to evaluate the SELECT statement on | |
2882 ** the right - the "B" select | |
2883 */ | |
2884 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; | |
2885 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); | |
2886 VdbeComment((v, "right SELECT")); | |
2887 savedLimit = p->iLimit; | |
2888 savedOffset = p->iOffset; | |
2889 p->iLimit = regLimitB; | |
2890 p->iOffset = 0; | |
2891 explainSetInteger(iSub2, pParse->iNextSelectId); | |
2892 sqlite3Select(pParse, p, &destB); | |
2893 p->iLimit = savedLimit; | |
2894 p->iOffset = savedOffset; | |
2895 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); | |
2896 | |
2897 /* Generate a subroutine that outputs the current row of the A | |
2898 ** select as the next output row of the compound select. | |
2899 */ | |
2900 VdbeNoopComment((v, "Output routine for A")); | |
2901 addrOutA = generateOutputSubroutine(pParse, | |
2902 p, &destA, pDest, regOutA, | |
2903 regPrev, pKeyDup, labelEnd); | |
2904 | |
2905 /* Generate a subroutine that outputs the current row of the B | |
2906 ** select as the next output row of the compound select. | |
2907 */ | |
2908 if( op==TK_ALL || op==TK_UNION ){ | |
2909 VdbeNoopComment((v, "Output routine for B")); | |
2910 addrOutB = generateOutputSubroutine(pParse, | |
2911 p, &destB, pDest, regOutB, | |
2912 regPrev, pKeyDup, labelEnd); | |
2913 } | |
2914 sqlite3KeyInfoUnref(pKeyDup); | |
2915 | |
2916 /* Generate a subroutine to run when the results from select A | |
2917 ** are exhausted and only data in select B remains. | |
2918 */ | |
2919 if( op==TK_EXCEPT || op==TK_INTERSECT ){ | |
2920 addrEofA_noB = addrEofA = labelEnd; | |
2921 }else{ | |
2922 VdbeNoopComment((v, "eof-A subroutine")); | |
2923 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); | |
2924 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); | |
2925 VdbeCoverage(v); | |
2926 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); | |
2927 p->nSelectRow += pPrior->nSelectRow; | |
2928 } | |
2929 | |
2930 /* Generate a subroutine to run when the results from select B | |
2931 ** are exhausted and only data in select A remains. | |
2932 */ | |
2933 if( op==TK_INTERSECT ){ | |
2934 addrEofB = addrEofA; | |
2935 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; | |
2936 }else{ | |
2937 VdbeNoopComment((v, "eof-B subroutine")); | |
2938 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); | |
2939 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); | |
2940 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); | |
2941 } | |
2942 | |
2943 /* Generate code to handle the case of A<B | |
2944 */ | |
2945 VdbeNoopComment((v, "A-lt-B subroutine")); | |
2946 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); | |
2947 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); | |
2948 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); | |
2949 | |
2950 /* Generate code to handle the case of A==B | |
2951 */ | |
2952 if( op==TK_ALL ){ | |
2953 addrAeqB = addrAltB; | |
2954 }else if( op==TK_INTERSECT ){ | |
2955 addrAeqB = addrAltB; | |
2956 addrAltB++; | |
2957 }else{ | |
2958 VdbeNoopComment((v, "A-eq-B subroutine")); | |
2959 addrAeqB = | |
2960 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); | |
2961 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); | |
2962 } | |
2963 | |
2964 /* Generate code to handle the case of A>B | |
2965 */ | |
2966 VdbeNoopComment((v, "A-gt-B subroutine")); | |
2967 addrAgtB = sqlite3VdbeCurrentAddr(v); | |
2968 if( op==TK_ALL || op==TK_UNION ){ | |
2969 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); | |
2970 } | |
2971 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); | |
2972 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); | |
2973 | |
2974 /* This code runs once to initialize everything. | |
2975 */ | |
2976 sqlite3VdbeJumpHere(v, j1); | |
2977 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); | |
2978 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); | |
2979 | |
2980 /* Implement the main merge loop | |
2981 */ | |
2982 sqlite3VdbeResolveLabel(v, labelCmpr); | |
2983 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); | |
2984 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, | |
2985 (char*)pKeyMerge, P4_KEYINFO); | |
2986 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); | |
2987 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); | |
2988 | |
2989 /* Jump to the this point in order to terminate the query. | |
2990 */ | |
2991 sqlite3VdbeResolveLabel(v, labelEnd); | |
2992 | |
2993 /* Set the number of output columns | |
2994 */ | |
2995 if( pDest->eDest==SRT_Output ){ | |
2996 Select *pFirst = pPrior; | |
2997 while( pFirst->pPrior ) pFirst = pFirst->pPrior; | |
2998 generateColumnNames(pParse, 0, pFirst->pEList); | |
2999 } | |
3000 | |
3001 /* Reassembly the compound query so that it will be freed correctly | |
3002 ** by the calling function */ | |
3003 if( p->pPrior ){ | |
3004 sqlite3SelectDelete(db, p->pPrior); | |
3005 } | |
3006 p->pPrior = pPrior; | |
3007 pPrior->pNext = p; | |
3008 | |
3009 /*** TBD: Insert subroutine calls to close cursors on incomplete | |
3010 **** subqueries ****/ | |
3011 explainComposite(pParse, p->op, iSub1, iSub2, 0); | |
3012 return SQLITE_OK; | |
3013 } | |
3014 #endif | |
3015 | |
3016 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | |
3017 /* Forward Declarations */ | |
3018 static void substExprList(sqlite3*, ExprList*, int, ExprList*); | |
3019 static void substSelect(sqlite3*, Select *, int, ExprList *); | |
3020 | |
3021 /* | |
3022 ** Scan through the expression pExpr. Replace every reference to | |
3023 ** a column in table number iTable with a copy of the iColumn-th | |
3024 ** entry in pEList. (But leave references to the ROWID column | |
3025 ** unchanged.) | |
3026 ** | |
3027 ** This routine is part of the flattening procedure. A subquery | |
3028 ** whose result set is defined by pEList appears as entry in the | |
3029 ** FROM clause of a SELECT such that the VDBE cursor assigned to that | |
3030 ** FORM clause entry is iTable. This routine make the necessary | |
3031 ** changes to pExpr so that it refers directly to the source table | |
3032 ** of the subquery rather the result set of the subquery. | |
3033 */ | |
3034 static Expr *substExpr( | |
3035 sqlite3 *db, /* Report malloc errors to this connection */ | |
3036 Expr *pExpr, /* Expr in which substitution occurs */ | |
3037 int iTable, /* Table to be substituted */ | |
3038 ExprList *pEList /* Substitute expressions */ | |
3039 ){ | |
3040 if( pExpr==0 ) return 0; | |
3041 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ | |
3042 if( pExpr->iColumn<0 ){ | |
3043 pExpr->op = TK_NULL; | |
3044 }else{ | |
3045 Expr *pNew; | |
3046 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); | |
3047 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); | |
3048 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); | |
3049 sqlite3ExprDelete(db, pExpr); | |
3050 pExpr = pNew; | |
3051 } | |
3052 }else{ | |
3053 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); | |
3054 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); | |
3055 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
3056 substSelect(db, pExpr->x.pSelect, iTable, pEList); | |
3057 }else{ | |
3058 substExprList(db, pExpr->x.pList, iTable, pEList); | |
3059 } | |
3060 } | |
3061 return pExpr; | |
3062 } | |
3063 static void substExprList( | |
3064 sqlite3 *db, /* Report malloc errors here */ | |
3065 ExprList *pList, /* List to scan and in which to make substitutes */ | |
3066 int iTable, /* Table to be substituted */ | |
3067 ExprList *pEList /* Substitute values */ | |
3068 ){ | |
3069 int i; | |
3070 if( pList==0 ) return; | |
3071 for(i=0; i<pList->nExpr; i++){ | |
3072 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); | |
3073 } | |
3074 } | |
3075 static void substSelect( | |
3076 sqlite3 *db, /* Report malloc errors here */ | |
3077 Select *p, /* SELECT statement in which to make substitutions */ | |
3078 int iTable, /* Table to be replaced */ | |
3079 ExprList *pEList /* Substitute values */ | |
3080 ){ | |
3081 SrcList *pSrc; | |
3082 struct SrcList_item *pItem; | |
3083 int i; | |
3084 if( !p ) return; | |
3085 substExprList(db, p->pEList, iTable, pEList); | |
3086 substExprList(db, p->pGroupBy, iTable, pEList); | |
3087 substExprList(db, p->pOrderBy, iTable, pEList); | |
3088 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); | |
3089 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); | |
3090 substSelect(db, p->pPrior, iTable, pEList); | |
3091 pSrc = p->pSrc; | |
3092 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ | |
3093 if( ALWAYS(pSrc) ){ | |
3094 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ | |
3095 substSelect(db, pItem->pSelect, iTable, pEList); | |
3096 } | |
3097 } | |
3098 } | |
3099 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ | |
3100 | |
3101 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | |
3102 /* | |
3103 ** This routine attempts to flatten subqueries as a performance optimization. | |
3104 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. | |
3105 ** | |
3106 ** To understand the concept of flattening, consider the following | |
3107 ** query: | |
3108 ** | |
3109 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 | |
3110 ** | |
3111 ** The default way of implementing this query is to execute the | |
3112 ** subquery first and store the results in a temporary table, then | |
3113 ** run the outer query on that temporary table. This requires two | |
3114 ** passes over the data. Furthermore, because the temporary table | |
3115 ** has no indices, the WHERE clause on the outer query cannot be | |
3116 ** optimized. | |
3117 ** | |
3118 ** This routine attempts to rewrite queries such as the above into | |
3119 ** a single flat select, like this: | |
3120 ** | |
3121 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 | |
3122 ** | |
3123 ** The code generated for this simplification gives the same result | |
3124 ** but only has to scan the data once. And because indices might | |
3125 ** exist on the table t1, a complete scan of the data might be | |
3126 ** avoided. | |
3127 ** | |
3128 ** Flattening is only attempted if all of the following are true: | |
3129 ** | |
3130 ** (1) The subquery and the outer query do not both use aggregates. | |
3131 ** | |
3132 ** (2) The subquery is not an aggregate or the outer query is not a join. | |
3133 ** | |
3134 ** (3) The subquery is not the right operand of a left outer join | |
3135 ** (Originally ticket #306. Strengthened by ticket #3300) | |
3136 ** | |
3137 ** (4) The subquery is not DISTINCT. | |
3138 ** | |
3139 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT | |
3140 ** sub-queries that were excluded from this optimization. Restriction | |
3141 ** (4) has since been expanded to exclude all DISTINCT subqueries. | |
3142 ** | |
3143 ** (6) The subquery does not use aggregates or the outer query is not | |
3144 ** DISTINCT. | |
3145 ** | |
3146 ** (7) The subquery has a FROM clause. TODO: For subqueries without | |
3147 ** A FROM clause, consider adding a FROM close with the special | |
3148 ** table sqlite_once that consists of a single row containing a | |
3149 ** single NULL. | |
3150 ** | |
3151 ** (8) The subquery does not use LIMIT or the outer query is not a join. | |
3152 ** | |
3153 ** (9) The subquery does not use LIMIT or the outer query does not use | |
3154 ** aggregates. | |
3155 ** | |
3156 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we | |
3157 ** accidently carried the comment forward until 2014-09-15. Original | |
3158 ** text: "The subquery does not use aggregates or the outer query does no
t | |
3159 ** use LIMIT." | |
3160 ** | |
3161 ** (11) The subquery and the outer query do not both have ORDER BY clauses. | |
3162 ** | |
3163 ** (**) Not implemented. Subsumed into restriction (3). Was previously | |
3164 ** a separate restriction deriving from ticket #350. | |
3165 ** | |
3166 ** (13) The subquery and outer query do not both use LIMIT. | |
3167 ** | |
3168 ** (14) The subquery does not use OFFSET. | |
3169 ** | |
3170 ** (15) The outer query is not part of a compound select or the | |
3171 ** subquery does not have a LIMIT clause. | |
3172 ** (See ticket #2339 and ticket [02a8e81d44]). | |
3173 ** | |
3174 ** (16) The outer query is not an aggregate or the subquery does | |
3175 ** not contain ORDER BY. (Ticket #2942) This used to not matter | |
3176 ** until we introduced the group_concat() function. | |
3177 ** | |
3178 ** (17) The sub-query is not a compound select, or it is a UNION ALL | |
3179 ** compound clause made up entirely of non-aggregate queries, and | |
3180 ** the parent query: | |
3181 ** | |
3182 ** * is not itself part of a compound select, | |
3183 ** * is not an aggregate or DISTINCT query, and | |
3184 ** * is not a join | |
3185 ** | |
3186 ** The parent and sub-query may contain WHERE clauses. Subject to | |
3187 ** rules (11), (13) and (14), they may also contain ORDER BY, | |
3188 ** LIMIT and OFFSET clauses. The subquery cannot use any compound | |
3189 ** operator other than UNION ALL because all the other compound | |
3190 ** operators have an implied DISTINCT which is disallowed by | |
3191 ** restriction (4). | |
3192 ** | |
3193 ** Also, each component of the sub-query must return the same number | |
