OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 15 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This module contains C code that generates VDBE code used to process | |
13 ** the WHERE clause of SQL statements. This module is responsible for | |
14 ** generating the code that loops through a table looking for applicable | |
15 ** rows. Indices are selected and used to speed the search when doing | |
16 ** so is applicable. Because this module is responsible for selecting | |
17 ** indices, you might also think of this module as the "query optimizer". | |
18 */ | |
19 #include "sqliteInt.h" | |
20 #include "whereInt.h" | |
21 | |
22 /* | |
23 ** Return the estimated number of output rows from a WHERE clause | |
24 */ | |
25 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ | |
26 return sqlite3LogEstToInt(pWInfo->nRowOut); | |
27 } | |
28 | |
29 /* | |
30 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this | |
31 ** WHERE clause returns outputs for DISTINCT processing. | |
32 */ | |
33 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ | |
34 return pWInfo->eDistinct; | |
35 } | |
36 | |
37 /* | |
38 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. | |
39 ** Return FALSE if the output needs to be sorted. | |
40 */ | |
41 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ | |
42 return pWInfo->nOBSat; | |
43 } | |
44 | |
45 /* | |
46 ** Return the VDBE address or label to jump to in order to continue | |
47 ** immediately with the next row of a WHERE clause. | |
48 */ | |
49 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ | |
50 assert( pWInfo->iContinue!=0 ); | |
51 return pWInfo->iContinue; | |
52 } | |
53 | |
54 /* | |
55 ** Return the VDBE address or label to jump to in order to break | |
56 ** out of a WHERE loop. | |
57 */ | |
58 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ | |
59 return pWInfo->iBreak; | |
60 } | |
61 | |
62 /* | |
63 ** Return TRUE if an UPDATE or DELETE statement can operate directly on | |
64 ** the rowids returned by a WHERE clause. Return FALSE if doing an | |
65 ** UPDATE or DELETE might change subsequent WHERE clause results. | |
66 ** | |
67 ** If the ONEPASS optimization is used (if this routine returns true) | |
68 ** then also write the indices of open cursors used by ONEPASS | |
69 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data | |
70 ** table and iaCur[1] gets the cursor used by an auxiliary index. | |
71 ** Either value may be -1, indicating that cursor is not used. | |
72 ** Any cursors returned will have been opened for writing. | |
73 ** | |
74 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is | |
75 ** unable to use the ONEPASS optimization. | |
76 */ | |
77 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ | |
78 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); | |
79 return pWInfo->okOnePass; | |
80 } | |
81 | |
82 /* | |
83 ** Move the content of pSrc into pDest | |
84 */ | |
85 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ | |
86 pDest->n = pSrc->n; | |
87 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); | |
88 } | |
89 | |
90 /* | |
91 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. | |
92 ** | |
93 ** The new entry might overwrite an existing entry, or it might be | |
94 ** appended, or it might be discarded. Do whatever is the right thing | |
95 ** so that pSet keeps the N_OR_COST best entries seen so far. | |
96 */ | |
97 static int whereOrInsert( | |
98 WhereOrSet *pSet, /* The WhereOrSet to be updated */ | |
99 Bitmask prereq, /* Prerequisites of the new entry */ | |
100 LogEst rRun, /* Run-cost of the new entry */ | |
101 LogEst nOut /* Number of outputs for the new entry */ | |
102 ){ | |
103 u16 i; | |
104 WhereOrCost *p; | |
105 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ | |
106 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ | |
107 goto whereOrInsert_done; | |
108 } | |
109 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ | |
110 return 0; | |
111 } | |
112 } | |
113 if( pSet->n<N_OR_COST ){ | |
114 p = &pSet->a[pSet->n++]; | |
115 p->nOut = nOut; | |
116 }else{ | |
117 p = pSet->a; | |
118 for(i=1; i<pSet->n; i++){ | |
119 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; | |
120 } | |
121 if( p->rRun<=rRun ) return 0; | |
122 } | |
123 whereOrInsert_done: | |
124 p->prereq = prereq; | |
125 p->rRun = rRun; | |
126 if( p->nOut>nOut ) p->nOut = nOut; | |
127 return 1; | |
128 } | |
129 | |
130 /* | |
131 ** Initialize a preallocated WhereClause structure. | |
132 */ | |
133 static void whereClauseInit( | |
134 WhereClause *pWC, /* The WhereClause to be initialized */ | |
135 WhereInfo *pWInfo /* The WHERE processing context */ | |
136 ){ | |
137 pWC->pWInfo = pWInfo; | |
138 pWC->pOuter = 0; | |
139 pWC->nTerm = 0; | |
140 pWC->nSlot = ArraySize(pWC->aStatic); | |
141 pWC->a = pWC->aStatic; | |
142 } | |
143 | |
144 /* Forward reference */ | |
145 static void whereClauseClear(WhereClause*); | |
146 | |
147 /* | |
148 ** Deallocate all memory associated with a WhereOrInfo object. | |
149 */ | |
150 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ | |
151 whereClauseClear(&p->wc); | |
152 sqlite3DbFree(db, p); | |
153 } | |
154 | |
155 /* | |
156 ** Deallocate all memory associated with a WhereAndInfo object. | |
157 */ | |
158 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ | |
159 whereClauseClear(&p->wc); | |
160 sqlite3DbFree(db, p); | |
161 } | |
162 | |
163 /* | |
164 ** Deallocate a WhereClause structure. The WhereClause structure | |
165 ** itself is not freed. This routine is the inverse of whereClauseInit(). | |
166 */ | |
167 static void whereClauseClear(WhereClause *pWC){ | |
168 int i; | |
169 WhereTerm *a; | |
170 sqlite3 *db = pWC->pWInfo->pParse->db; | |
171 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ | |
172 if( a->wtFlags & TERM_DYNAMIC ){ | |
173 sqlite3ExprDelete(db, a->pExpr); | |
174 } | |
175 if( a->wtFlags & TERM_ORINFO ){ | |
176 whereOrInfoDelete(db, a->u.pOrInfo); | |
177 }else if( a->wtFlags & TERM_ANDINFO ){ | |
178 whereAndInfoDelete(db, a->u.pAndInfo); | |
179 } | |
180 } | |
181 if( pWC->a!=pWC->aStatic ){ | |
182 sqlite3DbFree(db, pWC->a); | |
183 } | |
184 } | |
185 | |
186 /* | |
187 ** Add a single new WhereTerm entry to the WhereClause object pWC. | |
188 ** The new WhereTerm object is constructed from Expr p and with wtFlags. | |
189 ** The index in pWC->a[] of the new WhereTerm is returned on success. | |
190 ** 0 is returned if the new WhereTerm could not be added due to a memory | |
191 ** allocation error. The memory allocation failure will be recorded in | |
192 ** the db->mallocFailed flag so that higher-level functions can detect it. | |
193 ** | |
194 ** This routine will increase the size of the pWC->a[] array as necessary. | |
195 ** | |
196 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility | |
197 ** for freeing the expression p is assumed by the WhereClause object pWC. | |
198 ** This is true even if this routine fails to allocate a new WhereTerm. | |
199 ** | |
200 ** WARNING: This routine might reallocate the space used to store | |
201 ** WhereTerms. All pointers to WhereTerms should be invalidated after | |
202 ** calling this routine. Such pointers may be reinitialized by referencing | |
203 ** the pWC->a[] array. | |
204 */ | |
205 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ | |
206 WhereTerm *pTerm; | |
207 int idx; | |
208 testcase( wtFlags & TERM_VIRTUAL ); | |
209 if( pWC->nTerm>=pWC->nSlot ){ | |
210 WhereTerm *pOld = pWC->a; | |
211 sqlite3 *db = pWC->pWInfo->pParse->db; | |
212 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); | |
213 if( pWC->a==0 ){ | |
214 if( wtFlags & TERM_DYNAMIC ){ | |
215 sqlite3ExprDelete(db, p); | |
216 } | |
217 pWC->a = pOld; | |
218 return 0; | |
219 } | |
220 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); | |
221 if( pOld!=pWC->aStatic ){ | |
222 sqlite3DbFree(db, pOld); | |
223 } | |
224 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); | |
225 } | |
226 pTerm = &pWC->a[idx = pWC->nTerm++]; | |
227 if( p && ExprHasProperty(p, EP_Unlikely) ){ | |
228 pTerm->truthProb = sqlite3LogEst(p->iTable) - 99; | |
229 }else{ | |
230 pTerm->truthProb = 1; | |
231 } | |
232 pTerm->pExpr = sqlite3ExprSkipCollate(p); | |
233 pTerm->wtFlags = wtFlags; | |
234 pTerm->pWC = pWC; | |
235 pTerm->iParent = -1; | |
236 return idx; | |
237 } | |
238 | |
239 /* | |
240 ** This routine identifies subexpressions in the WHERE clause where | |
241 ** each subexpression is separated by the AND operator or some other | |
242 ** operator specified in the op parameter. The WhereClause structure | |
243 ** is filled with pointers to subexpressions. For example: | |
244 ** | |
245 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) | |
246 ** \________/ \_______________/ \________________/ | |
247 ** slot[0] slot[1] slot[2] | |
248 ** | |
249 ** The original WHERE clause in pExpr is unaltered. All this routine | |
250 ** does is make slot[] entries point to substructure within pExpr. | |
251 ** | |
252 ** In the previous sentence and in the diagram, "slot[]" refers to | |
253 ** the WhereClause.a[] array. The slot[] array grows as needed to contain | |
254 ** all terms of the WHERE clause. | |
255 */ | |
256 static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ | |
257 pWC->op = op; | |
258 if( pExpr==0 ) return; | |
259 if( pExpr->op!=op ){ | |
260 whereClauseInsert(pWC, pExpr, 0); | |
261 }else{ | |
