OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2010 August 28 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** Code for testing all sorts of SQLite interfaces. This code | |
13 ** is not included in the SQLite library. | |
14 */ | |
15 | |
16 #include <sqlite3.h> | |
17 #include <tcl.h> | |
18 | |
19 /* Solely for the UNUSED_PARAMETER() macro. */ | |
20 #include "sqliteInt.h" | |
21 | |
22 #ifdef SQLITE_ENABLE_RTREE | |
23 /* | |
24 ** Type used to cache parameter information for the "circle" r-tree geometry | |
25 ** callback. | |
26 */ | |
27 typedef struct Circle Circle; | |
28 struct Circle { | |
29 struct Box { | |
30 double xmin; | |
31 double xmax; | |
32 double ymin; | |
33 double ymax; | |
34 } aBox[2]; | |
35 double centerx; | |
36 double centery; | |
37 double radius; | |
38 double mxArea; | |
39 int eScoreType; | |
40 }; | |
41 | |
42 /* | |
43 ** Destructor function for Circle objects allocated by circle_geom(). | |
44 */ | |
45 static void circle_del(void *p){ | |
46 sqlite3_free(p); | |
47 } | |
48 | |
49 /* | |
50 ** Implementation of "circle" r-tree geometry callback. | |
51 */ | |
52 static int circle_geom( | |
53 sqlite3_rtree_geometry *p, | |
54 int nCoord, | |
55 sqlite3_rtree_dbl *aCoord, | |
56 int *pRes | |
57 ){ | |
58 int i; /* Iterator variable */ | |
59 Circle *pCircle; /* Structure defining circular region */ | |
60 double xmin, xmax; /* X dimensions of box being tested */ | |
61 double ymin, ymax; /* X dimensions of box being tested */ | |
62 | |
63 xmin = aCoord[0]; | |
64 xmax = aCoord[1]; | |
65 ymin = aCoord[2]; | |
66 ymax = aCoord[3]; | |
67 pCircle = (Circle *)p->pUser; | |
68 if( pCircle==0 ){ | |
69 /* If pUser is still 0, then the parameter values have not been tested | |
70 ** for correctness or stored into a Circle structure yet. Do this now. */ | |
71 | |
72 /* This geometry callback is for use with a 2-dimensional r-tree table. | |
73 ** Return an error if the table does not have exactly 2 dimensions. */ | |
74 if( nCoord!=4 ) return SQLITE_ERROR; | |
75 | |
76 /* Test that the correct number of parameters (3) have been supplied, | |
77 ** and that the parameters are in range (that the radius of the circle | |
78 ** radius is greater than zero). */ | |
79 if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; | |
80 | |
81 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM | |
82 ** if the allocation fails. */ | |
83 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); | |
84 if( !pCircle ) return SQLITE_NOMEM; | |
85 p->xDelUser = circle_del; | |
86 | |
87 /* Record the center and radius of the circular region. One way that | |
88 ** tested bounding boxes that intersect the circular region are detected | |
89 ** is by testing if each corner of the bounding box lies within radius | |
90 ** units of the center of the circle. */ | |
91 pCircle->centerx = p->aParam[0]; | |
92 pCircle->centery = p->aParam[1]; | |
93 pCircle->radius = p->aParam[2]; | |
94 | |
95 /* Define two bounding box regions. The first, aBox[0], extends to | |
96 ** infinity in the X dimension. It covers the same range of the Y dimension | |
97 ** as the circular region. The second, aBox[1], extends to infinity in | |
98 ** the Y dimension and is constrained to the range of the circle in the | |
99 ** X dimension. | |
100 ** | |
101 ** Then imagine each box is split in half along its short axis by a line | |
102 ** that intersects the center of the circular region. A bounding box | |
103 ** being tested can be said to intersect the circular region if it contains | |
104 ** points from each half of either of the two infinite bounding boxes. | |
105 */ | |
106 pCircle->aBox[0].xmin = pCircle->centerx; | |
107 pCircle->aBox[0].xmax = pCircle->centerx; | |
108 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; | |
109 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; | |
110 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; | |
111 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; | |
112 pCircle->aBox[1].ymin = pCircle->centery; | |
113 pCircle->aBox[1].ymax = pCircle->centery; | |
114 pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; | |
115 } | |
116 | |
117 /* Check if any of the 4 corners of the bounding-box being tested lie | |