3194 ** of result columns. This is actually a requirement for any compound | |
3195 ** SELECT statement, but all the code here does is make sure that no | |
3196 ** such (illegal) sub-query is flattened. The caller will detect the | |
3197 ** syntax error and return a detailed message. | |
3198 ** | |
3199 ** (18) If the sub-query is a compound select, then all terms of the | |
3200 ** ORDER by clause of the parent must be simple references to | |
3201 ** columns of the sub-query. | |
3202 ** | |
3203 ** (19) The subquery does not use LIMIT or the outer query does not | |
3204 ** have a WHERE clause. | |
3205 ** | |
3206 ** (20) If the sub-query is a compound select, then it must not use | |
3207 ** an ORDER BY clause. Ticket #3773. We could relax this constraint | |
3208 ** somewhat by saying that the terms of the ORDER BY clause must | |
3209 ** appear as unmodified result columns in the outer query. But we | |
3210 ** have other optimizations in mind to deal with that case. | |
3211 ** | |
3212 ** (21) The subquery does not use LIMIT or the outer query is not | |
3213 ** DISTINCT. (See ticket [752e1646fc]). | |
3214 ** | |
3215 ** (22) The subquery is not a recursive CTE. | |
3216 ** | |
3217 ** (23) The parent is not a recursive CTE, or the sub-query is not a | |
3218 ** compound query. This restriction is because transforming the | |
3219 ** parent to a compound query confuses the code that handles | |
3220 ** recursive queries in multiSelect(). | |
3221 ** | |
3222 ** (24) The subquery is not an aggregate that uses the built-in min() or | |
3223 ** or max() functions. (Without this restriction, a query like: | |
3224 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily | |
3225 ** return the value X for which Y was maximal.) | |
3226 ** | |
3227 ** | |
3228 ** In this routine, the "p" parameter is a pointer to the outer query. | |
3229 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query | |
3230 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. | |
3231 ** | |
3232 ** If flattening is not attempted, this routine is a no-op and returns 0. | |
3233 ** If flattening is attempted this routine returns 1. | |
3234 ** | |
3235 ** All of the expression analysis must occur on both the outer query and | |
3236 ** the subquery before this routine runs. | |
3237 */ | |
3238 static int flattenSubquery( | |
3239 Parse *pParse, /* Parsing context */ | |
3240 Select *p, /* The parent or outer SELECT statement */ | |
3241 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ | |
3242 int isAgg, /* True if outer SELECT uses aggregate functions */ | |
3243 int subqueryIsAgg /* True if the subquery uses aggregate functions */ | |
3244 ){ | |
3245 const char *zSavedAuthContext = pParse->zAuthContext; | |
3246 Select *pParent; | |
3247 Select *pSub; /* The inner query or "subquery" */ | |
3248 Select *pSub1; /* Pointer to the rightmost select in sub-query */ | |
3249 SrcList *pSrc; /* The FROM clause of the outer query */ | |
3250 SrcList *pSubSrc; /* The FROM clause of the subquery */ | |
3251 ExprList *pList; /* The result set of the outer query */ | |
3252 int iParent; /* VDBE cursor number of the pSub result set temp table */ | |
3253 int i; /* Loop counter */ | |
3254 Expr *pWhere; /* The WHERE clause */ | |
3255 struct SrcList_item *pSubitem; /* The subquery */ | |
3256 sqlite3 *db = pParse->db; | |
3257 | |
3258 /* Check to see if flattening is permitted. Return 0 if not. | |
3259 */ | |
3260 assert( p!=0 ); | |
3261 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ | |
3262 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; | |
3263 pSrc = p->pSrc; | |
3264 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); | |
3265 pSubitem = &pSrc->a[iFrom]; | |
3266 iParent = pSubitem->iCursor; | |
3267 pSub = pSubitem->pSelect; | |
3268 assert( pSub!=0 ); | |
3269 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ | |
3270 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ | |
3271 pSubSrc = pSub->pSrc; | |
3272 assert( pSubSrc ); | |
3273 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, | |
3274 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET | |
3275 ** because they could be computed at compile-time. But when LIMIT and OFFSET | |
3276 ** became arbitrary expressions, we were forced to add restrictions (13) | |
3277 ** and (14). */ | |
3278 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ | |
3279 if( pSub->pOffset ) return 0; /* Restriction (14) */ | |
3280 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ | |
3281 return 0; /* Restriction (15) */ | |
3282 } | |
3283 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ | |
3284 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ | |
3285 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ | |
3286 return 0; /* Restrictions (8)(9) */ | |
3287 } | |
3288 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ | |
3289 return 0; /* Restriction (6) */ | |
3290 } | |
3291 if( p->pOrderBy && pSub->pOrderBy ){ | |
3292 return 0; /* Restriction (11) */ | |
3293 } | |
3294 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ | |
3295 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ | |
3296 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ | |
3297 return 0; /* Restriction (21) */ | |
3298 } | |
3299 testcase( pSub->selFlags & SF_Recursive ); | |
3300 testcase( pSub->selFlags & SF_MinMaxAgg ); | |
3301 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ | |
3302 return 0; /* Restrictions (22) and (24) */ | |
3303 } | |
3304 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ | |
3305 return 0; /* Restriction (23) */ | |
3306 } | |
3307 | |
3308 /* OBSOLETE COMMENT 1: | |
3309 ** Restriction 3: If the subquery is a join, make sure the subquery is | |
3310 ** not used as the right operand of an outer join. Examples of why this | |
3311 ** is not allowed: | |
3312 ** | |
3313 ** t1 LEFT OUTER JOIN (t2 JOIN t3) | |
3314 ** | |
3315 ** If we flatten the above, we would get | |
3316 ** | |
3317 ** (t1 LEFT OUTER JOIN t2) JOIN t3 | |
3318 ** | |
3319 ** which is not at all the same thing. | |
3320 ** | |
3321 ** OBSOLETE COMMENT 2: | |
3322 ** Restriction 12: If the subquery is the right operand of a left outer | |
3323 ** join, make sure the subquery has no WHERE clause. | |
3324 ** An examples of why this is not allowed: | |
3325 ** | |
3326 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) | |
3327 ** | |
3328 ** If we flatten the above, we would get | |
3329 ** | |
3330 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 | |
3331 ** | |
3332 ** But the t2.x>0 test will always fail on a NULL row of t2, which | |
3333 ** effectively converts the OUTER JOIN into an INNER JOIN. | |
3334 ** | |
3335 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: | |
3336 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN | |
3337 ** is fraught with danger. Best to avoid the whole thing. If the | |
3338 ** subquery is the right term of a LEFT JOIN, then do not flatten. | |
3339 */ | |
3340 if( (pSubitem->jointype & JT_OUTER)!=0 ){ | |
3341 return 0; | |
3342 } | |
3343 | |
3344 /* Restriction 17: If the sub-query is a compound SELECT, then it must | |
3345 ** use only the UNION ALL operator. And none of the simple select queries | |
3346 ** that make up the compound SELECT are allowed to be aggregate or distinct | |
3347 ** queries. | |
3348 */ | |
3349 if( pSub->pPrior ){ | |
3350 if( pSub->pOrderBy ){ | |
3351 return 0; /* Restriction 20 */ | |
3352 } | |
3353 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ | |
3354 return 0; | |
3355 } | |
3356 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ | |
3357 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); | |
3358 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); | |
3359 assert( pSub->pSrc!=0 ); | |
3360 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 | |
3361 || (pSub1->pPrior && pSub1->op!=TK_ALL) | |
3362 || pSub1->pSrc->nSrc<1 | |
3363 || pSub->pEList->nExpr!=pSub1->pEList->nExpr | |
3364 ){ | |
3365 return 0; | |
3366 } | |
3367 testcase( pSub1->pSrc->nSrc>1 ); | |
3368 } | |
3369 | |
3370 /* Restriction 18. */ | |
3371 if( p->pOrderBy ){ | |
3372 int ii; | |
3373 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ | |
3374 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; | |
3375 } | |
3376 } | |
3377 } | |
3378 | |
3379 /***** If we reach this point, flattening is permitted. *****/ | |
3380 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", | |
3381 pSub->zSelName, pSub, iFrom)); | |
3382 | |
3383 /* Authorize the subquery */ | |
3384 pParse->zAuthContext = pSubitem->zName; | |
3385 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); | |
3386 testcase( i==SQLITE_DENY ); | |
3387 pParse->zAuthContext = zSavedAuthContext; | |
3388 | |
3389 /* If the sub-query is a compound SELECT statement, then (by restrictions | |
3390 ** 17 and 18 above) it must be a UNION ALL and the parent query must | |
3391 ** be of the form: | |
3392 ** | |
3393 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> | |
3394 ** | |
3395 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block | |
3396 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or | |
3397 ** OFFSET clauses and joins them to the left-hand-side of the original | |
3398 ** using UNION ALL operators. In this case N is the number of simple | |
3399 ** select statements in the compound sub-query. | |
3400 ** | |
3401 ** Example: | |
3402 ** | |
3403 ** SELECT a+1 FROM ( | |
3404 ** SELECT x FROM tab | |
3405 ** UNION ALL | |
3406 ** SELECT y FROM tab | |
3407 ** UNION ALL | |
3408 ** SELECT abs(z*2) FROM tab2 | |
3409 ** ) WHERE a!=5 ORDER BY 1 | |
3410 ** | |
3411 ** Transformed into: | |
3412 ** | |
3413 ** SELECT x+1 FROM tab WHERE x+1!=5 | |
3414 ** UNION ALL | |
3415 ** SELECT y+1 FROM tab WHERE y+1!=5 | |
3416 ** UNION ALL | |
3417 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 | |
3418 ** ORDER BY 1 | |
3419 ** | |
3420 ** We call this the "compound-subquery flattening". | |
3421 */ | |
3422 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ | |
3423 Select *pNew; | |
3424 ExprList *pOrderBy = p->pOrderBy; | |
3425 Expr *pLimit = p->pLimit; | |
3426 Expr *pOffset = p->pOffset; | |
3427 Select *pPrior = p->pPrior; | |
3428 p->pOrderBy = 0; | |
3429 p->pSrc = 0; | |
3430 p->pPrior = 0; | |
3431 p->pLimit = 0; | |
3432 p->pOffset = 0; | |
3433 pNew = sqlite3SelectDup(db, p, 0); | |
3434 sqlite3SelectSetName(pNew, pSub->zSelName); | |
3435 p->pOffset = pOffset; | |
3436 p->pLimit = pLimit; | |
3437 p->pOrderBy = pOrderBy; | |
3438 p->pSrc = pSrc; | |
3439 p->op = TK_ALL; | |
3440 if( pNew==0 ){ | |
3441 p->pPrior = pPrior; | |
3442 }else{ | |
3443 pNew->pPrior = pPrior; | |
3444 if( pPrior ) pPrior->pNext = pNew; | |
3445 pNew->pNext = p; | |
3446 p->pPrior = pNew; | |
3447 SELECTTRACE(2,pParse,p, | |
3448 ("compound-subquery flattener creates %s.%p as peer\n", | |
3449 pNew->zSelName, pNew)); | |
3450 } | |
3451 if( db->mallocFailed ) return 1; | |
3452 } | |
3453 | |
3454 /* Begin flattening the iFrom-th entry of the FROM clause | |
3455 ** in the outer query. | |
3456 */ | |
3457 pSub = pSub1 = pSubitem->pSelect; | |
3458 | |
3459 /* Delete the transient table structure associated with the | |
3460 ** subquery | |
3461 */ | |
3462 sqlite3DbFree(db, pSubitem->zDatabase); | |
3463 sqlite3DbFree(db, pSubitem->zName); | |
3464 sqlite3DbFree(db, pSubitem->zAlias); | |
3465 pSubitem->zDatabase = 0; | |
3466 pSubitem->zName = 0; | |
3467 pSubitem->zAlias = 0; | |
3468 pSubitem->pSelect = 0; | |
3469 | |
3470 /* Defer deleting the Table object associated with the | |
3471 ** subquery until code generation is | |
3472 ** complete, since there may still exist Expr.pTab entries that | |
3473 ** refer to the subquery even after flattening. Ticket #3346. | |
3474 ** | |
3475 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. | |
3476 */ | |
3477 if( ALWAYS(pSubitem->pTab!=0) ){ | |
3478 Table *pTabToDel = pSubitem->pTab; | |
3479 if( pTabToDel->nRef==1 ){ | |
3480 Parse *pToplevel = sqlite3ParseToplevel(pParse); | |
3481 pTabToDel->pNextZombie = pToplevel->pZombieTab; | |
3482 pToplevel->pZombieTab = pTabToDel; | |
3483 }else{ | |
3484 pTabToDel->nRef--; | |
3485 } | |
3486 pSubitem->pTab = 0; | |
3487 } | |
3488 | |
3489 /* The following loop runs once for each term in a compound-subquery | |
3490 ** flattening (as described above). If we are doing a different kind | |
3491 ** of flattening - a flattening other than a compound-subquery flattening - | |
3492 ** then this loop only runs once. | |
3493 ** | |
3494 ** This loop moves all of the FROM elements of the subquery into the | |
3495 ** the FROM clause of the outer query. Before doing this, remember | |
3496 ** the cursor number for the original outer query FROM element in | |
3497 ** iParent. The iParent cursor will never be used. Subsequent code | |
3498 ** will scan expressions looking for iParent references and replace | |
3499 ** those references with expressions that resolve to the subquery FROM | |
3500 ** elements we are now copying in. | |
3501 */ | |
3502 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ | |
3503 int nSubSrc; | |
3504 u8 jointype = 0; | |
3505 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ | |
3506 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ | |
3507 pSrc = pParent->pSrc; /* FROM clause of the outer query */ | |
3508 | |
3509 if( pSrc ){ | |
3510 assert( pParent==p ); /* First time through the loop */ | |