262 whereSplit(pWC, pExpr->pLeft, op); | |
263 whereSplit(pWC, pExpr->pRight, op); | |
264 } | |
265 } | |
266 | |
267 /* | |
268 ** Initialize a WhereMaskSet object | |
269 */ | |
270 #define initMaskSet(P) (P)->n=0 | |
271 | |
272 /* | |
273 ** Return the bitmask for the given cursor number. Return 0 if | |
274 ** iCursor is not in the set. | |
275 */ | |
276 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ | |
277 int i; | |
278 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); | |
279 for(i=0; i<pMaskSet->n; i++){ | |
280 if( pMaskSet->ix[i]==iCursor ){ | |
281 return MASKBIT(i); | |
282 } | |
283 } | |
284 return 0; | |
285 } | |
286 | |
287 /* | |
288 ** Create a new mask for cursor iCursor. | |
289 ** | |
290 ** There is one cursor per table in the FROM clause. The number of | |
291 ** tables in the FROM clause is limited by a test early in the | |
292 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] | |
293 ** array will never overflow. | |
294 */ | |
295 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ | |
296 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); | |
297 pMaskSet->ix[pMaskSet->n++] = iCursor; | |
298 } | |
299 | |
300 /* | |
301 ** These routines walk (recursively) an expression tree and generate | |
302 ** a bitmask indicating which tables are used in that expression | |
303 ** tree. | |
304 */ | |
305 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); | |
306 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); | |
307 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ | |
308 Bitmask mask = 0; | |
309 if( p==0 ) return 0; | |
310 if( p->op==TK_COLUMN ){ | |
311 mask = getMask(pMaskSet, p->iTable); | |
312 return mask; | |
313 } | |
314 mask = exprTableUsage(pMaskSet, p->pRight); | |
315 mask |= exprTableUsage(pMaskSet, p->pLeft); | |
316 if( ExprHasProperty(p, EP_xIsSelect) ){ | |
317 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); | |
318 }else{ | |
319 mask |= exprListTableUsage(pMaskSet, p->x.pList); | |
320 } | |
321 return mask; | |
322 } | |
323 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ | |
324 int i; | |
325 Bitmask mask = 0; | |
326 if( pList ){ | |
327 for(i=0; i<pList->nExpr; i++){ | |
328 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); | |
329 } | |
330 } | |
331 return mask; | |
332 } | |
333 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ | |
334 Bitmask mask = 0; | |
335 while( pS ){ | |
336 SrcList *pSrc = pS->pSrc; | |
337 mask |= exprListTableUsage(pMaskSet, pS->pEList); | |
338 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); | |
339 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); | |
340 mask |= exprTableUsage(pMaskSet, pS->pWhere); | |
341 mask |= exprTableUsage(pMaskSet, pS->pHaving); | |
342 if( ALWAYS(pSrc!=0) ){ | |
343 int i; | |
344 for(i=0; i<pSrc->nSrc; i++){ | |
345 mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect); | |
346 mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn); | |
347 } | |
348 } | |
349 pS = pS->pPrior; | |
350 } | |
351 return mask; | |
352 } | |
353 | |
354 /* | |
355 ** Return TRUE if the given operator is one of the operators that is | |
356 ** allowed for an indexable WHERE clause term. The allowed operators are | |
357 ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" | |
358 */ | |
359 static int allowedOp(int op){ | |
360 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); | |
361 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); | |
362 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); | |
363 assert( TK_GE==TK_EQ+4 ); | |
364 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; | |
365 } | |
366 | |
367 /* | |
368 ** Commute a comparison operator. Expressions of the form "X op Y" | |
369 ** are converted into "Y op X". | |
370 ** | |
371 ** If left/right precedence rules come into play when determining the | |
372 ** collating sequence, then COLLATE operators are adjusted to ensure | |
373 ** that the collating sequence does not change. For example: | |
374 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on | |
375 ** the left hand side of a comparison overrides any collation sequence | |
376 ** attached to the right. For the same reason the EP_Collate flag | |
377 ** is not commuted. | |
378 */ | |
379 static void exprCommute(Parse *pParse, Expr *pExpr){ | |
380 u16 expRight = (pExpr->pRight->flags & EP_Collate); | |
381 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); | |
382 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); | |
383 if( expRight==expLeft ){ | |
384 /* Either X and Y both have COLLATE operator or neither do */ | |
385 if( expRight ){ | |
386 /* Both X and Y have COLLATE operators. Make sure X is always | |
387 ** used by clearing the EP_Collate flag from Y. */ | |
388 pExpr->pRight->flags &= ~EP_Collate; | |
389 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ | |
390 /* Neither X nor Y have COLLATE operators, but X has a non-default | |
391 ** collating sequence. So add the EP_Collate marker on X to cause | |
392 ** it to be searched first. */ | |
393 pExpr->pLeft->flags |= EP_Collate; | |
394 } | |
395 } | |
396 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); | |
397 if( pExpr->op>=TK_GT ){ | |
398 assert( TK_LT==TK_GT+2 ); | |
399 assert( TK_GE==TK_LE+2 ); | |
400 assert( TK_GT>TK_EQ ); | |
401 assert( TK_GT<TK_LE ); | |
402 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); | |
403 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; | |
404 } | |
405 } | |
406 | |
407 /* | |
408 ** Translate from TK_xx operator to WO_xx bitmask. | |
409 */ | |
410 static u16 operatorMask(int op){ | |
411 u16 c; | |
412 assert( allowedOp(op) ); | |
413 if( op==TK_IN ){ | |
414 c = WO_IN; | |
415 }else if( op==TK_ISNULL ){ | |
416 c = WO_ISNULL; | |
417 }else{ | |
418 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); | |
419 c = (u16)(WO_EQ<<(op-TK_EQ)); | |
420 } | |
421 assert( op!=TK_ISNULL || c==WO_ISNULL ); | |
422 assert( op!=TK_IN || c==WO_IN ); | |
423 assert( op!=TK_EQ || c==WO_EQ ); | |
424 assert( op!=TK_LT || c==WO_LT ); | |
425 assert( op!=TK_LE || c==WO_LE ); | |
426 assert( op!=TK_GT || c==WO_GT ); | |
427 assert( op!=TK_GE || c==WO_GE ); | |
428 return c; | |
429 } | |
430 | |
431 /* | |
432 ** Advance to the next WhereTerm that matches according to the criteria | |
433 ** established when the pScan object was initialized by whereScanInit(). | |
434 ** Return NULL if there are no more matching WhereTerms. | |
435 */ | |
436 static WhereTerm *whereScanNext(WhereScan *pScan){ | |
437 int iCur; /* The cursor on the LHS of the term */ | |
438 int iColumn; /* The column on the LHS of the term. -1 for IPK */ | |
439 Expr *pX; /* An expression being tested */ | |
440 WhereClause *pWC; /* Shorthand for pScan->pWC */ | |
441 WhereTerm *pTerm; /* The term being tested */ | |
442 int k = pScan->k; /* Where to start scanning */ | |
443 | |
444 while( pScan->iEquiv<=pScan->nEquiv ){ | |
445 iCur = pScan->aEquiv[pScan->iEquiv-2]; | |
446 iColumn = pScan->aEquiv[pScan->iEquiv-1]; | |
447 while( (pWC = pScan->pWC)!=0 ){ | |
448 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ | |
449 if( pTerm->leftCursor==iCur | |
450 && pTerm->u.leftColumn==iColumn | |
451 && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) | |
452 ){ | |
453 if( (pTerm->eOperator & WO_EQUIV)!=0 | |
454 && pScan->nEquiv<ArraySize(pScan->aEquiv) | |
455 ){ | |
456 int j; | |
457 pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); | |
458 assert( pX->op==TK_COLUMN ); | |
459 for(j=0; j<pScan->nEquiv; j+=2){ | |
460 if( pScan->aEquiv[j]==pX->iTable | |
461 && pScan->aEquiv[j+1]==pX->iColumn ){ | |
462 break; | |
463 } | |
464 } | |
465 if( j==pScan->nEquiv ){ | |
466 pScan->aEquiv[j] = pX->iTable; | |
467 pScan->aEquiv[j+1] = pX->iColumn; | |
468 pScan->nEquiv += 2; | |
469 } | |
470 } | |
471 if( (pTerm->eOperator & pScan->opMask)!=0 ){ | |
472 /* Verify the affinity and collating sequence match */ | |
473 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ | |
474 CollSeq *pColl; | |
475 Parse *pParse = pWC->pWInfo->pParse; | |
476 pX = pTerm->pExpr; | |
477 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ | |
478 continue; | |
479 } | |
480 assert(pX->pLeft); | |
481 pColl = sqlite3BinaryCompareCollSeq(pParse, | |
482 pX->pLeft, pX->pRight); | |
483 if( pColl==0 ) pColl = pParse->db->pDfltColl; | |
484 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ | |
485 continue; | |
486 } | |
487 } | |
488 if( (pTerm->eOperator & WO_EQ)!=0 | |
489 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN | |
490 && pX->iTable==pScan->aEquiv[0] | |
491 && pX->iColumn==pScan->aEquiv[1] | |
492 ){ | |
493 continue; | |
494 } | |
495 pScan->k = k+1; | |
496 return pTerm; | |
497 } | |
498 } | |
499 } | |
500 pScan->pWC = pScan->pWC->pOuter; | |
501 k = 0; | |
502 } | |
503 pScan->pWC = pScan->pOrigWC; | |
504 k = 0; | |
505 pScan->iEquiv += 2; | |
506 } | |
507 return 0; | |
508 } | |
509 | |
510 /* | |
511 ** Initialize a WHERE clause scanner object. Return a pointer to the | |
512 ** first match. Return NULL if there are no matches. | |
513 ** | |
514 ** The scanner will be searching the WHERE clause pWC. It will look | |
515 ** for terms of the form "X <op> <expr>" where X is column iColumn of table | |
516 ** iCur. The <op> must be one of the operators described by opMask. | |
517 ** | |
518 ** If the search is for X and the WHERE clause contains terms of the | |
519 ** form X=Y then this routine might also return terms of the form | |
