Index: third_party/sqlite/sqlite-src-3080704/src/where.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/where.c b/third_party/sqlite/sqlite-src-3080704/src/where.c |
deleted file mode 100644 |
index bc0110779ea051f46e02c825002686879fffab5d..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/where.c |
+++ /dev/null |
@@ -1,6609 +0,0 @@ |
-/* |
-** 2001 September 15 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** This module contains C code that generates VDBE code used to process |
-** the WHERE clause of SQL statements. This module is responsible for |
-** generating the code that loops through a table looking for applicable |
-** rows. Indices are selected and used to speed the search when doing |
-** so is applicable. Because this module is responsible for selecting |
-** indices, you might also think of this module as the "query optimizer". |
-*/ |
-#include "sqliteInt.h" |
-#include "whereInt.h" |
- |
-/* |
-** Return the estimated number of output rows from a WHERE clause |
-*/ |
-u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ |
- return sqlite3LogEstToInt(pWInfo->nRowOut); |
-} |
- |
-/* |
-** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this |
-** WHERE clause returns outputs for DISTINCT processing. |
-*/ |
-int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ |
- return pWInfo->eDistinct; |
-} |
- |
-/* |
-** Return TRUE if the WHERE clause returns rows in ORDER BY order. |
-** Return FALSE if the output needs to be sorted. |
-*/ |
-int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ |
- return pWInfo->nOBSat; |
-} |
- |
-/* |
-** Return the VDBE address or label to jump to in order to continue |
-** immediately with the next row of a WHERE clause. |
-*/ |
-int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ |
- assert( pWInfo->iContinue!=0 ); |
- return pWInfo->iContinue; |
-} |
- |
-/* |
-** Return the VDBE address or label to jump to in order to break |
-** out of a WHERE loop. |
-*/ |
-int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ |
- return pWInfo->iBreak; |
-} |
- |
-/* |
-** Return TRUE if an UPDATE or DELETE statement can operate directly on |
-** the rowids returned by a WHERE clause. Return FALSE if doing an |
-** UPDATE or DELETE might change subsequent WHERE clause results. |
-** |
-** If the ONEPASS optimization is used (if this routine returns true) |
-** then also write the indices of open cursors used by ONEPASS |
-** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data |
-** table and iaCur[1] gets the cursor used by an auxiliary index. |
-** Either value may be -1, indicating that cursor is not used. |
-** Any cursors returned will have been opened for writing. |
-** |
-** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is |
-** unable to use the ONEPASS optimization. |
-*/ |
-int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ |
- memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); |
- return pWInfo->okOnePass; |
-} |
- |
-/* |
-** Move the content of pSrc into pDest |
-*/ |
-static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ |
- pDest->n = pSrc->n; |
- memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); |
-} |
- |
-/* |
-** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. |
-** |
-** The new entry might overwrite an existing entry, or it might be |
-** appended, or it might be discarded. Do whatever is the right thing |
-** so that pSet keeps the N_OR_COST best entries seen so far. |
-*/ |
-static int whereOrInsert( |
- WhereOrSet *pSet, /* The WhereOrSet to be updated */ |
- Bitmask prereq, /* Prerequisites of the new entry */ |
- LogEst rRun, /* Run-cost of the new entry */ |
- LogEst nOut /* Number of outputs for the new entry */ |
-){ |
- u16 i; |
- WhereOrCost *p; |
- for(i=pSet->n, p=pSet->a; i>0; i--, p++){ |
- if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ |
- goto whereOrInsert_done; |
- } |
- if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ |
- return 0; |
- } |
- } |
- if( pSet->n<N_OR_COST ){ |
- p = &pSet->a[pSet->n++]; |
- p->nOut = nOut; |
- }else{ |
- p = pSet->a; |
- for(i=1; i<pSet->n; i++){ |
- if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; |
- } |
- if( p->rRun<=rRun ) return 0; |
- } |
-whereOrInsert_done: |
- p->prereq = prereq; |
- p->rRun = rRun; |
- if( p->nOut>nOut ) p->nOut = nOut; |
- return 1; |
-} |
- |
-/* |
-** Initialize a preallocated WhereClause structure. |
-*/ |
-static void whereClauseInit( |
- WhereClause *pWC, /* The WhereClause to be initialized */ |
- WhereInfo *pWInfo /* The WHERE processing context */ |
-){ |
- pWC->pWInfo = pWInfo; |
- pWC->pOuter = 0; |
- pWC->nTerm = 0; |
- pWC->nSlot = ArraySize(pWC->aStatic); |
- pWC->a = pWC->aStatic; |
-} |
- |
-/* Forward reference */ |
-static void whereClauseClear(WhereClause*); |
- |
-/* |
-** Deallocate all memory associated with a WhereOrInfo object. |
-*/ |
-static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ |
- whereClauseClear(&p->wc); |
- sqlite3DbFree(db, p); |
-} |
- |
-/* |
-** Deallocate all memory associated with a WhereAndInfo object. |
-*/ |
-static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ |
- whereClauseClear(&p->wc); |
- sqlite3DbFree(db, p); |
-} |
- |
-/* |
-** Deallocate a WhereClause structure. The WhereClause structure |
-** itself is not freed. This routine is the inverse of whereClauseInit(). |
-*/ |
-static void whereClauseClear(WhereClause *pWC){ |
- int i; |
- WhereTerm *a; |
- sqlite3 *db = pWC->pWInfo->pParse->db; |
- for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
- if( a->wtFlags & TERM_DYNAMIC ){ |
- sqlite3ExprDelete(db, a->pExpr); |
- } |
- if( a->wtFlags & TERM_ORINFO ){ |
- whereOrInfoDelete(db, a->u.pOrInfo); |
- }else if( a->wtFlags & TERM_ANDINFO ){ |
- whereAndInfoDelete(db, a->u.pAndInfo); |
- } |
- } |
- if( pWC->a!=pWC->aStatic ){ |
- sqlite3DbFree(db, pWC->a); |
- } |
-} |
- |
-/* |
-** Add a single new WhereTerm entry to the WhereClause object pWC. |
-** The new WhereTerm object is constructed from Expr p and with wtFlags. |
-** The index in pWC->a[] of the new WhereTerm is returned on success. |
-** 0 is returned if the new WhereTerm could not be added due to a memory |
-** allocation error. The memory allocation failure will be recorded in |
-** the db->mallocFailed flag so that higher-level functions can detect it. |
-** |
-** This routine will increase the size of the pWC->a[] array as necessary. |
-** |
-** If the wtFlags argument includes TERM_DYNAMIC, then responsibility |
-** for freeing the expression p is assumed by the WhereClause object pWC. |
-** This is true even if this routine fails to allocate a new WhereTerm. |
-** |
-** WARNING: This routine might reallocate the space used to store |
-** WhereTerms. All pointers to WhereTerms should be invalidated after |
-** calling this routine. Such pointers may be reinitialized by referencing |
-** the pWC->a[] array. |
-*/ |
-static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ |
- WhereTerm *pTerm; |
- int idx; |
- testcase( wtFlags & TERM_VIRTUAL ); |
- if( pWC->nTerm>=pWC->nSlot ){ |
- WhereTerm *pOld = pWC->a; |
- sqlite3 *db = pWC->pWInfo->pParse->db; |
- pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
- if( pWC->a==0 ){ |
- if( wtFlags & TERM_DYNAMIC ){ |
- sqlite3ExprDelete(db, p); |
- } |
- pWC->a = pOld; |
- return 0; |
- } |
- memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
- if( pOld!=pWC->aStatic ){ |
- sqlite3DbFree(db, pOld); |
- } |
- pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); |
- } |
- pTerm = &pWC->a[idx = pWC->nTerm++]; |
- if( p && ExprHasProperty(p, EP_Unlikely) ){ |
- pTerm->truthProb = sqlite3LogEst(p->iTable) - 99; |
- }else{ |
- pTerm->truthProb = 1; |
- } |
- pTerm->pExpr = sqlite3ExprSkipCollate(p); |
- pTerm->wtFlags = wtFlags; |
- pTerm->pWC = pWC; |
- pTerm->iParent = -1; |
- return idx; |
-} |
- |
-/* |
-** This routine identifies subexpressions in the WHERE clause where |
-** each subexpression is separated by the AND operator or some other |
-** operator specified in the op parameter. The WhereClause structure |
-** is filled with pointers to subexpressions. For example: |
-** |
-** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
-** \________/ \_______________/ \________________/ |
-** slot[0] slot[1] slot[2] |
-** |
-** The original WHERE clause in pExpr is unaltered. All this routine |
-** does is make slot[] entries point to substructure within pExpr. |
-** |
-** In the previous sentence and in the diagram, "slot[]" refers to |
-** the WhereClause.a[] array. The slot[] array grows as needed to contain |
-** all terms of the WHERE clause. |
-*/ |
-static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ |
- pWC->op = op; |
- if( pExpr==0 ) return; |
- if( pExpr->op!=op ){ |
- whereClauseInsert(pWC, pExpr, 0); |
- }else{ |
- whereSplit(pWC, pExpr->pLeft, op); |
- whereSplit(pWC, pExpr->pRight, op); |
- } |
-} |
- |
-/* |
-** Initialize a WhereMaskSet object |
-*/ |
-#define initMaskSet(P) (P)->n=0 |
- |
-/* |
-** Return the bitmask for the given cursor number. Return 0 if |
-** iCursor is not in the set. |
-*/ |
-static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ |
- int i; |
- assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); |
- for(i=0; i<pMaskSet->n; i++){ |
- if( pMaskSet->ix[i]==iCursor ){ |
- return MASKBIT(i); |
- } |
- } |
- return 0; |
-} |
- |
-/* |
-** Create a new mask for cursor iCursor. |
-** |
-** There is one cursor per table in the FROM clause. The number of |
-** tables in the FROM clause is limited by a test early in the |
-** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] |
-** array will never overflow. |
-*/ |
-static void createMask(WhereMaskSet *pMaskSet, int iCursor){ |
- assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); |
- pMaskSet->ix[pMaskSet->n++] = iCursor; |
-} |
- |
-/* |
-** These routines walk (recursively) an expression tree and generate |
-** a bitmask indicating which tables are used in that expression |
-** tree. |
-*/ |
-static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); |
-static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); |
-static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ |
- Bitmask mask = 0; |
- if( p==0 ) return 0; |
- if( p->op==TK_COLUMN ){ |
- mask = getMask(pMaskSet, p->iTable); |
- return mask; |
- } |
- mask = exprTableUsage(pMaskSet, p->pRight); |
- mask |= exprTableUsage(pMaskSet, p->pLeft); |
- if( ExprHasProperty(p, EP_xIsSelect) ){ |
- mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); |
- }else{ |
- mask |= exprListTableUsage(pMaskSet, p->x.pList); |
- } |
- return mask; |
-} |
-static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ |
- int i; |
- Bitmask mask = 0; |
- if( pList ){ |
- for(i=0; i<pList->nExpr; i++){ |
- mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); |
- } |
- } |
- return mask; |
-} |
-static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ |
- Bitmask mask = 0; |
- while( pS ){ |
- SrcList *pSrc = pS->pSrc; |
- mask |= exprListTableUsage(pMaskSet, pS->pEList); |
- mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); |
- mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); |
- mask |= exprTableUsage(pMaskSet, pS->pWhere); |
- mask |= exprTableUsage(pMaskSet, pS->pHaving); |
- if( ALWAYS(pSrc!=0) ){ |
- int i; |
- for(i=0; i<pSrc->nSrc; i++){ |
- mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect); |
- mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn); |
- } |
- } |
- pS = pS->pPrior; |
- } |
- return mask; |
-} |
- |
-/* |
-** Return TRUE if the given operator is one of the operators that is |
-** allowed for an indexable WHERE clause term. The allowed operators are |
-** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" |
-*/ |
-static int allowedOp(int op){ |
- assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
- assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
- assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
- assert( TK_GE==TK_EQ+4 ); |
- return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; |
-} |
- |
-/* |
-** Commute a comparison operator. Expressions of the form "X op Y" |
-** are converted into "Y op X". |
-** |
-** If left/right precedence rules come into play when determining the |
-** collating sequence, then COLLATE operators are adjusted to ensure |
-** that the collating sequence does not change. For example: |
-** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on |
-** the left hand side of a comparison overrides any collation sequence |
-** attached to the right. For the same reason the EP_Collate flag |
-** is not commuted. |
-*/ |
-static void exprCommute(Parse *pParse, Expr *pExpr){ |
- u16 expRight = (pExpr->pRight->flags & EP_Collate); |
- u16 expLeft = (pExpr->pLeft->flags & EP_Collate); |
- assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
- if( expRight==expLeft ){ |
- /* Either X and Y both have COLLATE operator or neither do */ |
- if( expRight ){ |
- /* Both X and Y have COLLATE operators. Make sure X is always |
- ** used by clearing the EP_Collate flag from Y. */ |
- pExpr->pRight->flags &= ~EP_Collate; |
- }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ |
- /* Neither X nor Y have COLLATE operators, but X has a non-default |
- ** collating sequence. So add the EP_Collate marker on X to cause |
- ** it to be searched first. */ |
- pExpr->pLeft->flags |= EP_Collate; |
- } |
- } |
- SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
- if( pExpr->op>=TK_GT ){ |
- assert( TK_LT==TK_GT+2 ); |
- assert( TK_GE==TK_LE+2 ); |
- assert( TK_GT>TK_EQ ); |
- assert( TK_GT<TK_LE ); |
- assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
- pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
- } |
-} |
- |
-/* |
-** Translate from TK_xx operator to WO_xx bitmask. |
-*/ |
-static u16 operatorMask(int op){ |
- u16 c; |
- assert( allowedOp(op) ); |
- if( op==TK_IN ){ |
- c = WO_IN; |
- }else if( op==TK_ISNULL ){ |
- c = WO_ISNULL; |
- }else{ |
- assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); |
- c = (u16)(WO_EQ<<(op-TK_EQ)); |
- } |
- assert( op!=TK_ISNULL || c==WO_ISNULL ); |
- assert( op!=TK_IN || c==WO_IN ); |
- assert( op!=TK_EQ || c==WO_EQ ); |
- assert( op!=TK_LT || c==WO_LT ); |
- assert( op!=TK_LE || c==WO_LE ); |
- assert( op!=TK_GT || c==WO_GT ); |
- assert( op!=TK_GE || c==WO_GE ); |
- return c; |
-} |
- |
-/* |
-** Advance to the next WhereTerm that matches according to the criteria |
-** established when the pScan object was initialized by whereScanInit(). |
-** Return NULL if there are no more matching WhereTerms. |
-*/ |
-static WhereTerm *whereScanNext(WhereScan *pScan){ |
- int iCur; /* The cursor on the LHS of the term */ |
- int iColumn; /* The column on the LHS of the term. -1 for IPK */ |
- Expr *pX; /* An expression being tested */ |
- WhereClause *pWC; /* Shorthand for pScan->pWC */ |
- WhereTerm *pTerm; /* The term being tested */ |
- int k = pScan->k; /* Where to start scanning */ |
- |
- while( pScan->iEquiv<=pScan->nEquiv ){ |
- iCur = pScan->aEquiv[pScan->iEquiv-2]; |
- iColumn = pScan->aEquiv[pScan->iEquiv-1]; |
- while( (pWC = pScan->pWC)!=0 ){ |
- for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ |
- if( pTerm->leftCursor==iCur |
- && pTerm->u.leftColumn==iColumn |
- && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
- ){ |
- if( (pTerm->eOperator & WO_EQUIV)!=0 |
- && pScan->nEquiv<ArraySize(pScan->aEquiv) |
- ){ |
- int j; |
- pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); |
- assert( pX->op==TK_COLUMN ); |
- for(j=0; j<pScan->nEquiv; j+=2){ |
- if( pScan->aEquiv[j]==pX->iTable |
- && pScan->aEquiv[j+1]==pX->iColumn ){ |
- break; |
- } |
- } |
- if( j==pScan->nEquiv ){ |
- pScan->aEquiv[j] = pX->iTable; |
- pScan->aEquiv[j+1] = pX->iColumn; |
- pScan->nEquiv += 2; |
- } |
- } |
- if( (pTerm->eOperator & pScan->opMask)!=0 ){ |
- /* Verify the affinity and collating sequence match */ |
- if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ |
- CollSeq *pColl; |
- Parse *pParse = pWC->pWInfo->pParse; |
- pX = pTerm->pExpr; |
- if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ |
- continue; |
- } |
- assert(pX->pLeft); |
- pColl = sqlite3BinaryCompareCollSeq(pParse, |
- pX->pLeft, pX->pRight); |
- if( pColl==0 ) pColl = pParse->db->pDfltColl; |
- if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ |
- continue; |
- } |
- } |
- if( (pTerm->eOperator & WO_EQ)!=0 |
- && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN |
- && pX->iTable==pScan->aEquiv[0] |
- && pX->iColumn==pScan->aEquiv[1] |
- ){ |
- continue; |
- } |
- pScan->k = k+1; |
- return pTerm; |
- } |
- } |
- } |
- pScan->pWC = pScan->pWC->pOuter; |
- k = 0; |
- } |
- pScan->pWC = pScan->pOrigWC; |
- k = 0; |
- pScan->iEquiv += 2; |
- } |
- return 0; |
-} |
- |
-/* |
-** Initialize a WHERE clause scanner object. Return a pointer to the |
-** first match. Return NULL if there are no matches. |
-** |
-** The scanner will be searching the WHERE clause pWC. It will look |
-** for terms of the form "X <op> <expr>" where X is column iColumn of table |
-** iCur. The <op> must be one of the operators described by opMask. |
-** |
-** If the search is for X and the WHERE clause contains terms of the |
-** form X=Y then this routine might also return terms of the form |
-** "Y <op> <expr>". The number of levels of transitivity is limited, |
-** but is enough to handle most commonly occurring SQL statements. |
-** |
-** If X is not the INTEGER PRIMARY KEY then X must be compatible with |
-** index pIdx. |
-*/ |
-static WhereTerm *whereScanInit( |
- WhereScan *pScan, /* The WhereScan object being initialized */ |
- WhereClause *pWC, /* The WHERE clause to be scanned */ |
- int iCur, /* Cursor to scan for */ |
- int iColumn, /* Column to scan for */ |
- u32 opMask, /* Operator(s) to scan for */ |
- Index *pIdx /* Must be compatible with this index */ |
-){ |
- int j; |
- |
- /* memset(pScan, 0, sizeof(*pScan)); */ |
- pScan->pOrigWC = pWC; |
- pScan->pWC = pWC; |
- if( pIdx && iColumn>=0 ){ |
- pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; |
- for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ |
- if( NEVER(j>pIdx->nColumn) ) return 0; |
- } |
- pScan->zCollName = pIdx->azColl[j]; |
- }else{ |
- pScan->idxaff = 0; |
- pScan->zCollName = 0; |
- } |
- pScan->opMask = opMask; |
- pScan->k = 0; |
- pScan->aEquiv[0] = iCur; |
- pScan->aEquiv[1] = iColumn; |
- pScan->nEquiv = 2; |
- pScan->iEquiv = 2; |
- return whereScanNext(pScan); |
-} |
- |
-/* |
-** Search for a term in the WHERE clause that is of the form "X <op> <expr>" |
-** where X is a reference to the iColumn of table iCur and <op> is one of |
-** the WO_xx operator codes specified by the op parameter. |
-** Return a pointer to the term. Return 0 if not found. |
-** |
-** The term returned might by Y=<expr> if there is another constraint in |
-** the WHERE clause that specifies that X=Y. Any such constraints will be |
-** identified by the WO_EQUIV bit in the pTerm->eOperator field. The |
-** aEquiv[] array holds X and all its equivalents, with each SQL variable |
-** taking up two slots in aEquiv[]. The first slot is for the cursor number |
-** and the second is for the column number. There are 22 slots in aEquiv[] |
-** so that means we can look for X plus up to 10 other equivalent values. |
-** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 |
-** and ... and A9=A10 and A10=<expr>. |
-** |
-** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" |
-** then try for the one with no dependencies on <expr> - in other words where |
-** <expr> is a constant expression of some kind. Only return entries of |
-** the form "X <op> Y" where Y is a column in another table if no terms of |
-** the form "X <op> <const-expr>" exist. If no terms with a constant RHS |
-** exist, try to return a term that does not use WO_EQUIV. |
-*/ |
-static WhereTerm *findTerm( |
- WhereClause *pWC, /* The WHERE clause to be searched */ |
- int iCur, /* Cursor number of LHS */ |
- int iColumn, /* Column number of LHS */ |
- Bitmask notReady, /* RHS must not overlap with this mask */ |
- u32 op, /* Mask of WO_xx values describing operator */ |
- Index *pIdx /* Must be compatible with this index, if not NULL */ |
-){ |
- WhereTerm *pResult = 0; |
- WhereTerm *p; |
- WhereScan scan; |
- |
- p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); |
- while( p ){ |
- if( (p->prereqRight & notReady)==0 ){ |
- if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){ |
- return p; |
- } |
- if( pResult==0 ) pResult = p; |
- } |
- p = whereScanNext(&scan); |
- } |
- return pResult; |
-} |
- |
-/* Forward reference */ |
-static void exprAnalyze(SrcList*, WhereClause*, int); |
- |
-/* |
-** Call exprAnalyze on all terms in a WHERE clause. |
-*/ |
-static void exprAnalyzeAll( |
- SrcList *pTabList, /* the FROM clause */ |
- WhereClause *pWC /* the WHERE clause to be analyzed */ |
-){ |
- int i; |
- for(i=pWC->nTerm-1; i>=0; i--){ |
- exprAnalyze(pTabList, pWC, i); |
- } |
-} |
- |
-#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
-/* |
-** Check to see if the given expression is a LIKE or GLOB operator that |
-** can be optimized using inequality constraints. Return TRUE if it is |
-** so and false if not. |
-** |
-** In order for the operator to be optimizible, the RHS must be a string |
-** literal that does not begin with a wildcard. |
-*/ |
-static int isLikeOrGlob( |
- Parse *pParse, /* Parsing and code generating context */ |
- Expr *pExpr, /* Test this expression */ |
- Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ |
- int *pisComplete, /* True if the only wildcard is % in the last character */ |
- int *pnoCase /* True if uppercase is equivalent to lowercase */ |
-){ |
- const char *z = 0; /* String on RHS of LIKE operator */ |
- Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ |
- ExprList *pList; /* List of operands to the LIKE operator */ |
- int c; /* One character in z[] */ |
- int cnt; /* Number of non-wildcard prefix characters */ |
- char wc[3]; /* Wildcard characters */ |
- sqlite3 *db = pParse->db; /* Database connection */ |
- sqlite3_value *pVal = 0; |
- int op; /* Opcode of pRight */ |
- |
- if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
- return 0; |
- } |
-#ifdef SQLITE_EBCDIC |
- if( *pnoCase ) return 0; |
-#endif |
- pList = pExpr->x.pList; |
- pLeft = pList->a[1].pExpr; |
- if( pLeft->op!=TK_COLUMN |
- || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT |
- || IsVirtual(pLeft->pTab) |
- ){ |
- /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must |
- ** be the name of an indexed column with TEXT affinity. */ |
- return 0; |
- } |
- assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ |
- |
- pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); |
- op = pRight->op; |
- if( op==TK_VARIABLE ){ |
- Vdbe *pReprepare = pParse->pReprepare; |
- int iCol = pRight->iColumn; |
- pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE); |
- if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ |
- z = (char *)sqlite3_value_text(pVal); |
- } |
- sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); |
- assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); |
- }else if( op==TK_STRING ){ |
- z = pRight->u.zToken; |
- } |
- if( z ){ |
- cnt = 0; |
- while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ |
- cnt++; |
- } |
- if( cnt!=0 && 255!=(u8)z[cnt-1] ){ |
- Expr *pPrefix; |
- *pisComplete = c==wc[0] && z[cnt+1]==0; |
- pPrefix = sqlite3Expr(db, TK_STRING, z); |
- if( pPrefix ) pPrefix->u.zToken[cnt] = 0; |
- *ppPrefix = pPrefix; |
- if( op==TK_VARIABLE ){ |
- Vdbe *v = pParse->pVdbe; |
- sqlite3VdbeSetVarmask(v, pRight->iColumn); |
- if( *pisComplete && pRight->u.zToken[1] ){ |
- /* If the rhs of the LIKE expression is a variable, and the current |
- ** value of the variable means there is no need to invoke the LIKE |
- ** function, then no OP_Variable will be added to the program. |
- ** This causes problems for the sqlite3_bind_parameter_name() |
- ** API. To work around them, add a dummy OP_Variable here. |
- */ |
- int r1 = sqlite3GetTempReg(pParse); |
- sqlite3ExprCodeTarget(pParse, pRight, r1); |
- sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); |
- sqlite3ReleaseTempReg(pParse, r1); |
- } |
- } |
- }else{ |
- z = 0; |
- } |
- } |
- |
- sqlite3ValueFree(pVal); |
- return (z!=0); |
-} |
-#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
- |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
-/* |
-** Check to see if the given expression is of the form |
-** |
-** column MATCH expr |
-** |
-** If it is then return TRUE. If not, return FALSE. |
-*/ |
-static int isMatchOfColumn( |
- Expr *pExpr /* Test this expression */ |
-){ |
- ExprList *pList; |
- |
- if( pExpr->op!=TK_FUNCTION ){ |
- return 0; |
- } |
- if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ |
- return 0; |
- } |
- pList = pExpr->x.pList; |
- if( pList->nExpr!=2 ){ |
- return 0; |
- } |
- if( pList->a[1].pExpr->op != TK_COLUMN ){ |
- return 0; |
- } |
- return 1; |
-} |
-#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
- |
-/* |
-** If the pBase expression originated in the ON or USING clause of |
-** a join, then transfer the appropriate markings over to derived. |
-*/ |
-static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
- if( pDerived ){ |
- pDerived->flags |= pBase->flags & EP_FromJoin; |
- pDerived->iRightJoinTable = pBase->iRightJoinTable; |
- } |
-} |
- |
-#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
-/* |
-** Analyze a term that consists of two or more OR-connected |
-** subterms. So in: |
-** |
-** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
-** ^^^^^^^^^^^^^^^^^^^^ |
-** |
-** This routine analyzes terms such as the middle term in the above example. |
-** A WhereOrTerm object is computed and attached to the term under |
-** analysis, regardless of the outcome of the analysis. Hence: |
-** |
-** WhereTerm.wtFlags |= TERM_ORINFO |
-** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object |
-** |
-** The term being analyzed must have two or more of OR-connected subterms. |
-** A single subterm might be a set of AND-connected sub-subterms. |
-** Examples of terms under analysis: |
-** |
-** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 |
-** (B) x=expr1 OR expr2=x OR x=expr3 |
-** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) |
-** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') |
-** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) |
-** |
-** CASE 1: |
-** |
-** If all subterms are of the form T.C=expr for some single column of C and |
-** a single table T (as shown in example B above) then create a new virtual |
-** term that is an equivalent IN expression. In other words, if the term |
-** being analyzed is: |
-** |
-** x = expr1 OR expr2 = x OR x = expr3 |
-** |
-** then create a new virtual term like this: |
-** |
-** x IN (expr1,expr2,expr3) |
-** |
-** CASE 2: |
-** |
-** If all subterms are indexable by a single table T, then set |
-** |
-** WhereTerm.eOperator = WO_OR |
-** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T |
-** |
-** A subterm is "indexable" if it is of the form |
-** "T.C <op> <expr>" where C is any column of table T and |
-** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". |
-** A subterm is also indexable if it is an AND of two or more |
-** subsubterms at least one of which is indexable. Indexable AND |
-** subterms have their eOperator set to WO_AND and they have |
-** u.pAndInfo set to a dynamically allocated WhereAndTerm object. |
-** |
-** From another point of view, "indexable" means that the subterm could |
-** potentially be used with an index if an appropriate index exists. |
-** This analysis does not consider whether or not the index exists; that |
-** is decided elsewhere. This analysis only looks at whether subterms |
-** appropriate for indexing exist. |
-** |
-** All examples A through E above satisfy case 2. But if a term |
-** also satisfies case 1 (such as B) we know that the optimizer will |
-** always prefer case 1, so in that case we pretend that case 2 is not |
-** satisfied. |
-** |
-** It might be the case that multiple tables are indexable. For example, |
-** (E) above is indexable on tables P, Q, and R. |
-** |
-** Terms that satisfy case 2 are candidates for lookup by using |
-** separate indices to find rowids for each subterm and composing |
-** the union of all rowids using a RowSet object. This is similar |
-** to "bitmap indices" in other database engines. |
-** |
-** OTHERWISE: |
-** |
-** If neither case 1 nor case 2 apply, then leave the eOperator set to |
-** zero. This term is not useful for search. |
-*/ |
-static void exprAnalyzeOrTerm( |
- SrcList *pSrc, /* the FROM clause */ |
- WhereClause *pWC, /* the complete WHERE clause */ |
- int idxTerm /* Index of the OR-term to be analyzed */ |
-){ |
- WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
- Parse *pParse = pWInfo->pParse; /* Parser context */ |
- sqlite3 *db = pParse->db; /* Database connection */ |
- WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ |
- Expr *pExpr = pTerm->pExpr; /* The expression of the term */ |
- int i; /* Loop counters */ |
- WhereClause *pOrWc; /* Breakup of pTerm into subterms */ |
- WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ |
- WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ |
- Bitmask chngToIN; /* Tables that might satisfy case 1 */ |
- Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ |
- |
- /* |
- ** Break the OR clause into its separate subterms. The subterms are |
- ** stored in a WhereClause structure containing within the WhereOrInfo |
- ** object that is attached to the original OR clause term. |
- */ |
- assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); |