118 ** inside the circular region. If they do, then the bounding-box does | |
119 ** intersect the region of interest. Set the output variable to true and | |
120 ** return SQLITE_OK in this case. */ | |
121 for(i=0; i<4; i++){ | |
122 double x = (i&0x01) ? xmax : xmin; | |
123 double y = (i&0x02) ? ymax : ymin; | |
124 double d2; | |
125 | |
126 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); | |
127 d2 += (y-pCircle->centery)*(y-pCircle->centery); | |
128 if( d2<(pCircle->radius*pCircle->radius) ){ | |
129 *pRes = 1; | |
130 return SQLITE_OK; | |
131 } | |
132 } | |
133 | |
134 /* Check if the bounding box covers any other part of the circular region. | |
135 ** See comments above for a description of how this test works. If it does | |
136 ** cover part of the circular region, set the output variable to true | |
137 ** and return SQLITE_OK. */ | |
138 for(i=0; i<2; i++){ | |
139 if( xmin<=pCircle->aBox[i].xmin | |
140 && xmax>=pCircle->aBox[i].xmax | |
141 && ymin<=pCircle->aBox[i].ymin | |
142 && ymax>=pCircle->aBox[i].ymax | |
143 ){ | |
144 *pRes = 1; | |
145 return SQLITE_OK; | |
146 } | |
147 } | |
148 | |
149 /* The specified bounding box does not intersect the circular region. Set | |
150 ** the output variable to zero and return SQLITE_OK. */ | |
151 *pRes = 0; | |
152 return SQLITE_OK; | |
153 } | |
154 | |
155 /* | |
156 ** Implementation of "circle" r-tree geometry callback using the | |
157 ** 2nd-generation interface that allows scoring. | |
158 */ | |
159 static int circle_query_func(sqlite3_rtree_query_info *p){ | |
160 int i; /* Iterator variable */ | |
161 Circle *pCircle; /* Structure defining circular region */ | |
162 double xmin, xmax; /* X dimensions of box being tested */ | |
163 double ymin, ymax; /* X dimensions of box being tested */ | |
164 int nWithin = 0; /* Number of corners inside the circle */ | |
165 | |
166 xmin = p->aCoord[0]; | |
167 xmax = p->aCoord[1]; | |
168 ymin = p->aCoord[2]; | |
169 ymax = p->aCoord[3]; | |
170 pCircle = (Circle *)p->pUser; | |
171 if( pCircle==0 ){ | |
172 /* If pUser is still 0, then the parameter values have not been tested | |
173 ** for correctness or stored into a Circle structure yet. Do this now. */ | |
174 | |
175 /* This geometry callback is for use with a 2-dimensional r-tree table. | |
176 ** Return an error if the table does not have exactly 2 dimensions. */ | |
177 if( p->nCoord!=4 ) return SQLITE_ERROR; | |
178 | |
179 /* Test that the correct number of parameters (4) have been supplied, | |
180 ** and that the parameters are in range (that the radius of the circle | |
181 ** radius is greater than zero). */ | |
182 if( p->nParam!=4 || p->aParam[2]<0.0 ) return SQLITE_ERROR; | |
183 | |
184 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM | |
185 ** if the allocation fails. */ | |
186 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); | |
187 if( !pCircle ) return SQLITE_NOMEM; | |
188 p->xDelUser = circle_del; | |
189 | |
190 /* Record the center and radius of the circular region. One way that | |
191 ** tested bounding boxes that intersect the circular region are detected | |
192 ** is by testing if each corner of the bounding box lies within radius | |
193 ** units of the center of the circle. */ | |
194 pCircle->centerx = p->aParam[0]; | |
195 pCircle->centery = p->aParam[1]; | |
196 pCircle->radius = p->aParam[2]; | |
197 pCircle->eScoreType = (int)p->aParam[3]; | |
198 | |
199 /* Define two bounding box regions. The first, aBox[0], extends to | |
200 ** infinity in the X dimension. It covers the same range of the Y dimension | |
201 ** as the circular region. The second, aBox[1], extends to infinity in | |
202 ** the Y dimension and is constrained to the range of the circle in the | |
203 ** X dimension. | |
204 ** | |
205 ** Then imagine each box is split in half along its short axis by a line | |
206 ** that intersects the center of the circular region. A bounding box | |
207 ** being tested can be said to intersect the circular region if it contains | |
208 ** points from each half of either of the two infinite bounding boxes. | |
209 */ | |
210 pCircle->aBox[0].xmin = pCircle->centerx; | |
211 pCircle->aBox[0].xmax = pCircle->centerx; | |
212 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; | |