3511 jointype = pSubitem->jointype; | |
3512 }else{ | |
3513 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ | |
3514 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); | |
3515 if( pSrc==0 ){ | |
3516 assert( db->mallocFailed ); | |
3517 break; | |
3518 } | |
3519 } | |
3520 | |
3521 /* The subquery uses a single slot of the FROM clause of the outer | |
3522 ** query. If the subquery has more than one element in its FROM clause, | |
3523 ** then expand the outer query to make space for it to hold all elements | |
3524 ** of the subquery. | |
3525 ** | |
3526 ** Example: | |
3527 ** | |
3528 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; | |
3529 ** | |
3530 ** The outer query has 3 slots in its FROM clause. One slot of the | |
3531 ** outer query (the middle slot) is used by the subquery. The next | |
3532 ** block of code will expand the out query to 4 slots. The middle | |
3533 ** slot is expanded to two slots in order to make space for the | |
3534 ** two elements in the FROM clause of the subquery. | |
3535 */ | |
3536 if( nSubSrc>1 ){ | |
3537 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); | |
3538 if( db->mallocFailed ){ | |
3539 break; | |
3540 } | |
3541 } | |
3542 | |
3543 /* Transfer the FROM clause terms from the subquery into the | |
3544 ** outer query. | |
3545 */ | |
3546 for(i=0; i<nSubSrc; i++){ | |
3547 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); | |
3548 pSrc->a[i+iFrom] = pSubSrc->a[i]; | |
3549 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); | |
3550 } | |
3551 pSrc->a[iFrom].jointype = jointype; | |
3552 | |
3553 /* Now begin substituting subquery result set expressions for | |
3554 ** references to the iParent in the outer query. | |
3555 ** | |
3556 ** Example: | |
3557 ** | |
3558 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; | |
3559 ** \ \_____________ subquery __________/ / | |
3560 ** \_____________________ outer query ______________________________/ | |
3561 ** | |
3562 ** We look at every expression in the outer query and every place we see | |
3563 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". | |
3564 */ | |
3565 pList = pParent->pEList; | |
3566 for(i=0; i<pList->nExpr; i++){ | |
3567 if( pList->a[i].zName==0 ){ | |
3568 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); | |
3569 sqlite3Dequote(zName); | |
3570 pList->a[i].zName = zName; | |
3571 } | |
3572 } | |
3573 substExprList(db, pParent->pEList, iParent, pSub->pEList); | |
3574 if( isAgg ){ | |
3575 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); | |
3576 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); | |
3577 } | |
3578 if( pSub->pOrderBy ){ | |
3579 /* At this point, any non-zero iOrderByCol values indicate that the | |
3580 ** ORDER BY column expression is identical to the iOrderByCol'th | |
3581 ** expression returned by SELECT statement pSub. Since these values | |
3582 ** do not necessarily correspond to columns in SELECT statement pParent, | |
3583 ** zero them before transfering the ORDER BY clause. | |
3584 ** | |
3585 ** Not doing this may cause an error if a subsequent call to this | |
3586 ** function attempts to flatten a compound sub-query into pParent | |
3587 ** (the only way this can happen is if the compound sub-query is | |
3588 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ | |
3589 ExprList *pOrderBy = pSub->pOrderBy; | |
3590 for(i=0; i<pOrderBy->nExpr; i++){ | |
3591 pOrderBy->a[i].u.x.iOrderByCol = 0; | |
3592 } | |
3593 assert( pParent->pOrderBy==0 ); | |
3594 assert( pSub->pPrior==0 ); | |
3595 pParent->pOrderBy = pOrderBy; | |
3596 pSub->pOrderBy = 0; | |
3597 }else if( pParent->pOrderBy ){ | |
3598 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); | |
3599 } | |
3600 if( pSub->pWhere ){ | |
3601 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); | |
3602 }else{ | |
3603 pWhere = 0; | |
3604 } | |
3605 if( subqueryIsAgg ){ | |
3606 assert( pParent->pHaving==0 ); | |
3607 pParent->pHaving = pParent->pWhere; | |
3608 pParent->pWhere = pWhere; | |
3609 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); | |
3610 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, | |
3611 sqlite3ExprDup(db, pSub->pHaving, 0)); | |
3612 assert( pParent->pGroupBy==0 ); | |
3613 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); | |
3614 }else{ | |
3615 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); | |
3616 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); | |
3617 } | |
3618 | |
3619 /* The flattened query is distinct if either the inner or the | |
3620 ** outer query is distinct. | |
3621 */ | |
3622 pParent->selFlags |= pSub->selFlags & SF_Distinct; | |
3623 | |
3624 /* | |
3625 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; | |
3626 ** | |
3627 ** One is tempted to try to add a and b to combine the limits. But this | |
3628 ** does not work if either limit is negative. | |
3629 */ | |
3630 if( pSub->pLimit ){ | |
3631 pParent->pLimit = pSub->pLimit; | |
3632 pSub->pLimit = 0; | |
3633 } | |
3634 } | |
3635 | |
3636 /* Finially, delete what is left of the subquery and return | |
3637 ** success. | |
3638 */ | |
3639 sqlite3SelectDelete(db, pSub1); | |
3640 | |
3641 #if SELECTTRACE_ENABLED | |
3642 if( sqlite3SelectTrace & 0x100 ){ | |
3643 sqlite3DebugPrintf("After flattening:\n"); | |
3644 sqlite3TreeViewSelect(0, p, 0); | |
3645 } | |
3646 #endif | |
3647 | |
3648 return 1; | |
3649 } | |
3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ | |
3651 | |
3652 /* | |
3653 ** Based on the contents of the AggInfo structure indicated by the first | |
3654 ** argument, this function checks if the following are true: | |
3655 ** | |
3656 ** * the query contains just a single aggregate function, | |
3657 ** * the aggregate function is either min() or max(), and | |
3658 ** * the argument to the aggregate function is a column value. | |
3659 ** | |
3660 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX | |
3661 ** is returned as appropriate. Also, *ppMinMax is set to point to the | |
3662 ** list of arguments passed to the aggregate before returning. | |
3663 ** | |
3664 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and | |
3665 ** WHERE_ORDERBY_NORMAL is returned. | |
3666 */ | |
3667 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ | |
3668 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ | |
3669 | |
3670 *ppMinMax = 0; | |
3671 if( pAggInfo->nFunc==1 ){ | |
3672 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ | |
3673 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ | |
3674 | |
3675 assert( pExpr->op==TK_AGG_FUNCTION ); | |
3676 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ | |
3677 const char *zFunc = pExpr->u.zToken; | |
3678 if( sqlite3StrICmp(zFunc, "min")==0 ){ | |
3679 eRet = WHERE_ORDERBY_MIN; | |
3680 *ppMinMax = pEList; | |
3681 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ | |
3682 eRet = WHERE_ORDERBY_MAX; | |
3683 *ppMinMax = pEList; | |
3684 } | |
3685 } | |
3686 } | |
3687 | |
3688 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); | |
3689 return eRet; | |
3690 } | |
3691 | |
3692 /* | |
3693 ** The select statement passed as the first argument is an aggregate query. | |
3694 ** The second argument is the associated aggregate-info object. This | |
3695 ** function tests if the SELECT is of the form: | |
3696 ** | |
3697 ** SELECT count(*) FROM <tbl> | |
3698 ** | |
3699 ** where table is a database table, not a sub-select or view. If the query | |
3700 ** does match this pattern, then a pointer to the Table object representing | |
3701 ** <tbl> is returned. Otherwise, 0 is returned. | |
3702 */ | |
3703 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ | |
3704 Table *pTab; | |
3705 Expr *pExpr; | |
3706 | |
3707 assert( !p->pGroupBy ); | |
3708 | |
3709 if( p->pWhere || p->pEList->nExpr!=1 | |
3710 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect | |
3711 ){ | |
3712 return 0; | |
3713 } | |
3714 pTab = p->pSrc->a[0].pTab; | |
3715 pExpr = p->pEList->a[0].pExpr; | |
3716 assert( pTab && !pTab->pSelect && pExpr ); | |
3717 | |
3718 if( IsVirtual(pTab) ) return 0; | |
3719 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; | |
3720 if( NEVER(pAggInfo->nFunc==0) ) return 0; | |
3721 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; | |
3722 if( pExpr->flags&EP_Distinct ) return 0; | |
3723 | |
3724 return pTab; | |
3725 } | |
3726 | |
3727 /* | |
3728 ** If the source-list item passed as an argument was augmented with an | |
3729 ** INDEXED BY clause, then try to locate the specified index. If there | |
3730 ** was such a clause and the named index cannot be found, return | |
3731 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate | |
3732 ** pFrom->pIndex and return SQLITE_OK. | |
3733 */ | |
3734 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ | |
3735 if( pFrom->pTab && pFrom->zIndex ){ | |
3736 Table *pTab = pFrom->pTab; | |
3737 char *zIndex = pFrom->zIndex; | |
3738 Index *pIdx; | |
3739 for(pIdx=pTab->pIndex; | |
3740 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); | |
3741 pIdx=pIdx->pNext | |
3742 ); | |
3743 if( !pIdx ){ | |
3744 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); | |
3745 pParse->checkSchema = 1; | |
3746 return SQLITE_ERROR; | |
3747 } | |
3748 pFrom->pIndex = pIdx; | |
3749 } | |
3750 return SQLITE_OK; | |
3751 } | |
3752 /* | |
3753 ** Detect compound SELECT statements that use an ORDER BY clause with | |
3754 ** an alternative collating sequence. | |
3755 ** | |
3756 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... | |
3757 ** | |
3758 ** These are rewritten as a subquery: | |
3759 ** | |
3760 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) | |
3761 ** ORDER BY ... COLLATE ... | |
3762 ** | |
3763 ** This transformation is necessary because the multiSelectOrderBy() routine | |
3764 ** above that generates the code for a compound SELECT with an ORDER BY clause | |
3765 ** uses a merge algorithm that requires the same collating sequence on the | |
3766 ** result columns as on the ORDER BY clause. See ticket | |
3767 ** http://www.sqlite.org/src/info/6709574d2a | |
3768 ** | |
3769 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. | |
3770 ** The UNION ALL operator works fine with multiSelectOrderBy() even when | |
3771 ** there are COLLATE terms in the ORDER BY. | |
3772 */ | |
3773 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ | |
3774 int i; | |
3775 Select *pNew; | |
3776 Select *pX; | |
3777 sqlite3 *db; | |
3778 struct ExprList_item *a; | |
3779 SrcList *pNewSrc; | |
3780 Parse *pParse; | |
3781 Token dummy; | |
3782 | |
3783 if( p->pPrior==0 ) return WRC_Continue; | |
3784 if( p->pOrderBy==0 ) return WRC_Continue; | |
3785 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} | |
3786 if( pX==0 ) return WRC_Continue; | |
3787 a = p->pOrderBy->a; | |
3788 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ | |
3789 if( a[i].pExpr->flags & EP_Collate ) break; | |
3790 } | |
3791 if( i<0 ) return WRC_Continue; | |
3792 | |
3793 /* If we reach this point, that means the transformation is required. */ | |
3794 | |
3795 pParse = pWalker->pParse; | |
3796 db = pParse->db; | |
3797 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); | |
3798 if( pNew==0 ) return WRC_Abort; | |
3799 memset(&dummy, 0, sizeof(dummy)); | |
3800 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); | |
3801 if( pNewSrc==0 ) return WRC_Abort; | |
3802 *pNew = *p; | |
3803 p->pSrc = pNewSrc; | |
3804 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); | |
3805 p->op = TK_SELECT; | |
3806 p->pWhere = 0; | |
3807 pNew->pGroupBy = 0; | |
3808 pNew->pHaving = 0; | |
3809 pNew->pOrderBy = 0; | |
3810 p->pPrior = 0; | |
3811 p->pNext = 0; | |
3812 p->selFlags &= ~SF_Compound; | |
3813 assert( pNew->pPrior!=0 ); | |
3814 pNew->pPrior->pNext = pNew; | |
3815 pNew->pLimit = 0; | |
3816 pNew->pOffset = 0; | |
3817 return WRC_Continue; | |
3818 } | |
3819 | |
3820 #ifndef SQLITE_OMIT_CTE | |
3821 /* | |
3822 ** Argument pWith (which may be NULL) points to a linked list of nested | |
3823 ** WITH contexts, from inner to outermost. If the table identified by | |
3824 ** FROM clause element pItem is really a common-table-expression (CTE) | |
3825 ** then return a pointer to the CTE definition for that table. Otherwise | |
3826 ** return NULL. | |
3827 ** | |
3828 ** If a non-NULL value is returned, set *ppContext to point to the With | |
3829 ** object that the returned CTE belongs to. | |
3830 */ | |
3831 static struct Cte *searchWith( | |
3832 With *pWith, /* Current outermost WITH clause */ | |
3833 struct SrcList_item *pItem, /* FROM clause element to resolve */ | |
3834 With **ppContext /* OUT: WITH clause return value belongs to */ | |
3835 ){ | |
3836 const char *zName; | |
3837 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ | |
3838 With *p; | |
3839 for(p=pWith; p; p=p->pOuter){ | |
3840 int i; | |
3841 for(i=0; i<p->nCte; i++){ | |
3842 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ | |
3843 *ppContext = p; | |
3844 return &p->a[i]; | |
3845 } | |
3846 } | |
3847 } | |
3848 } | |
3849 return 0; | |
3850 } | |
3851 | |
3852 /* The code generator maintains a stack of active WITH clauses | |
3853 ** with the inner-most WITH clause being at the top of the stack. | |
3854 ** | |
3855 ** This routine pushes the WITH clause passed as the second argument | |
3856 ** onto the top of the stack. If argument bFree is true, then this | |