- assert( pExpr->op==TK_OR ); |
- pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); |
- if( pOrInfo==0 ) return; |
- pTerm->wtFlags |= TERM_ORINFO; |
- pOrWc = &pOrInfo->wc; |
- whereClauseInit(pOrWc, pWInfo); |
- whereSplit(pOrWc, pExpr, TK_OR); |
- exprAnalyzeAll(pSrc, pOrWc); |
- if( db->mallocFailed ) return; |
- assert( pOrWc->nTerm>=2 ); |
- |
- /* |
- ** Compute the set of tables that might satisfy cases 1 or 2. |
- */ |
- indexable = ~(Bitmask)0; |
- chngToIN = ~(Bitmask)0; |
- for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ |
- if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ |
- WhereAndInfo *pAndInfo; |
- assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); |
- chngToIN = 0; |
- pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); |
- if( pAndInfo ){ |
- WhereClause *pAndWC; |
- WhereTerm *pAndTerm; |
- int j; |
- Bitmask b = 0; |
- pOrTerm->u.pAndInfo = pAndInfo; |
- pOrTerm->wtFlags |= TERM_ANDINFO; |
- pOrTerm->eOperator = WO_AND; |
- pAndWC = &pAndInfo->wc; |
- whereClauseInit(pAndWC, pWC->pWInfo); |
- whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); |
- exprAnalyzeAll(pSrc, pAndWC); |
- pAndWC->pOuter = pWC; |
- testcase( db->mallocFailed ); |
- if( !db->mallocFailed ){ |
- for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ |
- assert( pAndTerm->pExpr ); |
- if( allowedOp(pAndTerm->pExpr->op) ){ |
- b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); |
- } |
- } |
- } |
- indexable &= b; |
- } |
- }else if( pOrTerm->wtFlags & TERM_COPIED ){ |
- /* Skip this term for now. We revisit it when we process the |
- ** corresponding TERM_VIRTUAL term */ |
- }else{ |
- Bitmask b; |
- b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); |
- if( pOrTerm->wtFlags & TERM_VIRTUAL ){ |
- WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; |
- b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor); |
- } |
- indexable &= b; |
- if( (pOrTerm->eOperator & WO_EQ)==0 ){ |
- chngToIN = 0; |
- }else{ |
- chngToIN &= b; |
- } |
- } |
- } |
- |
- /* |
- ** Record the set of tables that satisfy case 2. The set might be |
- ** empty. |
- */ |
- pOrInfo->indexable = indexable; |
- pTerm->eOperator = indexable==0 ? 0 : WO_OR; |
- |
- /* |
- ** chngToIN holds a set of tables that *might* satisfy case 1. But |
- ** we have to do some additional checking to see if case 1 really |
- ** is satisfied. |
- ** |
- ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means |
- ** that there is no possibility of transforming the OR clause into an |
- ** IN operator because one or more terms in the OR clause contain |
- ** something other than == on a column in the single table. The 1-bit |
- ** case means that every term of the OR clause is of the form |
- ** "table.column=expr" for some single table. The one bit that is set |
- ** will correspond to the common table. We still need to check to make |
- ** sure the same column is used on all terms. The 2-bit case is when |
- ** the all terms are of the form "table1.column=table2.column". It |
- ** might be possible to form an IN operator with either table1.column |
- ** or table2.column as the LHS if either is common to every term of |
- ** the OR clause. |
- ** |
- ** Note that terms of the form "table.column1=table.column2" (the |
- ** same table on both sizes of the ==) cannot be optimized. |
- */ |
- if( chngToIN ){ |
- int okToChngToIN = 0; /* True if the conversion to IN is valid */ |
- int iColumn = -1; /* Column index on lhs of IN operator */ |
- int iCursor = -1; /* Table cursor common to all terms */ |
- int j = 0; /* Loop counter */ |
- |
- /* Search for a table and column that appears on one side or the |
- ** other of the == operator in every subterm. That table and column |
- ** will be recorded in iCursor and iColumn. There might not be any |
- ** such table and column. Set okToChngToIN if an appropriate table |
- ** and column is found but leave okToChngToIN false if not found. |
- */ |
- for(j=0; j<2 && !okToChngToIN; j++){ |
- pOrTerm = pOrWc->a; |
- for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ |
- assert( pOrTerm->eOperator & WO_EQ ); |
- pOrTerm->wtFlags &= ~TERM_OR_OK; |
- if( pOrTerm->leftCursor==iCursor ){ |
- /* This is the 2-bit case and we are on the second iteration and |
- ** current term is from the first iteration. So skip this term. */ |
- assert( j==1 ); |
- continue; |
- } |
- if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ |
- /* This term must be of the form t1.a==t2.b where t2 is in the |
- ** chngToIN set but t1 is not. This term will be either preceded |
- ** or follwed by an inverted copy (t2.b==t1.a). Skip this term |
- ** and use its inversion. */ |
- testcase( pOrTerm->wtFlags & TERM_COPIED ); |
- testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); |
- assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); |
- continue; |
- } |
- iColumn = pOrTerm->u.leftColumn; |
- iCursor = pOrTerm->leftCursor; |
- break; |
- } |
- if( i<0 ){ |
- /* No candidate table+column was found. This can only occur |
- ** on the second iteration */ |
- assert( j==1 ); |
- assert( IsPowerOfTwo(chngToIN) ); |
- assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) ); |
- break; |
- } |
- testcase( j==1 ); |
- |
- /* We have found a candidate table and column. Check to see if that |
- ** table and column is common to every term in the OR clause */ |
- okToChngToIN = 1; |
- for(; i>=0 && okToChngToIN; i--, pOrTerm++){ |
- assert( pOrTerm->eOperator & WO_EQ ); |
- if( pOrTerm->leftCursor!=iCursor ){ |
- pOrTerm->wtFlags &= ~TERM_OR_OK; |
- }else if( pOrTerm->u.leftColumn!=iColumn ){ |
- okToChngToIN = 0; |
- }else{ |
- int affLeft, affRight; |
- /* If the right-hand side is also a column, then the affinities |
- ** of both right and left sides must be such that no type |
- ** conversions are required on the right. (Ticket #2249) |
- */ |
- affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
- affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
- if( affRight!=0 && affRight!=affLeft ){ |
- okToChngToIN = 0; |
- }else{ |
- pOrTerm->wtFlags |= TERM_OR_OK; |
- } |
- } |
- } |
- } |
- |
- /* At this point, okToChngToIN is true if original pTerm satisfies |
- ** case 1. In that case, construct a new virtual term that is |
- ** pTerm converted into an IN operator. |
- */ |
- if( okToChngToIN ){ |
- Expr *pDup; /* A transient duplicate expression */ |
- ExprList *pList = 0; /* The RHS of the IN operator */ |
- Expr *pLeft = 0; /* The LHS of the IN operator */ |
- Expr *pNew; /* The complete IN operator */ |
- |
- for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ |
- if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; |
- assert( pOrTerm->eOperator & WO_EQ ); |
- assert( pOrTerm->leftCursor==iCursor ); |
- assert( pOrTerm->u.leftColumn==iColumn ); |
- pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); |
- pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); |
- pLeft = pOrTerm->pExpr->pLeft; |
- } |
- assert( pLeft!=0 ); |
- pDup = sqlite3ExprDup(db, pLeft, 0); |
- pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); |
- if( pNew ){ |
- int idxNew; |
- transferJoinMarkings(pNew, pExpr); |
- assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
- pNew->x.pList = pList; |
- idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew==0 ); |
- exprAnalyze(pSrc, pWC, idxNew); |
- pTerm = &pWC->a[idxTerm]; |
- pWC->a[idxNew].iParent = idxTerm; |
- pTerm->nChild = 1; |
- }else{ |
- sqlite3ExprListDelete(db, pList); |
- } |
- pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ |
- } |
- } |
-} |
-#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
- |
-/* |
-** The input to this routine is an WhereTerm structure with only the |
-** "pExpr" field filled in. The job of this routine is to analyze the |
-** subexpression and populate all the other fields of the WhereTerm |
-** structure. |
-** |
-** If the expression is of the form "<expr> <op> X" it gets commuted |
-** to the standard form of "X <op> <expr>". |
-** |
-** If the expression is of the form "X <op> Y" where both X and Y are |
-** columns, then the original expression is unchanged and a new virtual |
-** term of the form "Y <op> X" is added to the WHERE clause and |
-** analyzed separately. The original term is marked with TERM_COPIED |
-** and the new term is marked with TERM_DYNAMIC (because it's pExpr |
-** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it |
-** is a commuted copy of a prior term.) The original term has nChild=1 |
-** and the copy has idxParent set to the index of the original term. |
-*/ |
-static void exprAnalyze( |
- SrcList *pSrc, /* the FROM clause */ |
- WhereClause *pWC, /* the WHERE clause */ |
- int idxTerm /* Index of the term to be analyzed */ |
-){ |
- WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
- WhereTerm *pTerm; /* The term to be analyzed */ |
- WhereMaskSet *pMaskSet; /* Set of table index masks */ |
- Expr *pExpr; /* The expression to be analyzed */ |
- Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ |
- Bitmask prereqAll; /* Prerequesites of pExpr */ |
- Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ |
- Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ |
- int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ |
- int noCase = 0; /* LIKE/GLOB distinguishes case */ |
- int op; /* Top-level operator. pExpr->op */ |
- Parse *pParse = pWInfo->pParse; /* Parsing context */ |
- sqlite3 *db = pParse->db; /* Database connection */ |
- |
- if( db->mallocFailed ){ |
- return; |
- } |
- pTerm = &pWC->a[idxTerm]; |
- pMaskSet = &pWInfo->sMaskSet; |
- pExpr = pTerm->pExpr; |
- assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); |
- prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
- op = pExpr->op; |
- if( op==TK_IN ){ |
- assert( pExpr->pRight==0 ); |
- if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
- pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); |
- }else{ |
- pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); |
- } |
- }else if( op==TK_ISNULL ){ |
- pTerm->prereqRight = 0; |
- }else{ |
- pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
- } |
- prereqAll = exprTableUsage(pMaskSet, pExpr); |
- if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
- Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); |
- prereqAll |= x; |
- extraRight = x-1; /* ON clause terms may not be used with an index |
- ** on left table of a LEFT JOIN. Ticket #3015 */ |
- } |
- pTerm->prereqAll = prereqAll; |
- pTerm->leftCursor = -1; |
- pTerm->iParent = -1; |
- pTerm->eOperator = 0; |
- if( allowedOp(op) ){ |
- Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); |
- Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); |
- u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; |
- if( pLeft->op==TK_COLUMN ){ |
- pTerm->leftCursor = pLeft->iTable; |
- pTerm->u.leftColumn = pLeft->iColumn; |
- pTerm->eOperator = operatorMask(op) & opMask; |
- } |
- if( pRight && pRight->op==TK_COLUMN ){ |
- WhereTerm *pNew; |
- Expr *pDup; |
- u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ |
- if( pTerm->leftCursor>=0 ){ |
- int idxNew; |
- pDup = sqlite3ExprDup(db, pExpr, 0); |
- if( db->mallocFailed ){ |
- sqlite3ExprDelete(db, pDup); |
- return; |
- } |
- idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
- if( idxNew==0 ) return; |
- pNew = &pWC->a[idxNew]; |
- pNew->iParent = idxTerm; |
- pTerm = &pWC->a[idxTerm]; |
- pTerm->nChild = 1; |
- pTerm->wtFlags |= TERM_COPIED; |
- if( pExpr->op==TK_EQ |
- && !ExprHasProperty(pExpr, EP_FromJoin) |
- && OptimizationEnabled(db, SQLITE_Transitive) |
- ){ |
- pTerm->eOperator |= WO_EQUIV; |
- eExtraOp = WO_EQUIV; |
- } |
- }else{ |
- pDup = pExpr; |
- pNew = pTerm; |
- } |
- exprCommute(pParse, pDup); |
- pLeft = sqlite3ExprSkipCollate(pDup->pLeft); |
- pNew->leftCursor = pLeft->iTable; |
- pNew->u.leftColumn = pLeft->iColumn; |
- testcase( (prereqLeft | extraRight) != prereqLeft ); |
- pNew->prereqRight = prereqLeft | extraRight; |
- pNew->prereqAll = prereqAll; |
- pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; |
- } |
- } |
- |
-#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
- /* If a term is the BETWEEN operator, create two new virtual terms |
- ** that define the range that the BETWEEN implements. For example: |
- ** |
- ** a BETWEEN b AND c |
- ** |
- ** is converted into: |
- ** |
- ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) |
- ** |
- ** The two new terms are added onto the end of the WhereClause object. |
- ** The new terms are "dynamic" and are children of the original BETWEEN |
- ** term. That means that if the BETWEEN term is coded, the children are |
- ** skipped. Or, if the children are satisfied by an index, the original |
- ** BETWEEN term is skipped. |
- */ |
- else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ |
- ExprList *pList = pExpr->x.pList; |
- int i; |
- static const u8 ops[] = {TK_GE, TK_LE}; |
- assert( pList!=0 ); |
- assert( pList->nExpr==2 ); |
- for(i=0; i<2; i++){ |
- Expr *pNewExpr; |
- int idxNew; |
- pNewExpr = sqlite3PExpr(pParse, ops[i], |
- sqlite3ExprDup(db, pExpr->pLeft, 0), |
- sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); |
- transferJoinMarkings(pNewExpr, pExpr); |
- idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew==0 ); |
- exprAnalyze(pSrc, pWC, idxNew); |
- pTerm = &pWC->a[idxTerm]; |
- pWC->a[idxNew].iParent = idxTerm; |
- } |
- pTerm->nChild = 2; |
- } |
-#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
- |
-#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
- /* Analyze a term that is composed of two or more subterms connected by |
- ** an OR operator. |
- */ |
- else if( pExpr->op==TK_OR ){ |
- assert( pWC->op==TK_AND ); |
- exprAnalyzeOrTerm(pSrc, pWC, idxTerm); |
- pTerm = &pWC->a[idxTerm]; |
- } |
-#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
- |
-#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
- /* Add constraints to reduce the search space on a LIKE or GLOB |
- ** operator. |
- ** |
- ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints |
- ** |
- ** x>='abc' AND x<'abd' AND x LIKE 'abc%' |
- ** |
- ** The last character of the prefix "abc" is incremented to form the |
- ** termination condition "abd". |
- */ |
- if( pWC->op==TK_AND |
- && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) |
- ){ |
- Expr *pLeft; /* LHS of LIKE/GLOB operator */ |
- Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ |
- Expr *pNewExpr1; |
- Expr *pNewExpr2; |
- int idxNew1; |
- int idxNew2; |
- Token sCollSeqName; /* Name of collating sequence */ |
- |
- pLeft = pExpr->x.pList->a[1].pExpr; |
- pStr2 = sqlite3ExprDup(db, pStr1, 0); |
- if( !db->mallocFailed ){ |
- u8 c, *pC; /* Last character before the first wildcard */ |
- pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; |
- c = *pC; |
- if( noCase ){ |
- /* The point is to increment the last character before the first |
- ** wildcard. But if we increment '@', that will push it into the |
- ** alphabetic range where case conversions will mess up the |
- ** inequality. To avoid this, make sure to also run the full |
- ** LIKE on all candidate expressions by clearing the isComplete flag |
- */ |
- if( c=='A'-1 ) isComplete = 0; |
- c = sqlite3UpperToLower[c]; |
- } |
- *pC = c + 1; |
- } |
- sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; |
- sCollSeqName.n = 6; |
- pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); |
- pNewExpr1 = sqlite3PExpr(pParse, TK_GE, |
- sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName), |
- pStr1, 0); |
- transferJoinMarkings(pNewExpr1, pExpr); |
- idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew1==0 ); |
- exprAnalyze(pSrc, pWC, idxNew1); |
- pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); |
- pNewExpr2 = sqlite3PExpr(pParse, TK_LT, |
- sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName), |
- pStr2, 0); |
- transferJoinMarkings(pNewExpr2, pExpr); |
- idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew2==0 ); |
- exprAnalyze(pSrc, pWC, idxNew2); |
- pTerm = &pWC->a[idxTerm]; |
- if( isComplete ){ |
- pWC->a[idxNew1].iParent = idxTerm; |
- pWC->a[idxNew2].iParent = idxTerm; |
- pTerm->nChild = 2; |
- } |
- } |
-#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- /* Add a WO_MATCH auxiliary term to the constraint set if the |
- ** current expression is of the form: column MATCH expr. |
- ** This information is used by the xBestIndex methods of |
- ** virtual tables. The native query optimizer does not attempt |
- ** to do anything with MATCH functions. |
- */ |
- if( isMatchOfColumn(pExpr) ){ |
- int idxNew; |
- Expr *pRight, *pLeft; |
- WhereTerm *pNewTerm; |
- Bitmask prereqColumn, prereqExpr; |
- |
- pRight = pExpr->x.pList->a[0].pExpr; |
- pLeft = pExpr->x.pList->a[1].pExpr; |
- prereqExpr = exprTableUsage(pMaskSet, pRight); |
- prereqColumn = exprTableUsage(pMaskSet, pLeft); |
- if( (prereqExpr & prereqColumn)==0 ){ |
- Expr *pNewExpr; |
- pNewExpr = sqlite3PExpr(pParse, TK_MATCH, |
- 0, sqlite3ExprDup(db, pRight, 0), 0); |
- idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
- testcase( idxNew==0 ); |
- pNewTerm = &pWC->a[idxNew]; |
- pNewTerm->prereqRight = prereqExpr; |
- pNewTerm->leftCursor = pLeft->iTable; |
- pNewTerm->u.leftColumn = pLeft->iColumn; |
- pNewTerm->eOperator = WO_MATCH; |
- pNewTerm->iParent = idxTerm; |
- pTerm = &pWC->a[idxTerm]; |
- pTerm->nChild = 1; |
- pTerm->wtFlags |= TERM_COPIED; |
- pNewTerm->prereqAll = pTerm->prereqAll; |
- } |
- } |
-#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- /* When sqlite_stat3 histogram data is available an operator of the |
- ** form "x IS NOT NULL" can sometimes be evaluated more efficiently |
- ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a |
- ** virtual term of that form. |
- ** |
- ** Note that the virtual term must be tagged with TERM_VNULL. This |
- ** TERM_VNULL tag will suppress the not-null check at the beginning |
- ** of the loop. Without the TERM_VNULL flag, the not-null check at |
- ** the start of the loop will prevent any results from being returned. |
- */ |
- if( pExpr->op==TK_NOTNULL |
- && pExpr->pLeft->op==TK_COLUMN |
- && pExpr->pLeft->iColumn>=0 |
- && OptimizationEnabled(db, SQLITE_Stat3) |
- ){ |
- Expr *pNewExpr; |
- Expr *pLeft = pExpr->pLeft; |
- int idxNew; |
- WhereTerm *pNewTerm; |
- |
- pNewExpr = sqlite3PExpr(pParse, TK_GT, |
- sqlite3ExprDup(db, pLeft, 0), |
- sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); |
- |
- idxNew = whereClauseInsert(pWC, pNewExpr, |
- TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); |
- if( idxNew ){ |
- pNewTerm = &pWC->a[idxNew]; |
- pNewTerm->prereqRight = 0; |
- pNewTerm->leftCursor = pLeft->iTable; |
- pNewTerm->u.leftColumn = pLeft->iColumn; |
- pNewTerm->eOperator = WO_GT; |
- pNewTerm->iParent = idxTerm; |
- pTerm = &pWC->a[idxTerm]; |
- pTerm->nChild = 1; |
- pTerm->wtFlags |= TERM_COPIED; |
- pNewTerm->prereqAll = pTerm->prereqAll; |
- } |
- } |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
- /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
- ** an index for tables to the left of the join. |
- */ |
- pTerm->prereqRight |= extraRight; |
-} |
- |
-/* |
-** This function searches pList for an entry that matches the iCol-th column |
-** of index pIdx. |
-** |
-** If such an expression is found, its index in pList->a[] is returned. If |
-** no expression is found, -1 is returned. |
-*/ |
-static int findIndexCol( |
- Parse *pParse, /* Parse context */ |
- ExprList *pList, /* Expression list to search */ |
- int iBase, /* Cursor for table associated with pIdx */ |
- Index *pIdx, /* Index to match column of */ |
- int iCol /* Column of index to match */ |
-){ |
- int i; |
- const char *zColl = pIdx->azColl[iCol]; |
- |
- for(i=0; i<pList->nExpr; i++){ |
- Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); |
- if( p->op==TK_COLUMN |
- && p->iColumn==pIdx->aiColumn[iCol] |
- && p->iTable==iBase |
- ){ |
- CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
- if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ |
- return i; |
- } |
- } |
- } |
- |
- return -1; |
-} |
- |
-/* |
-** Return true if the DISTINCT expression-list passed as the third argument |
-** is redundant. |
-** |
-** A DISTINCT list is redundant if the database contains some subset of |
-** columns that are unique and non-null. |
-*/ |
-static int isDistinctRedundant( |
- Parse *pParse, /* Parsing context */ |
- SrcList *pTabList, /* The FROM clause */ |
- WhereClause *pWC, /* The WHERE clause */ |
- ExprList *pDistinct /* The result set that needs to be DISTINCT */ |
-){ |
- Table *pTab; |
- Index *pIdx; |
- int i; |
- int iBase; |
- |
- /* If there is more than one table or sub-select in the FROM clause of |
- ** this query, then it will not be possible to show that the DISTINCT |
- ** clause is redundant. */ |
- if( pTabList->nSrc!=1 ) return 0; |
- iBase = pTabList->a[0].iCursor; |
- pTab = pTabList->a[0].pTab; |
- |
- /* If any of the expressions is an IPK column on table iBase, then return |
- ** true. Note: The (p->iTable==iBase) part of this test may be false if the |
- ** current SELECT is a correlated sub-query. |
- */ |
- for(i=0; i<pDistinct->nExpr; i++){ |
- Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); |
- if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; |
- } |
- |
- /* Loop through all indices on the table, checking each to see if it makes |
- ** the DISTINCT qualifier redundant. It does so if: |
- ** |
- ** 1. The index is itself UNIQUE, and |
- ** |
- ** 2. All of the columns in the index are either part of the pDistinct |
- ** list, or else the WHERE clause contains a term of the form "col=X", |
- ** where X is a constant value. The collation sequences of the |
- ** comparison and select-list expressions must match those of the index. |
- ** |
- ** 3. All of those index columns for which the WHERE clause does not |
- ** contain a "col=X" term are subject to a NOT NULL constraint. |
- */ |
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
- if( !IsUniqueIndex(pIdx) ) continue; |
- for(i=0; i<pIdx->nKeyCol; i++){ |
- i16 iCol = pIdx->aiColumn[i]; |
- if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ |
- int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); |
- if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ |
- break; |
- } |
- } |
- } |
- if( i==pIdx->nKeyCol ){ |
- /* This index implies that the DISTINCT qualifier is redundant. */ |
- return 1; |
- } |
- } |
- |
- return 0; |
-} |
- |
- |
-/* |
-** Estimate the logarithm of the input value to base 2. |
-*/ |
-static LogEst estLog(LogEst N){ |
- return N<=10 ? 0 : sqlite3LogEst(N) - 33; |
-} |
- |
-/* |
-** Two routines for printing the content of an sqlite3_index_info |
-** structure. Used for testing and debugging only. If neither |
-** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines |
-** are no-ops. |
-*/ |
-#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) |
-static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ |
- int i; |
- if( !sqlite3WhereTrace ) return; |
- for(i=0; i<p->nConstraint; i++){ |
- sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", |
- i, |
- p->aConstraint[i].iColumn, |
- p->aConstraint[i].iTermOffset, |
- p->aConstraint[i].op, |
- p->aConstraint[i].usable); |
- } |
- for(i=0; i<p->nOrderBy; i++){ |
- sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", |
- i, |
- p->aOrderBy[i].iColumn, |
- p->aOrderBy[i].desc); |
- } |
-} |
-static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ |
- int i; |
- if( !sqlite3WhereTrace ) return; |
- for(i=0; i<p->nConstraint; i++){ |
- sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", |
- i, |
- p->aConstraintUsage[i].argvIndex, |
- p->aConstraintUsage[i].omit); |
- } |
- sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); |
- sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); |
- sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); |
- sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); |
- sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); |
-} |
-#else |
-#define TRACE_IDX_INPUTS(A) |
-#define TRACE_IDX_OUTPUTS(A) |
-#endif |
- |
-#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
-/* |
-** Return TRUE if the WHERE clause term pTerm is of a form where it |
-** could be used with an index to access pSrc, assuming an appropriate |
-** index existed. |
-*/ |
-static int termCanDriveIndex( |
- WhereTerm *pTerm, /* WHERE clause term to check */ |
- struct SrcList_item *pSrc, /* Table we are trying to access */ |
- Bitmask notReady /* Tables in outer loops of the join */ |
-){ |
- char aff; |
- if( pTerm->leftCursor!=pSrc->iCursor ) return 0; |
- if( (pTerm->eOperator & WO_EQ)==0 ) return 0; |
- if( (pTerm->prereqRight & notReady)!=0 ) return 0; |
- if( pTerm->u.leftColumn<0 ) return 0; |
- aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; |
- if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; |
- return 1; |
-} |
-#endif |
- |
- |
-#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
-/* |
-** Generate code to construct the Index object for an automatic index |
-** and to set up the WhereLevel object pLevel so that the code generator |
-** makes use of the automatic index. |
-*/ |
-static void constructAutomaticIndex( |
- Parse *pParse, /* The parsing context */ |
- WhereClause *pWC, /* The WHERE clause */ |
- struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ |
- Bitmask notReady, /* Mask of cursors that are not available */ |
- WhereLevel *pLevel /* Write new index here */ |
-){ |
- int nKeyCol; /* Number of columns in the constructed index */ |
- WhereTerm *pTerm; /* A single term of the WHERE clause */ |
- WhereTerm *pWCEnd; /* End of pWC->a[] */ |
- Index *pIdx; /* Object describing the transient index */ |
- Vdbe *v; /* Prepared statement under construction */ |
- int addrInit; /* Address of the initialization bypass jump */ |
- Table *pTable; /* The table being indexed */ |
- int addrTop; /* Top of the index fill loop */ |
- int regRecord; /* Register holding an index record */ |
- int n; /* Column counter */ |
- int i; /* Loop counter */ |
- int mxBitCol; /* Maximum column in pSrc->colUsed */ |
- CollSeq *pColl; /* Collating sequence to on a column */ |
- WhereLoop *pLoop; /* The Loop object */ |
- char *zNotUsed; /* Extra space on the end of pIdx */ |
- Bitmask idxCols; /* Bitmap of columns used for indexing */ |
- Bitmask extraCols; /* Bitmap of additional columns */ |
- u8 sentWarning = 0; /* True if a warnning has been issued */ |
- |
- /* Generate code to skip over the creation and initialization of the |
- ** transient index on 2nd and subsequent iterations of the loop. */ |
- v = pParse->pVdbe; |
- assert( v!=0 ); |
- addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
- |
- /* Count the number of columns that will be added to the index |
- ** and used to match WHERE clause constraints */ |
- nKeyCol = 0; |
- pTable = pSrc->pTab; |
- pWCEnd = &pWC->a[pWC->nTerm]; |
- pLoop = pLevel->pWLoop; |
- idxCols = 0; |
- for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
- if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
- int iCol = pTerm->u.leftColumn; |
- Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); |
- testcase( iCol==BMS ); |
- testcase( iCol==BMS-1 ); |
- if( !sentWarning ){ |
- sqlite3_log(SQLITE_WARNING_AUTOINDEX, |
- "automatic index on %s(%s)", pTable->zName, |
- pTable->aCol[iCol].zName); |
- sentWarning = 1; |
- } |
- if( (idxCols & cMask)==0 ){ |
- if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return; |
- pLoop->aLTerm[nKeyCol++] = pTerm; |
- idxCols |= cMask; |
- } |
- } |
- } |
- assert( nKeyCol>0 ); |
- pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; |
- pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED |
- | WHERE_AUTO_INDEX; |
- |
- /* Count the number of additional columns needed to create a |
- ** covering index. A "covering index" is an index that contains all |
- ** columns that are needed by the query. With a covering index, the |
- ** original table never needs to be accessed. Automatic indices must |
- ** be a covering index because the index will not be updated if the |
- ** original table changes and the index and table cannot both be used |
- ** if they go out of sync. |
- */ |
- extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); |
- mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; |
- testcase( pTable->nCol==BMS-1 ); |
- testcase( pTable->nCol==BMS-2 ); |
- for(i=0; i<mxBitCol; i++){ |
- if( extraCols & MASKBIT(i) ) nKeyCol++; |
- } |
- if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
- nKeyCol += pTable->nCol - BMS + 1; |
- } |
- pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY; |
- |
- /* Construct the Index object to describe this index */ |
- pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); |
- if( pIdx==0 ) return; |
- pLoop->u.btree.pIndex = pIdx; |
- pIdx->zName = "auto-index"; |
- pIdx->pTable = pTable; |
- n = 0; |
- idxCols = 0; |
- for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
- if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
- int iCol = pTerm->u.leftColumn; |
- Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); |
- testcase( iCol==BMS-1 ); |
- testcase( iCol==BMS ); |
- if( (idxCols & cMask)==0 ){ |
- Expr *pX = pTerm->pExpr; |
- idxCols |= cMask; |
- pIdx->aiColumn[n] = pTerm->u.leftColumn; |
- pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
- pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; |
- n++; |
- } |
- } |
- } |
- assert( (u32)n==pLoop->u.btree.nEq ); |
- |
- /* Add additional columns needed to make the automatic index into |
- ** a covering index */ |
- for(i=0; i<mxBitCol; i++){ |
- if( extraCols & MASKBIT(i) ){ |
- pIdx->aiColumn[n] = i; |
- pIdx->azColl[n] = "BINARY"; |