520 ** "Y <op> <expr>". The number of levels of transitivity is limited, | |
521 ** but is enough to handle most commonly occurring SQL statements. | |
522 ** | |
523 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with | |
524 ** index pIdx. | |
525 */ | |
526 static WhereTerm *whereScanInit( | |
527 WhereScan *pScan, /* The WhereScan object being initialized */ | |
528 WhereClause *pWC, /* The WHERE clause to be scanned */ | |
529 int iCur, /* Cursor to scan for */ | |
530 int iColumn, /* Column to scan for */ | |
531 u32 opMask, /* Operator(s) to scan for */ | |
532 Index *pIdx /* Must be compatible with this index */ | |
533 ){ | |
534 int j; | |
535 | |
536 /* memset(pScan, 0, sizeof(*pScan)); */ | |
537 pScan->pOrigWC = pWC; | |
538 pScan->pWC = pWC; | |
539 if( pIdx && iColumn>=0 ){ | |
540 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; | |
541 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ | |
542 if( NEVER(j>pIdx->nColumn) ) return 0; | |
543 } | |
544 pScan->zCollName = pIdx->azColl[j]; | |
545 }else{ | |
546 pScan->idxaff = 0; | |
547 pScan->zCollName = 0; | |
548 } | |
549 pScan->opMask = opMask; | |
550 pScan->k = 0; | |
551 pScan->aEquiv[0] = iCur; | |
552 pScan->aEquiv[1] = iColumn; | |
553 pScan->nEquiv = 2; | |
554 pScan->iEquiv = 2; | |
555 return whereScanNext(pScan); | |
556 } | |
557 | |
558 /* | |
559 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" | |
560 ** where X is a reference to the iColumn of table iCur and <op> is one of | |
561 ** the WO_xx operator codes specified by the op parameter. | |
562 ** Return a pointer to the term. Return 0 if not found. | |
563 ** | |
564 ** The term returned might by Y=<expr> if there is another constraint in | |
565 ** the WHERE clause that specifies that X=Y. Any such constraints will be | |
566 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The | |
567 ** aEquiv[] array holds X and all its equivalents, with each SQL variable | |
568 ** taking up two slots in aEquiv[]. The first slot is for the cursor number | |
569 ** and the second is for the column number. There are 22 slots in aEquiv[] | |
570 ** so that means we can look for X plus up to 10 other equivalent values. | |
571 ** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 | |
572 ** and ... and A9=A10 and A10=<expr>. | |
573 ** | |
574 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" | |
575 ** then try for the one with no dependencies on <expr> - in other words where | |
576 ** <expr> is a constant expression of some kind. Only return entries of | |
577 ** the form "X <op> Y" where Y is a column in another table if no terms of | |
578 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS | |
579 ** exist, try to return a term that does not use WO_EQUIV. | |
580 */ | |
581 static WhereTerm *findTerm( | |
582 WhereClause *pWC, /* The WHERE clause to be searched */ | |
583 int iCur, /* Cursor number of LHS */ | |
584 int iColumn, /* Column number of LHS */ | |
585 Bitmask notReady, /* RHS must not overlap with this mask */ | |
586 u32 op, /* Mask of WO_xx values describing operator */ | |
587 Index *pIdx /* Must be compatible with this index, if not NULL */ | |
588 ){ | |
589 WhereTerm *pResult = 0; | |
590 WhereTerm *p; | |
591 WhereScan scan; | |
592 | |
593 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); | |
594 while( p ){ | |
595 if( (p->prereqRight & notReady)==0 ){ | |
596 if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){ | |
597 return p; | |
598 } | |
599 if( pResult==0 ) pResult = p; | |
600 } | |
601 p = whereScanNext(&scan); | |
602 } | |
603 return pResult; | |
604 } | |
605 | |
606 /* Forward reference */ | |
607 static void exprAnalyze(SrcList*, WhereClause*, int); | |
608 | |
609 /* | |
610 ** Call exprAnalyze on all terms in a WHERE clause. | |
611 */ | |
612 static void exprAnalyzeAll( | |
613 SrcList *pTabList, /* the FROM clause */ | |
614 WhereClause *pWC /* the WHERE clause to be analyzed */ | |
615 ){ | |
616 int i; | |
617 for(i=pWC->nTerm-1; i>=0; i--){ | |
618 exprAnalyze(pTabList, pWC, i); | |
619 } | |
620 } | |
621 | |
622 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION | |
623 /* | |
624 ** Check to see if the given expression is a LIKE or GLOB operator that | |
625 ** can be optimized using inequality constraints. Return TRUE if it is | |
626 ** so and false if not. | |
627 ** | |
628 ** In order for the operator to be optimizible, the RHS must be a string | |
629 ** literal that does not begin with a wildcard. | |
630 */ | |
631 static int isLikeOrGlob( | |
632 Parse *pParse, /* Parsing and code generating context */ | |
633 Expr *pExpr, /* Test this expression */ | |
634 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ | |
635 int *pisComplete, /* True if the only wildcard is % in the last character */ | |
636 int *pnoCase /* True if uppercase is equivalent to lowercase */ | |
637 ){ | |
638 const char *z = 0; /* String on RHS of LIKE operator */ | |
639 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ | |
640 ExprList *pList; /* List of operands to the LIKE operator */ | |
641 int c; /* One character in z[] */ | |
642 int cnt; /* Number of non-wildcard prefix characters */ | |
643 char wc[3]; /* Wildcard characters */ | |
644 sqlite3 *db = pParse->db; /* Database connection */ | |
645 sqlite3_value *pVal = 0; | |
646 int op; /* Opcode of pRight */ | |
647 | |
648 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ | |
649 return 0; | |
650 } | |
651 #ifdef SQLITE_EBCDIC | |
652 if( *pnoCase ) return 0; | |
653 #endif | |
654 pList = pExpr->x.pList; | |
655 pLeft = pList->a[1].pExpr; | |
656 if( pLeft->op!=TK_COLUMN | |
657 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT | |
658 || IsVirtual(pLeft->pTab) | |
659 ){ | |
660 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must | |
661 ** be the name of an indexed column with TEXT affinity. */ | |
662 return 0; | |
663 } | |
664 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ | |
665 | |
666 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); | |
667 op = pRight->op; | |
668 if( op==TK_VARIABLE ){ | |
669 Vdbe *pReprepare = pParse->pReprepare; | |
670 int iCol = pRight->iColumn; | |
671 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE); | |
672 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ | |
673 z = (char *)sqlite3_value_text(pVal); | |
674 } | |
675 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); | |
676 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); | |
677 }else if( op==TK_STRING ){ | |
678 z = pRight->u.zToken; | |
679 } | |
680 if( z ){ | |
681 cnt = 0; | |
682 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ | |
683 cnt++; | |
684 } | |
685 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ | |
686 Expr *pPrefix; | |
687 *pisComplete = c==wc[0] && z[cnt+1]==0; | |
688 pPrefix = sqlite3Expr(db, TK_STRING, z); | |
689 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; | |
690 *ppPrefix = pPrefix; | |
691 if( op==TK_VARIABLE ){ | |
692 Vdbe *v = pParse->pVdbe; | |
693 sqlite3VdbeSetVarmask(v, pRight->iColumn); | |
694 if( *pisComplete && pRight->u.zToken[1] ){ | |
695 /* If the rhs of the LIKE expression is a variable, and the current | |
696 ** value of the variable means there is no need to invoke the LIKE | |
697 ** function, then no OP_Variable will be added to the program. | |
698 ** This causes problems for the sqlite3_bind_parameter_name() | |
699 ** API. To work around them, add a dummy OP_Variable here. | |
700 */ | |
701 int r1 = sqlite3GetTempReg(pParse); | |
702 sqlite3ExprCodeTarget(pParse, pRight, r1); | |
703 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); | |
704 sqlite3ReleaseTempReg(pParse, r1); | |
705 } | |
706 } | |
707 }else{ | |
708 z = 0; | |
709 } | |
710 } | |
711 | |
712 sqlite3ValueFree(pVal); | |
713 return (z!=0); | |
714 } | |
715 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ | |
716 | |
717 | |
718 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
719 /* | |
720 ** Check to see if the given expression is of the form | |
721 ** | |
722 ** column MATCH expr | |
723 ** | |
724 ** If it is then return TRUE. If not, return FALSE. | |
725 */ | |
726 static int isMatchOfColumn( | |
727 Expr *pExpr /* Test this expression */ | |
728 ){ | |
729 ExprList *pList; | |
730 | |
731 if( pExpr->op!=TK_FUNCTION ){ | |
732 return 0; | |
733 } | |
734 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ | |
735 return 0; | |
736 } | |
737 pList = pExpr->x.pList; | |
738 if( pList->nExpr!=2 ){ | |
739 return 0; | |
740 } | |
741 if( pList->a[1].pExpr->op != TK_COLUMN ){ | |
742 return 0; | |
743 } | |
744 return 1; | |
745 } | |
746 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
747 | |
748 /* | |
749 ** If the pBase expression originated in the ON or USING clause of | |
750 ** a join, then transfer the appropriate markings over to derived. | |
751 */ | |
752 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ | |
753 if( pDerived ){ | |
754 pDerived->flags |= pBase->flags & EP_FromJoin; | |
755 pDerived->iRightJoinTable = pBase->iRightJoinTable; | |
756 } | |
757 } | |
758 | |
759 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) | |
760 /* | |
761 ** Analyze a term that consists of two or more OR-connected | |
762 ** subterms. So in: | |
763 ** | |
764 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) | |
765 ** ^^^^^^^^^^^^^^^^^^^^ | |
766 ** | |
767 ** This routine analyzes terms such as the middle term in the above example. | |