3857 ** WITH clause will never be popped from the stack. In this case it | |
3858 ** should be freed along with the Parse object. In other cases, when | |
3859 ** bFree==0, the With object will be freed along with the SELECT | |
3860 ** statement with which it is associated. | |
3861 */ | |
3862 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ | |
3863 assert( bFree==0 || pParse->pWith==0 ); | |
3864 if( pWith ){ | |
3865 pWith->pOuter = pParse->pWith; | |
3866 pParse->pWith = pWith; | |
3867 pParse->bFreeWith = bFree; | |
3868 } | |
3869 } | |
3870 | |
3871 /* | |
3872 ** This function checks if argument pFrom refers to a CTE declared by | |
3873 ** a WITH clause on the stack currently maintained by the parser. And, | |
3874 ** if currently processing a CTE expression, if it is a recursive | |
3875 ** reference to the current CTE. | |
3876 ** | |
3877 ** If pFrom falls into either of the two categories above, pFrom->pTab | |
3878 ** and other fields are populated accordingly. The caller should check | |
3879 ** (pFrom->pTab!=0) to determine whether or not a successful match | |
3880 ** was found. | |
3881 ** | |
3882 ** Whether or not a match is found, SQLITE_OK is returned if no error | |
3883 ** occurs. If an error does occur, an error message is stored in the | |
3884 ** parser and some error code other than SQLITE_OK returned. | |
3885 */ | |
3886 static int withExpand( | |
3887 Walker *pWalker, | |
3888 struct SrcList_item *pFrom | |
3889 ){ | |
3890 Parse *pParse = pWalker->pParse; | |
3891 sqlite3 *db = pParse->db; | |
3892 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ | |
3893 With *pWith; /* WITH clause that pCte belongs to */ | |
3894 | |
3895 assert( pFrom->pTab==0 ); | |
3896 | |
3897 pCte = searchWith(pParse->pWith, pFrom, &pWith); | |
3898 if( pCte ){ | |
3899 Table *pTab; | |
3900 ExprList *pEList; | |
3901 Select *pSel; | |
3902 Select *pLeft; /* Left-most SELECT statement */ | |
3903 int bMayRecursive; /* True if compound joined by UNION [ALL] */ | |
3904 With *pSavedWith; /* Initial value of pParse->pWith */ | |
3905 | |
3906 /* If pCte->zErr is non-NULL at this point, then this is an illegal | |
3907 ** recursive reference to CTE pCte. Leave an error in pParse and return | |
3908 ** early. If pCte->zErr is NULL, then this is not a recursive reference. | |
3909 ** In this case, proceed. */ | |
3910 if( pCte->zErr ){ | |
3911 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); | |
3912 return SQLITE_ERROR; | |
3913 } | |
3914 | |
3915 assert( pFrom->pTab==0 ); | |
3916 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); | |
3917 if( pTab==0 ) return WRC_Abort; | |
3918 pTab->nRef = 1; | |
3919 pTab->zName = sqlite3DbStrDup(db, pCte->zName); | |
3920 pTab->iPKey = -1; | |
3921 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); | |
3922 pTab->tabFlags |= TF_Ephemeral; | |
3923 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); | |
3924 if( db->mallocFailed ) return SQLITE_NOMEM; | |
3925 assert( pFrom->pSelect ); | |
3926 | |
3927 /* Check if this is a recursive CTE. */ | |
3928 pSel = pFrom->pSelect; | |
3929 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); | |
3930 if( bMayRecursive ){ | |
3931 int i; | |
3932 SrcList *pSrc = pFrom->pSelect->pSrc; | |
3933 for(i=0; i<pSrc->nSrc; i++){ | |
3934 struct SrcList_item *pItem = &pSrc->a[i]; | |
3935 if( pItem->zDatabase==0 | |
3936 && pItem->zName!=0 | |
3937 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) | |
3938 ){ | |
3939 pItem->pTab = pTab; | |
3940 pItem->isRecursive = 1; | |
3941 pTab->nRef++; | |
3942 pSel->selFlags |= SF_Recursive; | |
3943 } | |
3944 } | |
3945 } | |
3946 | |
3947 /* Only one recursive reference is permitted. */ | |
3948 if( pTab->nRef>2 ){ | |
3949 sqlite3ErrorMsg( | |
3950 pParse, "multiple references to recursive table: %s", pCte->zName | |
3951 ); | |
3952 return SQLITE_ERROR; | |
3953 } | |
3954 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); | |
3955 | |
3956 pCte->zErr = "circular reference: %s"; | |
3957 pSavedWith = pParse->pWith; | |
3958 pParse->pWith = pWith; | |
3959 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); | |
3960 | |
3961 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); | |
3962 pEList = pLeft->pEList; | |
3963 if( pCte->pCols ){ | |
3964 if( pEList->nExpr!=pCte->pCols->nExpr ){ | |
3965 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", | |
3966 pCte->zName, pEList->nExpr, pCte->pCols->nExpr | |
3967 ); | |
3968 pParse->pWith = pSavedWith; | |
3969 return SQLITE_ERROR; | |
3970 } | |
3971 pEList = pCte->pCols; | |
3972 } | |
3973 | |
3974 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); | |
3975 if( bMayRecursive ){ | |
3976 if( pSel->selFlags & SF_Recursive ){ | |
3977 pCte->zErr = "multiple recursive references: %s"; | |
3978 }else{ | |
3979 pCte->zErr = "recursive reference in a subquery: %s"; | |
3980 } | |
3981 sqlite3WalkSelect(pWalker, pSel); | |
3982 } | |
3983 pCte->zErr = 0; | |
3984 pParse->pWith = pSavedWith; | |
3985 } | |
3986 | |
3987 return SQLITE_OK; | |
3988 } | |
3989 #endif | |
3990 | |
3991 #ifndef SQLITE_OMIT_CTE | |
3992 /* | |
3993 ** If the SELECT passed as the second argument has an associated WITH | |
3994 ** clause, pop it from the stack stored as part of the Parse object. | |
3995 ** | |
3996 ** This function is used as the xSelectCallback2() callback by | |
3997 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table | |
3998 ** names and other FROM clause elements. | |
3999 */ | |
4000 static void selectPopWith(Walker *pWalker, Select *p){ | |
4001 Parse *pParse = pWalker->pParse; | |
4002 With *pWith = findRightmost(p)->pWith; | |
4003 if( pWith!=0 ){ | |
4004 assert( pParse->pWith==pWith ); | |
4005 pParse->pWith = pWith->pOuter; | |
4006 } | |
4007 } | |
4008 #else | |
4009 #define selectPopWith 0 | |
4010 #endif | |
4011 | |
4012 /* | |
4013 ** This routine is a Walker callback for "expanding" a SELECT statement. | |
4014 ** "Expanding" means to do the following: | |
4015 ** | |
4016 ** (1) Make sure VDBE cursor numbers have been assigned to every | |
4017 ** element of the FROM clause. | |
4018 ** | |
4019 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that | |
4020 ** defines FROM clause. When views appear in the FROM clause, | |
4021 ** fill pTabList->a[].pSelect with a copy of the SELECT statement | |
4022 ** that implements the view. A copy is made of the view's SELECT | |
4023 ** statement so that we can freely modify or delete that statement | |
4024 ** without worrying about messing up the persistent representation | |
4025 ** of the view. | |
4026 ** | |
4027 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword | |
4028 ** on joins and the ON and USING clause of joins. | |
4029 ** | |
4030 ** (4) Scan the list of columns in the result set (pEList) looking | |
4031 ** for instances of the "*" operator or the TABLE.* operator. | |
4032 ** If found, expand each "*" to be every column in every table | |
4033 ** and TABLE.* to be every column in TABLE. | |
4034 ** | |
4035 */ | |
4036 static int selectExpander(Walker *pWalker, Select *p){ | |
4037 Parse *pParse = pWalker->pParse; | |
4038 int i, j, k; | |
4039 SrcList *pTabList; | |
4040 ExprList *pEList; | |
4041 struct SrcList_item *pFrom; | |
4042 sqlite3 *db = pParse->db; | |
4043 Expr *pE, *pRight, *pExpr; | |
4044 u16 selFlags = p->selFlags; | |
4045 | |
4046 p->selFlags |= SF_Expanded; | |
4047 if( db->mallocFailed ){ | |
4048 return WRC_Abort; | |
4049 } | |
4050 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ | |
4051 return WRC_Prune; | |
4052 } | |
4053 pTabList = p->pSrc; | |
4054 pEList = p->pEList; | |
4055 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); | |
4056 | |
4057 /* Make sure cursor numbers have been assigned to all entries in | |
4058 ** the FROM clause of the SELECT statement. | |
4059 */ | |
4060 sqlite3SrcListAssignCursors(pParse, pTabList); | |
4061 | |
4062 /* Look up every table named in the FROM clause of the select. If | |
4063 ** an entry of the FROM clause is a subquery instead of a table or view, | |
4064 ** then create a transient table structure to describe the subquery. | |
4065 */ | |
4066 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ | |
4067 Table *pTab; | |
4068 assert( pFrom->isRecursive==0 || pFrom->pTab ); | |
4069 if( pFrom->isRecursive ) continue; | |
4070 if( pFrom->pTab!=0 ){ | |
4071 /* This statement has already been prepared. There is no need | |
4072 ** to go further. */ | |
4073 assert( i==0 ); | |
4074 #ifndef SQLITE_OMIT_CTE | |
4075 selectPopWith(pWalker, p); | |
4076 #endif | |
4077 return WRC_Prune; | |
4078 } | |
4079 #ifndef SQLITE_OMIT_CTE | |
4080 if( withExpand(pWalker, pFrom) ) return WRC_Abort; | |
4081 if( pFrom->pTab ) {} else | |
4082 #endif | |
4083 if( pFrom->zName==0 ){ | |
4084 #ifndef SQLITE_OMIT_SUBQUERY | |
4085 Select *pSel = pFrom->pSelect; | |
4086 /* A sub-query in the FROM clause of a SELECT */ | |
4087 assert( pSel!=0 ); | |
4088 assert( pFrom->pTab==0 ); | |
4089 sqlite3WalkSelect(pWalker, pSel); | |
4090 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); | |
4091 if( pTab==0 ) return WRC_Abort; | |
4092 pTab->nRef = 1; | |
4093 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); | |
4094 while( pSel->pPrior ){ pSel = pSel->pPrior; } | |
4095 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); | |
4096 pTab->iPKey = -1; | |
4097 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); | |
4098 pTab->tabFlags |= TF_Ephemeral; | |
4099 #endif | |
4100 }else{ | |
4101 /* An ordinary table or view name in the FROM clause */ | |
4102 assert( pFrom->pTab==0 ); | |
4103 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); | |
4104 if( pTab==0 ) return WRC_Abort; | |
4105 if( pTab->nRef==0xffff ){ | |
4106 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", | |
4107 pTab->zName); | |
4108 pFrom->pTab = 0; | |
4109 return WRC_Abort; | |
4110 } | |
4111 pTab->nRef++; | |
4112 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) | |
4113 if( pTab->pSelect || IsVirtual(pTab) ){ | |
4114 /* We reach here if the named table is a really a view */ | |
4115 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; | |
4116 assert( pFrom->pSelect==0 ); | |
4117 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); | |
4118 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); | |
4119 sqlite3WalkSelect(pWalker, pFrom->pSelect); | |
4120 } | |
4121 #endif | |
4122 } | |
4123 | |
4124 /* Locate the index named by the INDEXED BY clause, if any. */ | |
4125 if( sqlite3IndexedByLookup(pParse, pFrom) ){ | |
4126 return WRC_Abort; | |
4127 } | |
4128 } | |
4129 | |
4130 /* Process NATURAL keywords, and ON and USING clauses of joins. | |
4131 */ | |
4132 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ | |
4133 return WRC_Abort; | |
4134 } | |
4135 | |
4136 /* For every "*" that occurs in the column list, insert the names of | |
4137 ** all columns in all tables. And for every TABLE.* insert the names | |
4138 ** of all columns in TABLE. The parser inserted a special expression | |
4139 ** with the TK_ALL operator for each "*" that it found in the column list. | |
4140 ** The following code just has to locate the TK_ALL expressions and expand | |
4141 ** each one to the list of all columns in all tables. | |
4142 ** | |
4143 ** The first loop just checks to see if there are any "*" operators | |
4144 ** that need expanding. | |
4145 */ | |
4146 for(k=0; k<pEList->nExpr; k++){ | |
4147 pE = pEList->a[k].pExpr; | |
4148 if( pE->op==TK_ALL ) break; | |
4149 assert( pE->op!=TK_DOT || pE->pRight!=0 ); | |
4150 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); | |
4151 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; | |
4152 } | |
4153 if( k<pEList->nExpr ){ | |
4154 /* | |
4155 ** If we get here it means the result set contains one or more "*" | |
4156 ** operators that need to be expanded. Loop through each expression | |
4157 ** in the result set and expand them one by one. | |
4158 */ | |
4159 struct ExprList_item *a = pEList->a; | |
4160 ExprList *pNew = 0; | |
4161 int flags = pParse->db->flags; | |
4162 int longNames = (flags & SQLITE_FullColNames)!=0 | |
4163 && (flags & SQLITE_ShortColNames)==0; | |
4164 | |
4165 /* When processing FROM-clause subqueries, it is always the case | |
4166 ** that full_column_names=OFF and short_column_names=ON. The | |
4167 ** sqlite3ResultSetOfSelect() routine makes it so. */ | |
4168 assert( (p->selFlags & SF_NestedFrom)==0 | |
4169 || ((flags & SQLITE_FullColNames)==0 && | |
4170 (flags & SQLITE_ShortColNames)!=0) ); | |
4171 | |
4172 for(k=0; k<pEList->nExpr; k++){ | |
4173 pE = a[k].pExpr; | |
4174 pRight = pE->pRight; | |
4175 assert( pE->op!=TK_DOT || pRight!=0 ); | |
4176 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ | |
4177 /* This particular expression does not need to be expanded. | |
4178 */ | |
4179 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); | |
4180 if( pNew ){ | |
4181 pNew->a[pNew->nExpr-1].zName = a[k].zName; | |
4182 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; | |
4183 a[k].zName = 0; | |
4184 a[k].zSpan = 0; | |
4185 } | |
4186 a[k].pExpr = 0; | |
4187 }else{ | |
4188 /* This expression is a "*" or a "TABLE.*" and needs to be | |
4189 ** expanded. */ | |
4190 int tableSeen = 0; /* Set to 1 when TABLE matches */ | |
4191 char *zTName = 0; /* text of name of TABLE */ | |