- n++; |
- } |
- } |
- if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
- for(i=BMS-1; i<pTable->nCol; i++){ |
- pIdx->aiColumn[n] = i; |
- pIdx->azColl[n] = "BINARY"; |
- n++; |
- } |
- } |
- assert( n==nKeyCol ); |
- pIdx->aiColumn[n] = -1; |
- pIdx->azColl[n] = "BINARY"; |
- |
- /* Create the automatic index */ |
- assert( pLevel->iIdxCur>=0 ); |
- pLevel->iIdxCur = pParse->nTab++; |
- sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); |
- sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
- VdbeComment((v, "for %s", pTable->zName)); |
- |
- /* Fill the automatic index with content */ |
- addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); |
- regRecord = sqlite3GetTempReg(pParse); |
- sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); |
- sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
- sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); |
- sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); |
- sqlite3VdbeJumpHere(v, addrTop); |
- sqlite3ReleaseTempReg(pParse, regRecord); |
- |
- /* Jump here when skipping the initialization */ |
- sqlite3VdbeJumpHere(v, addrInit); |
-} |
-#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
-/* |
-** Allocate and populate an sqlite3_index_info structure. It is the |
-** responsibility of the caller to eventually release the structure |
-** by passing the pointer returned by this function to sqlite3_free(). |
-*/ |
-static sqlite3_index_info *allocateIndexInfo( |
- Parse *pParse, |
- WhereClause *pWC, |
- struct SrcList_item *pSrc, |
- ExprList *pOrderBy |
-){ |
- int i, j; |
- int nTerm; |
- struct sqlite3_index_constraint *pIdxCons; |
- struct sqlite3_index_orderby *pIdxOrderBy; |
- struct sqlite3_index_constraint_usage *pUsage; |
- WhereTerm *pTerm; |
- int nOrderBy; |
- sqlite3_index_info *pIdxInfo; |
- |
- /* Count the number of possible WHERE clause constraints referring |
- ** to this virtual table */ |
- for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
- if( pTerm->leftCursor != pSrc->iCursor ) continue; |
- assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
- testcase( pTerm->eOperator & WO_IN ); |
- testcase( pTerm->eOperator & WO_ISNULL ); |
- testcase( pTerm->eOperator & WO_ALL ); |
- if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; |
- if( pTerm->wtFlags & TERM_VNULL ) continue; |
- nTerm++; |
- } |
- |
- /* If the ORDER BY clause contains only columns in the current |
- ** virtual table then allocate space for the aOrderBy part of |
- ** the sqlite3_index_info structure. |
- */ |
- nOrderBy = 0; |
- if( pOrderBy ){ |
- int n = pOrderBy->nExpr; |
- for(i=0; i<n; i++){ |
- Expr *pExpr = pOrderBy->a[i].pExpr; |
- if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; |
- } |
- if( i==n){ |
- nOrderBy = n; |
- } |
- } |
- |
- /* Allocate the sqlite3_index_info structure |
- */ |
- pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) |
- + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm |
- + sizeof(*pIdxOrderBy)*nOrderBy ); |
- if( pIdxInfo==0 ){ |
- sqlite3ErrorMsg(pParse, "out of memory"); |
- return 0; |
- } |
- |
- /* Initialize the structure. The sqlite3_index_info structure contains |
- ** many fields that are declared "const" to prevent xBestIndex from |
- ** changing them. We have to do some funky casting in order to |
- ** initialize those fields. |
- */ |
- pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; |
- pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; |
- pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; |
- *(int*)&pIdxInfo->nConstraint = nTerm; |
- *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
- *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; |
- *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; |
- *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = |
- pUsage; |
- |
- for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
- u8 op; |
- if( pTerm->leftCursor != pSrc->iCursor ) continue; |
- assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
- testcase( pTerm->eOperator & WO_IN ); |
- testcase( pTerm->eOperator & WO_ISNULL ); |
- testcase( pTerm->eOperator & WO_ALL ); |
- if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; |
- if( pTerm->wtFlags & TERM_VNULL ) continue; |
- pIdxCons[j].iColumn = pTerm->u.leftColumn; |
- pIdxCons[j].iTermOffset = i; |
- op = (u8)pTerm->eOperator & WO_ALL; |
- if( op==WO_IN ) op = WO_EQ; |
- pIdxCons[j].op = op; |
- /* The direct assignment in the previous line is possible only because |
- ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
- ** following asserts verify this fact. */ |
- assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
- assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
- assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); |
- assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); |
- assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); |
- assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); |
- assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); |
- j++; |
- } |
- for(i=0; i<nOrderBy; i++){ |
- Expr *pExpr = pOrderBy->a[i].pExpr; |
- pIdxOrderBy[i].iColumn = pExpr->iColumn; |
- pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; |
- } |
- |
- return pIdxInfo; |
-} |
- |
-/* |
-** The table object reference passed as the second argument to this function |
-** must represent a virtual table. This function invokes the xBestIndex() |
-** method of the virtual table with the sqlite3_index_info object that |
-** comes in as the 3rd argument to this function. |
-** |
-** If an error occurs, pParse is populated with an error message and a |
-** non-zero value is returned. Otherwise, 0 is returned and the output |
-** part of the sqlite3_index_info structure is left populated. |
-** |
-** Whether or not an error is returned, it is the responsibility of the |
-** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates |
-** that this is required. |
-*/ |
-static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ |
- sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; |
- int i; |
- int rc; |
- |
- TRACE_IDX_INPUTS(p); |
- rc = pVtab->pModule->xBestIndex(pVtab, p); |
- TRACE_IDX_OUTPUTS(p); |
- |
- if( rc!=SQLITE_OK ){ |
- if( rc==SQLITE_NOMEM ){ |
- pParse->db->mallocFailed = 1; |
- }else if( !pVtab->zErrMsg ){ |
- sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); |
- }else{ |
- sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); |
- } |
- } |
- sqlite3_free(pVtab->zErrMsg); |
- pVtab->zErrMsg = 0; |
- |
- for(i=0; i<p->nConstraint; i++){ |
- if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ |
- sqlite3ErrorMsg(pParse, |
- "table %s: xBestIndex returned an invalid plan", pTab->zName); |
- } |
- } |
- |
- return pParse->nErr; |
-} |
-#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ |
- |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-/* |
-** Estimate the location of a particular key among all keys in an |
-** index. Store the results in aStat as follows: |
-** |
-** aStat[0] Est. number of rows less than pVal |
-** aStat[1] Est. number of rows equal to pVal |
-** |
-** Return SQLITE_OK on success. |
-*/ |
-static void whereKeyStats( |
- Parse *pParse, /* Database connection */ |
- Index *pIdx, /* Index to consider domain of */ |
- UnpackedRecord *pRec, /* Vector of values to consider */ |
- int roundUp, /* Round up if true. Round down if false */ |
- tRowcnt *aStat /* OUT: stats written here */ |
-){ |
- IndexSample *aSample = pIdx->aSample; |
- int iCol; /* Index of required stats in anEq[] etc. */ |
- int iMin = 0; /* Smallest sample not yet tested */ |
- int i = pIdx->nSample; /* Smallest sample larger than or equal to pRec */ |
- int iTest; /* Next sample to test */ |
- int res; /* Result of comparison operation */ |
- |
-#ifndef SQLITE_DEBUG |
- UNUSED_PARAMETER( pParse ); |
-#endif |
- assert( pRec!=0 ); |
- iCol = pRec->nField - 1; |
- assert( pIdx->nSample>0 ); |
- assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); |
- do{ |
- iTest = (iMin+i)/2; |
- res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec); |
- if( res<0 ){ |
- iMin = iTest+1; |
- }else{ |
- i = iTest; |
- } |
- }while( res && iMin<i ); |
- |
-#ifdef SQLITE_DEBUG |
- /* The following assert statements check that the binary search code |
- ** above found the right answer. This block serves no purpose other |
- ** than to invoke the asserts. */ |
- if( res==0 ){ |
- /* If (res==0) is true, then sample $i must be equal to pRec */ |
- assert( i<pIdx->nSample ); |
- assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) |
- || pParse->db->mallocFailed ); |
- }else{ |
- /* Otherwise, pRec must be smaller than sample $i and larger than |
- ** sample ($i-1). */ |
- assert( i==pIdx->nSample |
- || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 |
- || pParse->db->mallocFailed ); |
- assert( i==0 |
- || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 |
- || pParse->db->mallocFailed ); |
- } |
-#endif /* ifdef SQLITE_DEBUG */ |
- |
- /* At this point, aSample[i] is the first sample that is greater than |
- ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less |
- ** than pVal. If aSample[i]==pVal, then res==0. |
- */ |
- if( res==0 ){ |
- aStat[0] = aSample[i].anLt[iCol]; |
- aStat[1] = aSample[i].anEq[iCol]; |
- }else{ |
- tRowcnt iLower, iUpper, iGap; |
- if( i==0 ){ |
- iLower = 0; |
- iUpper = aSample[0].anLt[iCol]; |
- }else{ |
- i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); |
- iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol]; |
- iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol]; |
- } |
- aStat[1] = pIdx->aAvgEq[iCol]; |
- if( iLower>=iUpper ){ |
- iGap = 0; |
- }else{ |
- iGap = iUpper - iLower; |
- } |
- if( roundUp ){ |
- iGap = (iGap*2)/3; |
- }else{ |
- iGap = iGap/3; |
- } |
- aStat[0] = iLower + iGap; |
- } |
-} |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
-/* |
-** If it is not NULL, pTerm is a term that provides an upper or lower |
-** bound on a range scan. Without considering pTerm, it is estimated |
-** that the scan will visit nNew rows. This function returns the number |
-** estimated to be visited after taking pTerm into account. |
-** |
-** If the user explicitly specified a likelihood() value for this term, |
-** then the return value is the likelihood multiplied by the number of |
-** input rows. Otherwise, this function assumes that an "IS NOT NULL" term |
-** has a likelihood of 0.50, and any other term a likelihood of 0.25. |
-*/ |
-static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ |
- LogEst nRet = nNew; |
- if( pTerm ){ |
- if( pTerm->truthProb<=0 ){ |
- nRet += pTerm->truthProb; |
- }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ |
- nRet -= 20; assert( 20==sqlite3LogEst(4) ); |
- } |
- } |
- return nRet; |
-} |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-/* |
-** This function is called to estimate the number of rows visited by a |
-** range-scan on a skip-scan index. For example: |
-** |
-** CREATE INDEX i1 ON t1(a, b, c); |
-** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; |
-** |
-** Value pLoop->nOut is currently set to the estimated number of rows |
-** visited for scanning (a=? AND b=?). This function reduces that estimate |
-** by some factor to account for the (c BETWEEN ? AND ?) expression based |
-** on the stat4 data for the index. this scan will be peformed multiple |
-** times (once for each (a,b) combination that matches a=?) is dealt with |
-** by the caller. |
-** |
-** It does this by scanning through all stat4 samples, comparing values |
-** extracted from pLower and pUpper with the corresponding column in each |
-** sample. If L and U are the number of samples found to be less than or |
-** equal to the values extracted from pLower and pUpper respectively, and |
-** N is the total number of samples, the pLoop->nOut value is adjusted |
-** as follows: |
-** |
-** nOut = nOut * ( min(U - L, 1) / N ) |
-** |
-** If pLower is NULL, or a value cannot be extracted from the term, L is |
-** set to zero. If pUpper is NULL, or a value cannot be extracted from it, |
-** U is set to N. |
-** |
-** Normally, this function sets *pbDone to 1 before returning. However, |
-** if no value can be extracted from either pLower or pUpper (and so the |
-** estimate of the number of rows delivered remains unchanged), *pbDone |
-** is left as is. |
-** |
-** If an error occurs, an SQLite error code is returned. Otherwise, |
-** SQLITE_OK. |
-*/ |
-static int whereRangeSkipScanEst( |
- Parse *pParse, /* Parsing & code generating context */ |
- WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ |
- WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ |
- WhereLoop *pLoop, /* Update the .nOut value of this loop */ |
- int *pbDone /* Set to true if at least one expr. value extracted */ |
-){ |
- Index *p = pLoop->u.btree.pIndex; |
- int nEq = pLoop->u.btree.nEq; |
- sqlite3 *db = pParse->db; |
- int nLower = -1; |
- int nUpper = p->nSample+1; |
- int rc = SQLITE_OK; |
- int iCol = p->aiColumn[nEq]; |
- u8 aff = iCol>=0 ? p->pTable->aCol[iCol].affinity : SQLITE_AFF_INTEGER; |
- CollSeq *pColl; |
- |
- sqlite3_value *p1 = 0; /* Value extracted from pLower */ |
- sqlite3_value *p2 = 0; /* Value extracted from pUpper */ |
- sqlite3_value *pVal = 0; /* Value extracted from record */ |
- |
- pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); |
- if( pLower ){ |
- rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); |
- nLower = 0; |
- } |
- if( pUpper && rc==SQLITE_OK ){ |
- rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); |
- nUpper = p2 ? 0 : p->nSample; |
- } |
- |
- if( p1 || p2 ){ |
- int i; |
- int nDiff; |
- for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ |
- rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); |
- if( rc==SQLITE_OK && p1 ){ |
- int res = sqlite3MemCompare(p1, pVal, pColl); |
- if( res>=0 ) nLower++; |
- } |
- if( rc==SQLITE_OK && p2 ){ |
- int res = sqlite3MemCompare(p2, pVal, pColl); |
- if( res>=0 ) nUpper++; |
- } |
- } |
- nDiff = (nUpper - nLower); |
- if( nDiff<=0 ) nDiff = 1; |
- |
- /* If there is both an upper and lower bound specified, and the |
- ** comparisons indicate that they are close together, use the fallback |
- ** method (assume that the scan visits 1/64 of the rows) for estimating |
- ** the number of rows visited. Otherwise, estimate the number of rows |
- ** using the method described in the header comment for this function. */ |
- if( nDiff!=1 || pUpper==0 || pLower==0 ){ |
- int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); |
- pLoop->nOut -= nAdjust; |
- *pbDone = 1; |
- WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", |
- nLower, nUpper, nAdjust*-1, pLoop->nOut)); |
- } |
- |
- }else{ |
- assert( *pbDone==0 ); |
- } |
- |
- sqlite3ValueFree(p1); |
- sqlite3ValueFree(p2); |
- sqlite3ValueFree(pVal); |
- |
- return rc; |
-} |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
-/* |
-** This function is used to estimate the number of rows that will be visited |
-** by scanning an index for a range of values. The range may have an upper |
-** bound, a lower bound, or both. The WHERE clause terms that set the upper |
-** and lower bounds are represented by pLower and pUpper respectively. For |
-** example, assuming that index p is on t1(a): |
-** |
-** ... FROM t1 WHERE a > ? AND a < ? ... |
-** |_____| |_____| |
-** | | |
-** pLower pUpper |
-** |
-** If either of the upper or lower bound is not present, then NULL is passed in |
-** place of the corresponding WhereTerm. |
-** |
-** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index |
-** column subject to the range constraint. Or, equivalently, the number of |
-** equality constraints optimized by the proposed index scan. For example, |
-** assuming index p is on t1(a, b), and the SQL query is: |
-** |
-** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... |
-** |
-** then nEq is set to 1 (as the range restricted column, b, is the second |
-** left-most column of the index). Or, if the query is: |
-** |
-** ... FROM t1 WHERE a > ? AND a < ? ... |
-** |
-** then nEq is set to 0. |
-** |
-** When this function is called, *pnOut is set to the sqlite3LogEst() of the |
-** number of rows that the index scan is expected to visit without |
-** considering the range constraints. If nEq is 0, this is the number of |
-** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) |
-** to account for the range constraints pLower and pUpper. |
-** |
-** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be |
-** used, a single range inequality reduces the search space by a factor of 4. |
-** and a pair of constraints (x>? AND x<?) reduces the expected number of |
-** rows visited by a factor of 64. |
-*/ |
-static int whereRangeScanEst( |
- Parse *pParse, /* Parsing & code generating context */ |
- WhereLoopBuilder *pBuilder, |
- WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ |
- WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ |
- WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ |
-){ |
- int rc = SQLITE_OK; |
- int nOut = pLoop->nOut; |
- LogEst nNew; |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- Index *p = pLoop->u.btree.pIndex; |
- int nEq = pLoop->u.btree.nEq; |
- |
- if( p->nSample>0 |
- && nEq<p->nSampleCol |
- && OptimizationEnabled(pParse->db, SQLITE_Stat3) |
- ){ |
- if( nEq==pBuilder->nRecValid ){ |
- UnpackedRecord *pRec = pBuilder->pRec; |
- tRowcnt a[2]; |
- u8 aff; |
- |
- /* Variable iLower will be set to the estimate of the number of rows in |
- ** the index that are less than the lower bound of the range query. The |
- ** lower bound being the concatenation of $P and $L, where $P is the |
- ** key-prefix formed by the nEq values matched against the nEq left-most |
- ** columns of the index, and $L is the value in pLower. |
- ** |
- ** Or, if pLower is NULL or $L cannot be extracted from it (because it |
- ** is not a simple variable or literal value), the lower bound of the |
- ** range is $P. Due to a quirk in the way whereKeyStats() works, even |
- ** if $L is available, whereKeyStats() is called for both ($P) and |
- ** ($P:$L) and the larger of the two returned values used. |
- ** |
- ** Similarly, iUpper is to be set to the estimate of the number of rows |
- ** less than the upper bound of the range query. Where the upper bound |
- ** is either ($P) or ($P:$U). Again, even if $U is available, both values |
- ** of iUpper are requested of whereKeyStats() and the smaller used. |
- */ |
- tRowcnt iLower; |
- tRowcnt iUpper; |
- |
- if( pRec ){ |
- testcase( pRec->nField!=pBuilder->nRecValid ); |
- pRec->nField = pBuilder->nRecValid; |
- } |
- if( nEq==p->nKeyCol ){ |
- aff = SQLITE_AFF_INTEGER; |
- }else{ |
- aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; |
- } |
- /* Determine iLower and iUpper using ($P) only. */ |
- if( nEq==0 ){ |
- iLower = 0; |
- iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
- }else{ |
- /* Note: this call could be optimized away - since the same values must |
- ** have been requested when testing key $P in whereEqualScanEst(). */ |
- whereKeyStats(pParse, p, pRec, 0, a); |
- iLower = a[0]; |
- iUpper = a[0] + a[1]; |
- } |
- |
- assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); |
- assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); |
- assert( p->aSortOrder!=0 ); |
- if( p->aSortOrder[nEq] ){ |
- /* The roles of pLower and pUpper are swapped for a DESC index */ |
- SWAP(WhereTerm*, pLower, pUpper); |
- } |
- |
- /* If possible, improve on the iLower estimate using ($P:$L). */ |
- if( pLower ){ |
- int bOk; /* True if value is extracted from pExpr */ |
- Expr *pExpr = pLower->pExpr->pRight; |
- rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); |
- if( rc==SQLITE_OK && bOk ){ |
- tRowcnt iNew; |
- whereKeyStats(pParse, p, pRec, 0, a); |
- iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); |
- if( iNew>iLower ) iLower = iNew; |
- nOut--; |
- pLower = 0; |
- } |
- } |
- |
- /* If possible, improve on the iUpper estimate using ($P:$U). */ |
- if( pUpper ){ |
- int bOk; /* True if value is extracted from pExpr */ |
- Expr *pExpr = pUpper->pExpr->pRight; |
- rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); |
- if( rc==SQLITE_OK && bOk ){ |
- tRowcnt iNew; |
- whereKeyStats(pParse, p, pRec, 1, a); |
- iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); |
- if( iNew<iUpper ) iUpper = iNew; |
- nOut--; |
- pUpper = 0; |
- } |
- } |
- |
- pBuilder->pRec = pRec; |
- if( rc==SQLITE_OK ){ |
- if( iUpper>iLower ){ |
- nNew = sqlite3LogEst(iUpper - iLower); |
- }else{ |
- nNew = 10; assert( 10==sqlite3LogEst(2) ); |
- } |
- if( nNew<nOut ){ |
- nOut = nNew; |
- } |
- WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", |
- (u32)iLower, (u32)iUpper, nOut)); |
- } |
- }else{ |
- int bDone = 0; |
- rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); |
- if( bDone ) return rc; |
- } |
- } |
-#else |
- UNUSED_PARAMETER(pParse); |
- UNUSED_PARAMETER(pBuilder); |
- assert( pLower || pUpper ); |
-#endif |
- assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); |
- nNew = whereRangeAdjust(pLower, nOut); |
- nNew = whereRangeAdjust(pUpper, nNew); |
- |
- /* TUNING: If there is both an upper and lower limit, assume the range is |
- ** reduced by an additional 75%. This means that, by default, an open-ended |
- ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the |
- ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to |
- ** match 1/64 of the index. */ |
- if( pLower && pUpper ) nNew -= 20; |
- |
- nOut -= (pLower!=0) + (pUpper!=0); |
- if( nNew<10 ) nNew = 10; |
- if( nNew<nOut ) nOut = nNew; |
-#if defined(WHERETRACE_ENABLED) |
- if( pLoop->nOut>nOut ){ |
- WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", |
- pLoop->nOut, nOut)); |
- } |
-#endif |
- pLoop->nOut = (LogEst)nOut; |
- return rc; |
-} |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-/* |
-** Estimate the number of rows that will be returned based on |
-** an equality constraint x=VALUE and where that VALUE occurs in |
-** the histogram data. This only works when x is the left-most |
-** column of an index and sqlite_stat3 histogram data is available |
-** for that index. When pExpr==NULL that means the constraint is |
-** "x IS NULL" instead of "x=VALUE". |
-** |
-** Write the estimated row count into *pnRow and return SQLITE_OK. |
-** If unable to make an estimate, leave *pnRow unchanged and return |
-** non-zero. |
-** |
-** This routine can fail if it is unable to load a collating sequence |
-** required for string comparison, or if unable to allocate memory |
-** for a UTF conversion required for comparison. The error is stored |
-** in the pParse structure. |
-*/ |
-static int whereEqualScanEst( |
- Parse *pParse, /* Parsing & code generating context */ |
- WhereLoopBuilder *pBuilder, |
- Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ |
- tRowcnt *pnRow /* Write the revised row estimate here */ |
-){ |
- Index *p = pBuilder->pNew->u.btree.pIndex; |
- int nEq = pBuilder->pNew->u.btree.nEq; |
- UnpackedRecord *pRec = pBuilder->pRec; |
- u8 aff; /* Column affinity */ |
- int rc; /* Subfunction return code */ |
- tRowcnt a[2]; /* Statistics */ |
- int bOk; |
- |
- assert( nEq>=1 ); |
- assert( nEq<=p->nColumn ); |
- assert( p->aSample!=0 ); |
- assert( p->nSample>0 ); |
- assert( pBuilder->nRecValid<nEq ); |
- |
- /* If values are not available for all fields of the index to the left |
- ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ |
- if( pBuilder->nRecValid<(nEq-1) ){ |
- return SQLITE_NOTFOUND; |
- } |
- |
- /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() |
- ** below would return the same value. */ |
- if( nEq>=p->nColumn ){ |
- *pnRow = 1; |
- return SQLITE_OK; |
- } |
- |
- aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity; |
- rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); |
- pBuilder->pRec = pRec; |
- if( rc!=SQLITE_OK ) return rc; |
- if( bOk==0 ) return SQLITE_NOTFOUND; |
- pBuilder->nRecValid = nEq; |
- |
- whereKeyStats(pParse, p, pRec, 0, a); |
- WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); |
- *pnRow = a[1]; |
- |
- return rc; |
-} |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-/* |
-** Estimate the number of rows that will be returned based on |
-** an IN constraint where the right-hand side of the IN operator |
-** is a list of values. Example: |
-** |
-** WHERE x IN (1,2,3,4) |
-** |
-** Write the estimated row count into *pnRow and return SQLITE_OK. |
-** If unable to make an estimate, leave *pnRow unchanged and return |
-** non-zero. |
-** |
-** This routine can fail if it is unable to load a collating sequence |
-** required for string comparison, or if unable to allocate memory |
-** for a UTF conversion required for comparison. The error is stored |
-** in the pParse structure. |
-*/ |
-static int whereInScanEst( |
- Parse *pParse, /* Parsing & code generating context */ |
- WhereLoopBuilder *pBuilder, |
- ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ |
- tRowcnt *pnRow /* Write the revised row estimate here */ |
-){ |
- Index *p = pBuilder->pNew->u.btree.pIndex; |
- i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
- int nRecValid = pBuilder->nRecValid; |
- int rc = SQLITE_OK; /* Subfunction return code */ |
- tRowcnt nEst; /* Number of rows for a single term */ |
- tRowcnt nRowEst = 0; /* New estimate of the number of rows */ |
- int i; /* Loop counter */ |
- |
- assert( p->aSample!=0 ); |
- for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ |
- nEst = nRow0; |
- rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); |
- nRowEst += nEst; |
- pBuilder->nRecValid = nRecValid; |
- } |
- |
- if( rc==SQLITE_OK ){ |
- if( nRowEst > nRow0 ) nRowEst = nRow0; |
- *pnRow = nRowEst; |
- WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); |
- } |
- assert( pBuilder->nRecValid==nRecValid ); |
- return rc; |
-} |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
-/* |
-** Disable a term in the WHERE clause. Except, do not disable the term |
-** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
-** or USING clause of that join. |
-** |
-** Consider the term t2.z='ok' in the following queries: |
-** |
-** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
-** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
-** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
-** |
-** The t2.z='ok' is disabled in the in (2) because it originates |
-** in the ON clause. The term is disabled in (3) because it is not part |
-** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
-** |
-** Disabling a term causes that term to not be tested in the inner loop |
-** of the join. Disabling is an optimization. When terms are satisfied |
-** by indices, we disable them to prevent redundant tests in the inner |
-** loop. We would get the correct results if nothing were ever disabled, |
-** but joins might run a little slower. The trick is to disable as much |
-** as we can without disabling too much. If we disabled in (1), we'd get |
-** the wrong answer. See ticket #813. |
-*/ |
-static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
- if( pTerm |
- && (pTerm->wtFlags & TERM_CODED)==0 |
- && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
- && (pLevel->notReady & pTerm->prereqAll)==0 |
- ){ |
- pTerm->wtFlags |= TERM_CODED; |
- if( pTerm->iParent>=0 ){ |
- WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; |
- if( (--pOther->nChild)==0 ){ |
- disableTerm(pLevel, pOther); |
- } |
- } |
- } |
-} |
- |
-/* |
-** Code an OP_Affinity opcode to apply the column affinity string zAff |
-** to the n registers starting at base. |
-** |
-** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the |
-** beginning and end of zAff are ignored. If all entries in zAff are |
-** SQLITE_AFF_NONE, then no code gets generated. |
-** |
-** This routine makes its own copy of zAff so that the caller is free |
-** to modify zAff after this routine returns. |
-*/ |
-static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ |
- Vdbe *v = pParse->pVdbe; |
- if( zAff==0 ){ |
- assert( pParse->db->mallocFailed ); |
- return; |
- } |
- assert( v!=0 ); |
- |
- /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning |
- ** and end of the affinity string. |
- */ |
- while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ |
- n--; |
- base++; |
- zAff++; |
- } |
- while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ |
- n--; |
- } |
- |
- /* Code the OP_Affinity opcode if there is anything left to do. */ |
- if( n>0 ){ |
- sqlite3VdbeAddOp2(v, OP_Affinity, base, n); |
- sqlite3VdbeChangeP4(v, -1, zAff, n); |
- sqlite3ExprCacheAffinityChange(pParse, base, n); |
- } |
-} |
- |
- |
-/* |
-** Generate code for a single equality term of the WHERE clause. An equality |
-** term can be either X=expr or X IN (...). pTerm is the term to be |
-** coded. |
-** |
-** The current value for the constraint is left in register iReg. |
-** |
-** For a constraint of the form X=expr, the expression is evaluated and its |
-** result is left on the stack. For constraints of the form X IN (...) |
-** this routine sets up a loop that will iterate over all values of X. |
-*/ |
-static int codeEqualityTerm( |
- Parse *pParse, /* The parsing context */ |
- WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
- WhereLevel *pLevel, /* The level of the FROM clause we are working on */ |
- int iEq, /* Index of the equality term within this level */ |
- int bRev, /* True for reverse-order IN operations */ |
- int iTarget /* Attempt to leave results in this register */ |
-){ |
- Expr *pX = pTerm->pExpr; |
- Vdbe *v = pParse->pVdbe; |
- int iReg; /* Register holding results */ |
- |
- assert( iTarget>0 ); |
- if( pX->op==TK_EQ ){ |
- iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); |
- }else if( pX->op==TK_ISNULL ){ |
- iReg = iTarget; |
- sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); |
-#ifndef SQLITE_OMIT_SUBQUERY |
- }else{ |
- int eType; |
- int iTab; |
- struct InLoop *pIn; |
- WhereLoop *pLoop = pLevel->pWLoop; |
- |
- if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 |
- && pLoop->u.btree.pIndex!=0 |
- && pLoop->u.btree.pIndex->aSortOrder[iEq] |
- ){ |
- testcase( iEq==0 ); |
- testcase( bRev ); |
- bRev = !bRev; |
- } |
- assert( pX->op==TK_IN ); |
- iReg = iTarget; |
- eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); |
- if( eType==IN_INDEX_INDEX_DESC ){ |
- testcase( bRev ); |
- bRev = !bRev; |
- } |
- iTab = pX->iTable; |
- sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); |
- VdbeCoverageIf(v, bRev); |
- VdbeCoverageIf(v, !bRev); |
- assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); |
- pLoop->wsFlags |= WHERE_IN_ABLE; |
- if( pLevel->u.in.nIn==0 ){ |
- pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
- } |
- pLevel->u.in.nIn++; |
- pLevel->u.in.aInLoop = |
- sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, |
- sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); |
- pIn = pLevel->u.in.aInLoop; |
- if( pIn ){ |
- pIn += pLevel->u.in.nIn - 1; |
- pIn->iCur = iTab; |
- if( eType==IN_INDEX_ROWID ){ |
- pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); |
- }else{ |
- pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); |
- } |
- pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; |
- sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); |
- }else{ |
- pLevel->u.in.nIn = 0; |
- } |
-#endif |
- } |
- disableTerm(pLevel, pTerm); |
- return iReg; |
-} |
- |
-/* |
-** Generate code that will evaluate all == and IN constraints for an |
-** index scan. |
-** |
-** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
-** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
-** The index has as many as three equality constraints, but in this |
-** example, the third "c" value is an inequality. So only two |
-** constraints are coded. This routine will generate code to evaluate |
-** a==5 and b IN (1,2,3). The current values for a and b will be stored |
-** in consecutive registers and the index of the first register is returned. |
-** |
-** In the example above nEq==2. But this subroutine works for any value |
-** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
-** The only thing it does is allocate the pLevel->iMem memory cell and |
-** compute the affinity string. |
-** |
-** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints |
-** are == or IN and are covered by the nEq. nExtraReg is 1 if there is |
-** an inequality constraint (such as the "c>=5 AND c<10" in the example) that |
-** occurs after the nEq quality constraints. |
-** |
-** This routine allocates a range of nEq+nExtraReg memory cells and returns |
-** the index of the first memory cell in that range. The code that |
-** calls this routine will use that memory range to store keys for |
-** start and termination conditions of the loop. |
-** key value of the loop. If one or more IN operators appear, then |
-** this routine allocates an additional nEq memory cells for internal |
-** use. |
-** |
-** Before returning, *pzAff is set to point to a buffer containing a |
-** copy of the column affinity string of the index allocated using |
-** sqlite3DbMalloc(). Except, entries in the copy of the string associated |
-** with equality constraints that use NONE affinity are set to |
-** SQLITE_AFF_NONE. This is to deal with SQL such as the following: |
-** |
-** CREATE TABLE t1(a TEXT PRIMARY KEY, b); |
-** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; |
-** |
-** In the example above, the index on t1(a) has TEXT affinity. But since |
-** the right hand side of the equality constraint (t2.b) has NONE affinity, |
-** no conversion should be attempted before using a t2.b value as part of |
-** a key to search the index. Hence the first byte in the returned affinity |
-** string in this example would be set to SQLITE_AFF_NONE. |
-*/ |
-static int codeAllEqualityTerms( |
- Parse *pParse, /* Parsing context */ |
- WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
- int bRev, /* Reverse the order of IN operators */ |
- int nExtraReg, /* Number of extra registers to allocate */ |
- char **pzAff /* OUT: Set to point to affinity string */ |
-){ |
- u16 nEq; /* The number of == or IN constraints to code */ |
- u16 nSkip; /* Number of left-most columns to skip */ |
- Vdbe *v = pParse->pVdbe; /* The vm under construction */ |
- Index *pIdx; /* The index being used for this loop */ |
- WhereTerm *pTerm; /* A single constraint term */ |
- WhereLoop *pLoop; /* The WhereLoop object */ |
- int j; /* Loop counter */ |
- int regBase; /* Base register */ |
- int nReg; /* Number of registers to allocate */ |
- char *zAff; /* Affinity string to return */ |
- |
- /* This module is only called on query plans that use an index. */ |
- pLoop = pLevel->pWLoop; |
- assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
- nEq = pLoop->u.btree.nEq; |
- nSkip = pLoop->u.btree.nSkip; |
- pIdx = pLoop->u.btree.pIndex; |
- assert( pIdx!=0 ); |
- |
- /* Figure out how many memory cells we will need then allocate them. |
- */ |
- regBase = pParse->nMem + 1; |
- nReg = pLoop->u.btree.nEq + nExtraReg; |
- pParse->nMem += nReg; |
- |
- zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); |
- if( !zAff ){ |
- pParse->db->mallocFailed = 1; |
- } |
- |
- if( nSkip ){ |
- int iIdxCur = pLevel->iIdxCur; |
- sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); |
- VdbeCoverageIf(v, bRev==0); |
- VdbeCoverageIf(v, bRev!=0); |
- VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); |
- j = sqlite3VdbeAddOp0(v, OP_Goto); |
- pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), |
- iIdxCur, 0, regBase, nSkip); |
- VdbeCoverageIf(v, bRev==0); |
- VdbeCoverageIf(v, bRev!=0); |
- sqlite3VdbeJumpHere(v, j); |
- for(j=0; j<nSkip; j++){ |
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); |
- assert( pIdx->aiColumn[j]>=0 ); |
- VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); |
- } |
- } |
- |
- /* Evaluate the equality constraints |
- */ |
- assert( zAff==0 || (int)strlen(zAff)>=nEq ); |
- for(j=nSkip; j<nEq; j++){ |
- int r1; |
- pTerm = pLoop->aLTerm[j]; |
- assert( pTerm!=0 ); |
- /* The following testcase is true for indices with redundant columns. |
- ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ |
- testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); |
- testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
- r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); |
- if( r1!=regBase+j ){ |
- if( nReg==1 ){ |
- sqlite3ReleaseTempReg(pParse, regBase); |
- regBase = r1; |
- }else{ |
- sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
- } |
- } |
- testcase( pTerm->eOperator & WO_ISNULL ); |
- testcase( pTerm->eOperator & WO_IN ); |
- if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ |
- Expr *pRight = pTerm->pExpr->pRight; |
- if( sqlite3ExprCanBeNull(pRight) ){ |
- sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); |
- VdbeCoverage(v); |
- } |
- if( zAff ){ |
- if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ |
- zAff[j] = SQLITE_AFF_NONE; |
- } |
- if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ |
- zAff[j] = SQLITE_AFF_NONE; |
- } |
- } |
- } |
- } |
- *pzAff = zAff; |
- return regBase; |
-} |
- |
-#ifndef SQLITE_OMIT_EXPLAIN |
-/* |
-** This routine is a helper for explainIndexRange() below |
-** |
-** pStr holds the text of an expression that we are building up one term |
-** at a time. This routine adds a new term to the end of the expression. |
-** Terms are separated by AND so add the "AND" text for second and subsequent |
-** terms only. |
-*/ |
-static void explainAppendTerm( |
- StrAccum *pStr, /* The text expression being built */ |
- int iTerm, /* Index of this term. First is zero */ |
- const char *zColumn, /* Name of the column */ |
- const char *zOp /* Name of the operator */ |
-){ |
- if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
- sqlite3StrAccumAppendAll(pStr, zColumn); |
- sqlite3StrAccumAppend(pStr, zOp, 1); |
- sqlite3StrAccumAppend(pStr, "?", 1); |
-} |
- |
-/* |
-** Argument pLevel describes a strategy for scanning table pTab. This |
-** function appends text to pStr that describes the subset of table |
-** rows scanned by the strategy in the form of an SQL expression. |
-** |
-** For example, if the query: |
-** |
-** SELECT * FROM t1 WHERE a=1 AND b>2; |
-** |
-** is run and there is an index on (a, b), then this function returns a |
-** string similar to: |
-** |
-** "a=? AND b>?" |
-*/ |
-static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ |
- Index *pIndex = pLoop->u.btree.pIndex; |
- u16 nEq = pLoop->u.btree.nEq; |
- u16 nSkip = pLoop->u.btree.nSkip; |
- int i, j; |
- Column *aCol = pTab->aCol; |
- i16 *aiColumn = pIndex->aiColumn; |
- |
- if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; |
- sqlite3StrAccumAppend(pStr, " (", 2); |
- for(i=0; i<nEq; i++){ |
- char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; |
- if( i>=nSkip ){ |
- explainAppendTerm(pStr, i, z, "="); |
- }else{ |
- if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
- sqlite3XPrintf(pStr, 0, "ANY(%s)", z); |
- } |
- } |
- |
- j = i; |
- if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ |
- char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; |
- explainAppendTerm(pStr, i++, z, ">"); |
- } |
- if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ |
- char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; |
- explainAppendTerm(pStr, i, z, "<"); |
- } |
- sqlite3StrAccumAppend(pStr, ")", 1); |
-} |
- |
-/* |
-** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN |
-** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single |
-** record is added to the output to describe the table scan strategy in |
-** pLevel. |
-*/ |
-static void explainOneScan( |
- Parse *pParse, /* Parse context */ |
- SrcList *pTabList, /* Table list this loop refers to */ |
- WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ |
- int iLevel, /* Value for "level" column of output */ |
- int iFrom, /* Value for "from" column of output */ |
- u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ |
-){ |
-#ifndef SQLITE_DEBUG |
- if( pParse->explain==2 ) |
-#endif |
- { |
- struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
- Vdbe *v = pParse->pVdbe; /* VM being constructed */ |
- sqlite3 *db = pParse->db; /* Database handle */ |
- int iId = pParse->iSelectId; /* Select id (left-most output column) */ |
- int isSearch; /* True for a SEARCH. False for SCAN. */ |
- WhereLoop *pLoop; /* The controlling WhereLoop object */ |
- u32 flags; /* Flags that describe this loop */ |
- char *zMsg; /* Text to add to EQP output */ |
- StrAccum str; /* EQP output string */ |
- char zBuf[100]; /* Initial space for EQP output string */ |
- |
- pLoop = pLevel->pWLoop; |
- flags = pLoop->wsFlags; |
- if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; |
- |
- isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 |
- || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) |
- || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); |
- |
- sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); |
- str.db = db; |
- sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); |
- if( pItem->pSelect ){ |
- sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); |
- }else{ |
- sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); |
- } |
- |
- if( pItem->zAlias ){ |
- sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); |
- } |
- if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ |
- const char *zFmt = 0; |
- Index *pIdx; |
- |
- assert( pLoop->u.btree.pIndex!=0 ); |
- pIdx = pLoop->u.btree.pIndex; |
- assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); |
- if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ |
- if( isSearch ){ |
- zFmt = "PRIMARY KEY"; |
- } |
- }else if( flags & WHERE_AUTO_INDEX ){ |
- zFmt = "AUTOMATIC COVERING INDEX"; |
- }else if( flags & WHERE_IDX_ONLY ){ |
- zFmt = "COVERING INDEX %s"; |
- }else{ |
- zFmt = "INDEX %s"; |
- } |
- if( zFmt ){ |
- sqlite3StrAccumAppend(&str, " USING ", 7); |
- sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); |
- explainIndexRange(&str, pLoop, pItem->pTab); |
- } |
- }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ |
- const char *zRange; |
- if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ |
- zRange = "(rowid=?)"; |
- }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ |
- zRange = "(rowid>? AND rowid<?)"; |
- }else if( flags&WHERE_BTM_LIMIT ){ |
- zRange = "(rowid>?)"; |
- }else{ |
- assert( flags&WHERE_TOP_LIMIT); |
- zRange = "(rowid<?)"; |
- } |
- sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); |
- sqlite3StrAccumAppendAll(&str, zRange); |
- } |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ |
- sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", |
- pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); |
- } |
-#endif |
-#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS |
- if( pLoop->nOut>=10 ){ |
- sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); |
- }else{ |
- sqlite3StrAccumAppend(&str, " (~1 row)", 9); |
- } |
-#endif |
- zMsg = sqlite3StrAccumFinish(&str); |
- sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); |
- } |
-} |
-#else |
-# define explainOneScan(u,v,w,x,y,z) |
-#endif /* SQLITE_OMIT_EXPLAIN */ |
- |
- |
-/* |
-** Generate code for the start of the iLevel-th loop in the WHERE clause |
-** implementation described by pWInfo. |
-*/ |
-static Bitmask codeOneLoopStart( |
- WhereInfo *pWInfo, /* Complete information about the WHERE clause */ |
- int iLevel, /* Which level of pWInfo->a[] should be coded */ |
- Bitmask notReady /* Which tables are currently available */ |
-){ |
- int j, k; /* Loop counters */ |
- int iCur; /* The VDBE cursor for the table */ |
- int addrNxt; /* Where to jump to continue with the next IN case */ |
- int omitTable; /* True if we use the index only */ |
- int bRev; /* True if we need to scan in reverse order */ |
- WhereLevel *pLevel; /* The where level to be coded */ |
- WhereLoop *pLoop; /* The WhereLoop object being coded */ |
- WhereClause *pWC; /* Decomposition of the entire WHERE clause */ |
- WhereTerm *pTerm; /* A WHERE clause term */ |
- Parse *pParse; /* Parsing context */ |
- sqlite3 *db; /* Database connection */ |
- Vdbe *v; /* The prepared stmt under constructions */ |
- struct SrcList_item *pTabItem; /* FROM clause term being coded */ |
- int addrBrk; /* Jump here to break out of the loop */ |
- int addrCont; /* Jump here to continue with next cycle */ |
- int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ |
- int iReleaseReg = 0; /* Temp register to free before returning */ |
- |
- pParse = pWInfo->pParse; |
- v = pParse->pVdbe; |
- pWC = &pWInfo->sWC; |
- db = pParse->db; |
- pLevel = &pWInfo->a[iLevel]; |
- pLoop = pLevel->pWLoop; |
- pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; |
- iCur = pTabItem->iCursor; |
- pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur); |
- bRev = (pWInfo->revMask>>iLevel)&1; |
- omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 |
- && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; |
- VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); |
- |
- /* Create labels for the "break" and "continue" instructions |
- ** for the current loop. Jump to addrBrk to break out of a loop. |
- ** Jump to cont to go immediately to the next iteration of the |
- ** loop. |
- ** |
- ** When there is an IN operator, we also have a "addrNxt" label that |
- ** means to continue with the next IN value combination. When |
- ** there are no IN operators in the constraints, the "addrNxt" label |
- ** is the same as "addrBrk". |
- */ |
- addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
- addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); |
- |
- /* If this is the right table of a LEFT OUTER JOIN, allocate and |
- ** initialize a memory cell that records if this table matches any |
- ** row of the left table of the join. |
- */ |
- if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ |
- pLevel->iLeftJoin = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); |
- VdbeComment((v, "init LEFT JOIN no-match flag")); |
- } |
- |
- /* Special case of a FROM clause subquery implemented as a co-routine */ |
- if( pTabItem->viaCoroutine ){ |
- int regYield = pTabItem->regReturn; |
- sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); |
- pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); |
- VdbeCoverage(v); |
- VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); |
- pLevel->op = OP_Goto; |
- }else |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
- /* Case 1: The table is a virtual-table. Use the VFilter and VNext |
- ** to access the data. |
- */ |
- int iReg; /* P3 Value for OP_VFilter */ |
- int addrNotFound; |
- int nConstraint = pLoop->nLTerm; |
- |
- sqlite3ExprCachePush(pParse); |
- iReg = sqlite3GetTempRange(pParse, nConstraint+2); |
- addrNotFound = pLevel->addrBrk; |
- for(j=0; j<nConstraint; j++){ |
- int iTarget = iReg+j+2; |
- pTerm = pLoop->aLTerm[j]; |
- if( pTerm==0 ) continue; |
- if( pTerm->eOperator & WO_IN ){ |
- codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); |
- addrNotFound = pLevel->addrNxt; |
- }else{ |
- sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); |
- } |
- } |
- sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); |
- sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); |
- sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, |
- pLoop->u.vtab.idxStr, |
- pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); |
- VdbeCoverage(v); |
- pLoop->u.vtab.needFree = 0; |
- for(j=0; j<nConstraint && j<16; j++){ |
- if( (pLoop->u.vtab.omitMask>>j)&1 ){ |
- disableTerm(pLevel, pLoop->aLTerm[j]); |
- } |
- } |
- pLevel->op = OP_VNext; |
- pLevel->p1 = iCur; |
- pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
- sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); |
- sqlite3ExprCachePop(pParse); |
- }else |
-#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
- |
- if( (pLoop->wsFlags & WHERE_IPK)!=0 |
- && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 |
- ){ |
- /* Case 2: We can directly reference a single row using an |
- ** equality comparison against the ROWID field. Or |
- ** we reference multiple rows using a "rowid IN (...)" |
- ** construct. |
- */ |
- assert( pLoop->u.btree.nEq==1 ); |
- pTerm = pLoop->aLTerm[0]; |
- assert( pTerm!=0 ); |
- assert( pTerm->pExpr!=0 ); |
- assert( omitTable==0 ); |
- testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
- iReleaseReg = ++pParse->nMem; |
- iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); |
- if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); |
- addrNxt = pLevel->addrNxt; |
- sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); |
- sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); |
- VdbeCoverage(v); |
- sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); |
- sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
- VdbeComment((v, "pk")); |
- pLevel->op = OP_Noop; |
- }else if( (pLoop->wsFlags & WHERE_IPK)!=0 |
- && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 |
- ){ |
- /* Case 3: We have an inequality comparison against the ROWID field. |
- */ |
- int testOp = OP_Noop; |
- int start; |
- int memEndValue = 0; |
- WhereTerm *pStart, *pEnd; |
- |
- assert( omitTable==0 ); |
- j = 0; |
- pStart = pEnd = 0; |
- if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; |
- if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; |
- assert( pStart!=0 || pEnd!=0 ); |
- if( bRev ){ |
- pTerm = pStart; |
- pStart = pEnd; |
- pEnd = pTerm; |
- } |
- if( pStart ){ |
- Expr *pX; /* The expression that defines the start bound */ |
- int r1, rTemp; /* Registers for holding the start boundary */ |
- |
- /* The following constant maps TK_xx codes into corresponding |
- ** seek opcodes. It depends on a particular ordering of TK_xx |
- */ |
- const u8 aMoveOp[] = { |
- /* TK_GT */ OP_SeekGT, |
- /* TK_LE */ OP_SeekLE, |
- /* TK_LT */ OP_SeekLT, |
- /* TK_GE */ OP_SeekGE |
- }; |
- assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ |
- assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ |
- assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ |
- |
- assert( (pStart->wtFlags & TERM_VNULL)==0 ); |
- testcase( pStart->wtFlags & TERM_VIRTUAL ); |
- pX = pStart->pExpr; |
- assert( pX!=0 ); |
- testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ |
- r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); |
- sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); |
- VdbeComment((v, "pk")); |
- VdbeCoverageIf(v, pX->op==TK_GT); |
- VdbeCoverageIf(v, pX->op==TK_LE); |
- VdbeCoverageIf(v, pX->op==TK_LT); |
- VdbeCoverageIf(v, pX->op==TK_GE); |
- sqlite3ExprCacheAffinityChange(pParse, r1, 1); |
- sqlite3ReleaseTempReg(pParse, rTemp); |
- disableTerm(pLevel, pStart); |
- }else{ |
- sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); |
- VdbeCoverageIf(v, bRev==0); |
- VdbeCoverageIf(v, bRev!=0); |
- } |
- if( pEnd ){ |
- Expr *pX; |
- pX = pEnd->pExpr; |
- assert( pX!=0 ); |
- assert( (pEnd->wtFlags & TERM_VNULL)==0 ); |
- testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ |
- testcase( pEnd->wtFlags & TERM_VIRTUAL ); |
- memEndValue = ++pParse->nMem; |
- sqlite3ExprCode(pParse, pX->pRight, memEndValue); |
- if( pX->op==TK_LT || pX->op==TK_GT ){ |
- testOp = bRev ? OP_Le : OP_Ge; |
- }else{ |
- testOp = bRev ? OP_Lt : OP_Gt; |
- } |
- disableTerm(pLevel, pEnd); |
- } |
- start = sqlite3VdbeCurrentAddr(v); |
- pLevel->op = bRev ? OP_Prev : OP_Next; |
- pLevel->p1 = iCur; |
- pLevel->p2 = start; |
- assert( pLevel->p5==0 ); |
- if( testOp!=OP_Noop ){ |
- iRowidReg = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); |
- sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
- sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); |
- VdbeCoverageIf(v, testOp==OP_Le); |
- VdbeCoverageIf(v, testOp==OP_Lt); |
- VdbeCoverageIf(v, testOp==OP_Ge); |
- VdbeCoverageIf(v, testOp==OP_Gt); |
- sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); |
- } |
- }else if( pLoop->wsFlags & WHERE_INDEXED ){ |
- /* Case 4: A scan using an index. |
- ** |
- ** The WHERE clause may contain zero or more equality |
- ** terms ("==" or "IN" operators) that refer to the N |
- ** left-most columns of the index. It may also contain |
- ** inequality constraints (>, <, >= or <=) on the indexed |
- ** column that immediately follows the N equalities. Only |
- ** the right-most column can be an inequality - the rest must |
- ** use the "==" and "IN" operators. For example, if the |
- ** index is on (x,y,z), then the following clauses are all |
- ** optimized: |
- ** |
- ** x=5 |
- ** x=5 AND y=10 |
- ** x=5 AND y<10 |
- ** x=5 AND y>5 AND y<10 |
- ** x=5 AND y=5 AND z<=10 |
- ** |
- ** The z<10 term of the following cannot be used, only |
- ** the x=5 term: |
- ** |
- ** x=5 AND z<10 |
- ** |
- ** N may be zero if there are inequality constraints. |
- ** If there are no inequality constraints, then N is at |
- ** least one. |
- ** |
- ** This case is also used when there are no WHERE clause |
- ** constraints but an index is selected anyway, in order |
- ** to force the output order to conform to an ORDER BY. |
- */ |
- static const u8 aStartOp[] = { |
- 0, |
- 0, |
- OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ |
- OP_Last, /* 3: (!start_constraints && startEq && bRev) */ |
- OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ |
- OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ |
- OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ |
- OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ |
- }; |
- static const u8 aEndOp[] = { |
- OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ |
- OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ |
- OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ |
- OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ |
- }; |
- u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ |
- int regBase; /* Base register holding constraint values */ |
- WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ |
- WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ |
- int startEq; /* True if range start uses ==, >= or <= */ |
- int endEq; /* True if range end uses ==, >= or <= */ |
- int start_constraints; /* Start of range is constrained */ |
- int nConstraint; /* Number of constraint terms */ |
- Index *pIdx; /* The index we will be using */ |
- int iIdxCur; /* The VDBE cursor for the index */ |
- int nExtraReg = 0; /* Number of extra registers needed */ |
- int op; /* Instruction opcode */ |
- char *zStartAff; /* Affinity for start of range constraint */ |
- char cEndAff = 0; /* Affinity for end of range constraint */ |
- u8 bSeekPastNull = 0; /* True to seek past initial nulls */ |
- u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ |
- |
- pIdx = pLoop->u.btree.pIndex; |
- iIdxCur = pLevel->iIdxCur; |
- assert( nEq>=pLoop->u.btree.nSkip ); |
- |
- /* If this loop satisfies a sort order (pOrderBy) request that |
- ** was passed to this function to implement a "SELECT min(x) ..." |
- ** query, then the caller will only allow the loop to run for |
- ** a single iteration. This means that the first row returned |
- ** should not have a NULL value stored in 'x'. If column 'x' is |
- ** the first one after the nEq equality constraints in the index, |
- ** this requires some special handling. |
- */ |
- assert( pWInfo->pOrderBy==0 |
- || pWInfo->pOrderBy->nExpr==1 |
- || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); |
- if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 |
- && pWInfo->nOBSat>0 |
- && (pIdx->nKeyCol>nEq) |
- ){ |
- assert( pLoop->u.btree.nSkip==0 ); |
- bSeekPastNull = 1; |
- nExtraReg = 1; |
- } |
- |
- /* Find any inequality constraint terms for the start and end |
- ** of the range. |
- */ |
- j = nEq; |
- if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ |
- pRangeStart = pLoop->aLTerm[j++]; |
- nExtraReg = 1; |
- } |
- if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ |
- pRangeEnd = pLoop->aLTerm[j++]; |
- nExtraReg = 1; |
- if( pRangeStart==0 |
- && (j = pIdx->aiColumn[nEq])>=0 |
- && pIdx->pTable->aCol[j].notNull==0 |
- ){ |
- bSeekPastNull = 1; |
- } |
- } |
- assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); |
- |
- /* Generate code to evaluate all constraint terms using == or IN |
- ** and store the values of those terms in an array of registers |
- ** starting at regBase. |
- */ |
- regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); |
- assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); |
- if( zStartAff ) cEndAff = zStartAff[nEq]; |
- addrNxt = pLevel->addrNxt; |
- |
- /* If we are doing a reverse order scan on an ascending index, or |
- ** a forward order scan on a descending index, interchange the |
- ** start and end terms (pRangeStart and pRangeEnd). |
- */ |
- if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) |
- || (bRev && pIdx->nKeyCol==nEq) |
- ){ |
- SWAP(WhereTerm *, pRangeEnd, pRangeStart); |
- SWAP(u8, bSeekPastNull, bStopAtNull); |
- } |
- |
- testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); |
- testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); |
- testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); |
- testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); |
- startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); |
- endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); |
- start_constraints = pRangeStart || nEq>0; |
- |
- /* Seek the index cursor to the start of the range. */ |
- nConstraint = nEq; |
- if( pRangeStart ){ |
- Expr *pRight = pRangeStart->pExpr->pRight; |
- sqlite3ExprCode(pParse, pRight, regBase+nEq); |
- if( (pRangeStart->wtFlags & TERM_VNULL)==0 |
- && sqlite3ExprCanBeNull(pRight) |
- ){ |
- sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
- VdbeCoverage(v); |
- } |
- if( zStartAff ){ |
- if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ |
- /* Since the comparison is to be performed with no conversions |
- ** applied to the operands, set the affinity to apply to pRight to |
- ** SQLITE_AFF_NONE. */ |
- zStartAff[nEq] = SQLITE_AFF_NONE; |
- } |
- if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ |
- zStartAff[nEq] = SQLITE_AFF_NONE; |
- } |
- } |
- nConstraint++; |
- testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); |
- }else if( bSeekPastNull ){ |
- sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
- nConstraint++; |
- startEq = 0; |
- start_constraints = 1; |
- } |
- codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); |
- op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; |
- assert( op!=0 ); |
- sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
- VdbeCoverage(v); |
- VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); |
- VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); |
- VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); |
- VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); |
- VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); |
- VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); |
- |
- /* Load the value for the inequality constraint at the end of the |
- ** range (if any). |
- */ |
- nConstraint = nEq; |
- if( pRangeEnd ){ |
- Expr *pRight = pRangeEnd->pExpr->pRight; |
- sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); |
- sqlite3ExprCode(pParse, pRight, regBase+nEq); |
- if( (pRangeEnd->wtFlags & TERM_VNULL)==0 |