768 ** A WhereOrTerm object is computed and attached to the term under | |
769 ** analysis, regardless of the outcome of the analysis. Hence: | |
770 ** | |
771 ** WhereTerm.wtFlags |= TERM_ORINFO | |
772 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object | |
773 ** | |
774 ** The term being analyzed must have two or more of OR-connected subterms. | |
775 ** A single subterm might be a set of AND-connected sub-subterms. | |
776 ** Examples of terms under analysis: | |
777 ** | |
778 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 | |
779 ** (B) x=expr1 OR expr2=x OR x=expr3 | |
780 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) | |
781 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') | |
782 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) | |
783 ** | |
784 ** CASE 1: | |
785 ** | |
786 ** If all subterms are of the form T.C=expr for some single column of C and | |
787 ** a single table T (as shown in example B above) then create a new virtual | |
788 ** term that is an equivalent IN expression. In other words, if the term | |
789 ** being analyzed is: | |
790 ** | |
791 ** x = expr1 OR expr2 = x OR x = expr3 | |
792 ** | |
793 ** then create a new virtual term like this: | |
794 ** | |
795 ** x IN (expr1,expr2,expr3) | |
796 ** | |
797 ** CASE 2: | |
798 ** | |
799 ** If all subterms are indexable by a single table T, then set | |
800 ** | |
801 ** WhereTerm.eOperator = WO_OR | |
802 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T | |
803 ** | |
804 ** A subterm is "indexable" if it is of the form | |
805 ** "T.C <op> <expr>" where C is any column of table T and | |
806 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". | |
807 ** A subterm is also indexable if it is an AND of two or more | |
808 ** subsubterms at least one of which is indexable. Indexable AND | |
809 ** subterms have their eOperator set to WO_AND and they have | |
810 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. | |
811 ** | |
812 ** From another point of view, "indexable" means that the subterm could | |
813 ** potentially be used with an index if an appropriate index exists. | |
814 ** This analysis does not consider whether or not the index exists; that | |
815 ** is decided elsewhere. This analysis only looks at whether subterms | |
816 ** appropriate for indexing exist. | |
817 ** | |
818 ** All examples A through E above satisfy case 2. But if a term | |
819 ** also satisfies case 1 (such as B) we know that the optimizer will | |
820 ** always prefer case 1, so in that case we pretend that case 2 is not | |
821 ** satisfied. | |
822 ** | |
823 ** It might be the case that multiple tables are indexable. For example, | |
824 ** (E) above is indexable on tables P, Q, and R. | |
825 ** | |
826 ** Terms that satisfy case 2 are candidates for lookup by using | |
827 ** separate indices to find rowids for each subterm and composing | |
828 ** the union of all rowids using a RowSet object. This is similar | |
829 ** to "bitmap indices" in other database engines. | |
830 ** | |
831 ** OTHERWISE: | |
832 ** | |
833 ** If neither case 1 nor case 2 apply, then leave the eOperator set to | |
834 ** zero. This term is not useful for search. | |
835 */ | |
836 static void exprAnalyzeOrTerm( | |
837 SrcList *pSrc, /* the FROM clause */ | |
838 WhereClause *pWC, /* the complete WHERE clause */ | |
839 int idxTerm /* Index of the OR-term to be analyzed */ | |
840 ){ | |
841 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ | |
842 Parse *pParse = pWInfo->pParse; /* Parser context */ | |
843 sqlite3 *db = pParse->db; /* Database connection */ | |
844 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ | |
845 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ | |
846 int i; /* Loop counters */ | |
847 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ | |
848 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ | |
849 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ | |
850 Bitmask chngToIN; /* Tables that might satisfy case 1 */ | |
851 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ | |
852 | |
853 /* | |
854 ** Break the OR clause into its separate subterms. The subterms are | |
855 ** stored in a WhereClause structure containing within the WhereOrInfo | |
856 ** object that is attached to the original OR clause term. | |
857 */ | |
858 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); | |
859 assert( pExpr->op==TK_OR ); | |
860 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); | |
861 if( pOrInfo==0 ) return; | |
862 pTerm->wtFlags |= TERM_ORINFO; | |
863 pOrWc = &pOrInfo->wc; | |
864 whereClauseInit(pOrWc, pWInfo); | |
865 whereSplit(pOrWc, pExpr, TK_OR); | |
866 exprAnalyzeAll(pSrc, pOrWc); | |
867 if( db->mallocFailed ) return; | |
868 assert( pOrWc->nTerm>=2 ); | |
869 | |
870 /* | |
871 ** Compute the set of tables that might satisfy cases 1 or 2. | |
872 */ | |
873 indexable = ~(Bitmask)0; | |
874 chngToIN = ~(Bitmask)0; | |
875 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ | |
876 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ | |
877 WhereAndInfo *pAndInfo; | |
878 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); | |
879 chngToIN = 0; | |
880 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); | |
881 if( pAndInfo ){ | |
882 WhereClause *pAndWC; | |
883 WhereTerm *pAndTerm; | |
884 int j; | |
885 Bitmask b = 0; | |
886 pOrTerm->u.pAndInfo = pAndInfo; | |
887 pOrTerm->wtFlags |= TERM_ANDINFO; | |
888 pOrTerm->eOperator = WO_AND; | |
889 pAndWC = &pAndInfo->wc; | |
890 whereClauseInit(pAndWC, pWC->pWInfo); | |
891 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); | |
892 exprAnalyzeAll(pSrc, pAndWC); | |
893 pAndWC->pOuter = pWC; | |
894 testcase( db->mallocFailed ); | |
895 if( !db->mallocFailed ){ | |
896 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ | |
897 assert( pAndTerm->pExpr ); | |
898 if( allowedOp(pAndTerm->pExpr->op) ){ | |
899 b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); | |
900 } | |
901 } | |
902 } | |
903 indexable &= b; | |
904 } | |
905 }else if( pOrTerm->wtFlags & TERM_COPIED ){ | |
906 /* Skip this term for now. We revisit it when we process the | |
907 ** corresponding TERM_VIRTUAL term */ | |
908 }else{ | |
909 Bitmask b; | |
910 b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); | |
911 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ | |
912 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; | |
913 b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor); | |
914 } | |
915 indexable &= b; | |
916 if( (pOrTerm->eOperator & WO_EQ)==0 ){ | |
917 chngToIN = 0; | |
918 }else{ | |
919 chngToIN &= b; | |
920 } | |
921 } | |
922 } | |
923 | |
924 /* | |
925 ** Record the set of tables that satisfy case 2. The set might be | |
926 ** empty. | |
927 */ | |
928 pOrInfo->indexable = indexable; | |
929 pTerm->eOperator = indexable==0 ? 0 : WO_OR; | |
930 | |
931 /* | |
932 ** chngToIN holds a set of tables that *might* satisfy case 1. But | |
933 ** we have to do some additional checking to see if case 1 really | |
934 ** is satisfied. | |
935 ** | |
936 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means | |
937 ** that there is no possibility of transforming the OR clause into an | |
938 ** IN operator because one or more terms in the OR clause contain | |
939 ** something other than == on a column in the single table. The 1-bit | |
940 ** case means that every term of the OR clause is of the form | |
941 ** "table.column=expr" for some single table. The one bit that is set | |
942 ** will correspond to the common table. We still need to check to make | |
943 ** sure the same column is used on all terms. The 2-bit case is when | |
944 ** the all terms are of the form "table1.column=table2.column". It | |
945 ** might be possible to form an IN operator with either table1.column | |
946 ** or table2.column as the LHS if either is common to every term of | |
947 ** the OR clause. | |
948 ** | |
949 ** Note that terms of the form "table.column1=table.column2" (the | |
950 ** same table on both sizes of the ==) cannot be optimized. | |
951 */ | |
952 if( chngToIN ){ | |
953 int okToChngToIN = 0; /* True if the conversion to IN is valid */ | |
954 int iColumn = -1; /* Column index on lhs of IN operator */ | |
955 int iCursor = -1; /* Table cursor common to all terms */ | |
956 int j = 0; /* Loop counter */ | |
957 | |
958 /* Search for a table and column that appears on one side or the | |
959 ** other of the == operator in every subterm. That table and column | |
960 ** will be recorded in iCursor and iColumn. There might not be any | |
961 ** such table and column. Set okToChngToIN if an appropriate table | |
962 ** and column is found but leave okToChngToIN false if not found. | |
963 */ | |
964 for(j=0; j<2 && !okToChngToIN; j++){ | |
965 pOrTerm = pOrWc->a; | |
966 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ | |
967 assert( pOrTerm->eOperator & WO_EQ ); | |
968 pOrTerm->wtFlags &= ~TERM_OR_OK; | |
969 if( pOrTerm->leftCursor==iCursor ){ | |
970 /* This is the 2-bit case and we are on the second iteration and | |
971 ** current term is from the first iteration. So skip this term. */ | |
972 assert( j==1 ); | |
973 continue; | |
974 } | |
975 if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ | |
976 /* This term must be of the form t1.a==t2.b where t2 is in the | |
977 ** chngToIN set but t1 is not. This term will be either preceded | |