4192 if( pE->op==TK_DOT ){ | |
4193 assert( pE->pLeft!=0 ); | |
4194 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); | |
4195 zTName = pE->pLeft->u.zToken; | |
4196 } | |
4197 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ | |
4198 Table *pTab = pFrom->pTab; | |
4199 Select *pSub = pFrom->pSelect; | |
4200 char *zTabName = pFrom->zAlias; | |
4201 const char *zSchemaName = 0; | |
4202 int iDb; | |
4203 if( zTabName==0 ){ | |
4204 zTabName = pTab->zName; | |
4205 } | |
4206 if( db->mallocFailed ) break; | |
4207 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ | |
4208 pSub = 0; | |
4209 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ | |
4210 continue; | |
4211 } | |
4212 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
4213 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; | |
4214 } | |
4215 for(j=0; j<pTab->nCol; j++){ | |
4216 char *zName = pTab->aCol[j].zName; | |
4217 char *zColname; /* The computed column name */ | |
4218 char *zToFree; /* Malloced string that needs to be freed */ | |
4219 Token sColname; /* Computed column name as a token */ | |
4220 | |
4221 assert( zName ); | |
4222 if( zTName && pSub | |
4223 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 | |
4224 ){ | |
4225 continue; | |
4226 } | |
4227 | |
4228 /* If a column is marked as 'hidden' (currently only possible | |
4229 ** for virtual tables), do not include it in the expanded | |
4230 ** result-set list. | |
4231 */ | |
4232 if( IsHiddenColumn(&pTab->aCol[j]) ){ | |
4233 assert(IsVirtual(pTab)); | |
4234 continue; | |
4235 } | |
4236 tableSeen = 1; | |
4237 | |
4238 if( i>0 && zTName==0 ){ | |
4239 if( (pFrom->jointype & JT_NATURAL)!=0 | |
4240 && tableAndColumnIndex(pTabList, i, zName, 0, 0) | |
4241 ){ | |
4242 /* In a NATURAL join, omit the join columns from the | |
4243 ** table to the right of the join */ | |
4244 continue; | |
4245 } | |
4246 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ | |
4247 /* In a join with a USING clause, omit columns in the | |
4248 ** using clause from the table on the right. */ | |
4249 continue; | |
4250 } | |
4251 } | |
4252 pRight = sqlite3Expr(db, TK_ID, zName); | |
4253 zColname = zName; | |
4254 zToFree = 0; | |
4255 if( longNames || pTabList->nSrc>1 ){ | |
4256 Expr *pLeft; | |
4257 pLeft = sqlite3Expr(db, TK_ID, zTabName); | |
4258 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); | |
4259 if( zSchemaName ){ | |
4260 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); | |
4261 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); | |
4262 } | |
4263 if( longNames ){ | |
4264 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); | |
4265 zToFree = zColname; | |
4266 } | |
4267 }else{ | |
4268 pExpr = pRight; | |
4269 } | |
4270 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); | |
4271 sColname.z = zColname; | |
4272 sColname.n = sqlite3Strlen30(zColname); | |
4273 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); | |
4274 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ | |
4275 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; | |
4276 if( pSub ){ | |
4277 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); | |
4278 testcase( pX->zSpan==0 ); | |
4279 }else{ | |
4280 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", | |
4281 zSchemaName, zTabName, zColname); | |
4282 testcase( pX->zSpan==0 ); | |
4283 } | |
4284 pX->bSpanIsTab = 1; | |
4285 } | |
4286 sqlite3DbFree(db, zToFree); | |
4287 } | |
4288 } | |
4289 if( !tableSeen ){ | |
4290 if( zTName ){ | |
4291 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); | |
4292 }else{ | |
4293 sqlite3ErrorMsg(pParse, "no tables specified"); | |
4294 } | |
4295 } | |
4296 } | |
4297 } | |
4298 sqlite3ExprListDelete(db, pEList); | |
4299 p->pEList = pNew; | |
4300 } | |
4301 #if SQLITE_MAX_COLUMN | |
4302 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ | |
4303 sqlite3ErrorMsg(pParse, "too many columns in result set"); | |
4304 } | |
4305 #endif | |
4306 return WRC_Continue; | |
4307 } | |
4308 | |
4309 /* | |
4310 ** No-op routine for the parse-tree walker. | |
4311 ** | |
4312 ** When this routine is the Walker.xExprCallback then expression trees | |
4313 ** are walked without any actions being taken at each node. Presumably, | |
4314 ** when this routine is used for Walker.xExprCallback then | |
4315 ** Walker.xSelectCallback is set to do something useful for every | |
4316 ** subquery in the parser tree. | |
4317 */ | |
4318 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ | |
4319 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
4320 return WRC_Continue; | |
4321 } | |
4322 | |
4323 /* | |
4324 ** This routine "expands" a SELECT statement and all of its subqueries. | |
4325 ** For additional information on what it means to "expand" a SELECT | |
4326 ** statement, see the comment on the selectExpand worker callback above. | |
4327 ** | |
4328 ** Expanding a SELECT statement is the first step in processing a | |
4329 ** SELECT statement. The SELECT statement must be expanded before | |
4330 ** name resolution is performed. | |
4331 ** | |
4332 ** If anything goes wrong, an error message is written into pParse. | |
4333 ** The calling function can detect the problem by looking at pParse->nErr | |
4334 ** and/or pParse->db->mallocFailed. | |
4335 */ | |
4336 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ | |
4337 Walker w; | |
4338 memset(&w, 0, sizeof(w)); | |
4339 w.xExprCallback = exprWalkNoop; | |
4340 w.pParse = pParse; | |
4341 if( pParse->hasCompound ){ | |
4342 w.xSelectCallback = convertCompoundSelectToSubquery; | |
4343 sqlite3WalkSelect(&w, pSelect); | |
4344 } | |
4345 w.xSelectCallback = selectExpander; | |
4346 w.xSelectCallback2 = selectPopWith; | |
4347 sqlite3WalkSelect(&w, pSelect); | |
4348 } | |
4349 | |
4350 | |
4351 #ifndef SQLITE_OMIT_SUBQUERY | |
4352 /* | |
4353 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() | |
4354 ** interface. | |
4355 ** | |
4356 ** For each FROM-clause subquery, add Column.zType and Column.zColl | |
4357 ** information to the Table structure that represents the result set | |
4358 ** of that subquery. | |
4359 ** | |
4360 ** The Table structure that represents the result set was constructed | |
4361 ** by selectExpander() but the type and collation information was omitted | |
4362 ** at that point because identifiers had not yet been resolved. This | |
4363 ** routine is called after identifier resolution. | |
4364 */ | |
4365 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ | |
4366 Parse *pParse; | |
4367 int i; | |
4368 SrcList *pTabList; | |
4369 struct SrcList_item *pFrom; | |
4370 | |
4371 assert( p->selFlags & SF_Resolved ); | |
4372 if( (p->selFlags & SF_HasTypeInfo)==0 ){ | |
4373 p->selFlags |= SF_HasTypeInfo; | |
4374 pParse = pWalker->pParse; | |
4375 pTabList = p->pSrc; | |
4376 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ | |
4377 Table *pTab = pFrom->pTab; | |
4378 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ | |
4379 /* A sub-query in the FROM clause of a SELECT */ | |
4380 Select *pSel = pFrom->pSelect; | |
4381 if( pSel ){ | |
4382 while( pSel->pPrior ) pSel = pSel->pPrior; | |
4383 selectAddColumnTypeAndCollation(pParse, pTab, pSel); | |
4384 } | |
4385 } | |
4386 } | |
4387 } | |
4388 } | |
4389 #endif | |
4390 | |
4391 | |
4392 /* | |
4393 ** This routine adds datatype and collating sequence information to | |
4394 ** the Table structures of all FROM-clause subqueries in a | |
4395 ** SELECT statement. | |
4396 ** | |
4397 ** Use this routine after name resolution. | |
4398 */ | |
4399 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ | |
4400 #ifndef SQLITE_OMIT_SUBQUERY | |
4401 Walker w; | |
4402 memset(&w, 0, sizeof(w)); | |
4403 w.xSelectCallback2 = selectAddSubqueryTypeInfo; | |
4404 w.xExprCallback = exprWalkNoop; | |
4405 w.pParse = pParse; | |
4406 sqlite3WalkSelect(&w, pSelect); | |
4407 #endif | |
4408 } | |
4409 | |
4410 | |
4411 /* | |
4412 ** This routine sets up a SELECT statement for processing. The | |
4413 ** following is accomplished: | |
4414 ** | |
4415 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. | |
4416 ** * Ephemeral Table objects are created for all FROM-clause subqueries. | |
4417 ** * ON and USING clauses are shifted into WHERE statements | |
4418 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. | |
4419 ** * Identifiers in expression are matched to tables. | |
4420 ** | |
4421 ** This routine acts recursively on all subqueries within the SELECT. | |
4422 */ | |
4423 void sqlite3SelectPrep( | |
4424 Parse *pParse, /* The parser context */ | |
4425 Select *p, /* The SELECT statement being coded. */ | |
4426 NameContext *pOuterNC /* Name context for container */ | |
4427 ){ | |
4428 sqlite3 *db; | |
4429 if( NEVER(p==0) ) return; | |
4430 db = pParse->db; | |
4431 if( db->mallocFailed ) return; | |
4432 if( p->selFlags & SF_HasTypeInfo ) return; | |
4433 sqlite3SelectExpand(pParse, p); | |
4434 if( pParse->nErr || db->mallocFailed ) return; | |
4435 sqlite3ResolveSelectNames(pParse, p, pOuterNC); | |
4436 if( pParse->nErr || db->mallocFailed ) return; | |
4437 sqlite3SelectAddTypeInfo(pParse, p); | |
4438 } | |
4439 | |
4440 /* | |
4441 ** Reset the aggregate accumulator. | |
4442 ** | |
4443 ** The aggregate accumulator is a set of memory cells that hold | |
4444 ** intermediate results while calculating an aggregate. This | |
4445 ** routine generates code that stores NULLs in all of those memory | |
4446 ** cells. | |
4447 */ | |
4448 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ | |
4449 Vdbe *v = pParse->pVdbe; | |
4450 int i; | |
4451 struct AggInfo_func *pFunc; | |
4452 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; | |
4453 if( nReg==0 ) return; | |
4454 #ifdef SQLITE_DEBUG | |
4455 /* Verify that all AggInfo registers are within the range specified by | |
4456 ** AggInfo.mnReg..AggInfo.mxReg */ | |
4457 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); | |
4458 for(i=0; i<pAggInfo->nColumn; i++){ | |
4459 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg | |
4460 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); | |
4461 } | |
4462 for(i=0; i<pAggInfo->nFunc; i++){ | |
4463 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg | |
4464 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); | |
4465 } | |
4466 #endif | |
4467 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); | |
4468 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ | |
4469 if( pFunc->iDistinct>=0 ){ | |
4470 Expr *pE = pFunc->pExpr; | |
4471 assert( !ExprHasProperty(pE, EP_xIsSelect) ); | |
4472 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ | |
4473 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " | |
4474 "argument"); | |
4475 pFunc->iDistinct = -1; | |
4476 }else{ | |
4477 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); | |
4478 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, | |
4479 (char*)pKeyInfo, P4_KEYINFO); | |
4480 } | |
4481 } | |
4482 } | |
4483 } | |
4484 | |
4485 /* | |
4486 ** Invoke the OP_AggFinalize opcode for every aggregate function | |
4487 ** in the AggInfo structure. | |
4488 */ | |
4489 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ | |
4490 Vdbe *v = pParse->pVdbe; | |
4491 int i; | |
4492 struct AggInfo_func *pF; | |
4493 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ | |
4494 ExprList *pList = pF->pExpr->x.pList; | |
4495 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); | |
4496 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, | |
4497 (void*)pF->pFunc, P4_FUNCDEF); | |
4498 } | |
4499 } | |
4500 | |
4501 /* | |
4502 ** Update the accumulator memory cells for an aggregate based on | |
4503 ** the current cursor position. | |
4504 */ | |
4505 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ | |
4506 Vdbe *v = pParse->pVdbe; | |
4507 int i; | |
4508 int regHit = 0; | |
4509 int addrHitTest = 0; | |
4510 struct AggInfo_func *pF; | |
4511 struct AggInfo_col *pC; | |
4512 | |
4513 pAggInfo->directMode = 1; | |
4514 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ | |
4515 int nArg; | |
4516 int addrNext = 0; | |
4517 int regAgg; | |
4518 ExprList *pList = pF->pExpr->x.pList; | |
4519 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); | |
4520 if( pList ){ | |
4521 nArg = pList->nExpr; | |
4522 regAgg = sqlite3GetTempRange(pParse, nArg); | |
4523 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); | |
4524 }else{ | |
4525 nArg = 0; | |
4526 regAgg = 0; | |
4527 } | |
4528 if( pF->iDistinct>=0 ){ | |
4529 addrNext = sqlite3VdbeMakeLabel(v); | |
4530 assert( nArg==1 ); | |
4531 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); | |
4532 } | |
4533 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ | |
4534 CollSeq *pColl = 0; | |
4535 struct ExprList_item *pItem; | |
4536 int j; | |
4537 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ | |
4538 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ | |
4539 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); | |
4540 } | |
4541 if( !pColl ){ | |
4542 pColl = pParse->db->pDfltColl; | |
4543 } | |
4544 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; | |
4545 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); | |
4546 } | |
4547 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, | |
4548 (void*)pF->pFunc, P4_FUNCDEF); | |
4549 sqlite3VdbeChangeP5(v, (u8)nArg); | |
4550 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); | |