- && sqlite3ExprCanBeNull(pRight) |
- ){ |
- sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
- VdbeCoverage(v); |
- } |
- if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE |
- && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) |
- ){ |
- codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); |
- } |
- nConstraint++; |
- testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); |
- }else if( bStopAtNull ){ |
- sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
- endEq = 0; |
- nConstraint++; |
- } |
- sqlite3DbFree(db, zStartAff); |
- |
- /* Top of the loop body */ |
- pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
- |
- /* Check if the index cursor is past the end of the range. */ |
- if( nConstraint ){ |
- op = aEndOp[bRev*2 + endEq]; |
- sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
- testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); |
- testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); |
- testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); |
- testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); |
- } |
- |
- /* Seek the table cursor, if required */ |
- disableTerm(pLevel, pRangeStart); |
- disableTerm(pLevel, pRangeEnd); |
- if( omitTable ){ |
- /* pIdx is a covering index. No need to access the main table. */ |
- }else if( HasRowid(pIdx->pTable) ){ |
- iRowidReg = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); |
- sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
- sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ |
- }else if( iCur!=iIdxCur ){ |
- Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); |
- iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); |
- for(j=0; j<pPk->nKeyCol; j++){ |
- k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); |
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); |
- } |
- sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, |
- iRowidReg, pPk->nKeyCol); VdbeCoverage(v); |
- } |
- |
- /* Record the instruction used to terminate the loop. Disable |
- ** WHERE clause terms made redundant by the index range scan. |
- */ |
- if( pLoop->wsFlags & WHERE_ONEROW ){ |
- pLevel->op = OP_Noop; |
- }else if( bRev ){ |
- pLevel->op = OP_Prev; |
- }else{ |
- pLevel->op = OP_Next; |
- } |
- pLevel->p1 = iIdxCur; |
- pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; |
- if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ |
- pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
- }else{ |
- assert( pLevel->p5==0 ); |
- } |
- }else |
- |
-#ifndef SQLITE_OMIT_OR_OPTIMIZATION |
- if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
- /* Case 5: Two or more separately indexed terms connected by OR |
- ** |
- ** Example: |
- ** |
- ** CREATE TABLE t1(a,b,c,d); |
- ** CREATE INDEX i1 ON t1(a); |
- ** CREATE INDEX i2 ON t1(b); |
- ** CREATE INDEX i3 ON t1(c); |
- ** |
- ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) |
- ** |
- ** In the example, there are three indexed terms connected by OR. |
- ** The top of the loop looks like this: |
- ** |
- ** Null 1 # Zero the rowset in reg 1 |
- ** |
- ** Then, for each indexed term, the following. The arguments to |
- ** RowSetTest are such that the rowid of the current row is inserted |
- ** into the RowSet. If it is already present, control skips the |
- ** Gosub opcode and jumps straight to the code generated by WhereEnd(). |
- ** |
- ** sqlite3WhereBegin(<term>) |
- ** RowSetTest # Insert rowid into rowset |
- ** Gosub 2 A |
- ** sqlite3WhereEnd() |
- ** |
- ** Following the above, code to terminate the loop. Label A, the target |
- ** of the Gosub above, jumps to the instruction right after the Goto. |
- ** |
- ** Null 1 # Zero the rowset in reg 1 |
- ** Goto B # The loop is finished. |
- ** |
- ** A: <loop body> # Return data, whatever. |
- ** |
- ** Return 2 # Jump back to the Gosub |
- ** |
- ** B: <after the loop> |
- ** |
- ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then |
- ** use an ephemeral index instead of a RowSet to record the primary |
- ** keys of the rows we have already seen. |
- ** |
- */ |
- WhereClause *pOrWc; /* The OR-clause broken out into subterms */ |
- SrcList *pOrTab; /* Shortened table list or OR-clause generation */ |
- Index *pCov = 0; /* Potential covering index (or NULL) */ |
- int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ |
- |
- int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ |
- int regRowset = 0; /* Register for RowSet object */ |
- int regRowid = 0; /* Register holding rowid */ |
- int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ |
- int iRetInit; /* Address of regReturn init */ |
- int untestedTerms = 0; /* Some terms not completely tested */ |
- int ii; /* Loop counter */ |
- u16 wctrlFlags; /* Flags for sub-WHERE clause */ |
- Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ |
- Table *pTab = pTabItem->pTab; |
- |
- pTerm = pLoop->aLTerm[0]; |
- assert( pTerm!=0 ); |
- assert( pTerm->eOperator & WO_OR ); |
- assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); |
- pOrWc = &pTerm->u.pOrInfo->wc; |
- pLevel->op = OP_Return; |
- pLevel->p1 = regReturn; |
- |
- /* Set up a new SrcList in pOrTab containing the table being scanned |
- ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. |
- ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). |
- */ |
- if( pWInfo->nLevel>1 ){ |
- int nNotReady; /* The number of notReady tables */ |
- struct SrcList_item *origSrc; /* Original list of tables */ |
- nNotReady = pWInfo->nLevel - iLevel - 1; |
- pOrTab = sqlite3StackAllocRaw(db, |
- sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); |
- if( pOrTab==0 ) return notReady; |
- pOrTab->nAlloc = (u8)(nNotReady + 1); |
- pOrTab->nSrc = pOrTab->nAlloc; |
- memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); |
- origSrc = pWInfo->pTabList->a; |
- for(k=1; k<=nNotReady; k++){ |
- memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); |
- } |
- }else{ |
- pOrTab = pWInfo->pTabList; |
- } |
- |
- /* Initialize the rowset register to contain NULL. An SQL NULL is |
- ** equivalent to an empty rowset. Or, create an ephemeral index |
- ** capable of holding primary keys in the case of a WITHOUT ROWID. |
- ** |
- ** Also initialize regReturn to contain the address of the instruction |
- ** immediately following the OP_Return at the bottom of the loop. This |
- ** is required in a few obscure LEFT JOIN cases where control jumps |
- ** over the top of the loop into the body of it. In this case the |
- ** correct response for the end-of-loop code (the OP_Return) is to |
- ** fall through to the next instruction, just as an OP_Next does if |
- ** called on an uninitialized cursor. |
- */ |
- if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
- if( HasRowid(pTab) ){ |
- regRowset = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); |
- }else{ |
- Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
- regRowset = pParse->nTab++; |
- sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); |
- sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
- } |
- regRowid = ++pParse->nMem; |
- } |
- iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); |
- |
- /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y |
- ** Then for every term xN, evaluate as the subexpression: xN AND z |
- ** That way, terms in y that are factored into the disjunction will |
- ** be picked up by the recursive calls to sqlite3WhereBegin() below. |
- ** |
- ** Actually, each subexpression is converted to "xN AND w" where w is |
- ** the "interesting" terms of z - terms that did not originate in the |
- ** ON or USING clause of a LEFT JOIN, and terms that are usable as |
- ** indices. |
- ** |
- ** This optimization also only applies if the (x1 OR x2 OR ...) term |
- ** is not contained in the ON clause of a LEFT JOIN. |
- ** See ticket http://www.sqlite.org/src/info/f2369304e4 |
- */ |
- if( pWC->nTerm>1 ){ |
- int iTerm; |
- for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ |
- Expr *pExpr = pWC->a[iTerm].pExpr; |
- if( &pWC->a[iTerm] == pTerm ) continue; |
- if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; |
- testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); |
- testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); |
- if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue; |
- if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; |
- pExpr = sqlite3ExprDup(db, pExpr, 0); |
- pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); |
- } |
- if( pAndExpr ){ |
- pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); |
- } |
- } |
- |
- /* Run a separate WHERE clause for each term of the OR clause. After |
- ** eliminating duplicates from other WHERE clauses, the action for each |
- ** sub-WHERE clause is to to invoke the main loop body as a subroutine. |
- */ |
- wctrlFlags = WHERE_OMIT_OPEN_CLOSE |
- | WHERE_FORCE_TABLE |
- | WHERE_ONETABLE_ONLY; |
- for(ii=0; ii<pOrWc->nTerm; ii++){ |
- WhereTerm *pOrTerm = &pOrWc->a[ii]; |
- if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ |
- WhereInfo *pSubWInfo; /* Info for single OR-term scan */ |
- Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ |
- int j1 = 0; /* Address of jump operation */ |
- if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ |
- pAndExpr->pLeft = pOrExpr; |
- pOrExpr = pAndExpr; |
- } |
- /* Loop through table entries that match term pOrTerm. */ |
- WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); |
- pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, |
- wctrlFlags, iCovCur); |
- assert( pSubWInfo || pParse->nErr || db->mallocFailed ); |
- if( pSubWInfo ){ |
- WhereLoop *pSubLoop; |
- explainOneScan( |
- pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 |
- ); |
- /* This is the sub-WHERE clause body. First skip over |
- ** duplicate rows from prior sub-WHERE clauses, and record the |
- ** rowid (or PRIMARY KEY) for the current row so that the same |
- ** row will be skipped in subsequent sub-WHERE clauses. |
- */ |
- if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
- int r; |
- int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); |
- if( HasRowid(pTab) ){ |
- r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); |
- j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); |
- VdbeCoverage(v); |
- }else{ |
- Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
- int nPk = pPk->nKeyCol; |
- int iPk; |
- |
- /* Read the PK into an array of temp registers. */ |
- r = sqlite3GetTempRange(pParse, nPk); |
- for(iPk=0; iPk<nPk; iPk++){ |
- int iCol = pPk->aiColumn[iPk]; |
- sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0); |
- } |
- |
- /* Check if the temp table already contains this key. If so, |
- ** the row has already been included in the result set and |
- ** can be ignored (by jumping past the Gosub below). Otherwise, |
- ** insert the key into the temp table and proceed with processing |
- ** the row. |
- ** |
- ** Use some of the same optimizations as OP_RowSetTest: If iSet |
- ** is zero, assume that the key cannot already be present in |
- ** the temp table. And if iSet is -1, assume that there is no |
- ** need to insert the key into the temp table, as it will never |
- ** be tested for. */ |
- if( iSet ){ |
- j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); |
- VdbeCoverage(v); |
- } |
- if( iSet>=0 ){ |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); |
- sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); |
- if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
- } |
- |
- /* Release the array of temp registers */ |
- sqlite3ReleaseTempRange(pParse, r, nPk); |
- } |
- } |
- |
- /* Invoke the main loop body as a subroutine */ |
- sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); |
- |
- /* Jump here (skipping the main loop body subroutine) if the |
- ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ |
- if( j1 ) sqlite3VdbeJumpHere(v, j1); |
- |
- /* The pSubWInfo->untestedTerms flag means that this OR term |
- ** contained one or more AND term from a notReady table. The |
- ** terms from the notReady table could not be tested and will |
- ** need to be tested later. |
- */ |
- if( pSubWInfo->untestedTerms ) untestedTerms = 1; |
- |
- /* If all of the OR-connected terms are optimized using the same |
- ** index, and the index is opened using the same cursor number |
- ** by each call to sqlite3WhereBegin() made by this loop, it may |
- ** be possible to use that index as a covering index. |
- ** |
- ** If the call to sqlite3WhereBegin() above resulted in a scan that |
- ** uses an index, and this is either the first OR-connected term |
- ** processed or the index is the same as that used by all previous |
- ** terms, set pCov to the candidate covering index. Otherwise, set |
- ** pCov to NULL to indicate that no candidate covering index will |
- ** be available. |
- */ |
- pSubLoop = pSubWInfo->a[0].pWLoop; |
- assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); |
- if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 |
- && (ii==0 || pSubLoop->u.btree.pIndex==pCov) |
- && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) |
- ){ |
- assert( pSubWInfo->a[0].iIdxCur==iCovCur ); |
- pCov = pSubLoop->u.btree.pIndex; |
- wctrlFlags |= WHERE_REOPEN_IDX; |
- }else{ |
- pCov = 0; |
- } |
- |
- /* Finish the loop through table entries that match term pOrTerm. */ |
- sqlite3WhereEnd(pSubWInfo); |
- } |
- } |
- } |
- pLevel->u.pCovidx = pCov; |
- if( pCov ) pLevel->iIdxCur = iCovCur; |
- if( pAndExpr ){ |
- pAndExpr->pLeft = 0; |
- sqlite3ExprDelete(db, pAndExpr); |
- } |
- sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); |
- sqlite3VdbeResolveLabel(v, iLoopBody); |
- |
- if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); |
- if( !untestedTerms ) disableTerm(pLevel, pTerm); |
- }else |
-#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
- |
- { |
- /* Case 6: There is no usable index. We must do a complete |
- ** scan of the entire table. |
- */ |
- static const u8 aStep[] = { OP_Next, OP_Prev }; |
- static const u8 aStart[] = { OP_Rewind, OP_Last }; |
- assert( bRev==0 || bRev==1 ); |
- if( pTabItem->isRecursive ){ |
- /* Tables marked isRecursive have only a single row that is stored in |
- ** a pseudo-cursor. No need to Rewind or Next such cursors. */ |
- pLevel->op = OP_Noop; |
- }else{ |
- pLevel->op = aStep[bRev]; |
- pLevel->p1 = iCur; |
- pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); |
- VdbeCoverageIf(v, bRev==0); |
- VdbeCoverageIf(v, bRev!=0); |
- pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
- } |
- } |
- |
- /* Insert code to test every subexpression that can be completely |
- ** computed using the current set of tables. |
- */ |
- for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
- Expr *pE; |
- testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
- testcase( pTerm->wtFlags & TERM_CODED ); |
- if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
- if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
- testcase( pWInfo->untestedTerms==0 |
- && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); |
- pWInfo->untestedTerms = 1; |
- continue; |
- } |
- pE = pTerm->pExpr; |
- assert( pE!=0 ); |
- if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
- continue; |
- } |
- sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); |
- pTerm->wtFlags |= TERM_CODED; |
- } |
- |
- /* Insert code to test for implied constraints based on transitivity |
- ** of the "==" operator. |
- ** |
- ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" |
- ** and we are coding the t1 loop and the t2 loop has not yet coded, |
- ** then we cannot use the "t1.a=t2.b" constraint, but we can code |
- ** the implied "t1.a=123" constraint. |
- */ |
- for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
- Expr *pE, *pEAlt; |
- WhereTerm *pAlt; |
- if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
- if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue; |
- if( pTerm->leftCursor!=iCur ) continue; |
- if( pLevel->iLeftJoin ) continue; |
- pE = pTerm->pExpr; |
- assert( !ExprHasProperty(pE, EP_FromJoin) ); |
- assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); |
- pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); |
- if( pAlt==0 ) continue; |
- if( pAlt->wtFlags & (TERM_CODED) ) continue; |
- testcase( pAlt->eOperator & WO_EQ ); |
- testcase( pAlt->eOperator & WO_IN ); |
- VdbeModuleComment((v, "begin transitive constraint")); |
- pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); |
- if( pEAlt ){ |
- *pEAlt = *pAlt->pExpr; |
- pEAlt->pLeft = pE->pLeft; |
- sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); |
- sqlite3StackFree(db, pEAlt); |
- } |
- } |
- |
- /* For a LEFT OUTER JOIN, generate code that will record the fact that |
- ** at least one row of the right table has matched the left table. |
- */ |
- if( pLevel->iLeftJoin ){ |
- pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); |
- VdbeComment((v, "record LEFT JOIN hit")); |
- sqlite3ExprCacheClear(pParse); |
- for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ |
- testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
- testcase( pTerm->wtFlags & TERM_CODED ); |
- if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
- if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
- assert( pWInfo->untestedTerms ); |
- continue; |
- } |
- assert( pTerm->pExpr ); |
- sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); |
- pTerm->wtFlags |= TERM_CODED; |
- } |
- } |
- |
- return pLevel->notReady; |
-} |
- |
-#ifdef WHERETRACE_ENABLED |
-/* |
-** Print the content of a WhereTerm object |
-*/ |
-static void whereTermPrint(WhereTerm *pTerm, int iTerm){ |
- if( pTerm==0 ){ |
- sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); |
- }else{ |
- char zType[4]; |
- memcpy(zType, "...", 4); |
- if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; |
- if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; |
- if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; |
- sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n", |
- iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, |
- pTerm->eOperator); |
- sqlite3TreeViewExpr(0, pTerm->pExpr, 0); |
- } |
-} |
-#endif |
- |
-#ifdef WHERETRACE_ENABLED |
-/* |
-** Print a WhereLoop object for debugging purposes |
-*/ |
-static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ |
- WhereInfo *pWInfo = pWC->pWInfo; |
- int nb = 1+(pWInfo->pTabList->nSrc+7)/8; |
- struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; |
- Table *pTab = pItem->pTab; |
- sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, |
- p->iTab, nb, p->maskSelf, nb, p->prereq); |
- sqlite3DebugPrintf(" %12s", |
- pItem->zAlias ? pItem->zAlias : pTab->zName); |
- if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ |
- const char *zName; |
- if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ |
- if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ |
- int i = sqlite3Strlen30(zName) - 1; |
- while( zName[i]!='_' ) i--; |
- zName += i; |
- } |
- sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); |
- }else{ |
- sqlite3DebugPrintf("%20s",""); |
- } |
- }else{ |
- char *z; |
- if( p->u.vtab.idxStr ){ |
- z = sqlite3_mprintf("(%d,\"%s\",%x)", |
- p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); |
- }else{ |
- z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); |
- } |
- sqlite3DebugPrintf(" %-19s", z); |
- sqlite3_free(z); |
- } |
- if( p->wsFlags & WHERE_SKIPSCAN ){ |
- sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip); |
- }else{ |
- sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); |
- } |
- sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); |
- if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ |
- int i; |
- for(i=0; i<p->nLTerm; i++){ |
- whereTermPrint(p->aLTerm[i], i); |
- } |
- } |
-} |
-#endif |
- |
-/* |
-** Convert bulk memory into a valid WhereLoop that can be passed |
-** to whereLoopClear harmlessly. |
-*/ |
-static void whereLoopInit(WhereLoop *p){ |
- p->aLTerm = p->aLTermSpace; |
- p->nLTerm = 0; |
- p->nLSlot = ArraySize(p->aLTermSpace); |
- p->wsFlags = 0; |
-} |
- |
-/* |
-** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. |
-*/ |
-static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ |
- if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ |
- if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ |
- sqlite3_free(p->u.vtab.idxStr); |
- p->u.vtab.needFree = 0; |
- p->u.vtab.idxStr = 0; |
- }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ |
- sqlite3DbFree(db, p->u.btree.pIndex->zColAff); |
- sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo); |
- sqlite3DbFree(db, p->u.btree.pIndex); |
- p->u.btree.pIndex = 0; |
- } |
- } |
-} |
- |
-/* |
-** Deallocate internal memory used by a WhereLoop object |
-*/ |
-static void whereLoopClear(sqlite3 *db, WhereLoop *p){ |
- if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); |
- whereLoopClearUnion(db, p); |
- whereLoopInit(p); |
-} |
- |
-/* |
-** Increase the memory allocation for pLoop->aLTerm[] to be at least n. |
-*/ |
-static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ |
- WhereTerm **paNew; |
- if( p->nLSlot>=n ) return SQLITE_OK; |
- n = (n+7)&~7; |
- paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n); |
- if( paNew==0 ) return SQLITE_NOMEM; |
- memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); |
- if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); |
- p->aLTerm = paNew; |
- p->nLSlot = n; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Transfer content from the second pLoop into the first. |
-*/ |
-static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ |
- whereLoopClearUnion(db, pTo); |
- if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ |
- memset(&pTo->u, 0, sizeof(pTo->u)); |
- return SQLITE_NOMEM; |
- } |
- memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); |
- memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); |
- if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ |
- pFrom->u.vtab.needFree = 0; |
- }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
- pFrom->u.btree.pIndex = 0; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Delete a WhereLoop object |
-*/ |
-static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ |
- whereLoopClear(db, p); |
- sqlite3DbFree(db, p); |
-} |
- |
-/* |
-** Free a WhereInfo structure |
-*/ |
-static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ |
- if( ALWAYS(pWInfo) ){ |
- whereClauseClear(&pWInfo->sWC); |
- while( pWInfo->pLoops ){ |
- WhereLoop *p = pWInfo->pLoops; |
- pWInfo->pLoops = p->pNextLoop; |
- whereLoopDelete(db, p); |
- } |
- sqlite3DbFree(db, pWInfo); |
- } |
-} |
- |
-/* |
-** Return TRUE if both of the following are true: |
-** |
-** (1) X has the same or lower cost that Y |
-** (2) X is a proper subset of Y |
-** |
-** By "proper subset" we mean that X uses fewer WHERE clause terms |
-** than Y and that every WHERE clause term used by X is also used |
-** by Y. |
-** |
-** If X is a proper subset of Y then Y is a better choice and ought |
-** to have a lower cost. This routine returns TRUE when that cost |
-** relationship is inverted and needs to be adjusted. |
-*/ |
-static int whereLoopCheaperProperSubset( |
- const WhereLoop *pX, /* First WhereLoop to compare */ |
- const WhereLoop *pY /* Compare against this WhereLoop */ |
-){ |
- int i, j; |
- if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */ |
- if( pX->rRun >= pY->rRun ){ |
- if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ |
- if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ |
- } |
- for(i=pX->nLTerm-1; i>=0; i--){ |
- for(j=pY->nLTerm-1; j>=0; j--){ |
- if( pY->aLTerm[j]==pX->aLTerm[i] ) break; |
- } |
- if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ |
- } |
- return 1; /* All conditions meet */ |
-} |
- |
-/* |
-** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so |
-** that: |
-** |
-** (1) pTemplate costs less than any other WhereLoops that are a proper |
-** subset of pTemplate |
-** |
-** (2) pTemplate costs more than any other WhereLoops for which pTemplate |
-** is a proper subset. |
-** |
-** To say "WhereLoop X is a proper subset of Y" means that X uses fewer |
-** WHERE clause terms than Y and that every WHERE clause term used by X is |
-** also used by Y. |
-** |
-** This adjustment is omitted for SKIPSCAN loops. In a SKIPSCAN loop, the |
-** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE |
-** clause terms covered, since some of the first nLTerm entries in aLTerm[] |
-** will be NULL (because they are skipped). That makes it more difficult |
-** to compare the loops. We could add extra code to do the comparison, and |
-** perhaps we will someday. But SKIPSCAN is sufficiently uncommon, and this |
-** adjustment is sufficient minor, that it is very difficult to construct |
-** a test case where the extra code would improve the query plan. Better |
-** to avoid the added complexity and just omit cost adjustments to SKIPSCAN |
-** loops. |
-*/ |
-static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ |
- if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; |
- if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return; |
- for(; p; p=p->pNextLoop){ |
- if( p->iTab!=pTemplate->iTab ) continue; |
- if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; |
- if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue; |
- if( whereLoopCheaperProperSubset(p, pTemplate) ){ |
- /* Adjust pTemplate cost downward so that it is cheaper than its |
- ** subset p */ |
- pTemplate->rRun = p->rRun; |
- pTemplate->nOut = p->nOut - 1; |
- }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ |
- /* Adjust pTemplate cost upward so that it is costlier than p since |
- ** pTemplate is a proper subset of p */ |
- pTemplate->rRun = p->rRun; |
- pTemplate->nOut = p->nOut + 1; |
- } |
- } |
-} |
- |
-/* |
-** Search the list of WhereLoops in *ppPrev looking for one that can be |
-** supplanted by pTemplate. |
-** |
-** Return NULL if the WhereLoop list contains an entry that can supplant |
-** pTemplate, in other words if pTemplate does not belong on the list. |
-** |
-** If pX is a WhereLoop that pTemplate can supplant, then return the |
-** link that points to pX. |
-** |
-** If pTemplate cannot supplant any existing element of the list but needs |
-** to be added to the list, then return a pointer to the tail of the list. |
-*/ |
-static WhereLoop **whereLoopFindLesser( |
- WhereLoop **ppPrev, |
- const WhereLoop *pTemplate |
-){ |
- WhereLoop *p; |
- for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ |
- if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ |
- /* If either the iTab or iSortIdx values for two WhereLoop are different |
- ** then those WhereLoops need to be considered separately. Neither is |
- ** a candidate to replace the other. */ |
- continue; |
- } |
- /* In the current implementation, the rSetup value is either zero |
- ** or the cost of building an automatic index (NlogN) and the NlogN |
- ** is the same for compatible WhereLoops. */ |
- assert( p->rSetup==0 || pTemplate->rSetup==0 |
- || p->rSetup==pTemplate->rSetup ); |
- |
- /* whereLoopAddBtree() always generates and inserts the automatic index |
- ** case first. Hence compatible candidate WhereLoops never have a larger |
- ** rSetup. Call this SETUP-INVARIANT */ |
- assert( p->rSetup>=pTemplate->rSetup ); |
- |
- /* Any loop using an appliation-defined index (or PRIMARY KEY or |
- ** UNIQUE constraint) with one or more == constraints is better |
- ** than an automatic index. */ |
- if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 |
- && (pTemplate->wsFlags & WHERE_INDEXED)!=0 |
- && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 |
- && (p->prereq & pTemplate->prereq)==pTemplate->prereq |
- ){ |
- break; |
- } |
- |
- /* If existing WhereLoop p is better than pTemplate, pTemplate can be |
- ** discarded. WhereLoop p is better if: |
- ** (1) p has no more dependencies than pTemplate, and |
- ** (2) p has an equal or lower cost than pTemplate |
- */ |
- if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ |
- && p->rSetup<=pTemplate->rSetup /* (2a) */ |
- && p->rRun<=pTemplate->rRun /* (2b) */ |
- && p->nOut<=pTemplate->nOut /* (2c) */ |
- ){ |
- return 0; /* Discard pTemplate */ |
- } |
- |
- /* If pTemplate is always better than p, then cause p to be overwritten |
- ** with pTemplate. pTemplate is better than p if: |
- ** (1) pTemplate has no more dependences than p, and |
- ** (2) pTemplate has an equal or lower cost than p. |
- */ |
- if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ |
- && p->rRun>=pTemplate->rRun /* (2a) */ |
- && p->nOut>=pTemplate->nOut /* (2b) */ |
- ){ |
- assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ |
- break; /* Cause p to be overwritten by pTemplate */ |
- } |
- } |
- return ppPrev; |
-} |
- |
-/* |
-** Insert or replace a WhereLoop entry using the template supplied. |
-** |
-** An existing WhereLoop entry might be overwritten if the new template |
-** is better and has fewer dependencies. Or the template will be ignored |
-** and no insert will occur if an existing WhereLoop is faster and has |
-** fewer dependencies than the template. Otherwise a new WhereLoop is |
-** added based on the template. |
-** |
-** If pBuilder->pOrSet is not NULL then we care about only the |
-** prerequisites and rRun and nOut costs of the N best loops. That |
-** information is gathered in the pBuilder->pOrSet object. This special |
-** processing mode is used only for OR clause processing. |
-** |
-** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we |
-** still might overwrite similar loops with the new template if the |
-** new template is better. Loops may be overwritten if the following |