978 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term | |
979 ** and use its inversion. */ | |
980 testcase( pOrTerm->wtFlags & TERM_COPIED ); | |
981 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); | |
982 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); | |
983 continue; | |
984 } | |
985 iColumn = pOrTerm->u.leftColumn; | |
986 iCursor = pOrTerm->leftCursor; | |
987 break; | |
988 } | |
989 if( i<0 ){ | |
990 /* No candidate table+column was found. This can only occur | |
991 ** on the second iteration */ | |
992 assert( j==1 ); | |
993 assert( IsPowerOfTwo(chngToIN) ); | |
994 assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) ); | |
995 break; | |
996 } | |
997 testcase( j==1 ); | |
998 | |
999 /* We have found a candidate table and column. Check to see if that | |
1000 ** table and column is common to every term in the OR clause */ | |
1001 okToChngToIN = 1; | |
1002 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ | |
1003 assert( pOrTerm->eOperator & WO_EQ ); | |
1004 if( pOrTerm->leftCursor!=iCursor ){ | |
1005 pOrTerm->wtFlags &= ~TERM_OR_OK; | |
1006 }else if( pOrTerm->u.leftColumn!=iColumn ){ | |
1007 okToChngToIN = 0; | |
1008 }else{ | |
1009 int affLeft, affRight; | |
1010 /* If the right-hand side is also a column, then the affinities | |
1011 ** of both right and left sides must be such that no type | |
1012 ** conversions are required on the right. (Ticket #2249) | |
1013 */ | |
1014 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); | |
1015 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); | |
1016 if( affRight!=0 && affRight!=affLeft ){ | |
1017 okToChngToIN = 0; | |
1018 }else{ | |
1019 pOrTerm->wtFlags |= TERM_OR_OK; | |
1020 } | |
1021 } | |
1022 } | |
1023 } | |
1024 | |
1025 /* At this point, okToChngToIN is true if original pTerm satisfies | |
1026 ** case 1. In that case, construct a new virtual term that is | |
1027 ** pTerm converted into an IN operator. | |
1028 */ | |
1029 if( okToChngToIN ){ | |
1030 Expr *pDup; /* A transient duplicate expression */ | |
1031 ExprList *pList = 0; /* The RHS of the IN operator */ | |
1032 Expr *pLeft = 0; /* The LHS of the IN operator */ | |
1033 Expr *pNew; /* The complete IN operator */ | |
1034 | |
1035 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ | |
1036 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; | |
1037 assert( pOrTerm->eOperator & WO_EQ ); | |
1038 assert( pOrTerm->leftCursor==iCursor ); | |
1039 assert( pOrTerm->u.leftColumn==iColumn ); | |
1040 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); | |
1041 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); | |
1042 pLeft = pOrTerm->pExpr->pLeft; | |
1043 } | |
1044 assert( pLeft!=0 ); | |
1045 pDup = sqlite3ExprDup(db, pLeft, 0); | |
1046 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); | |
1047 if( pNew ){ | |
1048 int idxNew; | |
1049 transferJoinMarkings(pNew, pExpr); | |
1050 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); | |
1051 pNew->x.pList = pList; | |
1052 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); | |
1053 testcase( idxNew==0 ); | |
1054 exprAnalyze(pSrc, pWC, idxNew); | |
1055 pTerm = &pWC->a[idxTerm]; | |
1056 pWC->a[idxNew].iParent = idxTerm; | |
1057 pTerm->nChild = 1; | |
1058 }else{ | |
1059 sqlite3ExprListDelete(db, pList); | |
1060 } | |
1061 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ | |
1062 } | |
1063 } | |
1064 } | |
1065 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ | |
1066 | |
1067 /* | |
1068 ** The input to this routine is an WhereTerm structure with only the | |
1069 ** "pExpr" field filled in. The job of this routine is to analyze the | |
1070 ** subexpression and populate all the other fields of the WhereTerm | |
1071 ** structure. | |
1072 ** | |
1073 ** If the expression is of the form "<expr> <op> X" it gets commuted | |
1074 ** to the standard form of "X <op> <expr>". | |
1075 ** | |
1076 ** If the expression is of the form "X <op> Y" where both X and Y are | |
1077 ** columns, then the original expression is unchanged and a new virtual | |
1078 ** term of the form "Y <op> X" is added to the WHERE clause and | |
1079 ** analyzed separately. The original term is marked with TERM_COPIED | |
1080 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr | |
1081 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it | |
1082 ** is a commuted copy of a prior term.) The original term has nChild=1 | |
1083 ** and the copy has idxParent set to the index of the original term. | |
1084 */ | |
1085 static void exprAnalyze( | |
1086 SrcList *pSrc, /* the FROM clause */ | |
1087 WhereClause *pWC, /* the WHERE clause */ | |
1088 int idxTerm /* Index of the term to be analyzed */ | |
1089 ){ | |
1090 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ | |
1091 WhereTerm *pTerm; /* The term to be analyzed */ | |
1092 WhereMaskSet *pMaskSet; /* Set of table index masks */ | |
1093 Expr *pExpr; /* The expression to be analyzed */ | |
1094 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ | |
1095 Bitmask prereqAll; /* Prerequesites of pExpr */ | |
1096 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ | |
1097 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ | |
1098 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ | |
1099 int noCase = 0; /* LIKE/GLOB distinguishes case */ | |
1100 int op; /* Top-level operator. pExpr->op */ | |
1101 Parse *pParse = pWInfo->pParse; /* Parsing context */ | |
1102 sqlite3 *db = pParse->db; /* Database connection */ | |
1103 | |
1104 if( db->mallocFailed ){ | |
1105 return; | |
1106 } | |
1107 pTerm = &pWC->a[idxTerm]; | |
1108 pMaskSet = &pWInfo->sMaskSet; | |
1109 pExpr = pTerm->pExpr; | |
1110 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); | |
1111 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); | |
1112 op = pExpr->op; | |
1113 if( op==TK_IN ){ | |
1114 assert( pExpr->pRight==0 ); | |
1115 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
1116 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); | |
1117 }else{ | |
1118 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); | |
1119 } | |
1120 }else if( op==TK_ISNULL ){ | |
1121 pTerm->prereqRight = 0; | |
1122 }else{ | |
1123 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); | |
1124 } | |
1125 prereqAll = exprTableUsage(pMaskSet, pExpr); | |
1126 if( ExprHasProperty(pExpr, EP_FromJoin) ){ | |
1127 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); | |
1128 prereqAll |= x; | |
1129 extraRight = x-1; /* ON clause terms may not be used with an index | |
1130 ** on left table of a LEFT JOIN. Ticket #3015 */ | |
1131 } | |
1132 pTerm->prereqAll = prereqAll; | |
1133 pTerm->leftCursor = -1; | |
1134 pTerm->iParent = -1; | |
1135 pTerm->eOperator = 0; | |
1136 if( allowedOp(op) ){ | |
1137 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); | |
1138 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); | |
1139 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; | |
1140 if( pLeft->op==TK_COLUMN ){ | |
1141 pTerm->leftCursor = pLeft->iTable; | |
1142 pTerm->u.leftColumn = pLeft->iColumn; | |
1143 pTerm->eOperator = operatorMask(op) & opMask; | |
1144 } | |
1145 if( pRight && pRight->op==TK_COLUMN ){ | |
1146 WhereTerm *pNew; | |
1147 Expr *pDup; | |
1148 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ | |
1149 if( pTerm->leftCursor>=0 ){ | |
1150 int idxNew; | |
1151 pDup = sqlite3ExprDup(db, pExpr, 0); | |
1152 if( db->mallocFailed ){ | |
1153 sqlite3ExprDelete(db, pDup); | |
1154 return; | |
1155 } | |
1156 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); | |
1157 if( idxNew==0 ) return; | |
1158 pNew = &pWC->a[idxNew]; | |
1159 pNew->iParent = idxTerm; | |
1160 pTerm = &pWC->a[idxTerm]; | |
1161 pTerm->nChild = 1; | |
1162 pTerm->wtFlags |= TERM_COPIED; | |
1163 if( pExpr->op==TK_EQ | |
1164 && !ExprHasProperty(pExpr, EP_FromJoin) | |
1165 && OptimizationEnabled(db, SQLITE_Transitive) | |
1166 ){ | |
1167 pTerm->eOperator |= WO_EQUIV; | |
1168 eExtraOp = WO_EQUIV; | |
1169 } | |
1170 }else{ | |
1171 pDup = pExpr; | |
1172 pNew = pTerm; | |
1173 } | |
1174 exprCommute(pParse, pDup); | |
1175 pLeft = sqlite3ExprSkipCollate(pDup->pLeft); | |
1176 pNew->leftCursor = pLeft->iTable; | |
1177 pNew->u.leftColumn = pLeft->iColumn; | |
1178 testcase( (prereqLeft | extraRight) != prereqLeft ); | |
1179 pNew->prereqRight = prereqLeft | extraRight; | |
1180 pNew->prereqAll = prereqAll; | |
1181 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; | |
1182 } | |
1183 } | |
1184 | |
1185 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION | |
1186 /* If a term is the BETWEEN operator, create two new virtual terms | |
1187 ** that define the range that the BETWEEN implements. For example: | |
1188 ** | |
1189 ** a BETWEEN b AND c | |
1190 ** | |
1191 ** is converted into: | |
1192 ** | |
1193 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) | |
1194 ** | |
1195 ** The two new terms are added onto the end of the WhereClause object. | |
1196 ** The new terms are "dynamic" and are children of the original BETWEEN | |
1197 ** term. That means that if the BETWEEN term is coded, the children are | |
1198 ** skipped. Or, if the children are satisfied by an index, the original | |
1199 ** BETWEEN term is skipped. | |
1200 */ | |
1201 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ | |
1202 ExprList *pList = pExpr->x.pList; | |
1203 int i; | |
1204 static const u8 ops[] = {TK_GE, TK_LE}; | |
1205 assert( pList!=0 ); | |