4551 sqlite3ReleaseTempRange(pParse, regAgg, nArg); | |
4552 if( addrNext ){ | |
4553 sqlite3VdbeResolveLabel(v, addrNext); | |
4554 sqlite3ExprCacheClear(pParse); | |
4555 } | |
4556 } | |
4557 | |
4558 /* Before populating the accumulator registers, clear the column cache. | |
4559 ** Otherwise, if any of the required column values are already present | |
4560 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value | |
4561 ** to pC->iMem. But by the time the value is used, the original register | |
4562 ** may have been used, invalidating the underlying buffer holding the | |
4563 ** text or blob value. See ticket [883034dcb5]. | |
4564 ** | |
4565 ** Another solution would be to change the OP_SCopy used to copy cached | |
4566 ** values to an OP_Copy. | |
4567 */ | |
4568 if( regHit ){ | |
4569 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); | |
4570 } | |
4571 sqlite3ExprCacheClear(pParse); | |
4572 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ | |
4573 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); | |
4574 } | |
4575 pAggInfo->directMode = 0; | |
4576 sqlite3ExprCacheClear(pParse); | |
4577 if( addrHitTest ){ | |
4578 sqlite3VdbeJumpHere(v, addrHitTest); | |
4579 } | |
4580 } | |
4581 | |
4582 /* | |
4583 ** Add a single OP_Explain instruction to the VDBE to explain a simple | |
4584 ** count(*) query ("SELECT count(*) FROM pTab"). | |
4585 */ | |
4586 #ifndef SQLITE_OMIT_EXPLAIN | |
4587 static void explainSimpleCount( | |
4588 Parse *pParse, /* Parse context */ | |
4589 Table *pTab, /* Table being queried */ | |
4590 Index *pIdx /* Index used to optimize scan, or NULL */ | |
4591 ){ | |
4592 if( pParse->explain==2 ){ | |
4593 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); | |
4594 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", | |
4595 pTab->zName, | |
4596 bCover ? " USING COVERING INDEX " : "", | |
4597 bCover ? pIdx->zName : "" | |
4598 ); | |
4599 sqlite3VdbeAddOp4( | |
4600 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC | |
4601 ); | |
4602 } | |
4603 } | |
4604 #else | |
4605 # define explainSimpleCount(a,b,c) | |
4606 #endif | |
4607 | |
4608 /* | |
4609 ** Generate code for the SELECT statement given in the p argument. | |
4610 ** | |
4611 ** The results are returned according to the SelectDest structure. | |
4612 ** See comments in sqliteInt.h for further information. | |
4613 ** | |
4614 ** This routine returns the number of errors. If any errors are | |
4615 ** encountered, then an appropriate error message is left in | |
4616 ** pParse->zErrMsg. | |
4617 ** | |
4618 ** This routine does NOT free the Select structure passed in. The | |
4619 ** calling function needs to do that. | |
4620 */ | |
4621 int sqlite3Select( | |
4622 Parse *pParse, /* The parser context */ | |
4623 Select *p, /* The SELECT statement being coded. */ | |
4624 SelectDest *pDest /* What to do with the query results */ | |
4625 ){ | |
4626 int i, j; /* Loop counters */ | |
4627 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ | |
4628 Vdbe *v; /* The virtual machine under construction */ | |
4629 int isAgg; /* True for select lists like "count(*)" */ | |
4630 ExprList *pEList; /* List of columns to extract. */ | |
4631 SrcList *pTabList; /* List of tables to select from */ | |
4632 Expr *pWhere; /* The WHERE clause. May be NULL */ | |
4633 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ | |
4634 Expr *pHaving; /* The HAVING clause. May be NULL */ | |
4635 int rc = 1; /* Value to return from this function */ | |
4636 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ | |
4637 SortCtx sSort; /* Info on how to code the ORDER BY clause */ | |
4638 AggInfo sAggInfo; /* Information used by aggregate queries */ | |
4639 int iEnd; /* Address of the end of the query */ | |
4640 sqlite3 *db; /* The database connection */ | |
4641 | |
4642 #ifndef SQLITE_OMIT_EXPLAIN | |
4643 int iRestoreSelectId = pParse->iSelectId; | |
4644 pParse->iSelectId = pParse->iNextSelectId++; | |
4645 #endif | |
4646 | |
4647 db = pParse->db; | |
4648 if( p==0 || db->mallocFailed || pParse->nErr ){ | |
4649 return 1; | |
4650 } | |
4651 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; | |
4652 memset(&sAggInfo, 0, sizeof(sAggInfo)); | |
4653 #if SELECTTRACE_ENABLED | |
4654 pParse->nSelectIndent++; | |
4655 SELECTTRACE(1,pParse,p, ("begin processing:\n")); | |
4656 if( sqlite3SelectTrace & 0x100 ){ | |
4657 sqlite3TreeViewSelect(0, p, 0); | |
4658 } | |
4659 #endif | |
4660 | |
4661 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); | |
4662 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); | |
4663 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); | |
4664 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); | |
4665 if( IgnorableOrderby(pDest) ){ | |
4666 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || | |
4667 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || | |
4668 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || | |
4669 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); | |
4670 /* If ORDER BY makes no difference in the output then neither does | |
4671 ** DISTINCT so it can be removed too. */ | |
4672 sqlite3ExprListDelete(db, p->pOrderBy); | |
4673 p->pOrderBy = 0; | |
4674 p->selFlags &= ~SF_Distinct; | |
4675 } | |
4676 sqlite3SelectPrep(pParse, p, 0); | |
4677 memset(&sSort, 0, sizeof(sSort)); | |
4678 sSort.pOrderBy = p->pOrderBy; | |
4679 pTabList = p->pSrc; | |
4680 pEList = p->pEList; | |
4681 if( pParse->nErr || db->mallocFailed ){ | |
4682 goto select_end; | |
4683 } | |
4684 isAgg = (p->selFlags & SF_Aggregate)!=0; | |
4685 assert( pEList!=0 ); | |
4686 | |
4687 /* Begin generating code. | |
4688 */ | |
4689 v = sqlite3GetVdbe(pParse); | |
4690 if( v==0 ) goto select_end; | |
4691 | |
4692 /* If writing to memory or generating a set | |
4693 ** only a single column may be output. | |
4694 */ | |
4695 #ifndef SQLITE_OMIT_SUBQUERY | |
4696 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ | |
4697 goto select_end; | |
4698 } | |
4699 #endif | |
4700 | |
4701 /* Generate code for all sub-queries in the FROM clause | |
4702 */ | |
4703 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | |
4704 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ | |
4705 struct SrcList_item *pItem = &pTabList->a[i]; | |
4706 SelectDest dest; | |
4707 Select *pSub = pItem->pSelect; | |
4708 int isAggSub; | |
4709 | |
4710 if( pSub==0 ) continue; | |
4711 | |
4712 /* Sometimes the code for a subquery will be generated more than | |
4713 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, | |
4714 ** for example. In that case, do not regenerate the code to manifest | |
4715 ** a view or the co-routine to implement a view. The first instance | |
4716 ** is sufficient, though the subroutine to manifest the view does need | |
4717 ** to be invoked again. */ | |
4718 if( pItem->addrFillSub ){ | |
4719 if( pItem->viaCoroutine==0 ){ | |
4720 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); | |
4721 } | |
4722 continue; | |
4723 } | |
4724 | |
4725 /* Increment Parse.nHeight by the height of the largest expression | |
4726 ** tree referred to by this, the parent select. The child select | |
4727 ** may contain expression trees of at most | |
4728 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit | |
4729 ** more conservative than necessary, but much easier than enforcing | |
4730 ** an exact limit. | |
4731 */ | |
4732 pParse->nHeight += sqlite3SelectExprHeight(p); | |
4733 | |
4734 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; | |
4735 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ | |
4736 /* This subquery can be absorbed into its parent. */ | |
4737 if( isAggSub ){ | |
4738 isAgg = 1; | |
4739 p->selFlags |= SF_Aggregate; | |
4740 } | |
4741 i = -1; | |
4742 }else if( pTabList->nSrc==1 | |
4743 && OptimizationEnabled(db, SQLITE_SubqCoroutine) | |
4744 ){ | |
4745 /* Implement a co-routine that will return a single row of the result | |
4746 ** set on each invocation. | |
4747 */ | |
4748 int addrTop = sqlite3VdbeCurrentAddr(v)+1; | |
4749 pItem->regReturn = ++pParse->nMem; | |
4750 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); | |
4751 VdbeComment((v, "%s", pItem->pTab->zName)); | |
4752 pItem->addrFillSub = addrTop; | |
4753 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); | |
4754 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); | |
4755 sqlite3Select(pParse, pSub, &dest); | |
4756 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); | |
4757 pItem->viaCoroutine = 1; | |
4758 pItem->regResult = dest.iSdst; | |
4759 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); | |
4760 sqlite3VdbeJumpHere(v, addrTop-1); | |
4761 sqlite3ClearTempRegCache(pParse); | |
4762 }else{ | |
4763 /* Generate a subroutine that will fill an ephemeral table with | |
4764 ** the content of this subquery. pItem->addrFillSub will point | |
4765 ** to the address of the generated subroutine. pItem->regReturn | |
4766 ** is a register allocated to hold the subroutine return address | |
4767 */ | |
4768 int topAddr; | |
4769 int onceAddr = 0; | |
4770 int retAddr; | |
4771 assert( pItem->addrFillSub==0 ); | |
4772 pItem->regReturn = ++pParse->nMem; | |
4773 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); | |
4774 pItem->addrFillSub = topAddr+1; | |
4775 if( pItem->isCorrelated==0 ){ | |
4776 /* If the subquery is not correlated and if we are not inside of | |
4777 ** a trigger, then we only need to compute the value of the subquery | |
4778 ** once. */ | |
4779 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
4780 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); | |
4781 }else{ | |
4782 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); | |
4783 } | |
4784 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); | |
4785 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); | |
4786 sqlite3Select(pParse, pSub, &dest); | |
4787 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); | |
4788 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); | |
4789 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); | |
4790 VdbeComment((v, "end %s", pItem->pTab->zName)); | |
4791 sqlite3VdbeChangeP1(v, topAddr, retAddr); | |
4792 sqlite3ClearTempRegCache(pParse); | |
4793 } | |
4794 if( /*pParse->nErr ||*/ db->mallocFailed ){ | |
4795 goto select_end; | |
4796 } | |
4797 pParse->nHeight -= sqlite3SelectExprHeight(p); | |
4798 pTabList = p->pSrc; | |
4799 if( !IgnorableOrderby(pDest) ){ | |
4800 sSort.pOrderBy = p->pOrderBy; | |
4801 } | |
4802 } | |
4803 pEList = p->pEList; | |
4804 #endif | |
4805 pWhere = p->pWhere; | |
4806 pGroupBy = p->pGroupBy; | |
4807 pHaving = p->pHaving; | |
4808 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; | |
4809 | |
4810 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
4811 /* If there is are a sequence of queries, do the earlier ones first. | |
4812 */ | |
4813 if( p->pPrior ){ | |
4814 rc = multiSelect(pParse, p, pDest); | |
4815 explainSetInteger(pParse->iSelectId, iRestoreSelectId); | |
4816 #if SELECTTRACE_ENABLED | |
4817 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); | |
4818 pParse->nSelectIndent--; | |
4819 #endif | |
4820 return rc; | |
4821 } | |
4822 #endif | |
4823 | |
4824 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and | |
4825 ** if the select-list is the same as the ORDER BY list, then this query | |
4826 ** can be rewritten as a GROUP BY. In other words, this: | |
4827 ** | |
4828 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz | |
4829 ** | |
4830 ** is transformed to: | |
4831 ** | |
4832 ** SELECT xyz FROM ... GROUP BY xyz | |
4833 ** | |
4834 ** The second form is preferred as a single index (or temp-table) may be | |
4835 ** used for both the ORDER BY and DISTINCT processing. As originally | |
4836 ** written the query must use a temp-table for at least one of the ORDER | |
4837 ** BY and DISTINCT, and an index or separate temp-table for the other. | |
4838 */ | |
4839 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct | |
4840 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 | |
4841 ){ | |
4842 p->selFlags &= ~SF_Distinct; | |
4843 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); | |
4844 pGroupBy = p->pGroupBy; | |
4845 sSort.pOrderBy = 0; | |
4846 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, | |
4847 ** the sDistinct.isTnct is still set. Hence, isTnct represents the | |
4848 ** original setting of the SF_Distinct flag, not the current setting */ | |
4849 assert( sDistinct.isTnct ); | |
4850 } | |
4851 | |
4852 /* If there is an ORDER BY clause, then this sorting | |
4853 ** index might end up being unused if the data can be | |
4854 ** extracted in pre-sorted order. If that is the case, then the | |
4855 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once | |
4856 ** we figure out that the sorting index is not needed. The addrSortIndex | |
4857 ** variable is used to facilitate that change. | |
4858 */ | |
4859 if( sSort.pOrderBy ){ | |
4860 KeyInfo *pKeyInfo; | |
4861 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); | |
4862 sSort.iECursor = pParse->nTab++; | |
4863 sSort.addrSortIndex = | |
4864 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, | |
4865 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, | |
4866 (char*)pKeyInfo, P4_KEYINFO | |
4867 ); | |
4868 }else{ | |
4869 sSort.addrSortIndex = -1; | |