-** conditions are met: |
-** |
-** (1) They have the same iTab. |
-** (2) They have the same iSortIdx. |
-** (3) The template has same or fewer dependencies than the current loop |
-** (4) The template has the same or lower cost than the current loop |
-*/ |
-static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ |
- WhereLoop **ppPrev, *p; |
- WhereInfo *pWInfo = pBuilder->pWInfo; |
- sqlite3 *db = pWInfo->pParse->db; |
- |
- /* If pBuilder->pOrSet is defined, then only keep track of the costs |
- ** and prereqs. |
- */ |
- if( pBuilder->pOrSet!=0 ){ |
-#if WHERETRACE_ENABLED |
- u16 n = pBuilder->pOrSet->n; |
- int x = |
-#endif |
- whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, |
- pTemplate->nOut); |
-#if WHERETRACE_ENABLED /* 0x8 */ |
- if( sqlite3WhereTrace & 0x8 ){ |
- sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); |
- whereLoopPrint(pTemplate, pBuilder->pWC); |
- } |
-#endif |
- return SQLITE_OK; |
- } |
- |
- /* Look for an existing WhereLoop to replace with pTemplate |
- */ |
- whereLoopAdjustCost(pWInfo->pLoops, pTemplate); |
- ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); |
- |
- if( ppPrev==0 ){ |
- /* There already exists a WhereLoop on the list that is better |
- ** than pTemplate, so just ignore pTemplate */ |
-#if WHERETRACE_ENABLED /* 0x8 */ |
- if( sqlite3WhereTrace & 0x8 ){ |
- sqlite3DebugPrintf(" skip: "); |
- whereLoopPrint(pTemplate, pBuilder->pWC); |
- } |
-#endif |
- return SQLITE_OK; |
- }else{ |
- p = *ppPrev; |
- } |
- |
- /* If we reach this point it means that either p[] should be overwritten |
- ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new |
- ** WhereLoop and insert it. |
- */ |
-#if WHERETRACE_ENABLED /* 0x8 */ |
- if( sqlite3WhereTrace & 0x8 ){ |
- if( p!=0 ){ |
- sqlite3DebugPrintf("replace: "); |
- whereLoopPrint(p, pBuilder->pWC); |
- } |
- sqlite3DebugPrintf(" add: "); |
- whereLoopPrint(pTemplate, pBuilder->pWC); |
- } |
-#endif |
- if( p==0 ){ |
- /* Allocate a new WhereLoop to add to the end of the list */ |
- *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); |
- if( p==0 ) return SQLITE_NOMEM; |
- whereLoopInit(p); |
- p->pNextLoop = 0; |
- }else{ |
- /* We will be overwriting WhereLoop p[]. But before we do, first |
- ** go through the rest of the list and delete any other entries besides |
- ** p[] that are also supplated by pTemplate */ |
- WhereLoop **ppTail = &p->pNextLoop; |
- WhereLoop *pToDel; |
- while( *ppTail ){ |
- ppTail = whereLoopFindLesser(ppTail, pTemplate); |
- if( ppTail==0 ) break; |
- pToDel = *ppTail; |
- if( pToDel==0 ) break; |
- *ppTail = pToDel->pNextLoop; |
-#if WHERETRACE_ENABLED /* 0x8 */ |
- if( sqlite3WhereTrace & 0x8 ){ |
- sqlite3DebugPrintf(" delete: "); |
- whereLoopPrint(pToDel, pBuilder->pWC); |
- } |
-#endif |
- whereLoopDelete(db, pToDel); |
- } |
- } |
- whereLoopXfer(db, p, pTemplate); |
- if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ |
- Index *pIndex = p->u.btree.pIndex; |
- if( pIndex && pIndex->tnum==0 ){ |
- p->u.btree.pIndex = 0; |
- } |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Adjust the WhereLoop.nOut value downward to account for terms of the |
-** WHERE clause that reference the loop but which are not used by an |
-** index. |
-** |
-** In the current implementation, the first extra WHERE clause term reduces |
-** the number of output rows by a factor of 10 and each additional term |
-** reduces the number of output rows by sqrt(2). |
-*/ |
-static void whereLoopOutputAdjust( |
- WhereClause *pWC, /* The WHERE clause */ |
- WhereLoop *pLoop, /* The loop to adjust downward */ |
- LogEst nRow /* Number of rows in the entire table */ |
-){ |
- WhereTerm *pTerm, *pX; |
- Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); |
- int i, j; |
- int nEq = 0; /* Number of = constraints not within likely()/unlikely() */ |
- |
- for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ |
- if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; |
- if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; |
- if( (pTerm->prereqAll & notAllowed)!=0 ) continue; |
- for(j=pLoop->nLTerm-1; j>=0; j--){ |
- pX = pLoop->aLTerm[j]; |
- if( pX==0 ) continue; |
- if( pX==pTerm ) break; |
- if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; |
- } |
- if( j<0 ){ |
- if( pTerm->truthProb<=0 ){ |
- pLoop->nOut += pTerm->truthProb; |
- }else{ |
- pLoop->nOut--; |
- if( pTerm->eOperator&WO_EQ ) nEq++; |
- } |
- } |
- } |
- /* TUNING: If there is at least one equality constraint in the WHERE |
- ** clause that does not have a likelihood() explicitly assigned to it |
- ** then do not let the estimated number of output rows exceed half |
- ** the number of rows in the table. */ |
- if( nEq && pLoop->nOut>nRow-10 ){ |
- pLoop->nOut = nRow - 10; |
- } |
-} |
- |
-/* |
-** Adjust the cost C by the costMult facter T. This only occurs if |
-** compiled with -DSQLITE_ENABLE_COSTMULT |
-*/ |
-#ifdef SQLITE_ENABLE_COSTMULT |
-# define ApplyCostMultiplier(C,T) C += T |
-#else |
-# define ApplyCostMultiplier(C,T) |
-#endif |
- |
-/* |
-** We have so far matched pBuilder->pNew->u.btree.nEq terms of the |
-** index pIndex. Try to match one more. |
-** |
-** When this function is called, pBuilder->pNew->nOut contains the |
-** number of rows expected to be visited by filtering using the nEq |
-** terms only. If it is modified, this value is restored before this |
-** function returns. |
-** |
-** If pProbe->tnum==0, that means pIndex is a fake index used for the |
-** INTEGER PRIMARY KEY. |
-*/ |
-static int whereLoopAddBtreeIndex( |
- WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ |
- struct SrcList_item *pSrc, /* FROM clause term being analyzed */ |
- Index *pProbe, /* An index on pSrc */ |
- LogEst nInMul /* log(Number of iterations due to IN) */ |
-){ |
- WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ |
- Parse *pParse = pWInfo->pParse; /* Parsing context */ |
- sqlite3 *db = pParse->db; /* Database connection malloc context */ |
- WhereLoop *pNew; /* Template WhereLoop under construction */ |
- WhereTerm *pTerm; /* A WhereTerm under consideration */ |
- int opMask; /* Valid operators for constraints */ |
- WhereScan scan; /* Iterator for WHERE terms */ |
- Bitmask saved_prereq; /* Original value of pNew->prereq */ |
- u16 saved_nLTerm; /* Original value of pNew->nLTerm */ |
- u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ |
- u16 saved_nSkip; /* Original value of pNew->u.btree.nSkip */ |
- u32 saved_wsFlags; /* Original value of pNew->wsFlags */ |
- LogEst saved_nOut; /* Original value of pNew->nOut */ |
- int iCol; /* Index of the column in the table */ |
- int rc = SQLITE_OK; /* Return code */ |
- LogEst rSize; /* Number of rows in the table */ |
- LogEst rLogSize; /* Logarithm of table size */ |
- WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ |
- |
- pNew = pBuilder->pNew; |
- if( db->mallocFailed ) return SQLITE_NOMEM; |
- |
- assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
- assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); |
- if( pNew->wsFlags & WHERE_BTM_LIMIT ){ |
- opMask = WO_LT|WO_LE; |
- }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){ |
- opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; |
- }else{ |
- opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE; |
- } |
- if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); |
- |
- assert( pNew->u.btree.nEq<pProbe->nColumn ); |
- iCol = pProbe->aiColumn[pNew->u.btree.nEq]; |
- |
- pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, |
- opMask, pProbe); |
- saved_nEq = pNew->u.btree.nEq; |
- saved_nSkip = pNew->u.btree.nSkip; |
- saved_nLTerm = pNew->nLTerm; |
- saved_wsFlags = pNew->wsFlags; |
- saved_prereq = pNew->prereq; |
- saved_nOut = pNew->nOut; |
- pNew->rSetup = 0; |
- rSize = pProbe->aiRowLogEst[0]; |
- rLogSize = estLog(rSize); |
- |
- /* Consider using a skip-scan if there are no WHERE clause constraints |
- ** available for the left-most terms of the index, and if the average |
- ** number of repeats in the left-most terms is at least 18. |
- ** |
- ** The magic number 18 is selected on the basis that scanning 17 rows |
- ** is almost always quicker than an index seek (even though if the index |
- ** contains fewer than 2^17 rows we assume otherwise in other parts of |
- ** the code). And, even if it is not, it should not be too much slower. |
- ** On the other hand, the extra seeks could end up being significantly |
- ** more expensive. */ |
- assert( 42==sqlite3LogEst(18) ); |
- if( saved_nEq==saved_nSkip |
- && saved_nEq+1<pProbe->nKeyCol |
- && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ |
- && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK |
- ){ |
- LogEst nIter; |
- pNew->u.btree.nEq++; |
- pNew->u.btree.nSkip++; |
- pNew->aLTerm[pNew->nLTerm++] = 0; |
- pNew->wsFlags |= WHERE_SKIPSCAN; |
- nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; |
- if( pTerm ){ |
- /* TUNING: When estimating skip-scan for a term that is also indexable, |
- ** multiply the cost of the skip-scan by 2.0, to make it a little less |
- ** desirable than the regular index lookup. */ |
- nIter += 10; assert( 10==sqlite3LogEst(2) ); |
- } |
- pNew->nOut -= nIter; |
- /* TUNING: Because uncertainties in the estimates for skip-scan queries, |
- ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ |
- nIter += 5; |
- whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); |
- pNew->nOut = saved_nOut; |
- pNew->u.btree.nEq = saved_nEq; |
- pNew->u.btree.nSkip = saved_nSkip; |
- } |
- for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ |
- u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ |
- LogEst rCostIdx; |
- LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ |
- int nIn = 0; |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- int nRecValid = pBuilder->nRecValid; |
-#endif |
- if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) |
- && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) |
- ){ |
- continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ |
- } |
- if( pTerm->prereqRight & pNew->maskSelf ) continue; |
- |
- pNew->wsFlags = saved_wsFlags; |
- pNew->u.btree.nEq = saved_nEq; |
- pNew->nLTerm = saved_nLTerm; |
- if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ |
- pNew->aLTerm[pNew->nLTerm++] = pTerm; |
- pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; |
- |
- assert( nInMul==0 |
- || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 |
- || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 |
- || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 |
- ); |
- |
- if( eOp & WO_IN ){ |
- Expr *pExpr = pTerm->pExpr; |
- pNew->wsFlags |= WHERE_COLUMN_IN; |
- if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
- /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ |
- nIn = 46; assert( 46==sqlite3LogEst(25) ); |
- }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ |
- /* "x IN (value, value, ...)" */ |
- nIn = sqlite3LogEst(pExpr->x.pList->nExpr); |
- } |
- assert( nIn>0 ); /* RHS always has 2 or more terms... The parser |
- ** changes "x IN (?)" into "x=?". */ |
- |
- }else if( eOp & (WO_EQ) ){ |
- pNew->wsFlags |= WHERE_COLUMN_EQ; |
- if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ |
- if( iCol>=0 && !IsUniqueIndex(pProbe) ){ |
- pNew->wsFlags |= WHERE_UNQ_WANTED; |
- }else{ |
- pNew->wsFlags |= WHERE_ONEROW; |
- } |
- } |
- }else if( eOp & WO_ISNULL ){ |
- pNew->wsFlags |= WHERE_COLUMN_NULL; |
- }else if( eOp & (WO_GT|WO_GE) ){ |
- testcase( eOp & WO_GT ); |
- testcase( eOp & WO_GE ); |
- pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; |
- pBtm = pTerm; |
- pTop = 0; |
- }else{ |
- assert( eOp & (WO_LT|WO_LE) ); |
- testcase( eOp & WO_LT ); |
- testcase( eOp & WO_LE ); |
- pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; |
- pTop = pTerm; |
- pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? |
- pNew->aLTerm[pNew->nLTerm-2] : 0; |
- } |
- |
- /* At this point pNew->nOut is set to the number of rows expected to |
- ** be visited by the index scan before considering term pTerm, or the |
- ** values of nIn and nInMul. In other words, assuming that all |
- ** "x IN(...)" terms are replaced with "x = ?". This block updates |
- ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ |
- assert( pNew->nOut==saved_nOut ); |
- if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ |
- /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 |
- ** data, using some other estimate. */ |
- whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); |
- }else{ |
- int nEq = ++pNew->u.btree.nEq; |
- assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) ); |
- |
- assert( pNew->nOut==saved_nOut ); |
- if( pTerm->truthProb<=0 && iCol>=0 ){ |
- assert( (eOp & WO_IN) || nIn==0 ); |
- testcase( eOp & WO_IN ); |
- pNew->nOut += pTerm->truthProb; |
- pNew->nOut -= nIn; |
- }else{ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- tRowcnt nOut = 0; |
- if( nInMul==0 |
- && pProbe->nSample |
- && pNew->u.btree.nEq<=pProbe->nSampleCol |
- && OptimizationEnabled(db, SQLITE_Stat3) |
- && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) |
- ){ |
- Expr *pExpr = pTerm->pExpr; |
- if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){ |
- testcase( eOp & WO_EQ ); |
- testcase( eOp & WO_ISNULL ); |
- rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); |
- }else{ |
- rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); |
- } |
- if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; |
- if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ |
- if( nOut ){ |
- pNew->nOut = sqlite3LogEst(nOut); |
- if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; |
- pNew->nOut -= nIn; |
- } |
- } |
- if( nOut==0 ) |
-#endif |
- { |
- pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); |
- if( eOp & WO_ISNULL ){ |
- /* TUNING: If there is no likelihood() value, assume that a |
- ** "col IS NULL" expression matches twice as many rows |
- ** as (col=?). */ |
- pNew->nOut += 10; |
- } |
- } |
- } |
- } |
- |
- /* Set rCostIdx to the cost of visiting selected rows in index. Add |
- ** it to pNew->rRun, which is currently set to the cost of the index |
- ** seek only. Then, if this is a non-covering index, add the cost of |
- ** visiting the rows in the main table. */ |
- rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; |
- pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); |
- if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ |
- pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); |
- } |
- ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); |
- |
- nOutUnadjusted = pNew->nOut; |
- pNew->rRun += nInMul + nIn; |
- pNew->nOut += nInMul + nIn; |
- whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); |
- rc = whereLoopInsert(pBuilder, pNew); |
- |
- if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ |
- pNew->nOut = saved_nOut; |
- }else{ |
- pNew->nOut = nOutUnadjusted; |
- } |
- |
- if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 |
- && pNew->u.btree.nEq<pProbe->nColumn |
- ){ |
- whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); |
- } |
- pNew->nOut = saved_nOut; |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- pBuilder->nRecValid = nRecValid; |
-#endif |
- } |
- pNew->prereq = saved_prereq; |
- pNew->u.btree.nEq = saved_nEq; |
- pNew->u.btree.nSkip = saved_nSkip; |
- pNew->wsFlags = saved_wsFlags; |
- pNew->nOut = saved_nOut; |
- pNew->nLTerm = saved_nLTerm; |
- return rc; |
-} |
- |
-/* |
-** Return True if it is possible that pIndex might be useful in |
-** implementing the ORDER BY clause in pBuilder. |
-** |
-** Return False if pBuilder does not contain an ORDER BY clause or |
-** if there is no way for pIndex to be useful in implementing that |
-** ORDER BY clause. |
-*/ |
-static int indexMightHelpWithOrderBy( |
- WhereLoopBuilder *pBuilder, |
- Index *pIndex, |
- int iCursor |
-){ |
- ExprList *pOB; |
- int ii, jj; |
- |
- if( pIndex->bUnordered ) return 0; |
- if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; |
- for(ii=0; ii<pOB->nExpr; ii++){ |
- Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); |
- if( pExpr->op!=TK_COLUMN ) return 0; |
- if( pExpr->iTable==iCursor ){ |
- if( pExpr->iColumn<0 ) return 1; |
- for(jj=0; jj<pIndex->nKeyCol; jj++){ |
- if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; |
- } |
- } |
- } |
- return 0; |
-} |
- |
-/* |
-** Return a bitmask where 1s indicate that the corresponding column of |
-** the table is used by an index. Only the first 63 columns are considered. |
-*/ |
-static Bitmask columnsInIndex(Index *pIdx){ |
- Bitmask m = 0; |
- int j; |
- for(j=pIdx->nColumn-1; j>=0; j--){ |
- int x = pIdx->aiColumn[j]; |
- if( x>=0 ){ |
- testcase( x==BMS-1 ); |
- testcase( x==BMS-2 ); |
- if( x<BMS-1 ) m |= MASKBIT(x); |
- } |
- } |
- return m; |
-} |
- |
-/* Check to see if a partial index with pPartIndexWhere can be used |
-** in the current query. Return true if it can be and false if not. |
-*/ |
-static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ |
- int i; |
- WhereTerm *pTerm; |
- for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
- if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1; |
- } |
- return 0; |
-} |
- |
-/* |
-** Add all WhereLoop objects for a single table of the join where the table |
-** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be |
-** a b-tree table, not a virtual table. |
-** |
-** The costs (WhereLoop.rRun) of the b-tree loops added by this function |
-** are calculated as follows: |
-** |
-** For a full scan, assuming the table (or index) contains nRow rows: |
-** |
-** cost = nRow * 3.0 // full-table scan |
-** cost = nRow * K // scan of covering index |
-** cost = nRow * (K+3.0) // scan of non-covering index |
-** |
-** where K is a value between 1.1 and 3.0 set based on the relative |
-** estimated average size of the index and table records. |
-** |
-** For an index scan, where nVisit is the number of index rows visited |
-** by the scan, and nSeek is the number of seek operations required on |
-** the index b-tree: |
-** |
-** cost = nSeek * (log(nRow) + K * nVisit) // covering index |
-** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index |
-** |
-** Normally, nSeek is 1. nSeek values greater than 1 come about if the |
-** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when |
-** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. |
-** |
-** The estimated values (nRow, nVisit, nSeek) often contain a large amount |
-** of uncertainty. For this reason, scoring is designed to pick plans that |
-** "do the least harm" if the estimates are inaccurate. For example, a |
-** log(nRow) factor is omitted from a non-covering index scan in order to |
-** bias the scoring in favor of using an index, since the worst-case |
-** performance of using an index is far better than the worst-case performance |
-** of a full table scan. |
-*/ |
-static int whereLoopAddBtree( |
- WhereLoopBuilder *pBuilder, /* WHERE clause information */ |
- Bitmask mExtra /* Extra prerequesites for using this table */ |
-){ |
- WhereInfo *pWInfo; /* WHERE analysis context */ |
- Index *pProbe; /* An index we are evaluating */ |
- Index sPk; /* A fake index object for the primary key */ |
- LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ |
- i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ |
- SrcList *pTabList; /* The FROM clause */ |
- struct SrcList_item *pSrc; /* The FROM clause btree term to add */ |
- WhereLoop *pNew; /* Template WhereLoop object */ |
- int rc = SQLITE_OK; /* Return code */ |
- int iSortIdx = 1; /* Index number */ |
- int b; /* A boolean value */ |
- LogEst rSize; /* number of rows in the table */ |
- LogEst rLogSize; /* Logarithm of the number of rows in the table */ |
- WhereClause *pWC; /* The parsed WHERE clause */ |
- Table *pTab; /* Table being queried */ |
- |
- pNew = pBuilder->pNew; |
- pWInfo = pBuilder->pWInfo; |
- pTabList = pWInfo->pTabList; |
- pSrc = pTabList->a + pNew->iTab; |
- pTab = pSrc->pTab; |
- pWC = pBuilder->pWC; |
- assert( !IsVirtual(pSrc->pTab) ); |
- |
- if( pSrc->pIndex ){ |
- /* An INDEXED BY clause specifies a particular index to use */ |
- pProbe = pSrc->pIndex; |
- }else if( !HasRowid(pTab) ){ |
- pProbe = pTab->pIndex; |
- }else{ |
- /* There is no INDEXED BY clause. Create a fake Index object in local |
- ** variable sPk to represent the rowid primary key index. Make this |
- ** fake index the first in a chain of Index objects with all of the real |
- ** indices to follow */ |
- Index *pFirst; /* First of real indices on the table */ |
- memset(&sPk, 0, sizeof(Index)); |
- sPk.nKeyCol = 1; |
- sPk.nColumn = 1; |
- sPk.aiColumn = &aiColumnPk; |
- sPk.aiRowLogEst = aiRowEstPk; |
- sPk.onError = OE_Replace; |
- sPk.pTable = pTab; |
- sPk.szIdxRow = pTab->szTabRow; |
- aiRowEstPk[0] = pTab->nRowLogEst; |
- aiRowEstPk[1] = 0; |
- pFirst = pSrc->pTab->pIndex; |
- if( pSrc->notIndexed==0 ){ |
- /* The real indices of the table are only considered if the |
- ** NOT INDEXED qualifier is omitted from the FROM clause */ |
- sPk.pNext = pFirst; |
- } |
- pProbe = &sPk; |
- } |
- rSize = pTab->nRowLogEst; |
- rLogSize = estLog(rSize); |
- |
-#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
- /* Automatic indexes */ |
- if( !pBuilder->pOrSet |
- && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 |
- && pSrc->pIndex==0 |
- && !pSrc->viaCoroutine |
- && !pSrc->notIndexed |
- && HasRowid(pTab) |
- && !pSrc->isCorrelated |
- && !pSrc->isRecursive |
- ){ |
- /* Generate auto-index WhereLoops */ |
- WhereTerm *pTerm; |
- WhereTerm *pWCEnd = pWC->a + pWC->nTerm; |
- for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ |
- if( pTerm->prereqRight & pNew->maskSelf ) continue; |
- if( termCanDriveIndex(pTerm, pSrc, 0) ){ |
- pNew->u.btree.nEq = 1; |
- pNew->u.btree.nSkip = 0; |
- pNew->u.btree.pIndex = 0; |
- pNew->nLTerm = 1; |
- pNew->aLTerm[0] = pTerm; |
- /* TUNING: One-time cost for computing the automatic index is |
- ** estimated to be X*N*log2(N) where N is the number of rows in |
- ** the table being indexed and where X is 7 (LogEst=28) for normal |
- ** tables or 1.375 (LogEst=4) for views and subqueries. The value |
- ** of X is smaller for views and subqueries so that the query planner |
- ** will be more aggressive about generating automatic indexes for |
- ** those objects, since there is no opportunity to add schema |
- ** indexes on subqueries and views. */ |
- pNew->rSetup = rLogSize + rSize + 4; |
- if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ |
- pNew->rSetup += 24; |
- } |
- ApplyCostMultiplier(pNew->rSetup, pTab->costMult); |
- /* TUNING: Each index lookup yields 20 rows in the table. This |
- ** is more than the usual guess of 10 rows, since we have no way |
- ** of knowing how selective the index will ultimately be. It would |
- ** not be unreasonable to make this value much larger. */ |
- pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); |
- pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); |
- pNew->wsFlags = WHERE_AUTO_INDEX; |
- pNew->prereq = mExtra | pTerm->prereqRight; |
- rc = whereLoopInsert(pBuilder, pNew); |
- } |
- } |
- } |
-#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
- |
- /* Loop over all indices |
- */ |
- for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ |
- if( pProbe->pPartIdxWhere!=0 |
- && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ |
- testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ |
- continue; /* Partial index inappropriate for this query */ |
- } |
- rSize = pProbe->aiRowLogEst[0]; |
- pNew->u.btree.nEq = 0; |
- pNew->u.btree.nSkip = 0; |
- pNew->nLTerm = 0; |
- pNew->iSortIdx = 0; |
- pNew->rSetup = 0; |
- pNew->prereq = mExtra; |
- pNew->nOut = rSize; |
- pNew->u.btree.pIndex = pProbe; |
- b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); |
- /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ |
- assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); |
- if( pProbe->tnum<=0 ){ |
- /* Integer primary key index */ |
- pNew->wsFlags = WHERE_IPK; |
- |
- /* Full table scan */ |
- pNew->iSortIdx = b ? iSortIdx : 0; |
- /* TUNING: Cost of full table scan is (N*3.0). */ |
- pNew->rRun = rSize + 16; |
- ApplyCostMultiplier(pNew->rRun, pTab->costMult); |
- whereLoopOutputAdjust(pWC, pNew, rSize); |
- rc = whereLoopInsert(pBuilder, pNew); |
- pNew->nOut = rSize; |
- if( rc ) break; |
- }else{ |
- Bitmask m; |
- if( pProbe->isCovering ){ |
- pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; |
- m = 0; |
- }else{ |
- m = pSrc->colUsed & ~columnsInIndex(pProbe); |
- pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; |
- } |
- |
- /* Full scan via index */ |
- if( b |
- || !HasRowid(pTab) |
- || ( m==0 |
- && pProbe->bUnordered==0 |
- && (pProbe->szIdxRow<pTab->szTabRow) |
- && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 |
- && sqlite3GlobalConfig.bUseCis |
- && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) |
- ) |
- ){ |
- pNew->iSortIdx = b ? iSortIdx : 0; |
- |
- /* The cost of visiting the index rows is N*K, where K is |
- ** between 1.1 and 3.0, depending on the relative sizes of the |
- ** index and table rows. If this is a non-covering index scan, |
- ** also add the cost of visiting table rows (N*3.0). */ |
- pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; |
- if( m!=0 ){ |
- pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); |
- } |
- ApplyCostMultiplier(pNew->rRun, pTab->costMult); |
- whereLoopOutputAdjust(pWC, pNew, rSize); |
- rc = whereLoopInsert(pBuilder, pNew); |
- pNew->nOut = rSize; |
- if( rc ) break; |
- } |
- } |
- |
- rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- sqlite3Stat4ProbeFree(pBuilder->pRec); |
- pBuilder->nRecValid = 0; |
- pBuilder->pRec = 0; |
-#endif |
- |
- /* If there was an INDEXED BY clause, then only that one index is |
- ** considered. */ |
- if( pSrc->pIndex ) break; |
- } |
- return rc; |
-} |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
-/* |
-** Add all WhereLoop objects for a table of the join identified by |
-** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. |
-*/ |
-static int whereLoopAddVirtual( |
- WhereLoopBuilder *pBuilder, /* WHERE clause information */ |
- Bitmask mExtra |
-){ |
- WhereInfo *pWInfo; /* WHERE analysis context */ |
- Parse *pParse; /* The parsing context */ |
- WhereClause *pWC; /* The WHERE clause */ |
- struct SrcList_item *pSrc; /* The FROM clause term to search */ |
- Table *pTab; |
- sqlite3 *db; |
- sqlite3_index_info *pIdxInfo; |
- struct sqlite3_index_constraint *pIdxCons; |
- struct sqlite3_index_constraint_usage *pUsage; |
- WhereTerm *pTerm; |
- int i, j; |
- int iTerm, mxTerm; |
- int nConstraint; |
- int seenIn = 0; /* True if an IN operator is seen */ |
- int seenVar = 0; /* True if a non-constant constraint is seen */ |
- int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ |
- WhereLoop *pNew; |
- int rc = SQLITE_OK; |
- |
- pWInfo = pBuilder->pWInfo; |
- pParse = pWInfo->pParse; |
- db = pParse->db; |
- pWC = pBuilder->pWC; |
- pNew = pBuilder->pNew; |
- pSrc = &pWInfo->pTabList->a[pNew->iTab]; |
- pTab = pSrc->pTab; |
- assert( IsVirtual(pTab) ); |
- pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy); |
- if( pIdxInfo==0 ) return SQLITE_NOMEM; |
- pNew->prereq = 0; |
- pNew->rSetup = 0; |
- pNew->wsFlags = WHERE_VIRTUALTABLE; |
- pNew->nLTerm = 0; |
- pNew->u.vtab.needFree = 0; |
- pUsage = pIdxInfo->aConstraintUsage; |
- nConstraint = pIdxInfo->nConstraint; |
- if( whereLoopResize(db, pNew, nConstraint) ){ |
- sqlite3DbFree(db, pIdxInfo); |
- return SQLITE_NOMEM; |
- } |
- |
- for(iPhase=0; iPhase<=3; iPhase++){ |
- if( !seenIn && (iPhase&1)!=0 ){ |
- iPhase++; |
- if( iPhase>3 ) break; |
- } |
- if( !seenVar && iPhase>1 ) break; |
- pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
- for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ |
- j = pIdxCons->iTermOffset; |
- pTerm = &pWC->a[j]; |
- switch( iPhase ){ |
- case 0: /* Constants without IN operator */ |
- pIdxCons->usable = 0; |
- if( (pTerm->eOperator & WO_IN)!=0 ){ |
- seenIn = 1; |
- } |
- if( pTerm->prereqRight!=0 ){ |
- seenVar = 1; |
- }else if( (pTerm->eOperator & WO_IN)==0 ){ |
- pIdxCons->usable = 1; |
- } |
- break; |
- case 1: /* Constants with IN operators */ |
- assert( seenIn ); |
- pIdxCons->usable = (pTerm->prereqRight==0); |
- break; |
- case 2: /* Variables without IN */ |
- assert( seenVar ); |
- pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; |
- break; |
- default: /* Variables with IN */ |
- assert( seenVar && seenIn ); |
- pIdxCons->usable = 1; |
- break; |
- } |
- } |
- memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); |
- if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); |
- pIdxInfo->idxStr = 0; |
- pIdxInfo->idxNum = 0; |
- pIdxInfo->needToFreeIdxStr = 0; |
- pIdxInfo->orderByConsumed = 0; |
- pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; |
- pIdxInfo->estimatedRows = 25; |
- rc = vtabBestIndex(pParse, pTab, pIdxInfo); |
- if( rc ) goto whereLoopAddVtab_exit; |
- pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
- pNew->prereq = mExtra; |
- mxTerm = -1; |
- assert( pNew->nLSlot>=nConstraint ); |
- for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; |
- pNew->u.vtab.omitMask = 0; |
- for(i=0; i<nConstraint; i++, pIdxCons++){ |
- if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ |
- j = pIdxCons->iTermOffset; |
- if( iTerm>=nConstraint |
- || j<0 |
- || j>=pWC->nTerm |
- || pNew->aLTerm[iTerm]!=0 |
- ){ |
- rc = SQLITE_ERROR; |
- sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); |
- goto whereLoopAddVtab_exit; |
- } |
- testcase( iTerm==nConstraint-1 ); |
- testcase( j==0 ); |
- testcase( j==pWC->nTerm-1 ); |
- pTerm = &pWC->a[j]; |
- pNew->prereq |= pTerm->prereqRight; |