1206 assert( pList->nExpr==2 ); | |
1207 for(i=0; i<2; i++){ | |
1208 Expr *pNewExpr; | |
1209 int idxNew; | |
1210 pNewExpr = sqlite3PExpr(pParse, ops[i], | |
1211 sqlite3ExprDup(db, pExpr->pLeft, 0), | |
1212 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); | |
1213 transferJoinMarkings(pNewExpr, pExpr); | |
1214 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); | |
1215 testcase( idxNew==0 ); | |
1216 exprAnalyze(pSrc, pWC, idxNew); | |
1217 pTerm = &pWC->a[idxTerm]; | |
1218 pWC->a[idxNew].iParent = idxTerm; | |
1219 } | |
1220 pTerm->nChild = 2; | |
1221 } | |
1222 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ | |
1223 | |
1224 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) | |
1225 /* Analyze a term that is composed of two or more subterms connected by | |
1226 ** an OR operator. | |
1227 */ | |
1228 else if( pExpr->op==TK_OR ){ | |
1229 assert( pWC->op==TK_AND ); | |
1230 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); | |
1231 pTerm = &pWC->a[idxTerm]; | |
1232 } | |
1233 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ | |
1234 | |
1235 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION | |
1236 /* Add constraints to reduce the search space on a LIKE or GLOB | |
1237 ** operator. | |
1238 ** | |
1239 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints | |
1240 ** | |
1241 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' | |
1242 ** | |
1243 ** The last character of the prefix "abc" is incremented to form the | |
1244 ** termination condition "abd". | |
1245 */ | |
1246 if( pWC->op==TK_AND | |
1247 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) | |
1248 ){ | |
1249 Expr *pLeft; /* LHS of LIKE/GLOB operator */ | |
1250 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ | |
1251 Expr *pNewExpr1; | |
1252 Expr *pNewExpr2; | |
1253 int idxNew1; | |
1254 int idxNew2; | |
1255 Token sCollSeqName; /* Name of collating sequence */ | |
1256 | |
1257 pLeft = pExpr->x.pList->a[1].pExpr; | |
1258 pStr2 = sqlite3ExprDup(db, pStr1, 0); | |
1259 if( !db->mallocFailed ){ | |
1260 u8 c, *pC; /* Last character before the first wildcard */ | |
1261 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; | |
1262 c = *pC; | |
1263 if( noCase ){ | |
1264 /* The point is to increment the last character before the first | |
1265 ** wildcard. But if we increment '@', that will push it into the | |
1266 ** alphabetic range where case conversions will mess up the | |
1267 ** inequality. To avoid this, make sure to also run the full | |
1268 ** LIKE on all candidate expressions by clearing the isComplete flag | |
1269 */ | |
1270 if( c=='A'-1 ) isComplete = 0; | |
1271 c = sqlite3UpperToLower[c]; | |
1272 } | |
1273 *pC = c + 1; | |
1274 } | |
1275 sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; | |
1276 sCollSeqName.n = 6; | |
1277 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); | |
1278 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, | |
1279 sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName), | |
1280 pStr1, 0); | |
1281 transferJoinMarkings(pNewExpr1, pExpr); | |
1282 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); | |
1283 testcase( idxNew1==0 ); | |
1284 exprAnalyze(pSrc, pWC, idxNew1); | |
1285 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); | |
1286 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, | |
1287 sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName), | |
1288 pStr2, 0); | |
1289 transferJoinMarkings(pNewExpr2, pExpr); | |
1290 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); | |
1291 testcase( idxNew2==0 ); | |
1292 exprAnalyze(pSrc, pWC, idxNew2); | |
1293 pTerm = &pWC->a[idxTerm]; | |
1294 if( isComplete ){ | |
1295 pWC->a[idxNew1].iParent = idxTerm; | |
1296 pWC->a[idxNew2].iParent = idxTerm; | |
1297 pTerm->nChild = 2; | |
1298 } | |
1299 } | |
1300 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ | |
1301 | |
1302 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
1303 /* Add a WO_MATCH auxiliary term to the constraint set if the | |
1304 ** current expression is of the form: column MATCH expr. | |
1305 ** This information is used by the xBestIndex methods of | |
1306 ** virtual tables. The native query optimizer does not attempt | |
1307 ** to do anything with MATCH functions. | |
1308 */ | |
1309 if( isMatchOfColumn(pExpr) ){ | |
1310 int idxNew; | |
1311 Expr *pRight, *pLeft; | |
1312 WhereTerm *pNewTerm; | |
1313 Bitmask prereqColumn, prereqExpr; | |
1314 | |
1315 pRight = pExpr->x.pList->a[0].pExpr; | |
1316 pLeft = pExpr->x.pList->a[1].pExpr; | |
1317 prereqExpr = exprTableUsage(pMaskSet, pRight); | |
1318 prereqColumn = exprTableUsage(pMaskSet, pLeft); | |
1319 if( (prereqExpr & prereqColumn)==0 ){ | |
1320 Expr *pNewExpr; | |
1321 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, | |
1322 0, sqlite3ExprDup(db, pRight, 0), 0); | |
1323 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); | |
1324 testcase( idxNew==0 ); | |
1325 pNewTerm = &pWC->a[idxNew]; | |
1326 pNewTerm->prereqRight = prereqExpr; | |
1327 pNewTerm->leftCursor = pLeft->iTable; | |
1328 pNewTerm->u.leftColumn = pLeft->iColumn; | |
1329 pNewTerm->eOperator = WO_MATCH; | |
1330 pNewTerm->iParent = idxTerm; | |
1331 pTerm = &pWC->a[idxTerm]; | |
1332 pTerm->nChild = 1; | |
1333 pTerm->wtFlags |= TERM_COPIED; | |
1334 pNewTerm->prereqAll = pTerm->prereqAll; | |
1335 } | |
1336 } | |
1337 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
1338 | |
1339 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
1340 /* When sqlite_stat3 histogram data is available an operator of the | |
1341 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently | |
1342 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a | |
1343 ** virtual term of that form. | |
1344 ** | |
1345 ** Note that the virtual term must be tagged with TERM_VNULL. This | |
1346 ** TERM_VNULL tag will suppress the not-null check at the beginning | |
1347 ** of the loop. Without the TERM_VNULL flag, the not-null check at | |
1348 ** the start of the loop will prevent any results from being returned. | |
1349 */ | |
1350 if( pExpr->op==TK_NOTNULL | |
1351 && pExpr->pLeft->op==TK_COLUMN | |
1352 && pExpr->pLeft->iColumn>=0 | |
1353 && OptimizationEnabled(db, SQLITE_Stat3) | |
1354 ){ | |
1355 Expr *pNewExpr; | |
1356 Expr *pLeft = pExpr->pLeft; | |
1357 int idxNew; | |
1358 WhereTerm *pNewTerm; | |
1359 | |
1360 pNewExpr = sqlite3PExpr(pParse, TK_GT, | |
1361 sqlite3ExprDup(db, pLeft, 0), | |
1362 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); | |
1363 | |
1364 idxNew = whereClauseInsert(pWC, pNewExpr, | |
1365 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); | |
1366 if( idxNew ){ | |
1367 pNewTerm = &pWC->a[idxNew]; | |
1368 pNewTerm->prereqRight = 0; | |
1369 pNewTerm->leftCursor = pLeft->iTable; | |
1370 pNewTerm->u.leftColumn = pLeft->iColumn; | |
1371 pNewTerm->eOperator = WO_GT; | |
1372 pNewTerm->iParent = idxTerm; | |
1373 pTerm = &pWC->a[idxTerm]; | |
1374 pTerm->nChild = 1; | |
1375 pTerm->wtFlags |= TERM_COPIED; | |
1376 pNewTerm->prereqAll = pTerm->prereqAll; | |
1377 } | |
1378 } | |
1379 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | |
1380 | |
1381 /* Prevent ON clause terms of a LEFT JOIN from being used to drive | |
1382 ** an index for tables to the left of the join. | |
1383 */ | |
1384 pTerm->prereqRight |= extraRight; | |
1385 } | |
1386 | |
1387 /* | |
1388 ** This function searches pList for an entry that matches the iCol-th column | |
1389 ** of index pIdx. | |
1390 ** | |
1391 ** If such an expression is found, its index in pList->a[] is returned. If | |
1392 ** no expression is found, -1 is returned. | |
1393 */ | |
1394 static int findIndexCol( | |
1395 Parse *pParse, /* Parse context */ | |
1396 ExprList *pList, /* Expression list to search */ | |
1397 int iBase, /* Cursor for table associated with pIdx */ | |
1398 Index *pIdx, /* Index to match column of */ | |
1399 int iCol /* Column of index to match */ | |
1400 ){ | |
1401 int i; | |
1402 const char *zColl = pIdx->azColl[iCol]; | |
1403 | |
1404 for(i=0; i<pList->nExpr; i++){ | |
1405 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); | |
1406 if( p->op==TK_COLUMN | |
1407 && p->iColumn==pIdx->aiColumn[iCol] | |
1408 && p->iTable==iBase | |
1409 ){ | |
1410 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); | |
1411 if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ | |
1412 return i; | |
1413 } | |
1414 } | |
1415 } | |
1416 | |
1417 return -1; | |
1418 } | |
1419 | |
1420 /* | |
1421 ** Return true if the DISTINCT expression-list passed as the third argument | |
1422 ** is redundant. | |
1423 ** | |
1424 ** A DISTINCT list is redundant if the database contains some subset of | |
1425 ** columns that are unique and non-null. | |
1426 */ | |
1427 static int isDistinctRedundant( | |
1428 Parse *pParse, /* Parsing context */ | |
1429 SrcList *pTabList, /* The FROM clause */ | |
1430 WhereClause *pWC, /* The WHERE clause */ | |
1431 ExprList *pDistinct /* The result set that needs to be DISTINCT */ | |
1432 ){ | |
1433 Table *pTab; | |
1434 Index *pIdx; | |
1435 int i; | |
1436 int iBase; | |
1437 | |
1438 /* If there is more than one table or sub-select in the FROM clause of | |
1439 ** this query, then it will not be possible to show that the DISTINCT | |
1440 ** clause is redundant. */ | |
1441 if( pTabList->nSrc!=1 ) return 0; | |
1442 iBase = pTabList->a[0].iCursor; | |
1443 pTab = pTabList->a[0].pTab; | |
1444 | |
