Index: third_party/sqlite/sqlite-src-3080704/src/test_rtree.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/test_rtree.c b/third_party/sqlite/sqlite-src-3080704/src/test_rtree.c |
deleted file mode 100644 |
index 9d19fa0e2c86657b56dc4c8a22cd37e5485c8cbb..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/test_rtree.c |
+++ /dev/null |
@@ -1,471 +0,0 @@ |
-/* |
-** 2010 August 28 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** Code for testing all sorts of SQLite interfaces. This code |
-** is not included in the SQLite library. |
-*/ |
- |
-#include <sqlite3.h> |
-#include <tcl.h> |
- |
-/* Solely for the UNUSED_PARAMETER() macro. */ |
-#include "sqliteInt.h" |
- |
-#ifdef SQLITE_ENABLE_RTREE |
-/* |
-** Type used to cache parameter information for the "circle" r-tree geometry |
-** callback. |
-*/ |
-typedef struct Circle Circle; |
-struct Circle { |
- struct Box { |
- double xmin; |
- double xmax; |
- double ymin; |
- double ymax; |
- } aBox[2]; |
- double centerx; |
- double centery; |
- double radius; |
- double mxArea; |
- int eScoreType; |
-}; |
- |
-/* |
-** Destructor function for Circle objects allocated by circle_geom(). |
-*/ |
-static void circle_del(void *p){ |
- sqlite3_free(p); |
-} |
- |
-/* |
-** Implementation of "circle" r-tree geometry callback. |
-*/ |
-static int circle_geom( |
- sqlite3_rtree_geometry *p, |
- int nCoord, |
- sqlite3_rtree_dbl *aCoord, |
- int *pRes |
-){ |
- int i; /* Iterator variable */ |
- Circle *pCircle; /* Structure defining circular region */ |
- double xmin, xmax; /* X dimensions of box being tested */ |
- double ymin, ymax; /* X dimensions of box being tested */ |
- |
- xmin = aCoord[0]; |
- xmax = aCoord[1]; |
- ymin = aCoord[2]; |
- ymax = aCoord[3]; |
- pCircle = (Circle *)p->pUser; |
- if( pCircle==0 ){ |
- /* If pUser is still 0, then the parameter values have not been tested |
- ** for correctness or stored into a Circle structure yet. Do this now. */ |
- |
- /* This geometry callback is for use with a 2-dimensional r-tree table. |
- ** Return an error if the table does not have exactly 2 dimensions. */ |
- if( nCoord!=4 ) return SQLITE_ERROR; |
- |
- /* Test that the correct number of parameters (3) have been supplied, |
- ** and that the parameters are in range (that the radius of the circle |
- ** radius is greater than zero). */ |
- if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; |
- |
- /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM |
- ** if the allocation fails. */ |
- pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); |
- if( !pCircle ) return SQLITE_NOMEM; |
- p->xDelUser = circle_del; |
- |
- /* Record the center and radius of the circular region. One way that |
- ** tested bounding boxes that intersect the circular region are detected |
- ** is by testing if each corner of the bounding box lies within radius |
- ** units of the center of the circle. */ |
- pCircle->centerx = p->aParam[0]; |
- pCircle->centery = p->aParam[1]; |
- pCircle->radius = p->aParam[2]; |
- |
- /* Define two bounding box regions. The first, aBox[0], extends to |
- ** infinity in the X dimension. It covers the same range of the Y dimension |
- ** as the circular region. The second, aBox[1], extends to infinity in |
- ** the Y dimension and is constrained to the range of the circle in the |
- ** X dimension. |
- ** |
- ** Then imagine each box is split in half along its short axis by a line |
- ** that intersects the center of the circular region. A bounding box |
- ** being tested can be said to intersect the circular region if it contains |
- ** points from each half of either of the two infinite bounding boxes. |
- */ |
- pCircle->aBox[0].xmin = pCircle->centerx; |
- pCircle->aBox[0].xmax = pCircle->centerx; |
- pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; |
- pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; |
- pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; |
- pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
- pCircle->aBox[1].ymin = pCircle->centery; |
- pCircle->aBox[1].ymax = pCircle->centery; |
- pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; |
- } |
- |
- /* Check if any of the 4 corners of the bounding-box being tested lie |
- ** inside the circular region. If they do, then the bounding-box does |
- ** intersect the region of interest. Set the output variable to true and |
- ** return SQLITE_OK in this case. */ |
- for(i=0; i<4; i++){ |
- double x = (i&0x01) ? xmax : xmin; |
- double y = (i&0x02) ? ymax : ymin; |
- double d2; |
- |
- d2 = (x-pCircle->centerx)*(x-pCircle->centerx); |
- d2 += (y-pCircle->centery)*(y-pCircle->centery); |
- if( d2<(pCircle->radius*pCircle->radius) ){ |
- *pRes = 1; |
- return SQLITE_OK; |
- } |
- } |
- |
- /* Check if the bounding box covers any other part of the circular region. |
- ** See comments above for a description of how this test works. If it does |
- ** cover part of the circular region, set the output variable to true |
- ** and return SQLITE_OK. */ |
- for(i=0; i<2; i++){ |
- if( xmin<=pCircle->aBox[i].xmin |
- && xmax>=pCircle->aBox[i].xmax |
- && ymin<=pCircle->aBox[i].ymin |
- && ymax>=pCircle->aBox[i].ymax |
- ){ |
- *pRes = 1; |
- return SQLITE_OK; |
- } |
- } |
- |
- /* The specified bounding box does not intersect the circular region. Set |
- ** the output variable to zero and return SQLITE_OK. */ |
- *pRes = 0; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Implementation of "circle" r-tree geometry callback using the |
-** 2nd-generation interface that allows scoring. |
-*/ |
-static int circle_query_func(sqlite3_rtree_query_info *p){ |
- int i; /* Iterator variable */ |
- Circle *pCircle; /* Structure defining circular region */ |
- double xmin, xmax; /* X dimensions of box being tested */ |
- double ymin, ymax; /* X dimensions of box being tested */ |
- int nWithin = 0; /* Number of corners inside the circle */ |
- |
- xmin = p->aCoord[0]; |
- xmax = p->aCoord[1]; |
- ymin = p->aCoord[2]; |
- ymax = p->aCoord[3]; |
- pCircle = (Circle *)p->pUser; |
- if( pCircle==0 ){ |
- /* If pUser is still 0, then the parameter values have not been tested |
- ** for correctness or stored into a Circle structure yet. Do this now. */ |
- |
- /* This geometry callback is for use with a 2-dimensional r-tree table. |
- ** Return an error if the table does not have exactly 2 dimensions. */ |
- if( p->nCoord!=4 ) return SQLITE_ERROR; |
- |
- /* Test that the correct number of parameters (4) have been supplied, |
- ** and that the parameters are in range (that the radius of the circle |
- ** radius is greater than zero). */ |
- if( p->nParam!=4 || p->aParam[2]<0.0 ) return SQLITE_ERROR; |
- |
- /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM |
- ** if the allocation fails. */ |
- pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); |
- if( !pCircle ) return SQLITE_NOMEM; |
- p->xDelUser = circle_del; |
- |
- /* Record the center and radius of the circular region. One way that |
- ** tested bounding boxes that intersect the circular region are detected |
- ** is by testing if each corner of the bounding box lies within radius |
- ** units of the center of the circle. */ |
- pCircle->centerx = p->aParam[0]; |
- pCircle->centery = p->aParam[1]; |
- pCircle->radius = p->aParam[2]; |
- pCircle->eScoreType = (int)p->aParam[3]; |
- |
- /* Define two bounding box regions. The first, aBox[0], extends to |
- ** infinity in the X dimension. It covers the same range of the Y dimension |
- ** as the circular region. The second, aBox[1], extends to infinity in |
- ** the Y dimension and is constrained to the range of the circle in the |
- ** X dimension. |
- ** |
- ** Then imagine each box is split in half along its short axis by a line |