213 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; | |
214 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; | |
215 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; | |
216 pCircle->aBox[1].ymin = pCircle->centery; | |
217 pCircle->aBox[1].ymax = pCircle->centery; | |
218 pCircle->mxArea = 200.0*200.0; | |
219 } | |
220 | |
221 /* Check if any of the 4 corners of the bounding-box being tested lie | |
222 ** inside the circular region. If they do, then the bounding-box does | |
223 ** intersect the region of interest. Set the output variable to true and | |
224 ** return SQLITE_OK in this case. */ | |
225 for(i=0; i<4; i++){ | |
226 double x = (i&0x01) ? xmax : xmin; | |
227 double y = (i&0x02) ? ymax : ymin; | |
228 double d2; | |
229 | |
230 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); | |
231 d2 += (y-pCircle->centery)*(y-pCircle->centery); | |
232 if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; | |
233 } | |
234 | |
235 /* Check if the bounding box covers any other part of the circular region. | |
236 ** See comments above for a description of how this test works. If it does | |
237 ** cover part of the circular region, set the output variable to true | |
238 ** and return SQLITE_OK. */ | |
239 if( nWithin==0 ){ | |
240 for(i=0; i<2; i++){ | |
241 if( xmin<=pCircle->aBox[i].xmin | |
242 && xmax>=pCircle->aBox[i].xmax | |
243 && ymin<=pCircle->aBox[i].ymin | |
244 && ymax>=pCircle->aBox[i].ymax | |
245 ){ | |
246 nWithin = 1; | |
247 break; | |
248 } | |
249 } | |
250 } | |
251 | |
252 if( pCircle->eScoreType==1 ){ | |
253 /* Depth first search */ | |
254 p->rScore = p->iLevel; | |
255 }else if( pCircle->eScoreType==2 ){ | |
256 /* Breadth first search */ | |
257 p->rScore = 100 - p->iLevel; | |
258 }else if( pCircle->eScoreType==3 ){ | |
259 /* Depth-first search, except sort the leaf nodes by area with | |
260 ** the largest area first */ | |
261 if( p->iLevel==1 ){ | |
262 p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; | |
263 if( p->rScore<0.01 ) p->rScore = 0.01; | |
264 }else{ | |
265 p->rScore = 0.0; | |
266 } | |
267 }else if( pCircle->eScoreType==4 ){ | |
268 /* Depth-first search, except exclude odd rowids */ | |
269 p->rScore = p->iLevel; | |
270 if( p->iRowid&1 ) nWithin = 0; | |
271 }else{ | |
272 /* Breadth-first search, except exclude odd rowids */ | |
273 p->rScore = 100 - p->iLevel; | |
274 if( p->iRowid&1 ) nWithin = 0; | |
275 } | |
276 if( nWithin==0 ){ | |
277 p->eWithin = NOT_WITHIN; | |
278 }else if( nWithin>=4 ){ | |
279 p->eWithin = FULLY_WITHIN; | |
280 }else{ | |
281 p->eWithin = PARTLY_WITHIN; | |
282 } | |
283 return SQLITE_OK; | |
284 } | |
285 /* | |
286 ** Implementation of "breadthfirstsearch" r-tree geometry callback using the | |
287 ** 2nd-generation interface that allows scoring. | |
288 ** | |
289 ** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... | |
290 ** | |
291 ** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. | |
292 */ | |
293 static int bfs_query_func(sqlite3_rtree_query_info *p){ | |
294 double x0,x1,y0,y1; /* Dimensions of box being tested */ | |
295 double bx0,bx1,by0,by1; /* Boundary of the query function */ | |
296 | |
297 if( p->nParam!=4 ) return SQLITE_ERROR; | |
298 x0 = p->aCoord[0]; | |
299 x1 = p->aCoord[1]; | |
300 y0 = p->aCoord[2]; | |
301 y1 = p->aCoord[3]; | |
302 bx0 = p->aParam[0]; | |
303 bx1 = p->aParam[1]; | |
304 by0 = p->aParam[2]; | |
305 by1 = p->aParam[3]; | |
306 p->rScore = 100 - p->iLevel; | |
307 if( p->eParentWithin==FULLY_WITHIN ){ | |
308 p->eWithin = FULLY_WITHIN; | |
309 }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ | |
310 p->eWithin = FULLY_WITHIN; | |
311 }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ | |
312 p->eWithin = PARTLY_WITHIN; | |
313 }else{ | |
314 p->eWithin = NOT_WITHIN; | |
315 } | |
316 return SQLITE_OK; | |
317 } | |
318 | |
319 /* END of implementation of "circle" geometry callback. | |
320 ************************************************************************** | |
321 *************************************************************************/ | |
322 | |
323 #include <assert.h> | |
324 #include "tcl.h" | |
325 | |
326 typedef struct Cube Cube; | |
327 struct Cube { | |
328 double x; | |
329 double y; | |
330 double z; | |