1445 /* If any of the expressions is an IPK column on table iBase, then return | |
1446 ** true. Note: The (p->iTable==iBase) part of this test may be false if the | |
1447 ** current SELECT is a correlated sub-query. | |
1448 */ | |
1449 for(i=0; i<pDistinct->nExpr; i++){ | |
1450 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); | |
1451 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; | |
1452 } | |
1453 | |
1454 /* Loop through all indices on the table, checking each to see if it makes | |
1455 ** the DISTINCT qualifier redundant. It does so if: | |
1456 ** | |
1457 ** 1. The index is itself UNIQUE, and | |
1458 ** | |
1459 ** 2. All of the columns in the index are either part of the pDistinct | |
1460 ** list, or else the WHERE clause contains a term of the form "col=X", | |
1461 ** where X is a constant value. The collation sequences of the | |
1462 ** comparison and select-list expressions must match those of the index. | |
1463 ** | |
1464 ** 3. All of those index columns for which the WHERE clause does not | |
1465 ** contain a "col=X" term are subject to a NOT NULL constraint. | |
1466 */ | |
1467 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | |
1468 if( !IsUniqueIndex(pIdx) ) continue; | |
1469 for(i=0; i<pIdx->nKeyCol; i++){ | |
1470 i16 iCol = pIdx->aiColumn[i]; | |
1471 if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ | |
1472 int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); | |
1473 if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ | |
1474 break; | |
1475 } | |
1476 } | |
1477 } | |
1478 if( i==pIdx->nKeyCol ){ | |
1479 /* This index implies that the DISTINCT qualifier is redundant. */ | |
1480 return 1; | |
1481 } | |
1482 } | |
1483 | |
1484 return 0; | |
1485 } | |
1486 | |
1487 | |
1488 /* | |
1489 ** Estimate the logarithm of the input value to base 2. | |
1490 */ | |
1491 static LogEst estLog(LogEst N){ | |
1492 return N<=10 ? 0 : sqlite3LogEst(N) - 33; | |
1493 } | |
1494 | |
1495 /* | |
1496 ** Two routines for printing the content of an sqlite3_index_info | |
1497 ** structure. Used for testing and debugging only. If neither | |
1498 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines | |
1499 ** are no-ops. | |
1500 */ | |
1501 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) | |
1502 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ | |
1503 int i; | |
1504 if( !sqlite3WhereTrace ) return; | |
1505 for(i=0; i<p->nConstraint; i++){ | |
1506 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", | |
1507 i, | |
1508 p->aConstraint[i].iColumn, | |
1509 p->aConstraint[i].iTermOffset, | |
1510 p->aConstraint[i].op, | |
1511 p->aConstraint[i].usable); | |
1512 } | |
1513 for(i=0; i<p->nOrderBy; i++){ | |
1514 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", | |
1515 i, | |
1516 p->aOrderBy[i].iColumn, | |
1517 p->aOrderBy[i].desc); | |
1518 } | |
1519 } | |
1520 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ | |
1521 int i; | |
1522 if( !sqlite3WhereTrace ) return; | |
1523 for(i=0; i<p->nConstraint; i++){ | |
1524 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", | |
1525 i, | |
1526 p->aConstraintUsage[i].argvIndex, | |
1527 p->aConstraintUsage[i].omit); | |
1528 } | |
1529 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); | |
1530 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); | |
1531 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); | |
1532 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); | |
1533 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); | |
1534 } | |
1535 #else | |
1536 #define TRACE_IDX_INPUTS(A) | |
1537 #define TRACE_IDX_OUTPUTS(A) | |
1538 #endif | |
1539 | |
1540 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | |
1541 /* | |
1542 ** Return TRUE if the WHERE clause term pTerm is of a form where it | |
1543 ** could be used with an index to access pSrc, assuming an appropriate | |
1544 ** index existed. | |
1545 */ | |
1546 static int termCanDriveIndex( | |
1547 WhereTerm *pTerm, /* WHERE clause term to check */ | |
1548 struct SrcList_item *pSrc, /* Table we are trying to access */ | |
1549 Bitmask notReady /* Tables in outer loops of the join */ | |
1550 ){ | |
1551 char aff; | |
1552 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; | |
1553 if( (pTerm->eOperator & WO_EQ)==0 ) return 0; | |
1554 if( (pTerm->prereqRight & notReady)!=0 ) return 0; | |
1555 if( pTerm->u.leftColumn<0 ) return 0; | |
1556 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; | |
1557 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; | |
1558 return 1; | |
1559 } | |
1560 #endif | |
1561 | |
1562 | |
1563 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | |
1564 /* | |
1565 ** Generate code to construct the Index object for an automatic index | |
1566 ** and to set up the WhereLevel object pLevel so that the code generator | |
1567 ** makes use of the automatic index. | |
1568 */ | |
1569 static void constructAutomaticIndex( | |
1570 Parse *pParse, /* The parsing context */ | |
1571 WhereClause *pWC, /* The WHERE clause */ | |
1572 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ | |
1573 Bitmask notReady, /* Mask of cursors that are not available */ | |
1574 WhereLevel *pLevel /* Write new index here */ | |
1575 ){ | |
1576 int nKeyCol; /* Number of columns in the constructed index */ | |
1577 WhereTerm *pTerm; /* A single term of the WHERE clause */ | |
1578 WhereTerm *pWCEnd; /* End of pWC->a[] */ | |
1579 Index *pIdx; /* Object describing the transient index */ | |
1580 Vdbe *v; /* Prepared statement under construction */ | |
1581 int addrInit; /* Address of the initialization bypass jump */ | |
1582 Table *pTable; /* The table being indexed */ | |
1583 int addrTop; /* Top of the index fill loop */ | |
1584 int regRecord; /* Register holding an index record */ | |
1585 int n; /* Column counter */ | |
1586 int i; /* Loop counter */ | |
1587 int mxBitCol; /* Maximum column in pSrc->colUsed */ | |
1588 CollSeq *pColl; /* Collating sequence to on a column */ | |
1589 WhereLoop *pLoop; /* The Loop object */ | |
1590 char *zNotUsed; /* Extra space on the end of pIdx */ | |
1591 Bitmask idxCols; /* Bitmap of columns used for indexing */ | |
1592 Bitmask extraCols; /* Bitmap of additional columns */ | |
1593 u8 sentWarning = 0; /* True if a warnning has been issued */ | |
1594 | |
1595 /* Generate code to skip over the creation and initialization of the | |
1596 ** transient index on 2nd and subsequent iterations of the loop. */ | |
1597 v = pParse->pVdbe; | |
1598 assert( v!=0 ); | |
1599 addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
1600 | |
1601 /* Count the number of columns that will be added to the index | |
1602 ** and used to match WHERE clause constraints */ | |
1603 nKeyCol = 0; | |
1604 pTable = pSrc->pTab; | |
1605 pWCEnd = &pWC->a[pWC->nTerm]; | |
1606 pLoop = pLevel->pWLoop; | |
1607 idxCols = 0; | |
1608 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | |
1609 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ | |
1610 int iCol = pTerm->u.leftColumn; | |
1611 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); | |
1612 testcase( iCol==BMS ); | |
1613 testcase( iCol==BMS-1 ); | |
1614 if( !sentWarning ){ | |
1615 sqlite3_log(SQLITE_WARNING_AUTOINDEX, | |
1616 "automatic index on %s(%s)", pTable->zName, | |
1617 pTable->aCol[iCol].zName); | |
1618 sentWarning = 1; | |
1619 } | |
1620 if( (idxCols & cMask)==0 ){ | |
1621 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return; | |
1622 pLoop->aLTerm[nKeyCol++] = pTerm; | |
1623 idxCols |= cMask; | |
1624 } | |
1625 } | |
1626 } | |
1627 assert( nKeyCol>0 ); | |
1628 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; | |
1629 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED | |
1630 | WHERE_AUTO_INDEX; | |
1631 | |
1632 /* Count the number of additional columns needed to create a | |
1633 ** covering index. A "covering index" is an index that contains all | |
1634 ** columns that are needed by the query. With a covering index, the | |
1635 ** original table never needs to be accessed. Automatic indices must | |
1636 ** be a covering index because the index will not be updated if the | |
1637 ** original table changes and the index and table cannot both be used | |
1638 ** if they go out of sync. | |
1639 */ | |
1640 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); | |
1641 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; | |
1642 testcase( pTable->nCol==BMS-1 ); | |
1643 testcase( pTable->nCol==BMS-2 ); | |
1644 for(i=0; i<mxBitCol; i++){ | |
1645 if( extraCols & MASKBIT(i) ) nKeyCol++; | |
1646 } | |
1647 if( pSrc->colUsed & MASKBIT(BMS-1) ){ | |
1648 nKeyCol += pTable->nCol - BMS + 1; | |
1649 } | |
1650 pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY; | |
1651 | |
1652 /* Construct the Index object to describe this index */ | |
1653 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); | |
1654 if( pIdx==0 ) return; | |
1655 pLoop->u.btree.pIndex = pIdx; | |
1656 pIdx->zName = "auto-index"; | |
1657 pIdx->pTable = pTable; | |
1658 n = 0; | |
1659 idxCols = 0; | |
1660 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | |
1661 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ | |
1662 int iCol = pTerm->u.leftColumn; | |
1663 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); | |
1664 testcase( iCol==BMS-1 ); | |
1665 testcase( iCol==BMS ); | |
1666 if( (idxCols & cMask)==0 ){ | |
1667 Expr *pX = pTerm->pExpr; | |
1668 idxCols |= cMask; | |
