| Index: third_party/sqlite/sqlite-src-3080704/src/test_rtree.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/test_rtree.c b/third_party/sqlite/sqlite-src-3080704/src/test_rtree.c
|
| deleted file mode 100644
|
| index 9d19fa0e2c86657b56dc4c8a22cd37e5485c8cbb..0000000000000000000000000000000000000000
|
| --- a/third_party/sqlite/sqlite-src-3080704/src/test_rtree.c
|
| +++ /dev/null
|
| @@ -1,471 +0,0 @@
|
| -/*
|
| -** 2010 August 28
|
| -**
|
| -** The author disclaims copyright to this source code. In place of
|
| -** a legal notice, here is a blessing:
|
| -**
|
| -** May you do good and not evil.
|
| -** May you find forgiveness for yourself and forgive others.
|
| -** May you share freely, never taking more than you give.
|
| -**
|
| -*************************************************************************
|
| -** Code for testing all sorts of SQLite interfaces. This code
|
| -** is not included in the SQLite library.
|
| -*/
|
| -
|
| -#include <sqlite3.h>
|
| -#include <tcl.h>
|
| -
|
| -/* Solely for the UNUSED_PARAMETER() macro. */
|
| -#include "sqliteInt.h"
|
| -
|
| -#ifdef SQLITE_ENABLE_RTREE
|
| -/*
|
| -** Type used to cache parameter information for the "circle" r-tree geometry
|
| -** callback.
|
| -*/
|
| -typedef struct Circle Circle;
|
| -struct Circle {
|
| - struct Box {
|
| - double xmin;
|
| - double xmax;
|
| - double ymin;
|
| - double ymax;
|
| - } aBox[2];
|
| - double centerx;
|
| - double centery;
|
| - double radius;
|
| - double mxArea;
|
| - int eScoreType;
|
| -};
|
| -
|
| -/*
|
| -** Destructor function for Circle objects allocated by circle_geom().
|
| -*/
|
| -static void circle_del(void *p){
|
| - sqlite3_free(p);
|
| -}
|
| -
|
| -/*
|
| -** Implementation of "circle" r-tree geometry callback.
|
| -*/
|
| -static int circle_geom(
|
| - sqlite3_rtree_geometry *p,
|
| - int nCoord,
|
| - sqlite3_rtree_dbl *aCoord,
|
| - int *pRes
|
| -){
|
| - int i; /* Iterator variable */
|
| - Circle *pCircle; /* Structure defining circular region */
|
| - double xmin, xmax; /* X dimensions of box being tested */
|
| - double ymin, ymax; /* X dimensions of box being tested */
|
| -
|
| - xmin = aCoord[0];
|
| - xmax = aCoord[1];
|
| - ymin = aCoord[2];
|
| - ymax = aCoord[3];
|
| - pCircle = (Circle *)p->pUser;
|
| - if( pCircle==0 ){
|
| - /* If pUser is still 0, then the parameter values have not been tested
|
| - ** for correctness or stored into a Circle structure yet. Do this now. */
|
| -
|
| - /* This geometry callback is for use with a 2-dimensional r-tree table.
|
| - ** Return an error if the table does not have exactly 2 dimensions. */
|
| - if( nCoord!=4 ) return SQLITE_ERROR;
|
| -
|
| - /* Test that the correct number of parameters (3) have been supplied,
|
| - ** and that the parameters are in range (that the radius of the circle
|
| - ** radius is greater than zero). */
|
| - if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR;
|
| -
|
| - /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
|
| - ** if the allocation fails. */
|
| - pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
|
| - if( !pCircle ) return SQLITE_NOMEM;
|
| - p->xDelUser = circle_del;
|
| -
|
| - /* Record the center and radius of the circular region. One way that
|
| - ** tested bounding boxes that intersect the circular region are detected
|
| - ** is by testing if each corner of the bounding box lies within radius
|
| - ** units of the center of the circle. */
|
| - pCircle->centerx = p->aParam[0];
|
| - pCircle->centery = p->aParam[1];
|
| - pCircle->radius = p->aParam[2];
|
| -
|
| - /* Define two bounding box regions. The first, aBox[0], extends to
|
| - ** infinity in the X dimension. It covers the same range of the Y dimension
|
| - ** as the circular region. The second, aBox[1], extends to infinity in
|
| - ** the Y dimension and is constrained to the range of the circle in the
|
| - ** X dimension.
|
| - **
|
| - ** Then imagine each box is split in half along its short axis by a line
|
| - ** that intersects the center of the circular region. A bounding box
|
| - ** being tested can be said to intersect the circular region if it contains
|
| - ** points from each half of either of the two infinite bounding boxes.