- ** that intersects the center of the circular region. A bounding box |
- ** being tested can be said to intersect the circular region if it contains |
- ** points from each half of either of the two infinite bounding boxes. |
- */ |
- pCircle->aBox[0].xmin = pCircle->centerx; |
- pCircle->aBox[0].xmax = pCircle->centerx; |
- pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; |
- pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; |
- pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; |
- pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
- pCircle->aBox[1].ymin = pCircle->centery; |
- pCircle->aBox[1].ymax = pCircle->centery; |
- pCircle->mxArea = 200.0*200.0; |
- } |
- |
- /* Check if any of the 4 corners of the bounding-box being tested lie |
- ** inside the circular region. If they do, then the bounding-box does |
- ** intersect the region of interest. Set the output variable to true and |
- ** return SQLITE_OK in this case. */ |
- for(i=0; i<4; i++){ |
- double x = (i&0x01) ? xmax : xmin; |
- double y = (i&0x02) ? ymax : ymin; |
- double d2; |
- |
- d2 = (x-pCircle->centerx)*(x-pCircle->centerx); |
- d2 += (y-pCircle->centery)*(y-pCircle->centery); |
- if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; |
- } |
- |
- /* Check if the bounding box covers any other part of the circular region. |
- ** See comments above for a description of how this test works. If it does |
- ** cover part of the circular region, set the output variable to true |
- ** and return SQLITE_OK. */ |
- if( nWithin==0 ){ |
- for(i=0; i<2; i++){ |
- if( xmin<=pCircle->aBox[i].xmin |
- && xmax>=pCircle->aBox[i].xmax |
- && ymin<=pCircle->aBox[i].ymin |
- && ymax>=pCircle->aBox[i].ymax |
- ){ |
- nWithin = 1; |
- break; |
- } |
- } |
- } |
- |
- if( pCircle->eScoreType==1 ){ |
- /* Depth first search */ |
- p->rScore = p->iLevel; |
- }else if( pCircle->eScoreType==2 ){ |
- /* Breadth first search */ |
- p->rScore = 100 - p->iLevel; |
- }else if( pCircle->eScoreType==3 ){ |
- /* Depth-first search, except sort the leaf nodes by area with |
- ** the largest area first */ |
- if( p->iLevel==1 ){ |
- p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; |
- if( p->rScore<0.01 ) p->rScore = 0.01; |
- }else{ |
- p->rScore = 0.0; |
- } |
- }else if( pCircle->eScoreType==4 ){ |
- /* Depth-first search, except exclude odd rowids */ |
- p->rScore = p->iLevel; |
- if( p->iRowid&1 ) nWithin = 0; |
- }else{ |
- /* Breadth-first search, except exclude odd rowids */ |
- p->rScore = 100 - p->iLevel; |
- if( p->iRowid&1 ) nWithin = 0; |
- } |
- if( nWithin==0 ){ |
- p->eWithin = NOT_WITHIN; |
- }else if( nWithin>=4 ){ |
- p->eWithin = FULLY_WITHIN; |
- }else{ |
- p->eWithin = PARTLY_WITHIN; |
- } |
- return SQLITE_OK; |
-} |
-/* |
-** Implementation of "breadthfirstsearch" r-tree geometry callback using the |
-** 2nd-generation interface that allows scoring. |
-** |
-** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... |
-** |
-** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. |
-*/ |
-static int bfs_query_func(sqlite3_rtree_query_info *p){ |
- double x0,x1,y0,y1; /* Dimensions of box being tested */ |
- double bx0,bx1,by0,by1; /* Boundary of the query function */ |
- |
- if( p->nParam!=4 ) return SQLITE_ERROR; |
- x0 = p->aCoord[0]; |
- x1 = p->aCoord[1]; |
- y0 = p->aCoord[2]; |
- y1 = p->aCoord[3]; |
- bx0 = p->aParam[0]; |
- bx1 = p->aParam[1]; |
- by0 = p->aParam[2]; |
- by1 = p->aParam[3]; |
- p->rScore = 100 - p->iLevel; |
- if( p->eParentWithin==FULLY_WITHIN ){ |
- p->eWithin = FULLY_WITHIN; |
- }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ |
- p->eWithin = FULLY_WITHIN; |
- }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ |
- p->eWithin = PARTLY_WITHIN; |
- }else{ |
- p->eWithin = NOT_WITHIN; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* END of implementation of "circle" geometry callback. |