4870 } | |
4871 | |
4872 /* If the output is destined for a temporary table, open that table. | |
4873 */ | |
4874 if( pDest->eDest==SRT_EphemTab ){ | |
4875 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); | |
4876 } | |
4877 | |
4878 /* Set the limiter. | |
4879 */ | |
4880 iEnd = sqlite3VdbeMakeLabel(v); | |
4881 p->nSelectRow = LARGEST_INT64; | |
4882 computeLimitRegisters(pParse, p, iEnd); | |
4883 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ | |
4884 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; | |
4885 sSort.sortFlags |= SORTFLAG_UseSorter; | |
4886 } | |
4887 | |
4888 /* Open a virtual index to use for the distinct set. | |
4889 */ | |
4890 if( p->selFlags & SF_Distinct ){ | |
4891 sDistinct.tabTnct = pParse->nTab++; | |
4892 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, | |
4893 sDistinct.tabTnct, 0, 0, | |
4894 (char*)keyInfoFromExprList(pParse, p->pEList,0,0
), | |
4895 P4_KEYINFO); | |
4896 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); | |
4897 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; | |
4898 }else{ | |
4899 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; | |
4900 } | |
4901 | |
4902 if( !isAgg && pGroupBy==0 ){ | |
4903 /* No aggregate functions and no GROUP BY clause */ | |
4904 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); | |
4905 | |
4906 /* Begin the database scan. */ | |
4907 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, | |
4908 p->pEList, wctrlFlags, 0); | |
4909 if( pWInfo==0 ) goto select_end; | |
4910 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ | |
4911 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); | |
4912 } | |
4913 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ | |
4914 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); | |
4915 } | |
4916 if( sSort.pOrderBy ){ | |
4917 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); | |
4918 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ | |
4919 sSort.pOrderBy = 0; | |
4920 } | |
4921 } | |
4922 | |
4923 /* If sorting index that was created by a prior OP_OpenEphemeral | |
4924 ** instruction ended up not being needed, then change the OP_OpenEphemeral | |
4925 ** into an OP_Noop. | |
4926 */ | |
4927 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ | |
4928 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); | |
4929 } | |
4930 | |
4931 /* Use the standard inner loop. */ | |
4932 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, | |
4933 sqlite3WhereContinueLabel(pWInfo), | |
4934 sqlite3WhereBreakLabel(pWInfo)); | |
4935 | |
4936 /* End the database scan loop. | |
4937 */ | |
4938 sqlite3WhereEnd(pWInfo); | |
4939 }else{ | |
4940 /* This case when there exist aggregate functions or a GROUP BY clause | |
4941 ** or both */ | |
4942 NameContext sNC; /* Name context for processing aggregate information */ | |
4943 int iAMem; /* First Mem address for storing current GROUP BY */ | |
4944 int iBMem; /* First Mem address for previous GROUP BY */ | |
4945 int iUseFlag; /* Mem address holding flag indicating that at least | |
4946 ** one row of the input to the aggregator has been | |
4947 ** processed */ | |
4948 int iAbortFlag; /* Mem address which causes query abort if positive */ | |
4949 int groupBySort; /* Rows come from source in GROUP BY order */ | |
4950 int addrEnd; /* End of processing for this SELECT */ | |
4951 int sortPTab = 0; /* Pseudotable used to decode sorting results */ | |
4952 int sortOut = 0; /* Output register from the sorter */ | |
4953 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ | |
4954 | |
4955 /* Remove any and all aliases between the result set and the | |
4956 ** GROUP BY clause. | |
4957 */ | |
4958 if( pGroupBy ){ | |
4959 int k; /* Loop counter */ | |
4960 struct ExprList_item *pItem; /* For looping over expression in a list */ | |
4961 | |
4962 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ | |
4963 pItem->u.x.iAlias = 0; | |
4964 } | |
4965 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ | |
4966 pItem->u.x.iAlias = 0; | |
4967 } | |
4968 if( p->nSelectRow>100 ) p->nSelectRow = 100; | |
4969 }else{ | |
4970 p->nSelectRow = 1; | |
4971 } | |
4972 | |
4973 | |
4974 /* If there is both a GROUP BY and an ORDER BY clause and they are | |
4975 ** identical, then it may be possible to disable the ORDER BY clause | |
4976 ** on the grounds that the GROUP BY will cause elements to come out | |
4977 ** in the correct order. It also may not - the GROUP BY may use a | |
4978 ** database index that causes rows to be grouped together as required | |
4979 ** but not actually sorted. Either way, record the fact that the | |
4980 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp | |
4981 ** variable. */ | |
4982 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ | |
4983 orderByGrp = 1; | |
4984 } | |
4985 | |
4986 /* Create a label to jump to when we want to abort the query */ | |
4987 addrEnd = sqlite3VdbeMakeLabel(v); | |
4988 | |
4989 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in | |
4990 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the | |
4991 ** SELECT statement. | |
4992 */ | |
4993 memset(&sNC, 0, sizeof(sNC)); | |
4994 sNC.pParse = pParse; | |
4995 sNC.pSrcList = pTabList; | |
4996 sNC.pAggInfo = &sAggInfo; | |
4997 sAggInfo.mnReg = pParse->nMem+1; | |
4998 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; | |
4999 sAggInfo.pGroupBy = pGroupBy; | |
5000 sqlite3ExprAnalyzeAggList(&sNC, pEList); | |
5001 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); | |
5002 if( pHaving ){ | |
5003 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); | |
5004 } | |
5005 sAggInfo.nAccumulator = sAggInfo.nColumn; | |
5006 for(i=0; i<sAggInfo.nFunc; i++){ | |
5007 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); | |
5008 sNC.ncFlags |= NC_InAggFunc; | |
5009 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); | |
5010 sNC.ncFlags &= ~NC_InAggFunc; | |
5011 } | |
5012 sAggInfo.mxReg = pParse->nMem; | |
5013 if( db->mallocFailed ) goto select_end; | |
5014 | |
5015 /* Processing for aggregates with GROUP BY is very different and | |
5016 ** much more complex than aggregates without a GROUP BY. | |
5017 */ | |
5018 if( pGroupBy ){ | |
5019 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ | |
5020 int j1; /* A-vs-B comparision jump */ | |
5021 int addrOutputRow; /* Start of subroutine that outputs a result row */ | |
5022 int regOutputRow; /* Return address register for output subroutine */ | |
5023 int addrSetAbort; /* Set the abort flag and return */ | |
5024 int addrTopOfLoop; /* Top of the input loop */ | |
5025 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ | |
5026 int addrReset; /* Subroutine for resetting the accumulator */ | |
5027 int regReset; /* Return address register for reset subroutine */ | |
5028 | |
5029 /* If there is a GROUP BY clause we might need a sorting index to | |
5030 ** implement it. Allocate that sorting index now. If it turns out | |
5031 ** that we do not need it after all, the OP_SorterOpen instruction | |
5032 ** will be converted into a Noop. | |
5033 */ | |
5034 sAggInfo.sortingIdx = pParse->nTab++; | |
5035 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); | |
5036 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, | |
5037 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, | |
5038 0, (char*)pKeyInfo, P4_KEYINFO); | |
5039 | |
5040 /* Initialize memory locations used by GROUP BY aggregate processing | |
5041 */ | |
5042 iUseFlag = ++pParse->nMem; | |
5043 iAbortFlag = ++pParse->nMem; | |
5044 regOutputRow = ++pParse->nMem; | |
5045 addrOutputRow = sqlite3VdbeMakeLabel(v); | |
5046 regReset = ++pParse->nMem; | |
5047 addrReset = sqlite3VdbeMakeLabel(v); | |
5048 iAMem = pParse->nMem + 1; | |
5049 pParse->nMem += pGroupBy->nExpr; | |
5050 iBMem = pParse->nMem + 1; | |
5051 pParse->nMem += pGroupBy->nExpr; | |
5052 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); | |
5053 VdbeComment((v, "clear abort flag")); | |
5054 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); | |
5055 VdbeComment((v, "indicate accumulator empty")); | |
5056 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); | |
5057 | |
5058 /* Begin a loop that will extract all source rows in GROUP BY order. | |
5059 ** This might involve two separate loops with an OP_Sort in between, or | |
5060 ** it might be a single loop that uses an index to extract information | |
5061 ** in the right order to begin with. | |
5062 */ | |
5063 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); | |
5064 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, | |
5065 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 | |
5066 ); | |
5067 if( pWInfo==0 ) goto select_end; | |
5068 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ | |
5069 /* The optimizer is able to deliver rows in group by order so | |
5070 ** we do not have to sort. The OP_OpenEphemeral table will be | |
5071 ** cancelled later because we still need to use the pKeyInfo | |
5072 */ | |
5073 groupBySort = 0; | |
5074 }else{ | |
5075 /* Rows are coming out in undetermined order. We have to push | |
5076 ** each row into a sorting index, terminate the first loop, | |
5077 ** then loop over the sorting index in order to get the output | |
5078 ** in sorted order | |
5079 */ | |
5080 int regBase; | |
5081 int regRecord; | |
5082 int nCol; | |
5083 int nGroupBy; | |
5084 | |
5085 explainTempTable(pParse, | |
5086 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? | |
5087 "DISTINCT" : "GROUP BY"); | |
5088 | |
5089 groupBySort = 1; | |
5090 nGroupBy = pGroupBy->nExpr; | |
5091 nCol = nGroupBy; | |
5092 j = nGroupBy; | |
5093 for(i=0; i<sAggInfo.nColumn; i++){ | |
5094 if( sAggInfo.aCol[i].iSorterColumn>=j ){ | |
5095 nCol++; | |
5096 j++; | |
5097 } | |
5098 } | |
5099 regBase = sqlite3GetTempRange(pParse, nCol); | |
5100 sqlite3ExprCacheClear(pParse); | |
5101 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); | |
5102 j = nGroupBy; | |
5103 for(i=0; i<sAggInfo.nColumn; i++){ | |
5104 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; | |
5105 if( pCol->iSorterColumn>=j ){ | |
5106 int r1 = j + regBase; | |
5107 int r2; | |
5108 | |
5109 r2 = sqlite3ExprCodeGetColumn(pParse, | |
5110 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); | |
5111 if( r1!=r2 ){ | |
5112 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); | |
5113 } | |
5114 j++; | |
5115 } | |
5116 } | |
5117 regRecord = sqlite3GetTempReg(pParse); | |
5118 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); | |
5119 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); | |
5120 sqlite3ReleaseTempReg(pParse, regRecord); | |
5121 sqlite3ReleaseTempRange(pParse, regBase, nCol); | |
5122 sqlite3WhereEnd(pWInfo); | |
5123 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; | |
5124 sortOut = sqlite3GetTempReg(pParse); | |
5125 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); | |
5126 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); | |
5127 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); | |
5128 sAggInfo.useSortingIdx = 1; | |
5129 sqlite3ExprCacheClear(pParse); | |
5130 | |
5131 } | |
5132 | |
5133 /* If the index or temporary table used by the GROUP BY sort | |
5134 ** will naturally deliver rows in the order required by the ORDER BY | |
5135 ** clause, cancel the ephemeral table open coded earlier. | |
5136 ** | |
5137 ** This is an optimization - the correct answer should result regardless. | |
5138 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to | |
5139 ** disable this optimization for testing purposes. */ | |
5140 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) | |
5141 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) | |
5142 ){ | |
5143 sSort.pOrderBy = 0; | |
5144 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); | |
5145 } | |
5146 | |
5147 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... | |
5148 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) | |
5149 ** Then compare the current GROUP BY terms against the GROUP BY terms | |
5150 ** from the previous row currently stored in a0, a1, a2... | |
5151 */ | |
5152 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); | |
5153 sqlite3ExprCacheClear(pParse); | |
5154 if( groupBySort ){ | |
5155 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTa
b); | |
5156 } | |
5157 for(j=0; j<pGroupBy->nExpr; j++){ | |
5158 if( groupBySort ){ | |
5159 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); | |
5160 }else{ | |
5161 sAggInfo.directMode = 1; | |
5162 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); | |
5163 } | |
5164 } | |
5165 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, | |
5166 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); | |
5167 j1 = sqlite3VdbeCurrentAddr(v); | |
5168 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); | |
5169 | |
5170 /* Generate code that runs whenever the GROUP BY changes. | |
5171 ** Changes in the GROUP BY are detected by the previous code | |
5172 ** block. If there were no changes, this block is skipped. | |
5173 ** | |
5174 ** This code copies current group by terms in b0,b1,b2,... | |
5175 ** over to a0,a1,a2. It then calls the output subroutine | |
5176 ** and resets the aggregate accumulator registers in preparation | |
5177 ** for the next GROUP BY batch. | |
5178 */ | |
5179 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); | |