|
| - */
|
| - pCircle->aBox[0].xmin = pCircle->centerx;
|
| - pCircle->aBox[0].xmax = pCircle->centerx;
|
| - pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
|
| - pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
|
| - pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
|
| - pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
|
| - pCircle->aBox[1].ymin = pCircle->centery;
|
| - pCircle->aBox[1].ymax = pCircle->centery;
|
| - pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0;
|
| - }
|
| -
|
| - /* Check if any of the 4 corners of the bounding-box being tested lie
|
| - ** inside the circular region. If they do, then the bounding-box does
|
| - ** intersect the region of interest. Set the output variable to true and
|
| - ** return SQLITE_OK in this case. */
|
| - for(i=0; i<4; i++){
|
| - double x = (i&0x01) ? xmax : xmin;
|
| - double y = (i&0x02) ? ymax : ymin;
|
| - double d2;
|
| -
|
| - d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
|
| - d2 += (y-pCircle->centery)*(y-pCircle->centery);
|
| - if( d2<(pCircle->radius*pCircle->radius) ){
|
| - *pRes = 1;
|
| - return SQLITE_OK;
|
| - }
|
| - }
|
| -
|
| - /* Check if the bounding box covers any other part of the circular region.
|
| - ** See comments above for a description of how this test works. If it does
|
| - ** cover part of the circular region, set the output variable to true
|
| - ** and return SQLITE_OK. */
|
| - for(i=0; i<2; i++){
|
| - if( xmin<=pCircle->aBox[i].xmin
|
| - && xmax>=pCircle->aBox[i].xmax
|
| - && ymin<=pCircle->aBox[i].ymin
|
| - && ymax>=pCircle->aBox[i].ymax
|
| - ){
|
| - *pRes = 1;
|
| - return SQLITE_OK;
|
| - }
|
| - }
|
| -
|
| - /* The specified bounding box does not intersect the circular region. Set
|
| - ** the output variable to zero and return SQLITE_OK. */
|
| - *pRes = 0;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Implementation of "circle" r-tree geometry callback using the
|
| -** 2nd-generation interface that allows scoring.
|
| -*/
|
| -static int circle_query_func(sqlite3_rtree_query_info *p){
|
| - int i; /* Iterator variable */
|
| - Circle *pCircle; /* Structure defining circular region */
|
| - double xmin, xmax; /* X dimensions of box being tested */
|
| - double ymin, ymax; /* X dimensions of box being tested */
|
| - int nWithin = 0; /* Number of corners inside the circle */
|
| -
|
| - xmin = p->aCoord[0];
|
| - xmax = p->aCoord[1];
|
| - ymin = p->aCoord[2];
|
| - ymax = p->aCoord[3];
|
| - pCircle = (Circle *)p->pUser;
|
| - if( pCircle==0 ){
|
| - /* If pUser is still 0, then the parameter values have not been tested
|
| - ** for correctness or stored into a Circle structure yet. Do this now. */
|
| -
|
| - /* This geometry callback is for use with a 2-dimensional r-tree table.
|
| - ** Return an error if the table does not have exactly 2 dimensions. */
|
| - if( p->nCoord!=4 ) return SQLITE_ERROR;
|
| -
|
| - /* Test that the correct number of parameters (4) have been supplied,
|
| - ** and that the parameters are in range (that the radius of the circle
|
| - ** radius is greater than zero). */
|
| - if( p->nParam!=4 || p->aParam[2]<0.0 ) return SQLITE_ERROR;
|
| -
|
| - /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
|
| - ** if the allocation fails. */
|
| - pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
|
| - if( !pCircle ) return SQLITE_NOMEM;
|
| - p->xDelUser = circle_del;
|
| -
|
| - /* Record the center and radius of the circular region. One way that
|
| - ** tested bounding boxes that intersect the circular region are detected
|
| - ** is by testing if each corner of the bounding box lies within radius
|
| - ** units of the center of the circle. */
|
| - pCircle->centerx = p->aParam[0];
|
| - pCircle->centery = p->aParam[1];
|
| - pCircle->radius = p->aParam[2];
|
| - pCircle->eScoreType = (int)p->aParam[3];
|
| -
|
| - /* Define two bounding box regions. The first, aBox[0], extends to
|
| - ** infinity in the X dimension. It covers the same range of the Y dimension
|
| - ** as the circular region. The second, aBox[1], extends to infinity in
|
| - ** the Y dimension and is constrained to the range of the circle in the
|
| - ** X dimension.
|
| - **
|
| - ** Then imagine each box is split in half along its short axis by a line
|
| - ** that intersects the center of the circular region. A bounding box
|
| - ** being tested can be said to intersect the circular region if it contains
|
| - ** points from each half of either of the two infinite bounding boxes.