- assert( iTerm<pNew->nLSlot ); |
- pNew->aLTerm[iTerm] = pTerm; |
- if( iTerm>mxTerm ) mxTerm = iTerm; |
- testcase( iTerm==15 ); |
- testcase( iTerm==16 ); |
- if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; |
- if( (pTerm->eOperator & WO_IN)!=0 ){ |
- if( pUsage[i].omit==0 ){ |
- /* Do not attempt to use an IN constraint if the virtual table |
- ** says that the equivalent EQ constraint cannot be safely omitted. |
- ** If we do attempt to use such a constraint, some rows might be |
- ** repeated in the output. */ |
- break; |
- } |
- /* A virtual table that is constrained by an IN clause may not |
- ** consume the ORDER BY clause because (1) the order of IN terms |
- ** is not necessarily related to the order of output terms and |
- ** (2) Multiple outputs from a single IN value will not merge |
- ** together. */ |
- pIdxInfo->orderByConsumed = 0; |
- } |
- } |
- } |
- if( i>=nConstraint ){ |
- pNew->nLTerm = mxTerm+1; |
- assert( pNew->nLTerm<=pNew->nLSlot ); |
- pNew->u.vtab.idxNum = pIdxInfo->idxNum; |
- pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; |
- pIdxInfo->needToFreeIdxStr = 0; |
- pNew->u.vtab.idxStr = pIdxInfo->idxStr; |
- pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? |
- pIdxInfo->nOrderBy : 0); |
- pNew->rSetup = 0; |
- pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); |
- pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); |
- whereLoopInsert(pBuilder, pNew); |
- if( pNew->u.vtab.needFree ){ |
- sqlite3_free(pNew->u.vtab.idxStr); |
- pNew->u.vtab.needFree = 0; |
- } |
- } |
- } |
- |
-whereLoopAddVtab_exit: |
- if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); |
- sqlite3DbFree(db, pIdxInfo); |
- return rc; |
-} |
-#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
- |
-/* |
-** Add WhereLoop entries to handle OR terms. This works for either |
-** btrees or virtual tables. |
-*/ |
-static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){ |
- WhereInfo *pWInfo = pBuilder->pWInfo; |
- WhereClause *pWC; |
- WhereLoop *pNew; |
- WhereTerm *pTerm, *pWCEnd; |
- int rc = SQLITE_OK; |
- int iCur; |
- WhereClause tempWC; |
- WhereLoopBuilder sSubBuild; |
- WhereOrSet sSum, sCur; |
- struct SrcList_item *pItem; |
- |
- pWC = pBuilder->pWC; |
- pWCEnd = pWC->a + pWC->nTerm; |
- pNew = pBuilder->pNew; |
- memset(&sSum, 0, sizeof(sSum)); |
- pItem = pWInfo->pTabList->a + pNew->iTab; |
- iCur = pItem->iCursor; |
- |
- for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ |
- if( (pTerm->eOperator & WO_OR)!=0 |
- && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 |
- ){ |
- WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; |
- WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; |
- WhereTerm *pOrTerm; |
- int once = 1; |
- int i, j; |
- |
- sSubBuild = *pBuilder; |
- sSubBuild.pOrderBy = 0; |
- sSubBuild.pOrSet = &sCur; |
- |
- WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); |
- for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ |
- if( (pOrTerm->eOperator & WO_AND)!=0 ){ |
- sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; |
- }else if( pOrTerm->leftCursor==iCur ){ |
- tempWC.pWInfo = pWC->pWInfo; |
- tempWC.pOuter = pWC; |
- tempWC.op = TK_AND; |
- tempWC.nTerm = 1; |
- tempWC.a = pOrTerm; |
- sSubBuild.pWC = &tempWC; |
- }else{ |
- continue; |
- } |
- sCur.n = 0; |
-#ifdef WHERETRACE_ENABLED |
- WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", |
- (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); |
- if( sqlite3WhereTrace & 0x400 ){ |
- for(i=0; i<sSubBuild.pWC->nTerm; i++){ |
- whereTermPrint(&sSubBuild.pWC->a[i], i); |
- } |
- } |
-#endif |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- if( IsVirtual(pItem->pTab) ){ |
- rc = whereLoopAddVirtual(&sSubBuild, mExtra); |
- }else |
-#endif |
- { |
- rc = whereLoopAddBtree(&sSubBuild, mExtra); |
- } |
- if( rc==SQLITE_OK ){ |
- rc = whereLoopAddOr(&sSubBuild, mExtra); |
- } |
- assert( rc==SQLITE_OK || sCur.n==0 ); |
- if( sCur.n==0 ){ |
- sSum.n = 0; |
- break; |
- }else if( once ){ |
- whereOrMove(&sSum, &sCur); |
- once = 0; |
- }else{ |
- WhereOrSet sPrev; |
- whereOrMove(&sPrev, &sSum); |
- sSum.n = 0; |
- for(i=0; i<sPrev.n; i++){ |
- for(j=0; j<sCur.n; j++){ |
- whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, |
- sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), |
- sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); |
- } |
- } |
- } |
- } |
- pNew->nLTerm = 1; |
- pNew->aLTerm[0] = pTerm; |
- pNew->wsFlags = WHERE_MULTI_OR; |
- pNew->rSetup = 0; |
- pNew->iSortIdx = 0; |
- memset(&pNew->u, 0, sizeof(pNew->u)); |
- for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ |
- /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs |
- ** of all sub-scans required by the OR-scan. However, due to rounding |
- ** errors, it may be that the cost of the OR-scan is equal to its |
- ** most expensive sub-scan. Add the smallest possible penalty |
- ** (equivalent to multiplying the cost by 1.07) to ensure that |
- ** this does not happen. Otherwise, for WHERE clauses such as the |
- ** following where there is an index on "y": |
- ** |
- ** WHERE likelihood(x=?, 0.99) OR y=? |
- ** |
- ** the planner may elect to "OR" together a full-table scan and an |
- ** index lookup. And other similarly odd results. */ |
- pNew->rRun = sSum.a[i].rRun + 1; |
- pNew->nOut = sSum.a[i].nOut; |
- pNew->prereq = sSum.a[i].prereq; |
- rc = whereLoopInsert(pBuilder, pNew); |
- } |
- WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); |
- } |
- } |
- return rc; |
-} |
- |
-/* |
-** Add all WhereLoop objects for all tables |
-*/ |
-static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ |
- WhereInfo *pWInfo = pBuilder->pWInfo; |
- Bitmask mExtra = 0; |
- Bitmask mPrior = 0; |
- int iTab; |
- SrcList *pTabList = pWInfo->pTabList; |
- struct SrcList_item *pItem; |
- sqlite3 *db = pWInfo->pParse->db; |
- int nTabList = pWInfo->nLevel; |
- int rc = SQLITE_OK; |
- u8 priorJoinType = 0; |
- WhereLoop *pNew; |
- |
- /* Loop over the tables in the join, from left to right */ |
- pNew = pBuilder->pNew; |
- whereLoopInit(pNew); |
- for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){ |
- pNew->iTab = iTab; |
- pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor); |
- if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){ |
- mExtra = mPrior; |
- } |
- priorJoinType = pItem->jointype; |
- if( IsVirtual(pItem->pTab) ){ |
- rc = whereLoopAddVirtual(pBuilder, mExtra); |
- }else{ |
- rc = whereLoopAddBtree(pBuilder, mExtra); |
- } |
- if( rc==SQLITE_OK ){ |
- rc = whereLoopAddOr(pBuilder, mExtra); |
- } |
- mPrior |= pNew->maskSelf; |
- if( rc || db->mallocFailed ) break; |
- } |
- whereLoopClear(db, pNew); |
- return rc; |
-} |
- |
-/* |
-** Examine a WherePath (with the addition of the extra WhereLoop of the 5th |
-** parameters) to see if it outputs rows in the requested ORDER BY |
-** (or GROUP BY) without requiring a separate sort operation. Return N: |
-** |
-** N>0: N terms of the ORDER BY clause are satisfied |
-** N==0: No terms of the ORDER BY clause are satisfied |
-** N<0: Unknown yet how many terms of ORDER BY might be satisfied. |
-** |
-** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as |
-** strict. With GROUP BY and DISTINCT the only requirement is that |
-** equivalent rows appear immediately adjacent to one another. GROUP BY |
-** and DISTINCT do not require rows to appear in any particular order as long |
-** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT |
-** the pOrderBy terms can be matched in any order. With ORDER BY, the |
-** pOrderBy terms must be matched in strict left-to-right order. |
-*/ |
-static i8 wherePathSatisfiesOrderBy( |
- WhereInfo *pWInfo, /* The WHERE clause */ |
- ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ |
- WherePath *pPath, /* The WherePath to check */ |
- u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ |
- u16 nLoop, /* Number of entries in pPath->aLoop[] */ |
- WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ |
- Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ |
-){ |
- u8 revSet; /* True if rev is known */ |
- u8 rev; /* Composite sort order */ |
- u8 revIdx; /* Index sort order */ |
- u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ |
- u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ |
- u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ |
- u16 nKeyCol; /* Number of key columns in pIndex */ |
- u16 nColumn; /* Total number of ordered columns in the index */ |
- u16 nOrderBy; /* Number terms in the ORDER BY clause */ |
- int iLoop; /* Index of WhereLoop in pPath being processed */ |
- int i, j; /* Loop counters */ |
- int iCur; /* Cursor number for current WhereLoop */ |
- int iColumn; /* A column number within table iCur */ |
- WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ |
- WhereTerm *pTerm; /* A single term of the WHERE clause */ |
- Expr *pOBExpr; /* An expression from the ORDER BY clause */ |
- CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ |
- Index *pIndex; /* The index associated with pLoop */ |
- sqlite3 *db = pWInfo->pParse->db; /* Database connection */ |
- Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ |
- Bitmask obDone; /* Mask of all ORDER BY terms */ |
- Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ |
- Bitmask ready; /* Mask of inner loops */ |
- |
- /* |
- ** We say the WhereLoop is "one-row" if it generates no more than one |
- ** row of output. A WhereLoop is one-row if all of the following are true: |
- ** (a) All index columns match with WHERE_COLUMN_EQ. |
- ** (b) The index is unique |
- ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. |
- ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. |
- ** |
- ** We say the WhereLoop is "order-distinct" if the set of columns from |
- ** that WhereLoop that are in the ORDER BY clause are different for every |
- ** row of the WhereLoop. Every one-row WhereLoop is automatically |
- ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause |
- ** is not order-distinct. To be order-distinct is not quite the same as being |
- ** UNIQUE since a UNIQUE column or index can have multiple rows that |
- ** are NULL and NULL values are equivalent for the purpose of order-distinct. |
- ** To be order-distinct, the columns must be UNIQUE and NOT NULL. |
- ** |
- ** The rowid for a table is always UNIQUE and NOT NULL so whenever the |
- ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is |
- ** automatically order-distinct. |
- */ |
- |
- assert( pOrderBy!=0 ); |
- if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; |
- |
- nOrderBy = pOrderBy->nExpr; |
- testcase( nOrderBy==BMS-1 ); |
- if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ |
- isOrderDistinct = 1; |
- obDone = MASKBIT(nOrderBy)-1; |
- orderDistinctMask = 0; |
- ready = 0; |
- for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ |
- if( iLoop>0 ) ready |= pLoop->maskSelf; |
- pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; |
- if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ |
- if( pLoop->u.vtab.isOrdered ) obSat = obDone; |
- break; |
- } |
- iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; |
- |
- /* Mark off any ORDER BY term X that is a column in the table of |
- ** the current loop for which there is term in the WHERE |
- ** clause of the form X IS NULL or X=? that reference only outer |
- ** loops. |
- */ |
- for(i=0; i<nOrderBy; i++){ |
- if( MASKBIT(i) & obSat ) continue; |
- pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); |
- if( pOBExpr->op!=TK_COLUMN ) continue; |
- if( pOBExpr->iTable!=iCur ) continue; |
- pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, |
- ~ready, WO_EQ|WO_ISNULL, 0); |
- if( pTerm==0 ) continue; |
- if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){ |
- const char *z1, *z2; |
- pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
- if( !pColl ) pColl = db->pDfltColl; |
- z1 = pColl->zName; |
- pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); |
- if( !pColl ) pColl = db->pDfltColl; |
- z2 = pColl->zName; |
- if( sqlite3StrICmp(z1, z2)!=0 ) continue; |
- } |
- obSat |= MASKBIT(i); |
- } |
- |
- if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ |
- if( pLoop->wsFlags & WHERE_IPK ){ |
- pIndex = 0; |
- nKeyCol = 0; |
- nColumn = 1; |
- }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ |
- return 0; |
- }else{ |
- nKeyCol = pIndex->nKeyCol; |
- nColumn = pIndex->nColumn; |
- assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); |
- assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); |
- isOrderDistinct = IsUniqueIndex(pIndex); |
- } |
- |
- /* Loop through all columns of the index and deal with the ones |
- ** that are not constrained by == or IN. |
- */ |
- rev = revSet = 0; |
- distinctColumns = 0; |
- for(j=0; j<nColumn; j++){ |
- u8 bOnce; /* True to run the ORDER BY search loop */ |
- |
- /* Skip over == and IS NULL terms */ |
- if( j<pLoop->u.btree.nEq |
- && pLoop->u.btree.nSkip==0 |
- && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 |
- ){ |
- if( i & WO_ISNULL ){ |
- testcase( isOrderDistinct ); |
- isOrderDistinct = 0; |
- } |
- continue; |
- } |
- |
- /* Get the column number in the table (iColumn) and sort order |
- ** (revIdx) for the j-th column of the index. |
- */ |
- if( pIndex ){ |
- iColumn = pIndex->aiColumn[j]; |
- revIdx = pIndex->aSortOrder[j]; |
- if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; |
- }else{ |
- iColumn = -1; |
- revIdx = 0; |
- } |
- |
- /* An unconstrained column that might be NULL means that this |
- ** WhereLoop is not well-ordered |
- */ |
- if( isOrderDistinct |
- && iColumn>=0 |
- && j>=pLoop->u.btree.nEq |
- && pIndex->pTable->aCol[iColumn].notNull==0 |
- ){ |
- isOrderDistinct = 0; |
- } |
- |
- /* Find the ORDER BY term that corresponds to the j-th column |
- ** of the index and mark that ORDER BY term off |
- */ |
- bOnce = 1; |
- isMatch = 0; |
- for(i=0; bOnce && i<nOrderBy; i++){ |
- if( MASKBIT(i) & obSat ) continue; |
- pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); |
- testcase( wctrlFlags & WHERE_GROUPBY ); |
- testcase( wctrlFlags & WHERE_DISTINCTBY ); |
- if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; |
- if( pOBExpr->op!=TK_COLUMN ) continue; |
- if( pOBExpr->iTable!=iCur ) continue; |
- if( pOBExpr->iColumn!=iColumn ) continue; |
- if( iColumn>=0 ){ |
- pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
- if( !pColl ) pColl = db->pDfltColl; |
- if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; |
- } |
- isMatch = 1; |
- break; |
- } |
- if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ |
- /* Make sure the sort order is compatible in an ORDER BY clause. |
- ** Sort order is irrelevant for a GROUP BY clause. */ |
- if( revSet ){ |
- if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; |
- }else{ |
- rev = revIdx ^ pOrderBy->a[i].sortOrder; |
- if( rev ) *pRevMask |= MASKBIT(iLoop); |
- revSet = 1; |
- } |
- } |
- if( isMatch ){ |
- if( iColumn<0 ){ |
- testcase( distinctColumns==0 ); |
- distinctColumns = 1; |
- } |
- obSat |= MASKBIT(i); |
- }else{ |
- /* No match found */ |
- if( j==0 || j<nKeyCol ){ |
- testcase( isOrderDistinct!=0 ); |
- isOrderDistinct = 0; |
- } |
- break; |
- } |
- } /* end Loop over all index columns */ |
- if( distinctColumns ){ |
- testcase( isOrderDistinct==0 ); |
- isOrderDistinct = 1; |
- } |
- } /* end-if not one-row */ |
- |
- /* Mark off any other ORDER BY terms that reference pLoop */ |
- if( isOrderDistinct ){ |
- orderDistinctMask |= pLoop->maskSelf; |
- for(i=0; i<nOrderBy; i++){ |
- Expr *p; |
- Bitmask mTerm; |
- if( MASKBIT(i) & obSat ) continue; |
- p = pOrderBy->a[i].pExpr; |
- mTerm = exprTableUsage(&pWInfo->sMaskSet,p); |
- if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; |
- if( (mTerm&~orderDistinctMask)==0 ){ |
- obSat |= MASKBIT(i); |
- } |
- } |
- } |
- } /* End the loop over all WhereLoops from outer-most down to inner-most */ |
- if( obSat==obDone ) return (i8)nOrderBy; |
- if( !isOrderDistinct ){ |
- for(i=nOrderBy-1; i>0; i--){ |
- Bitmask m = MASKBIT(i) - 1; |
- if( (obSat&m)==m ) return i; |
- } |
- return 0; |
- } |
- return -1; |
-} |
- |
- |
-/* |
-** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), |
-** the planner assumes that the specified pOrderBy list is actually a GROUP |
-** BY clause - and so any order that groups rows as required satisfies the |
-** request. |
-** |
-** Normally, in this case it is not possible for the caller to determine |
-** whether or not the rows are really being delivered in sorted order, or |
-** just in some other order that provides the required grouping. However, |
-** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then |
-** this function may be called on the returned WhereInfo object. It returns |
-** true if the rows really will be sorted in the specified order, or false |
-** otherwise. |
-** |
-** For example, assuming: |
-** |
-** CREATE INDEX i1 ON t1(x, Y); |
-** |
-** then |
-** |
-** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 |
-** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 |
-*/ |
-int sqlite3WhereIsSorted(WhereInfo *pWInfo){ |
- assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); |
- assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); |
- return pWInfo->sorted; |
-} |
- |
-#ifdef WHERETRACE_ENABLED |
-/* For debugging use only: */ |
-static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ |
- static char zName[65]; |
- int i; |
- for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } |
- if( pLast ) zName[i++] = pLast->cId; |
- zName[i] = 0; |
- return zName; |
-} |
-#endif |
- |
-/* |
-** Return the cost of sorting nRow rows, assuming that the keys have |
-** nOrderby columns and that the first nSorted columns are already in |
-** order. |
-*/ |
-static LogEst whereSortingCost( |
- WhereInfo *pWInfo, |
- LogEst nRow, |
- int nOrderBy, |
- int nSorted |
-){ |
- /* TUNING: Estimated cost of a full external sort, where N is |
- ** the number of rows to sort is: |
- ** |
- ** cost = (3.0 * N * log(N)). |
- ** |
- ** Or, if the order-by clause has X terms but only the last Y |
- ** terms are out of order, then block-sorting will reduce the |
- ** sorting cost to: |
- ** |
- ** cost = (3.0 * N * log(N)) * (Y/X) |
- ** |
- ** The (Y/X) term is implemented using stack variable rScale |
- ** below. */ |
- LogEst rScale, rSortCost; |
- assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); |
- rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; |
- rSortCost = nRow + estLog(nRow) + rScale + 16; |
- |
- /* TUNING: The cost of implementing DISTINCT using a B-TREE is |
- ** similar but with a larger constant of proportionality. |
- ** Multiply by an additional factor of 3.0. */ |
- if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ |
- rSortCost += 16; |
- } |
- |
- return rSortCost; |
-} |
- |
-/* |
-** Given the list of WhereLoop objects at pWInfo->pLoops, this routine |
-** attempts to find the lowest cost path that visits each WhereLoop |
-** once. This path is then loaded into the pWInfo->a[].pWLoop fields. |
-** |
-** Assume that the total number of output rows that will need to be sorted |
-** will be nRowEst (in the 10*log2 representation). Or, ignore sorting |
-** costs if nRowEst==0. |
-** |
-** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation |
-** error occurs. |
-*/ |
-static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ |
- int mxChoice; /* Maximum number of simultaneous paths tracked */ |
- int nLoop; /* Number of terms in the join */ |
- Parse *pParse; /* Parsing context */ |
- sqlite3 *db; /* The database connection */ |
- int iLoop; /* Loop counter over the terms of the join */ |
- int ii, jj; /* Loop counters */ |
- int mxI = 0; /* Index of next entry to replace */ |
- int nOrderBy; /* Number of ORDER BY clause terms */ |
- LogEst mxCost = 0; /* Maximum cost of a set of paths */ |
- LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ |
- int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ |
- WherePath *aFrom; /* All nFrom paths at the previous level */ |
- WherePath *aTo; /* The nTo best paths at the current level */ |
- WherePath *pFrom; /* An element of aFrom[] that we are working on */ |
- WherePath *pTo; /* An element of aTo[] that we are working on */ |
- WhereLoop *pWLoop; /* One of the WhereLoop objects */ |
- WhereLoop **pX; /* Used to divy up the pSpace memory */ |
- LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ |
- char *pSpace; /* Temporary memory used by this routine */ |
- int nSpace; /* Bytes of space allocated at pSpace */ |
- |
- pParse = pWInfo->pParse; |
- db = pParse->db; |
- nLoop = pWInfo->nLevel; |
- /* TUNING: For simple queries, only the best path is tracked. |
- ** For 2-way joins, the 5 best paths are followed. |
- ** For joins of 3 or more tables, track the 10 best paths */ |
- mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); |
- assert( nLoop<=pWInfo->pTabList->nSrc ); |
- WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); |
- |
- /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this |
- ** case the purpose of this call is to estimate the number of rows returned |
- ** by the overall query. Once this estimate has been obtained, the caller |
- ** will invoke this function a second time, passing the estimate as the |
- ** nRowEst parameter. */ |
- if( pWInfo->pOrderBy==0 || nRowEst==0 ){ |
- nOrderBy = 0; |
- }else{ |
- nOrderBy = pWInfo->pOrderBy->nExpr; |
- } |
- |
- /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ |
- nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; |
- nSpace += sizeof(LogEst) * nOrderBy; |
- pSpace = sqlite3DbMallocRaw(db, nSpace); |
- if( pSpace==0 ) return SQLITE_NOMEM; |
- aTo = (WherePath*)pSpace; |
- aFrom = aTo+mxChoice; |
- memset(aFrom, 0, sizeof(aFrom[0])); |
- pX = (WhereLoop**)(aFrom+mxChoice); |
- for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ |
- pFrom->aLoop = pX; |
- } |
- if( nOrderBy ){ |
- /* If there is an ORDER BY clause and it is not being ignored, set up |
- ** space for the aSortCost[] array. Each element of the aSortCost array |
- ** is either zero - meaning it has not yet been initialized - or the |
- ** cost of sorting nRowEst rows of data where the first X terms of |
- ** the ORDER BY clause are already in order, where X is the array |
- ** index. */ |
- aSortCost = (LogEst*)pX; |
- memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); |
- } |
- assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); |
- assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); |
- |
- /* Seed the search with a single WherePath containing zero WhereLoops. |
- ** |
- ** TUNING: Do not let the number of iterations go above 25. If the cost |
- ** of computing an automatic index is not paid back within the first 25 |
- ** rows, then do not use the automatic index. */ |
- aFrom[0].nRow = MIN(pParse->nQueryLoop, 46); assert( 46==sqlite3LogEst(25) ); |
- nFrom = 1; |
- assert( aFrom[0].isOrdered==0 ); |
- if( nOrderBy ){ |
- /* If nLoop is zero, then there are no FROM terms in the query. Since |
- ** in this case the query may return a maximum of one row, the results |
- ** are already in the requested order. Set isOrdered to nOrderBy to |
- ** indicate this. Or, if nLoop is greater than zero, set isOrdered to |
- ** -1, indicating that the result set may or may not be ordered, |
- ** depending on the loops added to the current plan. */ |
- aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; |
- } |
- |
- /* Compute successively longer WherePaths using the previous generation |
- ** of WherePaths as the basis for the next. Keep track of the mxChoice |
- ** best paths at each generation */ |
- for(iLoop=0; iLoop<nLoop; iLoop++){ |
- nTo = 0; |
- for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ |
- for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ |
- LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ |
- LogEst rCost; /* Cost of path (pFrom+pWLoop) */ |
- LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ |
- i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ |
- Bitmask maskNew; /* Mask of src visited by (..) */ |
- Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ |
- |
- if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; |
- if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; |
- /* At this point, pWLoop is a candidate to be the next loop. |
- ** Compute its cost */ |
- rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); |
- rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); |
- nOut = pFrom->nRow + pWLoop->nOut; |
- maskNew = pFrom->maskLoop | pWLoop->maskSelf; |
- if( isOrdered<0 ){ |
- isOrdered = wherePathSatisfiesOrderBy(pWInfo, |
- pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, |
- iLoop, pWLoop, &revMask); |
- }else{ |
- revMask = pFrom->revLoop; |
- } |
- if( isOrdered>=0 && isOrdered<nOrderBy ){ |
- if( aSortCost[isOrdered]==0 ){ |
- aSortCost[isOrdered] = whereSortingCost( |
- pWInfo, nRowEst, nOrderBy, isOrdered |
- ); |
- } |
- rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); |
- |
- WHERETRACE(0x002, |
- ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", |
- aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, |
- rUnsorted, rCost)); |
- }else{ |
- rCost = rUnsorted; |
- } |
- |
- /* Check to see if pWLoop should be added to the set of |
- ** mxChoice best-so-far paths. |
- ** |
- ** First look for an existing path among best-so-far paths |
- ** that covers the same set of loops and has the same isOrdered |
- ** setting as the current path candidate. |
- ** |
- ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent |
- ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range |
- ** of legal values for isOrdered, -1..64. |
- */ |
- for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ |
- if( pTo->maskLoop==maskNew |
- && ((pTo->isOrdered^isOrdered)&0x80)==0 |
- ){ |
- testcase( jj==nTo-1 ); |
- break; |
- } |
- } |
- if( jj>=nTo ){ |
- /* None of the existing best-so-far paths match the candidate. */ |
- if( nTo>=mxChoice |
- && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) |
- ){ |
- /* The current candidate is no better than any of the mxChoice |
- ** paths currently in the best-so-far buffer. So discard |
- ** this candidate as not viable. */ |
-#ifdef WHERETRACE_ENABLED /* 0x4 */ |
- if( sqlite3WhereTrace&0x4 ){ |
- sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", |
- wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
- isOrdered>=0 ? isOrdered+'0' : '?'); |
- } |
-#endif |
- continue; |
- } |
- /* If we reach this points it means that the new candidate path |
- ** needs to be added to the set of best-so-far paths. */ |
- if( nTo<mxChoice ){ |
- /* Increase the size of the aTo set by one */ |
- jj = nTo++; |
- }else{ |
- /* New path replaces the prior worst to keep count below mxChoice */ |
- jj = mxI; |
- } |
- pTo = &aTo[jj]; |
-#ifdef WHERETRACE_ENABLED /* 0x4 */ |
- if( sqlite3WhereTrace&0x4 ){ |
- sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", |
- wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
- isOrdered>=0 ? isOrdered+'0' : '?'); |
- } |
-#endif |
- }else{ |
- /* Control reaches here if best-so-far path pTo=aTo[jj] covers the |
- ** same set of loops and has the sam isOrdered setting as the |
- ** candidate path. Check to see if the candidate should replace |
- ** pTo or if the candidate should be skipped */ |
- if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ |
-#ifdef WHERETRACE_ENABLED /* 0x4 */ |
- if( sqlite3WhereTrace&0x4 ){ |
- sqlite3DebugPrintf( |
- "Skip %s cost=%-3d,%3d order=%c", |
- wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
- isOrdered>=0 ? isOrdered+'0' : '?'); |
- sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", |
- wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
- pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); |
- } |
-#endif |
- /* Discard the candidate path from further consideration */ |
- testcase( pTo->rCost==rCost ); |
- continue; |
- } |
- testcase( pTo->rCost==rCost+1 ); |
- /* Control reaches here if the candidate path is better than the |
- ** pTo path. Replace pTo with the candidate. */ |
-#ifdef WHERETRACE_ENABLED /* 0x4 */ |
- if( sqlite3WhereTrace&0x4 ){ |
- sqlite3DebugPrintf( |
- "Update %s cost=%-3d,%3d order=%c", |
- wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
- isOrdered>=0 ? isOrdered+'0' : '?'); |
- sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", |
- wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
- pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); |
- } |
-#endif |
- } |
- /* pWLoop is a winner. Add it to the set of best so far */ |
- pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; |
- pTo->revLoop = revMask; |
- pTo->nRow = nOut; |
- pTo->rCost = rCost; |
- pTo->rUnsorted = rUnsorted; |
- pTo->isOrdered = isOrdered; |
- memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); |
- pTo->aLoop[iLoop] = pWLoop; |
- if( nTo>=mxChoice ){ |
- mxI = 0; |
- mxCost = aTo[0].rCost; |
- mxUnsorted = aTo[0].nRow; |
- for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ |
- if( pTo->rCost>mxCost |
- || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) |
- ){ |
- mxCost = pTo->rCost; |
- mxUnsorted = pTo->rUnsorted; |
- mxI = jj; |
- } |
- } |
- } |
- } |
- } |
- |
-#ifdef WHERETRACE_ENABLED /* >=2 */ |
- if( sqlite3WhereTrace>=2 ){ |
- sqlite3DebugPrintf("---- after round %d ----\n", iLoop); |
- for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ |
- sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", |
- wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
- pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); |
- if( pTo->isOrdered>0 ){ |
- sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); |