5180 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); | |
5181 VdbeComment((v, "output one row")); | |
5182 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); | |
5183 VdbeComment((v, "check abort flag")); | |
5184 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); | |
5185 VdbeComment((v, "reset accumulator")); | |
5186 | |
5187 /* Update the aggregate accumulators based on the content of | |
5188 ** the current row | |
5189 */ | |
5190 sqlite3VdbeJumpHere(v, j1); | |
5191 updateAccumulator(pParse, &sAggInfo); | |
5192 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); | |
5193 VdbeComment((v, "indicate data in accumulator")); | |
5194 | |
5195 /* End of the loop | |
5196 */ | |
5197 if( groupBySort ){ | |
5198 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); | |
5199 VdbeCoverage(v); | |
5200 }else{ | |
5201 sqlite3WhereEnd(pWInfo); | |
5202 sqlite3VdbeChangeToNoop(v, addrSortingIdx); | |
5203 } | |
5204 | |
5205 /* Output the final row of result | |
5206 */ | |
5207 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); | |
5208 VdbeComment((v, "output final row")); | |
5209 | |
5210 /* Jump over the subroutines | |
5211 */ | |
5212 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); | |
5213 | |
5214 /* Generate a subroutine that outputs a single row of the result | |
5215 ** set. This subroutine first looks at the iUseFlag. If iUseFlag | |
5216 ** is less than or equal to zero, the subroutine is a no-op. If | |
5217 ** the processing calls for the query to abort, this subroutine | |
5218 ** increments the iAbortFlag memory location before returning in | |
5219 ** order to signal the caller to abort. | |
5220 */ | |
5221 addrSetAbort = sqlite3VdbeCurrentAddr(v); | |
5222 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); | |
5223 VdbeComment((v, "set abort flag")); | |
5224 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); | |
5225 sqlite3VdbeResolveLabel(v, addrOutputRow); | |
5226 addrOutputRow = sqlite3VdbeCurrentAddr(v); | |
5227 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v)
; | |
5228 VdbeComment((v, "Groupby result generator entry point")); | |
5229 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); | |
5230 finalizeAggFunctions(pParse, &sAggInfo); | |
5231 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); | |
5232 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, | |
5233 &sDistinct, pDest, | |
5234 addrOutputRow+1, addrSetAbort); | |
5235 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); | |
5236 VdbeComment((v, "end groupby result generator")); | |
5237 | |
5238 /* Generate a subroutine that will reset the group-by accumulator | |
5239 */ | |
5240 sqlite3VdbeResolveLabel(v, addrReset); | |
5241 resetAccumulator(pParse, &sAggInfo); | |
5242 sqlite3VdbeAddOp1(v, OP_Return, regReset); | |
5243 | |
5244 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ | |
5245 else { | |
5246 ExprList *pDel = 0; | |
5247 #ifndef SQLITE_OMIT_BTREECOUNT | |
5248 Table *pTab; | |
5249 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ | |
5250 /* If isSimpleCount() returns a pointer to a Table structure, then | |
5251 ** the SQL statement is of the form: | |
5252 ** | |
5253 ** SELECT count(*) FROM <tbl> | |
5254 ** | |
5255 ** where the Table structure returned represents table <tbl>. | |
5256 ** | |
5257 ** This statement is so common that it is optimized specially. The | |
5258 ** OP_Count instruction is executed either on the intkey table that | |
5259 ** contains the data for table <tbl> or on one of its indexes. It | |
5260 ** is better to execute the op on an index, as indexes are almost | |
5261 ** always spread across less pages than their corresponding tables. | |
5262 */ | |
5263 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); | |
5264 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ | |
5265 Index *pIdx; /* Iterator variable */ | |
5266 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ | |
5267 Index *pBest = 0; /* Best index found so far */ | |
5268 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ | |
5269 | |
5270 sqlite3CodeVerifySchema(pParse, iDb); | |
5271 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | |
5272 | |
5273 /* Search for the index that has the lowest scan cost. | |
5274 ** | |
5275 ** (2011-04-15) Do not do a full scan of an unordered index. | |
5276 ** | |
5277 ** (2013-10-03) Do not count the entries in a partial index. | |
5278 ** | |
5279 ** In practice the KeyInfo structure will not be used. It is only | |
5280 ** passed to keep OP_OpenRead happy. | |
5281 */ | |
5282 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); | |
5283 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | |
5284 if( pIdx->bUnordered==0 | |
5285 && pIdx->szIdxRow<pTab->szTabRow | |
5286 && pIdx->pPartIdxWhere==0 | |
5287 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) | |
5288 ){ | |
5289 pBest = pIdx; | |
5290 } | |
5291 } | |
5292 if( pBest ){ | |
5293 iRoot = pBest->tnum; | |
5294 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); | |
5295 } | |
5296 | |
5297 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ | |
5298 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); | |
5299 if( pKeyInfo ){ | |
5300 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); | |
5301 } | |
5302 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); | |
5303 sqlite3VdbeAddOp1(v, OP_Close, iCsr); | |
5304 explainSimpleCount(pParse, pTab, pBest); | |
5305 }else | |
5306 #endif /* SQLITE_OMIT_BTREECOUNT */ | |
5307 { | |
5308 /* Check if the query is of one of the following forms: | |
5309 ** | |
5310 ** SELECT min(x) FROM ... | |
5311 ** SELECT max(x) FROM ... | |
5312 ** | |
5313 ** If it is, then ask the code in where.c to attempt to sort results | |
5314 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. | |
5315 ** If where.c is able to produce results sorted in this order, then | |
5316 ** add vdbe code to break out of the processing loop after the | |
5317 ** first iteration (since the first iteration of the loop is | |
5318 ** guaranteed to operate on the row with the minimum or maximum | |
5319 ** value of x, the only row required). | |
5320 ** | |
5321 ** A special flag must be passed to sqlite3WhereBegin() to slightly | |
5322 ** modify behavior as follows: | |
5323 ** | |
5324 ** + If the query is a "SELECT min(x)", then the loop coded by | |
5325 ** where.c should not iterate over any values with a NULL value | |
5326 ** for x. | |
5327 ** | |
5328 ** + The optimizer code in where.c (the thing that decides which | |
5329 ** index or indices to use) should place a different priority on | |
5330 ** satisfying the 'ORDER BY' clause than it does in other cases. | |
5331 ** Refer to code and comments in where.c for details. | |
5332 */ | |
5333 ExprList *pMinMax = 0; | |
5334 u8 flag = WHERE_ORDERBY_NORMAL; | |
5335 | |
5336 assert( p->pGroupBy==0 ); | |
5337 assert( flag==0 ); | |
5338 if( p->pHaving==0 ){ | |
5339 flag = minMaxQuery(&sAggInfo, &pMinMax); | |
5340 } | |
5341 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); | |
5342 | |
5343 if( flag ){ | |
5344 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); | |
5345 pDel = pMinMax; | |
5346 if( pMinMax && !db->mallocFailed ){ | |
5347 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; | |
5348 pMinMax->a[0].pExpr->op = TK_COLUMN; | |
5349 } | |
5350 } | |
5351 | |
5352 /* This case runs if the aggregate has no GROUP BY clause. The | |
5353 ** processing is much simpler since there is only a single row | |
5354 ** of output. | |
5355 */ | |
5356 resetAccumulator(pParse, &sAggInfo); | |
5357 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); | |
5358 if( pWInfo==0 ){ | |
5359 sqlite3ExprListDelete(db, pDel); | |
5360 goto select_end; | |
5361 } | |
5362 updateAccumulator(pParse, &sAggInfo); | |
5363 assert( pMinMax==0 || pMinMax->nExpr==1 ); | |
5364 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ | |
5365 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); | |
5366 VdbeComment((v, "%s() by index", | |
5367 (flag==WHERE_ORDERBY_MIN?"min":"max"))); | |
5368 } | |
5369 sqlite3WhereEnd(pWInfo); | |
5370 finalizeAggFunctions(pParse, &sAggInfo); | |
5371 } | |
5372 | |
5373 sSort.pOrderBy = 0; | |
5374 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); | |
5375 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, | |
5376 pDest, addrEnd, addrEnd); | |
5377 sqlite3ExprListDelete(db, pDel); | |
5378 } | |
5379 sqlite3VdbeResolveLabel(v, addrEnd); | |
5380 | |
5381 } /* endif aggregate query */ | |
5382 | |
5383 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ | |
5384 explainTempTable(pParse, "DISTINCT"); | |
5385 } | |
5386 | |
5387 /* If there is an ORDER BY clause, then we need to sort the results | |
5388 ** and send them to the callback one by one. | |
5389 */ | |
5390 if( sSort.pOrderBy ){ | |
5391 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY
"); | |
5392 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); | |
5393 } | |
5394 | |
5395 /* Jump here to skip this query | |
5396 */ | |
5397 sqlite3VdbeResolveLabel(v, iEnd); | |
5398 | |
5399 /* The SELECT was successfully coded. Set the return code to 0 | |
5400 ** to indicate no errors. | |
5401 */ | |
5402 rc = 0; | |
5403 | |
5404 /* Control jumps to here if an error is encountered above, or upon | |
5405 ** successful coding of the SELECT. | |
5406 */ | |
5407 select_end: | |
5408 explainSetInteger(pParse->iSelectId, iRestoreSelectId); | |
5409 | |
5410 /* Identify column names if results of the SELECT are to be output. | |
5411 */ | |
5412 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ | |
5413 generateColumnNames(pParse, pTabList, pEList); | |
5414 } | |
5415 | |
5416 sqlite3DbFree(db, sAggInfo.aCol); | |
5417 sqlite3DbFree(db, sAggInfo.aFunc); | |
5418 #if SELECTTRACE_ENABLED | |
5419 SELECTTRACE(1,pParse,p,("end processing\n")); | |
5420 pParse->nSelectIndent--; | |
5421 #endif | |
5422 return rc; | |
5423 } | |
5424 | |
5425 #ifdef SQLITE_DEBUG | |
5426 /* | |
5427 ** Generate a human-readable description of a the Select object. | |
5428 */ | |
5429 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ | |
5430 int n = 0; | |
5431 pView = sqlite3TreeViewPush(pView, moreToFollow); | |
5432 sqlite3TreeViewLine(pView, "SELECT%s%s", | |
5433 ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), | |
5434 ((p->selFlags & SF_Aggregate) ? " agg_flag" : "") | |
5435 ); | |
5436 if( p->pSrc && p->pSrc->nSrc ) n++; | |
5437 if( p->pWhere ) n++; | |
5438 if( p->pGroupBy ) n++; | |
5439 if( p->pHaving ) n++; | |
5440 if( p->pOrderBy ) n++; | |
5441 if( p->pLimit ) n++; | |
5442 if( p->pOffset ) n++; | |
5443 if( p->pPrior ) n++; | |
5444 sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); | |
5445 if( p->pSrc && p->pSrc->nSrc ){ | |
5446 int i; | |
5447 pView = sqlite3TreeViewPush(pView, (n--)>0); | |
5448 sqlite3TreeViewLine(pView, "FROM"); | |
5449 for(i=0; i<p->pSrc->nSrc; i++){ | |
5450 struct SrcList_item *pItem = &p->pSrc->a[i]; | |
5451 StrAccum x; | |
5452 char zLine[100]; | |
5453 sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); | |
5454 sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); | |
5455 if( pItem->zDatabase ){ | |
5456 sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); | |
5457 }else if( pItem->zName ){ | |
5458 sqlite3XPrintf(&x, 0, " %s", pItem->zName); | |
5459 } | |
5460 if( pItem->pTab ){ | |
5461 sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); | |
5462 } | |
5463 if( pItem->zAlias ){ | |
5464 sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); | |
5465 } | |
5466 if( pItem->jointype & JT_LEFT ){ | |
5467 sqlite3XPrintf(&x, 0, " LEFT-JOIN"); | |
5468 } | |
5469 sqlite3StrAccumFinish(&x); | |
5470 sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); | |
5471 if( pItem->pSelect ){ | |
5472 sqlite3TreeViewSelect(pView, pItem->pSelect, 0); | |
5473 } | |
5474 sqlite3TreeViewPop(pView); | |
5475 } | |
5476 sqlite3TreeViewPop(pView); | |
5477 } | |
5478 if( p->pWhere ){ | |
5479 sqlite3TreeViewItem(pView, "WHERE", (n--)>0); | |
5480 sqlite3TreeViewExpr(pView, p->pWhere, 0); | |
5481 sqlite3TreeViewPop(pView); | |
5482 } | |
5483 if( p->pGroupBy ){ | |
5484 sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); | |
5485 } | |
5486 if( p->pHaving ){ | |
5487 sqlite3TreeViewItem(pView, "HAVING", (n--)>0); | |
5488 sqlite3TreeViewExpr(pView, p->pHaving, 0); | |
5489 sqlite3TreeViewPop(pView); | |
5490 } | |
5491 if( p->pOrderBy ){ | |
5492 sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); | |
5493 } | |
5494 if( p->pLimit ){ | |
5495 sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); | |
5496 sqlite3TreeViewExpr(pView, p->pLimit, 0); | |
5497 sqlite3TreeViewPop(pView); | |
5498 } | |
5499 if( p->pOffset ){ | |
5500 sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); | |
5501 sqlite3TreeViewExpr(pView, p->pOffset, 0); | |
5502 sqlite3TreeViewPop(pView); | |
5503 } | |
5504 if( p->pPrior ){ | |
5505 const char *zOp = "UNION"; | |
5506 switch( p->op ){ | |
5507 case TK_ALL: zOp = "UNION ALL"; break; | |
5508 case TK_INTERSECT: zOp = "INTERSECT"; break; | |
5509 case TK_EXCEPT: zOp = "EXCEPT"; break; | |
5510 } | |
5511 sqlite3TreeViewItem(pView, zOp, (n--)>0); | |
5512 sqlite3TreeViewSelect(pView, p->pPrior, 0); | |
5513 sqlite3TreeViewPop(pView); | |
5514 } | |
5515 sqlite3TreeViewPop(pView); | |
5516 } | |
5517 #endif /* SQLITE_DEBUG */ | |
OLD | NEW |