|
| - */
|
| - pCircle->aBox[0].xmin = pCircle->centerx;
|
| - pCircle->aBox[0].xmax = pCircle->centerx;
|
| - pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
|
| - pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
|
| - pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
|
| - pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
|
| - pCircle->aBox[1].ymin = pCircle->centery;
|
| - pCircle->aBox[1].ymax = pCircle->centery;
|
| - pCircle->mxArea = 200.0*200.0;
|
| - }
|
| -
|
| - /* Check if any of the 4 corners of the bounding-box being tested lie
|
| - ** inside the circular region. If they do, then the bounding-box does
|
| - ** intersect the region of interest. Set the output variable to true and
|
| - ** return SQLITE_OK in this case. */
|
| - for(i=0; i<4; i++){
|
| - double x = (i&0x01) ? xmax : xmin;
|
| - double y = (i&0x02) ? ymax : ymin;
|
| - double d2;
|
| -
|
| - d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
|
| - d2 += (y-pCircle->centery)*(y-pCircle->centery);
|
| - if( d2<(pCircle->radius*pCircle->radius) ) nWithin++;
|
| - }
|
| -
|
| - /* Check if the bounding box covers any other part of the circular region.
|
| - ** See comments above for a description of how this test works. If it does
|
| - ** cover part of the circular region, set the output variable to true
|
| - ** and return SQLITE_OK. */
|
| - if( nWithin==0 ){
|
| - for(i=0; i<2; i++){
|
| - if( xmin<=pCircle->aBox[i].xmin
|
| - && xmax>=pCircle->aBox[i].xmax
|
| - && ymin<=pCircle->aBox[i].ymin
|
| - && ymax>=pCircle->aBox[i].ymax
|
| - ){
|
| - nWithin = 1;
|
| - break;
|
| - }
|
| - }
|
| - }
|
| -
|
| - if( pCircle->eScoreType==1 ){
|
| - /* Depth first search */
|
| - p->rScore = p->iLevel;
|
| - }else if( pCircle->eScoreType==2 ){
|
| - /* Breadth first search */
|
| - p->rScore = 100 - p->iLevel;
|
| - }else if( pCircle->eScoreType==3 ){
|
| - /* Depth-first search, except sort the leaf nodes by area with
|
| - ** the largest area first */
|
| - if( p->iLevel==1 ){
|
| - p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea;
|
| - if( p->rScore<0.01 ) p->rScore = 0.01;
|
| - }else{
|
| - p->rScore = 0.0;
|
| - }
|
| - }else if( pCircle->eScoreType==4 ){
|
| - /* Depth-first search, except exclude odd rowids */
|
| - p->rScore = p->iLevel;
|
| - if( p->iRowid&1 ) nWithin = 0;
|
| - }else{
|
| - /* Breadth-first search, except exclude odd rowids */
|
| - p->rScore = 100 - p->iLevel;
|
| - if( p->iRowid&1 ) nWithin = 0;
|
| - }
|
| - if( nWithin==0 ){
|
| - p->eWithin = NOT_WITHIN;
|
| - }else if( nWithin>=4 ){
|
| - p->eWithin = FULLY_WITHIN;
|
| - }else{
|
| - p->eWithin = PARTLY_WITHIN;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -/*
|
| -** Implementation of "breadthfirstsearch" r-tree geometry callback using the
|
| -** 2nd-generation interface that allows scoring.
|
| -**
|
| -** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ...
|
| -**
|
| -** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1.
|
| -*/
|
| -static int bfs_query_func(sqlite3_rtree_query_info *p){
|
| - double x0,x1,y0,y1; /* Dimensions of box being tested */
|
| - double bx0,bx1,by0,by1; /* Boundary of the query function */
|
| -
|
| - if( p->nParam!=4 ) return SQLITE_ERROR;
|
| - x0 = p->aCoord[0];
|
| - x1 = p->aCoord[1];
|
| - y0 = p->aCoord[2];
|
| - y1 = p->aCoord[3];
|
| - bx0 = p->aParam[0];
|
| - bx1 = p->aParam[1];
|
| - by0 = p->aParam[2];
|
| - by1 = p->aParam[3];
|
| - p->rScore = 100 - p->iLevel;
|
| - if( p->eParentWithin==FULLY_WITHIN ){
|
| - p->eWithin = FULLY_WITHIN;
|
| - }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){
|
| - p->eWithin = FULLY_WITHIN;
|
| - }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){
|
| - p->eWithin = PARTLY_WITHIN;
|
| - }else{
|
| - p->eWithin = NOT_WITHIN;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* END of implementation of "circle" geometry callback.
|
| -**************************************************************************
|
| -*************************************************************************/
|
| -
|
| -#include <assert.h>
|
| -#include "tcl.h"
|
| -
|
| -typedef struct Cube Cube;
|
| -struct Cube {
|
| - double x;
|
| - double y;
|
| - double z;
|
| - double width;
|
| - double height;
|
| - double depth;
|
| -};
|
| -
|
| -static void cube_context_free(void *p){
|
| - sqlite3_free(p);
|
| -}
|
| -
|
| -/*
|
| -** The context pointer registered along with the 'cube' callback is
|
| -** always ((void *)&gHere). This is just to facilitate testing, it is not
|
| -** actually used for anything.