- }else{ |
- sqlite3DebugPrintf("\n"); |
- } |
- } |
- } |
-#endif |
- |
- /* Swap the roles of aFrom and aTo for the next generation */ |
- pFrom = aTo; |
- aTo = aFrom; |
- aFrom = pFrom; |
- nFrom = nTo; |
- } |
- |
- if( nFrom==0 ){ |
- sqlite3ErrorMsg(pParse, "no query solution"); |
- sqlite3DbFree(db, pSpace); |
- return SQLITE_ERROR; |
- } |
- |
- /* Find the lowest cost path. pFrom will be left pointing to that path */ |
- pFrom = aFrom; |
- for(ii=1; ii<nFrom; ii++){ |
- if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; |
- } |
- assert( pWInfo->nLevel==nLoop ); |
- /* Load the lowest cost path into pWInfo */ |
- for(iLoop=0; iLoop<nLoop; iLoop++){ |
- WhereLevel *pLevel = pWInfo->a + iLoop; |
- pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; |
- pLevel->iFrom = pWLoop->iTab; |
- pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; |
- } |
- if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 |
- && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 |
- && pWInfo->eDistinct==WHERE_DISTINCT_NOOP |
- && nRowEst |
- ){ |
- Bitmask notUsed; |
- int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, |
- WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); |
- if( rc==pWInfo->pResultSet->nExpr ){ |
- pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; |
- } |
- } |
- if( pWInfo->pOrderBy ){ |
- if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ |
- if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ |
- pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; |
- } |
- }else{ |
- pWInfo->nOBSat = pFrom->isOrdered; |
- if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; |
- pWInfo->revMask = pFrom->revLoop; |
- } |
- if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) |
- && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr |
- ){ |
- Bitmask revMask = 0; |
- int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, |
- pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask |
- ); |
- assert( pWInfo->sorted==0 ); |
- if( nOrder==pWInfo->pOrderBy->nExpr ){ |
- pWInfo->sorted = 1; |
- pWInfo->revMask = revMask; |
- } |
- } |
- } |
- |
- |
- pWInfo->nRowOut = pFrom->nRow; |
- |
- /* Free temporary memory and return success */ |
- sqlite3DbFree(db, pSpace); |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Most queries use only a single table (they are not joins) and have |
-** simple == constraints against indexed fields. This routine attempts |
-** to plan those simple cases using much less ceremony than the |
-** general-purpose query planner, and thereby yield faster sqlite3_prepare() |
-** times for the common case. |
-** |
-** Return non-zero on success, if this query can be handled by this |
-** no-frills query planner. Return zero if this query needs the |
-** general-purpose query planner. |
-*/ |
-static int whereShortCut(WhereLoopBuilder *pBuilder){ |
- WhereInfo *pWInfo; |
- struct SrcList_item *pItem; |
- WhereClause *pWC; |
- WhereTerm *pTerm; |
- WhereLoop *pLoop; |
- int iCur; |
- int j; |
- Table *pTab; |
- Index *pIdx; |
- |
- pWInfo = pBuilder->pWInfo; |
- if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; |
- assert( pWInfo->pTabList->nSrc>=1 ); |
- pItem = pWInfo->pTabList->a; |
- pTab = pItem->pTab; |
- if( IsVirtual(pTab) ) return 0; |
- if( pItem->zIndex ) return 0; |
- iCur = pItem->iCursor; |
- pWC = &pWInfo->sWC; |
- pLoop = pBuilder->pNew; |
- pLoop->wsFlags = 0; |
- pLoop->u.btree.nSkip = 0; |
- pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); |
- if( pTerm ){ |
- pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; |
- pLoop->aLTerm[0] = pTerm; |
- pLoop->nLTerm = 1; |
- pLoop->u.btree.nEq = 1; |
- /* TUNING: Cost of a rowid lookup is 10 */ |
- pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ |
- }else{ |
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
- assert( pLoop->aLTermSpace==pLoop->aLTerm ); |
- assert( ArraySize(pLoop->aLTermSpace)==4 ); |
- if( !IsUniqueIndex(pIdx) |
- || pIdx->pPartIdxWhere!=0 |
- || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) |
- ) continue; |
- for(j=0; j<pIdx->nKeyCol; j++){ |
- pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx); |
- if( pTerm==0 ) break; |
- pLoop->aLTerm[j] = pTerm; |
- } |
- if( j!=pIdx->nKeyCol ) continue; |
- pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; |
- if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ |
- pLoop->wsFlags |= WHERE_IDX_ONLY; |
- } |
- pLoop->nLTerm = j; |
- pLoop->u.btree.nEq = j; |
- pLoop->u.btree.pIndex = pIdx; |
- /* TUNING: Cost of a unique index lookup is 15 */ |
- pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ |
- break; |
- } |
- } |
- if( pLoop->wsFlags ){ |
- pLoop->nOut = (LogEst)1; |
- pWInfo->a[0].pWLoop = pLoop; |
- pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur); |
- pWInfo->a[0].iTabCur = iCur; |
- pWInfo->nRowOut = 1; |
- if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; |
- if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ |
- pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
- } |
-#ifdef SQLITE_DEBUG |
- pLoop->cId = '0'; |
-#endif |
- return 1; |
- } |
- return 0; |
-} |
- |
-/* |
-** Generate the beginning of the loop used for WHERE clause processing. |
-** The return value is a pointer to an opaque structure that contains |
-** information needed to terminate the loop. Later, the calling routine |
-** should invoke sqlite3WhereEnd() with the return value of this function |
-** in order to complete the WHERE clause processing. |
-** |
-** If an error occurs, this routine returns NULL. |
-** |
-** The basic idea is to do a nested loop, one loop for each table in |
-** the FROM clause of a select. (INSERT and UPDATE statements are the |
-** same as a SELECT with only a single table in the FROM clause.) For |
-** example, if the SQL is this: |
-** |
-** SELECT * FROM t1, t2, t3 WHERE ...; |
-** |
-** Then the code generated is conceptually like the following: |
-** |
-** foreach row1 in t1 do \ Code generated |
-** foreach row2 in t2 do |-- by sqlite3WhereBegin() |
-** foreach row3 in t3 do / |
-** ... |
-** end \ Code generated |
-** end |-- by sqlite3WhereEnd() |
-** end / |
-** |
-** Note that the loops might not be nested in the order in which they |
-** appear in the FROM clause if a different order is better able to make |
-** use of indices. Note also that when the IN operator appears in |
-** the WHERE clause, it might result in additional nested loops for |
-** scanning through all values on the right-hand side of the IN. |
-** |
-** There are Btree cursors associated with each table. t1 uses cursor |
-** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
-** And so forth. This routine generates code to open those VDBE cursors |
-** and sqlite3WhereEnd() generates the code to close them. |
-** |
-** The code that sqlite3WhereBegin() generates leaves the cursors named |
-** in pTabList pointing at their appropriate entries. The [...] code |
-** can use OP_Column and OP_Rowid opcodes on these cursors to extract |
-** data from the various tables of the loop. |
-** |
-** If the WHERE clause is empty, the foreach loops must each scan their |
-** entire tables. Thus a three-way join is an O(N^3) operation. But if |
-** the tables have indices and there are terms in the WHERE clause that |
-** refer to those indices, a complete table scan can be avoided and the |
-** code will run much faster. Most of the work of this routine is checking |
-** to see if there are indices that can be used to speed up the loop. |
-** |
-** Terms of the WHERE clause are also used to limit which rows actually |
-** make it to the "..." in the middle of the loop. After each "foreach", |
-** terms of the WHERE clause that use only terms in that loop and outer |
-** loops are evaluated and if false a jump is made around all subsequent |
-** inner loops (or around the "..." if the test occurs within the inner- |
-** most loop) |
-** |
-** OUTER JOINS |
-** |
-** An outer join of tables t1 and t2 is conceptally coded as follows: |
-** |
-** foreach row1 in t1 do |
-** flag = 0 |
-** foreach row2 in t2 do |
-** start: |
-** ... |
-** flag = 1 |
-** end |
-** if flag==0 then |
-** move the row2 cursor to a null row |
-** goto start |
-** fi |
-** end |
-** |
-** ORDER BY CLAUSE PROCESSING |
-** |
-** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause |
-** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement |
-** if there is one. If there is no ORDER BY clause or if this routine |
-** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. |
-** |
-** The iIdxCur parameter is the cursor number of an index. If |
-** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index |
-** to use for OR clause processing. The WHERE clause should use this |
-** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is |
-** the first cursor in an array of cursors for all indices. iIdxCur should |
-** be used to compute the appropriate cursor depending on which index is |
-** used. |
-*/ |
-WhereInfo *sqlite3WhereBegin( |
- Parse *pParse, /* The parser context */ |
- SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ |
- Expr *pWhere, /* The WHERE clause */ |
- ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ |
- ExprList *pResultSet, /* Result set of the query */ |
- u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ |
- int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ |
-){ |
- int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ |
- int nTabList; /* Number of elements in pTabList */ |
- WhereInfo *pWInfo; /* Will become the return value of this function */ |
- Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
- Bitmask notReady; /* Cursors that are not yet positioned */ |
- WhereLoopBuilder sWLB; /* The WhereLoop builder */ |
- WhereMaskSet *pMaskSet; /* The expression mask set */ |
- WhereLevel *pLevel; /* A single level in pWInfo->a[] */ |
- WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ |
- int ii; /* Loop counter */ |
- sqlite3 *db; /* Database connection */ |
- int rc; /* Return code */ |
- |
- |
- /* Variable initialization */ |
- db = pParse->db; |
- memset(&sWLB, 0, sizeof(sWLB)); |
- |
- /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ |
- testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); |
- if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; |
- sWLB.pOrderBy = pOrderBy; |
- |
- /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via |
- ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ |
- if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ |
- wctrlFlags &= ~WHERE_WANT_DISTINCT; |
- } |
- |
- /* The number of tables in the FROM clause is limited by the number of |
- ** bits in a Bitmask |
- */ |
- testcase( pTabList->nSrc==BMS ); |
- if( pTabList->nSrc>BMS ){ |
- sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
- return 0; |
- } |
- |
- /* This function normally generates a nested loop for all tables in |
- ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should |
- ** only generate code for the first table in pTabList and assume that |
- ** any cursors associated with subsequent tables are uninitialized. |
- */ |
- nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; |
- |
- /* Allocate and initialize the WhereInfo structure that will become the |
- ** return value. A single allocation is used to store the WhereInfo |
- ** struct, the contents of WhereInfo.a[], the WhereClause structure |
- ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte |
- ** field (type Bitmask) it must be aligned on an 8-byte boundary on |
- ** some architectures. Hence the ROUND8() below. |
- */ |
- nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); |
- pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); |
- if( db->mallocFailed ){ |
- sqlite3DbFree(db, pWInfo); |
- pWInfo = 0; |
- goto whereBeginError; |
- } |
- pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; |
- pWInfo->nLevel = nTabList; |
- pWInfo->pParse = pParse; |
- pWInfo->pTabList = pTabList; |
- pWInfo->pOrderBy = pOrderBy; |
- pWInfo->pResultSet = pResultSet; |
- pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); |
- pWInfo->wctrlFlags = wctrlFlags; |
- pWInfo->savedNQueryLoop = pParse->nQueryLoop; |
- pMaskSet = &pWInfo->sMaskSet; |
- sWLB.pWInfo = pWInfo; |
- sWLB.pWC = &pWInfo->sWC; |
- sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); |
- assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); |
- whereLoopInit(sWLB.pNew); |
-#ifdef SQLITE_DEBUG |
- sWLB.pNew->cId = '*'; |
-#endif |
- |
- /* Split the WHERE clause into separate subexpressions where each |
- ** subexpression is separated by an AND operator. |
- */ |
- initMaskSet(pMaskSet); |
- whereClauseInit(&pWInfo->sWC, pWInfo); |
- whereSplit(&pWInfo->sWC, pWhere, TK_AND); |
- |
- /* Special case: a WHERE clause that is constant. Evaluate the |
- ** expression and either jump over all of the code or fall thru. |
- */ |
- for(ii=0; ii<sWLB.pWC->nTerm; ii++){ |
- if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ |
- sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, |
- SQLITE_JUMPIFNULL); |
- sWLB.pWC->a[ii].wtFlags |= TERM_CODED; |
- } |
- } |
- |
- /* Special case: No FROM clause |
- */ |
- if( nTabList==0 ){ |
- if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; |
- if( wctrlFlags & WHERE_WANT_DISTINCT ){ |
- pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
- } |
- } |
- |
- /* Assign a bit from the bitmask to every term in the FROM clause. |
- ** |
- ** When assigning bitmask values to FROM clause cursors, it must be |
- ** the case that if X is the bitmask for the N-th FROM clause term then |
- ** the bitmask for all FROM clause terms to the left of the N-th term |
- ** is (X-1). An expression from the ON clause of a LEFT JOIN can use |
- ** its Expr.iRightJoinTable value to find the bitmask of the right table |
- ** of the join. Subtracting one from the right table bitmask gives a |
- ** bitmask for all tables to the left of the join. Knowing the bitmask |
- ** for all tables to the left of a left join is important. Ticket #3015. |
- ** |
- ** Note that bitmasks are created for all pTabList->nSrc tables in |
- ** pTabList, not just the first nTabList tables. nTabList is normally |
- ** equal to pTabList->nSrc but might be shortened to 1 if the |
- ** WHERE_ONETABLE_ONLY flag is set. |
- */ |
- for(ii=0; ii<pTabList->nSrc; ii++){ |
- createMask(pMaskSet, pTabList->a[ii].iCursor); |
- } |
-#ifndef NDEBUG |
- { |
- Bitmask toTheLeft = 0; |
- for(ii=0; ii<pTabList->nSrc; ii++){ |
- Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor); |
- assert( (m-1)==toTheLeft ); |
- toTheLeft |= m; |
- } |
- } |
-#endif |
- |
- /* Analyze all of the subexpressions. Note that exprAnalyze() might |
- ** add new virtual terms onto the end of the WHERE clause. We do not |
- ** want to analyze these virtual terms, so start analyzing at the end |
- ** and work forward so that the added virtual terms are never processed. |
- */ |
- exprAnalyzeAll(pTabList, &pWInfo->sWC); |
- if( db->mallocFailed ){ |
- goto whereBeginError; |
- } |
- |
- if( wctrlFlags & WHERE_WANT_DISTINCT ){ |
- if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ |
- /* The DISTINCT marking is pointless. Ignore it. */ |
- pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
- }else if( pOrderBy==0 ){ |
- /* Try to ORDER BY the result set to make distinct processing easier */ |
- pWInfo->wctrlFlags |= WHERE_DISTINCTBY; |
- pWInfo->pOrderBy = pResultSet; |
- } |
- } |
- |
- /* Construct the WhereLoop objects */ |
- WHERETRACE(0xffff,("*** Optimizer Start ***\n")); |
-#if defined(WHERETRACE_ENABLED) |
- /* Display all terms of the WHERE clause */ |
- if( sqlite3WhereTrace & 0x100 ){ |
- int i; |
- for(i=0; i<sWLB.pWC->nTerm; i++){ |
- whereTermPrint(&sWLB.pWC->a[i], i); |
- } |
- } |
-#endif |
- |
- if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ |
- rc = whereLoopAddAll(&sWLB); |
- if( rc ) goto whereBeginError; |
- |
- /* Display all of the WhereLoop objects if wheretrace is enabled */ |
-#ifdef WHERETRACE_ENABLED /* !=0 */ |
- if( sqlite3WhereTrace ){ |
- WhereLoop *p; |
- int i; |
- static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" |
- "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; |
- for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ |
- p->cId = zLabel[i%sizeof(zLabel)]; |
- whereLoopPrint(p, sWLB.pWC); |
- } |
- } |
-#endif |
- |
- wherePathSolver(pWInfo, 0); |
- if( db->mallocFailed ) goto whereBeginError; |
- if( pWInfo->pOrderBy ){ |
- wherePathSolver(pWInfo, pWInfo->nRowOut+1); |
- if( db->mallocFailed ) goto whereBeginError; |
- } |
- } |
- if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ |
- pWInfo->revMask = (Bitmask)(-1); |
- } |
- if( pParse->nErr || NEVER(db->mallocFailed) ){ |
- goto whereBeginError; |
- } |
-#ifdef WHERETRACE_ENABLED /* !=0 */ |
- if( sqlite3WhereTrace ){ |
- int ii; |
- sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); |
- if( pWInfo->nOBSat>0 ){ |
- sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); |
- } |
- switch( pWInfo->eDistinct ){ |
- case WHERE_DISTINCT_UNIQUE: { |
- sqlite3DebugPrintf(" DISTINCT=unique"); |
- break; |
- } |
- case WHERE_DISTINCT_ORDERED: { |
- sqlite3DebugPrintf(" DISTINCT=ordered"); |
- break; |
- } |
- case WHERE_DISTINCT_UNORDERED: { |
- sqlite3DebugPrintf(" DISTINCT=unordered"); |
- break; |
- } |
- } |
- sqlite3DebugPrintf("\n"); |
- for(ii=0; ii<pWInfo->nLevel; ii++){ |
- whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); |
- } |
- } |
-#endif |
- /* Attempt to omit tables from the join that do not effect the result */ |
- if( pWInfo->nLevel>=2 |
- && pResultSet!=0 |
- && OptimizationEnabled(db, SQLITE_OmitNoopJoin) |
- ){ |
- Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet); |
- if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy); |
- while( pWInfo->nLevel>=2 ){ |
- WhereTerm *pTerm, *pEnd; |
- pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; |
- if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break; |
- if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 |
- && (pLoop->wsFlags & WHERE_ONEROW)==0 |
- ){ |
- break; |
- } |
- if( (tabUsed & pLoop->maskSelf)!=0 ) break; |
- pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; |
- for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ |
- if( (pTerm->prereqAll & pLoop->maskSelf)!=0 |
- && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) |
- ){ |
- break; |
- } |
- } |
- if( pTerm<pEnd ) break; |
- WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); |
- pWInfo->nLevel--; |
- nTabList--; |
- } |
- } |
- WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); |
- pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; |
- |
- /* If the caller is an UPDATE or DELETE statement that is requesting |
- ** to use a one-pass algorithm, determine if this is appropriate. |
- ** The one-pass algorithm only works if the WHERE clause constrains |
- ** the statement to update a single row. |
- */ |
- assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); |
- if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 |
- && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ |
- pWInfo->okOnePass = 1; |
- if( HasRowid(pTabList->a[0].pTab) ){ |
- pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; |
- } |
- } |
- |
- /* Open all tables in the pTabList and any indices selected for |
- ** searching those tables. |
- */ |
- notReady = ~(Bitmask)0; |
- for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ |
- Table *pTab; /* Table to open */ |
- int iDb; /* Index of database containing table/index */ |
- struct SrcList_item *pTabItem; |
- |
- pTabItem = &pTabList->a[pLevel->iFrom]; |
- pTab = pTabItem->pTab; |
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
- pLoop = pLevel->pWLoop; |
- if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ |
- /* Do nothing */ |
- }else |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
- const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
- int iCur = pTabItem->iCursor; |
- sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); |
- }else if( IsVirtual(pTab) ){ |
- /* noop */ |
- }else |
-#endif |
- if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 |
- && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ |
- int op = OP_OpenRead; |
- if( pWInfo->okOnePass ){ |
- op = OP_OpenWrite; |
- pWInfo->aiCurOnePass[0] = pTabItem->iCursor; |
- }; |
- sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); |
- assert( pTabItem->iCursor==pLevel->iTabCur ); |
- testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 ); |
- testcase( !pWInfo->okOnePass && pTab->nCol==BMS ); |
- if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){ |
- Bitmask b = pTabItem->colUsed; |
- int n = 0; |
- for(; b; b=b>>1, n++){} |
- sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, |
- SQLITE_INT_TO_PTR(n), P4_INT32); |
- assert( n<=pTab->nCol ); |
- } |
- }else{ |
- sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
- } |
- if( pLoop->wsFlags & WHERE_INDEXED ){ |
- Index *pIx = pLoop->u.btree.pIndex; |
- int iIndexCur; |
- int op = OP_OpenRead; |
- /* iIdxCur is always set if to a positive value if ONEPASS is possible */ |
- assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); |
- if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) |
- && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 |
- ){ |
- /* This is one term of an OR-optimization using the PRIMARY KEY of a |
- ** WITHOUT ROWID table. No need for a separate index */ |
- iIndexCur = pLevel->iTabCur; |
- op = 0; |
- }else if( pWInfo->okOnePass ){ |
- Index *pJ = pTabItem->pTab->pIndex; |
- iIndexCur = iIdxCur; |
- assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); |
- while( ALWAYS(pJ) && pJ!=pIx ){ |
- iIndexCur++; |
- pJ = pJ->pNext; |
- } |
- op = OP_OpenWrite; |
- pWInfo->aiCurOnePass[1] = iIndexCur; |
- }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ |
- iIndexCur = iIdxCur; |
- if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; |
- }else{ |
- iIndexCur = pParse->nTab++; |
- } |
- pLevel->iIdxCur = iIndexCur; |
- assert( pIx->pSchema==pTab->pSchema ); |
- assert( iIndexCur>=0 ); |
- if( op ){ |
- sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); |
- sqlite3VdbeSetP4KeyInfo(pParse, pIx); |
- VdbeComment((v, "%s", pIx->zName)); |
- } |
- } |
- if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); |
- notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor); |
- } |
- pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
- if( db->mallocFailed ) goto whereBeginError; |
- |
- /* Generate the code to do the search. Each iteration of the for |
- ** loop below generates code for a single nested loop of the VM |
- ** program. |
- */ |
- notReady = ~(Bitmask)0; |
- for(ii=0; ii<nTabList; ii++){ |
- pLevel = &pWInfo->a[ii]; |
-#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
- if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
- constructAutomaticIndex(pParse, &pWInfo->sWC, |
- &pTabList->a[pLevel->iFrom], notReady, pLevel); |
- if( db->mallocFailed ) goto whereBeginError; |
- } |
-#endif |
- explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); |
- pLevel->addrBody = sqlite3VdbeCurrentAddr(v); |
- notReady = codeOneLoopStart(pWInfo, ii, notReady); |
- pWInfo->iContinue = pLevel->addrCont; |
- } |
- |
- /* Done. */ |
- VdbeModuleComment((v, "Begin WHERE-core")); |
- return pWInfo; |
- |
- /* Jump here if malloc fails */ |
-whereBeginError: |
- if( pWInfo ){ |
- pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
- whereInfoFree(db, pWInfo); |
- } |
- return 0; |
-} |
- |
-/* |
-** Generate the end of the WHERE loop. See comments on |
-** sqlite3WhereBegin() for additional information. |
-*/ |
-void sqlite3WhereEnd(WhereInfo *pWInfo){ |
- Parse *pParse = pWInfo->pParse; |
- Vdbe *v = pParse->pVdbe; |
- int i; |
- WhereLevel *pLevel; |
- WhereLoop *pLoop; |
- SrcList *pTabList = pWInfo->pTabList; |
- sqlite3 *db = pParse->db; |
- |
- /* Generate loop termination code. |
- */ |
- VdbeModuleComment((v, "End WHERE-core")); |
- sqlite3ExprCacheClear(pParse); |
- for(i=pWInfo->nLevel-1; i>=0; i--){ |
- int addr; |
- pLevel = &pWInfo->a[i]; |
- pLoop = pLevel->pWLoop; |
- sqlite3VdbeResolveLabel(v, pLevel->addrCont); |
- if( pLevel->op!=OP_Noop ){ |
- sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); |
- sqlite3VdbeChangeP5(v, pLevel->p5); |
- VdbeCoverage(v); |
- VdbeCoverageIf(v, pLevel->op==OP_Next); |
- VdbeCoverageIf(v, pLevel->op==OP_Prev); |
- VdbeCoverageIf(v, pLevel->op==OP_VNext); |
- } |
- if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ |
- struct InLoop *pIn; |
- int j; |
- sqlite3VdbeResolveLabel(v, pLevel->addrNxt); |
- for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ |
- sqlite3VdbeJumpHere(v, pIn->addrInTop+1); |
- sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); |
- VdbeCoverage(v); |
- VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); |
- VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); |
- sqlite3VdbeJumpHere(v, pIn->addrInTop-1); |
- } |
- sqlite3DbFree(db, pLevel->u.in.aInLoop); |
- } |
- sqlite3VdbeResolveLabel(v, pLevel->addrBrk); |
- if( pLevel->addrSkip ){ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); |
- VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); |
- sqlite3VdbeJumpHere(v, pLevel->addrSkip); |
- sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); |
- } |
- if( pLevel->iLeftJoin ){ |
- addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); |
- assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 |
- || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); |
- if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ |
- sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); |
- } |
- if( pLoop->wsFlags & WHERE_INDEXED ){ |
- sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); |
- } |
- if( pLevel->op==OP_Return ){ |
- sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); |
- }else{ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); |
- } |
- sqlite3VdbeJumpHere(v, addr); |
- } |
- VdbeModuleComment((v, "End WHERE-loop%d: %s", i, |
- pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); |
- } |
- |
- /* The "break" point is here, just past the end of the outer loop. |
- ** Set it. |
- */ |
- sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
- |
- assert( pWInfo->nLevel<=pTabList->nSrc ); |
- for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ |
- int k, last; |
- VdbeOp *pOp; |
- Index *pIdx = 0; |
- struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; |
- Table *pTab = pTabItem->pTab; |
- assert( pTab!=0 ); |
- pLoop = pLevel->pWLoop; |
- |
- /* For a co-routine, change all OP_Column references to the table of |
- ** the co-routine into OP_SCopy of result contained in a register. |
- ** OP_Rowid becomes OP_Null. |
- */ |
- if( pTabItem->viaCoroutine && !db->mallocFailed ){ |
- last = sqlite3VdbeCurrentAddr(v); |
- k = pLevel->addrBody; |
- pOp = sqlite3VdbeGetOp(v, k); |
- for(; k<last; k++, pOp++){ |
- if( pOp->p1!=pLevel->iTabCur ) continue; |
- if( pOp->opcode==OP_Column ){ |
- pOp->opcode = OP_Copy; |
- pOp->p1 = pOp->p2 + pTabItem->regResult; |
- pOp->p2 = pOp->p3; |
- pOp->p3 = 0; |
- }else if( pOp->opcode==OP_Rowid ){ |
- pOp->opcode = OP_Null; |
- pOp->p1 = 0; |
- pOp->p3 = 0; |
- } |
- } |
- continue; |
- } |
- |
- /* Close all of the cursors that were opened by sqlite3WhereBegin. |
- ** Except, do not close cursors that will be reused by the OR optimization |
- ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors |
- ** created for the ONEPASS optimization. |
- */ |
- if( (pTab->tabFlags & TF_Ephemeral)==0 |
- && pTab->pSelect==0 |
- && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 |
- ){ |
- int ws = pLoop->wsFlags; |
- if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ |
- sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); |
- } |
- if( (ws & WHERE_INDEXED)!=0 |
- && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 |
- && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] |
- ){ |
- sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); |
- } |
- } |
- |
- /* If this scan uses an index, make VDBE code substitutions to read data |
- ** from the index instead of from the table where possible. In some cases |
- ** this optimization prevents the table from ever being read, which can |
- ** yield a significant performance boost. |
- ** |
- ** Calls to the code generator in between sqlite3WhereBegin and |
- ** sqlite3WhereEnd will have created code that references the table |
- ** directly. This loop scans all that code looking for opcodes |
- ** that reference the table and converts them into opcodes that |
- ** reference the index. |
- */ |
- if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ |
- pIdx = pLoop->u.btree.pIndex; |
- }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
- pIdx = pLevel->u.pCovidx; |
- } |
- if( pIdx && !db->mallocFailed ){ |
- last = sqlite3VdbeCurrentAddr(v); |
- k = pLevel->addrBody; |
- pOp = sqlite3VdbeGetOp(v, k); |
- for(; k<last; k++, pOp++){ |
- if( pOp->p1!=pLevel->iTabCur ) continue; |
- if( pOp->opcode==OP_Column ){ |
- int x = pOp->p2; |
- assert( pIdx->pTable==pTab ); |
- if( !HasRowid(pTab) ){ |
- Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
- x = pPk->aiColumn[x]; |
- } |
- x = sqlite3ColumnOfIndex(pIdx, x); |
- if( x>=0 ){ |
- pOp->p2 = x; |
- pOp->p1 = pLevel->iIdxCur; |
- } |
- assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); |
- }else if( pOp->opcode==OP_Rowid ){ |
- pOp->p1 = pLevel->iIdxCur; |
- pOp->opcode = OP_IdxRowid; |
- } |
- } |
- } |
- } |
- |
- /* Final cleanup |
- */ |
- pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
- whereInfoFree(db, pWInfo); |
- return; |
-} |