-************************************************************************** |
-*************************************************************************/ |
- |
-#include <assert.h> |
-#include "tcl.h" |
- |
-typedef struct Cube Cube; |
-struct Cube { |
- double x; |
- double y; |
- double z; |
- double width; |
- double height; |
- double depth; |
-}; |
- |
-static void cube_context_free(void *p){ |
- sqlite3_free(p); |
-} |
- |
-/* |
-** The context pointer registered along with the 'cube' callback is |
-** always ((void *)&gHere). This is just to facilitate testing, it is not |
-** actually used for anything. |
-*/ |
-static int gHere = 42; |
- |
-/* |
-** Implementation of a simple r-tree geom callback to test for intersection |
-** of r-tree rows with a "cube" shape. Cubes are defined by six scalar |
-** coordinates as follows: |
-** |
-** cube(x, y, z, width, height, depth) |
-** |
-** The width, height and depth parameters must all be greater than zero. |
-*/ |
-static int cube_geom( |
- sqlite3_rtree_geometry *p, |
- int nCoord, |
- sqlite3_rtree_dbl *aCoord, |
- int *piRes |
-){ |
- Cube *pCube = (Cube *)p->pUser; |
- |
- assert( p->pContext==(void *)&gHere ); |
- |
- if( pCube==0 ){ |
- if( p->nParam!=6 || nCoord!=6 |
- || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 |
- ){ |
- return SQLITE_ERROR; |
- } |
- pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); |
- if( !pCube ){ |
- return SQLITE_NOMEM; |
- } |
- pCube->x = p->aParam[0]; |
- pCube->y = p->aParam[1]; |
- pCube->z = p->aParam[2]; |
- pCube->width = p->aParam[3]; |
- pCube->height = p->aParam[4]; |
- pCube->depth = p->aParam[5]; |
- |
- p->pUser = (void *)pCube; |
- p->xDelUser = cube_context_free; |
- } |
- |
- assert( nCoord==6 ); |
- *piRes = 0; |
- if( aCoord[0]<=(pCube->x+pCube->width) |
- && aCoord[1]>=pCube->x |
- && aCoord[2]<=(pCube->y+pCube->height) |
- && aCoord[3]>=pCube->y |
- && aCoord[4]<=(pCube->z+pCube->depth) |
- && aCoord[5]>=pCube->z |
- ){ |
- *piRes = 1; |
- } |
- |
- return SQLITE_OK; |
-} |
-#endif /* SQLITE_ENABLE_RTREE */ |
- |
-static int register_cube_geom( |
- void * clientData, |
- Tcl_Interp *interp, |
- int objc, |
- Tcl_Obj *CONST objv[] |
-){ |
-#ifndef SQLITE_ENABLE_RTREE |
- UNUSED_PARAMETER(clientData); |
- UNUSED_PARAMETER(interp); |
- UNUSED_PARAMETER(objc); |
- UNUSED_PARAMETER(objv); |
-#else |
- extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
- extern const char *sqlite3ErrName(int); |
- sqlite3 *db; |
- int rc; |
- |
- if( objc!=2 ){ |
- Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
- return TCL_ERROR; |
- } |
- if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
- rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); |
- Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
-#endif |
- return TCL_OK; |
-} |
- |
-static int register_circle_geom( |
- void * clientData, |
- Tcl_Interp *interp, |
- int objc, |
- Tcl_Obj *CONST objv[] |
-){ |
-#ifndef SQLITE_ENABLE_RTREE |
- UNUSED_PARAMETER(clientData); |
- UNUSED_PARAMETER(interp); |
- UNUSED_PARAMETER(objc); |
- UNUSED_PARAMETER(objv); |
-#else |
- extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
- extern const char *sqlite3ErrName(int); |
- sqlite3 *db; |
- int rc; |
- |
- if( objc!=2 ){ |
- Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
- return TCL_ERROR; |
- } |
- if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
- rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_rtree_query_callback(db, "Qcircle", |
- circle_query_func, 0, 0); |
- } |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", |
- bfs_query_func, 0, 0); |
- } |
- Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
-#endif |
- return TCL_OK; |
-} |
- |
-int Sqlitetestrtree_Init(Tcl_Interp *interp){ |
- Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); |
- Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); |
- return TCL_OK; |
-} |