|
| -*/
|
| -static int gHere = 42;
|
| -
|
| -/*
|
| -** Implementation of a simple r-tree geom callback to test for intersection
|
| -** of r-tree rows with a "cube" shape. Cubes are defined by six scalar
|
| -** coordinates as follows:
|
| -**
|
| -** cube(x, y, z, width, height, depth)
|
| -**
|
| -** The width, height and depth parameters must all be greater than zero.
|
| -*/
|
| -static int cube_geom(
|
| - sqlite3_rtree_geometry *p,
|
| - int nCoord,
|
| - sqlite3_rtree_dbl *aCoord,
|
| - int *piRes
|
| -){
|
| - Cube *pCube = (Cube *)p->pUser;
|
| -
|
| - assert( p->pContext==(void *)&gHere );
|
| -
|
| - if( pCube==0 ){
|
| - if( p->nParam!=6 || nCoord!=6
|
| - || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0
|
| - ){
|
| - return SQLITE_ERROR;
|
| - }
|
| - pCube = (Cube *)sqlite3_malloc(sizeof(Cube));
|
| - if( !pCube ){
|
| - return SQLITE_NOMEM;
|
| - }
|
| - pCube->x = p->aParam[0];
|
| - pCube->y = p->aParam[1];
|
| - pCube->z = p->aParam[2];
|
| - pCube->width = p->aParam[3];
|
| - pCube->height = p->aParam[4];
|
| - pCube->depth = p->aParam[5];
|
| -
|
| - p->pUser = (void *)pCube;
|
| - p->xDelUser = cube_context_free;
|
| - }
|
| -
|
| - assert( nCoord==6 );
|
| - *piRes = 0;
|
| - if( aCoord[0]<=(pCube->x+pCube->width)
|
| - && aCoord[1]>=pCube->x
|
| - && aCoord[2]<=(pCube->y+pCube->height)
|
| - && aCoord[3]>=pCube->y
|
| - && aCoord[4]<=(pCube->z+pCube->depth)
|
| - && aCoord[5]>=pCube->z
|
| - ){
|
| - *piRes = 1;
|
| - }
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -#endif /* SQLITE_ENABLE_RTREE */
|
| -
|
| -static int register_cube_geom(
|
| - void * clientData,
|
| - Tcl_Interp *interp,
|
| - int objc,
|
| - Tcl_Obj *CONST objv[]
|
| -){
|
| -#ifndef SQLITE_ENABLE_RTREE
|
| - UNUSED_PARAMETER(clientData);
|
| - UNUSED_PARAMETER(interp);
|
| - UNUSED_PARAMETER(objc);
|
| - UNUSED_PARAMETER(objv);
|
| -#else
|
| - extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
|
| - extern const char *sqlite3ErrName(int);
|
| - sqlite3 *db;
|
| - int rc;
|
| -
|
| - if( objc!=2 ){
|
| - Tcl_WrongNumArgs(interp, 1, objv, "DB");
|
| - return TCL_ERROR;
|
| - }
|
| - if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
| - rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere);
|
| - Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
|
| -#endif
|
| - return TCL_OK;
|
| -}
|
| -
|
| -static int register_circle_geom(
|
| - void * clientData,
|
| - Tcl_Interp *interp,
|
| - int objc,
|
| - Tcl_Obj *CONST objv[]
|
| -){
|
| -#ifndef SQLITE_ENABLE_RTREE
|
| - UNUSED_PARAMETER(clientData);
|
| - UNUSED_PARAMETER(interp);
|
| - UNUSED_PARAMETER(objc);
|
| - UNUSED_PARAMETER(objv);
|
| -#else
|
| - extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
|
| - extern const char *sqlite3ErrName(int);
|
| - sqlite3 *db;
|
| - int rc;
|
| -
|
| - if( objc!=2 ){
|
| - Tcl_WrongNumArgs(interp, 1, objv, "DB");
|
| - return TCL_ERROR;
|
| - }
|
| - if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
| - rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0);
|
| - if( rc==SQLITE_OK ){
|
| - rc = sqlite3_rtree_query_callback(db, "Qcircle",
|
| - circle_query_func, 0, 0);
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch",
|
| - bfs_query_func, 0, 0);
|
| - }
|
| - Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
|
| -#endif
|
| - return TCL_OK;
|
| -}
|
| -
|
| -int Sqlitetestrtree_Init(Tcl_Interp *interp){
|
| - Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0);
|
| - Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0);
|
| - return TCL_OK;
|
| -}
|
|
|