331 double width; | |
332 double height; | |
333 double depth; | |
334 }; | |
335 | |
336 static void cube_context_free(void *p){ | |
337 sqlite3_free(p); | |
338 } | |
339 | |
340 /* | |
341 ** The context pointer registered along with the 'cube' callback is | |
342 ** always ((void *)&gHere). This is just to facilitate testing, it is not | |
343 ** actually used for anything. | |
344 */ | |
345 static int gHere = 42; | |
346 | |
347 /* | |
348 ** Implementation of a simple r-tree geom callback to test for intersection | |
349 ** of r-tree rows with a "cube" shape. Cubes are defined by six scalar | |
350 ** coordinates as follows: | |
351 ** | |
352 ** cube(x, y, z, width, height, depth) | |
353 ** | |
354 ** The width, height and depth parameters must all be greater than zero. | |
355 */ | |
356 static int cube_geom( | |
357 sqlite3_rtree_geometry *p, | |
358 int nCoord, | |
359 sqlite3_rtree_dbl *aCoord, | |
360 int *piRes | |
361 ){ | |
362 Cube *pCube = (Cube *)p->pUser; | |
363 | |
364 assert( p->pContext==(void *)&gHere ); | |
365 | |
366 if( pCube==0 ){ | |
367 if( p->nParam!=6 || nCoord!=6 | |
368 || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 | |
369 ){ | |
370 return SQLITE_ERROR; | |
371 } | |
372 pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); | |
373 if( !pCube ){ | |
374 return SQLITE_NOMEM; | |
375 } | |
376 pCube->x = p->aParam[0]; | |
377 pCube->y = p->aParam[1]; | |
378 pCube->z = p->aParam[2]; | |
379 pCube->width = p->aParam[3]; | |
380 pCube->height = p->aParam[4]; | |
381 pCube->depth = p->aParam[5]; | |
382 | |
383 p->pUser = (void *)pCube; | |
384 p->xDelUser = cube_context_free; | |
385 } | |
386 | |
387 assert( nCoord==6 ); | |
388 *piRes = 0; | |
389 if( aCoord[0]<=(pCube->x+pCube->width) | |
390 && aCoord[1]>=pCube->x | |
391 && aCoord[2]<=(pCube->y+pCube->height) | |
392 && aCoord[3]>=pCube->y | |
393 && aCoord[4]<=(pCube->z+pCube->depth) | |
394 && aCoord[5]>=pCube->z | |
395 ){ | |
396 *piRes = 1; | |
397 } | |
398 | |
399 return SQLITE_OK; | |
400 } | |
401 #endif /* SQLITE_ENABLE_RTREE */ | |
402 | |
403 static int register_cube_geom( | |
404 void * clientData, | |
405 Tcl_Interp *interp, | |
406 int objc, | |
407 Tcl_Obj *CONST objv[] | |
408 ){ | |
409 #ifndef SQLITE_ENABLE_RTREE | |
410 UNUSED_PARAMETER(clientData); | |
411 UNUSED_PARAMETER(interp); | |
412 UNUSED_PARAMETER(objc); | |
413 UNUSED_PARAMETER(objv); | |
414 #else | |
415 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); | |
416 extern const char *sqlite3ErrName(int); | |
417 sqlite3 *db; | |
418 int rc; | |
419 | |
420 if( objc!=2 ){ | |
421 Tcl_WrongNumArgs(interp, 1, objv, "DB"); | |
422 return TCL_ERROR; | |
423 } | |
424 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; | |
425 rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); | |
426 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); | |
427 #endif | |
428 return TCL_OK; | |
429 } | |
430 | |
431 static int register_circle_geom( | |
432 void * clientData, | |
433 Tcl_Interp *interp, | |
434 int objc, | |
435 Tcl_Obj *CONST objv[] | |
436 ){ | |
437 #ifndef SQLITE_ENABLE_RTREE | |
438 UNUSED_PARAMETER(clientData); | |
439 UNUSED_PARAMETER(interp); | |
440 UNUSED_PARAMETER(objc); | |
441 UNUSED_PARAMETER(objv); | |
442 #else | |
443 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); | |
444 extern const char *sqlite3ErrName(int); | |
445 sqlite3 *db; | |
446 int rc; | |
447 | |
448 if( objc!=2 ){ | |
449 Tcl_WrongNumArgs(interp, 1, objv, "DB"); | |
450 return TCL_ERROR; | |
451 } | |
452 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; | |
453 rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); | |
454 if( rc==SQLITE_OK ){ | |
455 rc = sqlite3_rtree_query_callback(db, "Qcircle", | |
456 circle_query_func, 0, 0); | |
457 } | |
458 if( rc==SQLITE_OK ){ | |
459 rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", | |
460 bfs_query_func, 0, 0); | |
461 } | |
462 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); | |
463 #endif | |
464 return TCL_OK; | |
465 } | |
466 | |
467 int Sqlitetestrtree_Init(Tcl_Interp *interp){ | |
468 Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); | |
469 Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); | |
470 return TCL_OK; | |
471 } | |
OLD | NEW |