1669 pIdx->aiColumn[n] = pTerm->u.leftColumn; | |
1670 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); | |
1671 pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; | |
1672 n++; | |
1673 } | |
1674 } | |
1675 } | |
1676 assert( (u32)n==pLoop->u.btree.nEq ); | |
1677 | |
1678 /* Add additional columns needed to make the automatic index into | |
1679 ** a covering index */ | |
1680 for(i=0; i<mxBitCol; i++){ | |
1681 if( extraCols & MASKBIT(i) ){ | |
1682 pIdx->aiColumn[n] = i; | |
1683 pIdx->azColl[n] = "BINARY"; | |
1684 n++; | |
1685 } | |
1686 } | |
1687 if( pSrc->colUsed & MASKBIT(BMS-1) ){ | |
1688 for(i=BMS-1; i<pTable->nCol; i++){ | |
1689 pIdx->aiColumn[n] = i; | |
1690 pIdx->azColl[n] = "BINARY"; | |
1691 n++; | |
1692 } | |
1693 } | |
1694 assert( n==nKeyCol ); | |
1695 pIdx->aiColumn[n] = -1; | |
1696 pIdx->azColl[n] = "BINARY"; | |
1697 | |
1698 /* Create the automatic index */ | |
1699 assert( pLevel->iIdxCur>=0 ); | |
1700 pLevel->iIdxCur = pParse->nTab++; | |
1701 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); | |
1702 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | |
1703 VdbeComment((v, "for %s", pTable->zName)); | |
1704 | |
1705 /* Fill the automatic index with content */ | |
1706 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); | |
1707 regRecord = sqlite3GetTempReg(pParse); | |
1708 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); | |
1709 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); | |
1710 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); | |
1711 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); | |
1712 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); | |
1713 sqlite3VdbeJumpHere(v, addrTop); | |
1714 sqlite3ReleaseTempReg(pParse, regRecord); | |
1715 | |
1716 /* Jump here when skipping the initialization */ | |
1717 sqlite3VdbeJumpHere(v, addrInit); | |
1718 } | |
1719 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ | |
1720 | |
1721 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
1722 /* | |
1723 ** Allocate and populate an sqlite3_index_info structure. It is the | |
1724 ** responsibility of the caller to eventually release the structure | |
1725 ** by passing the pointer returned by this function to sqlite3_free(). | |
1726 */ | |
1727 static sqlite3_index_info *allocateIndexInfo( | |
1728 Parse *pParse, | |
1729 WhereClause *pWC, | |
1730 struct SrcList_item *pSrc, | |
1731 ExprList *pOrderBy | |
1732 ){ | |
1733 int i, j; | |
1734 int nTerm; | |
1735 struct sqlite3_index_constraint *pIdxCons; | |
1736 struct sqlite3_index_orderby *pIdxOrderBy; | |
1737 struct sqlite3_index_constraint_usage *pUsage; | |
1738 WhereTerm *pTerm; | |
1739 int nOrderBy; | |
1740 sqlite3_index_info *pIdxInfo; | |
1741 | |
1742 /* Count the number of possible WHERE clause constraints referring | |
1743 ** to this virtual table */ | |
1744 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | |
1745 if( pTerm->leftCursor != pSrc->iCursor ) continue; | |
1746 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); | |
1747 testcase( pTerm->eOperator & WO_IN ); | |
1748 testcase( pTerm->eOperator & WO_ISNULL ); | |
1749 testcase( pTerm->eOperator & WO_ALL ); | |
1750 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; | |
1751 if( pTerm->wtFlags & TERM_VNULL ) continue; | |
1752 nTerm++; | |
1753 } | |
1754 | |
1755 /* If the ORDER BY clause contains only columns in the current | |
1756 ** virtual table then allocate space for the aOrderBy part of | |
1757 ** the sqlite3_index_info structure. | |
1758 */ | |
1759 nOrderBy = 0; | |
1760 if( pOrderBy ){ | |
1761 int n = pOrderBy->nExpr; | |
1762 for(i=0; i<n; i++){ | |
1763 Expr *pExpr = pOrderBy->a[i].pExpr; | |
1764 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; | |
1765 } | |
1766 if( i==n){ | |
1767 nOrderBy = n; | |
1768 } | |
1769 } | |
1770 | |
1771 /* Allocate the sqlite3_index_info structure | |
1772 */ | |
1773 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) | |
1774 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm | |
1775 + sizeof(*pIdxOrderBy)*nOrderBy ); | |
1776 if( pIdxInfo==0 ){ | |
1777 sqlite3ErrorMsg(pParse, "out of memory"); | |
1778 return 0; | |
1779 } | |
1780 | |
1781 /* Initialize the structure. The sqlite3_index_info structure contains | |
1782 ** many fields that are declared "const" to prevent xBestIndex from | |
1783 ** changing them. We have to do some funky casting in order to | |
1784 ** initialize those fields. | |
1785 */ | |
1786 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; | |
1787 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; | |
1788 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; | |
1789 *(int*)&pIdxInfo->nConstraint = nTerm; | |
1790 *(int*)&pIdxInfo->nOrderBy = nOrderBy; | |
1791 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; | |
1792 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; | |
1793 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = | |
1794 pUsage; | |
1795 | |
1796 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | |
1797 u8 op; | |
1798 if( pTerm->leftCursor != pSrc->iCursor ) continue; | |
1799 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); | |
1800 testcase( pTerm->eOperator & WO_IN ); | |
1801 testcase( pTerm->eOperator & WO_ISNULL ); | |
1802 testcase( pTerm->eOperator & WO_ALL ); | |
1803 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; | |
1804 if( pTerm->wtFlags & TERM_VNULL ) continue; | |
1805 pIdxCons[j].iColumn = pTerm->u.leftColumn; | |
1806 pIdxCons[j].iTermOffset = i; | |
1807 op = (u8)pTerm->eOperator & WO_ALL; | |
1808 if( op==WO_IN ) op = WO_EQ; | |
1809 pIdxCons[j].op = op; | |
1810 /* The direct assignment in the previous line is possible only because | |
1811 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The | |
1812 ** following asserts verify this fact. */ | |
1813 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); | |
1814 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); | |
1815 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); | |
1816 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); | |
1817 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); | |
1818 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); | |
1819 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); | |
1820 j++; | |
1821 } | |
1822 for(i=0; i<nOrderBy; i++){ | |
1823 Expr *pExpr = pOrderBy->a[i].pExpr; | |
1824 pIdxOrderBy[i].iColumn = pExpr->iColumn; | |
1825 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; | |
1826 } | |
1827 | |
1828 return pIdxInfo; | |
1829 } | |
1830 | |
1831 /* | |
1832 ** The table object reference passed as the second argument to this function | |
1833 ** must represent a virtual table. This function invokes the xBestIndex() | |
1834 ** method of the virtual table with the sqlite3_index_info object that | |
1835 ** comes in as the 3rd argument to this function. | |
1836 ** | |
1837 ** If an error occurs, pParse is populated with an error message and a | |
1838 ** non-zero value is returned. Otherwise, 0 is returned and the output | |
1839 ** part of the sqlite3_index_info structure is left populated. | |
1840 ** | |
1841 ** Whether or not an error is returned, it is the responsibility of the | |
1842 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates | |
1843 ** that this is required. | |
1844 */ | |
1845 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ | |
1846 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; | |
1847 int i; | |
1848 int rc; | |
1849 | |
1850 TRACE_IDX_INPUTS(p); | |
1851 rc = pVtab->pModule->xBestIndex(pVtab, p); | |
1852 TRACE_IDX_OUTPUTS(p); | |
1853 | |
1854 if( rc!=SQLITE_OK ){ | |
1855 if( rc==SQLITE_NOMEM ){ | |
1856 pParse->db->mallocFailed = 1; | |
1857 }else if( !pVtab->zErrMsg ){ | |
1858 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); | |
1859 }else{ | |
1860 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); | |
1861 } | |
1862 } | |
1863 sqlite3_free(pVtab->zErrMsg); | |
1864 pVtab->zErrMsg = 0; | |
1865 | |
1866 for(i=0; i<p->nConstraint; i++){ | |
1867 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ | |
1868 sqlite3ErrorMsg(pParse, | |
1869 "table %s: xBestIndex returned an invalid plan", pTab->zName); | |
1870 } | |
1871 } | |
1872 | |
1873 return pParse->nErr; | |
1874 } | |
1875 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ | |
1876 | |
1877 | |
1878 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
1879 /* | |
1880 ** Estimate the location of a particular key among all keys in an | |
1881 ** index. Store the results in aStat as follows: | |
1882 ** | |
1883 ** aStat[0] Est. number of rows less than pVal | |
1884 ** aStat[1] Est. number of rows equal to pVal | |
1885 ** | |
1886 ** Return SQLITE_OK on success. | |
1887 */ | |
1888 static void whereKeyStats( | |
1889 Parse *pParse, /* Database connection */ | |
1890 Index *pIdx, /* Index to consider domain of */ | |
1891 UnpackedRecord *pRec, /* Vector of values to consider */ | |
1892 int roundUp, /* Round up if true. Round down if false */ | |
1893 tRowcnt *aStat /* OUT: stats written here */ | |
1894 ){ | |
1895 IndexSample *aSample = pIdx->aSample; | |
1896 int iCol; /* Index of required stats in anEq[] etc. */ | |
1897 int iMin = 0; /* Smallest sample not yet tested */ | |
1898 int i = pIdx->nSample; /* Smallest sample larger than or equal to pRec */ | |
1899 int iTest; /* Next sample to test */ | |
1900 int res; /* Result of comparison operation */ | |
1901 | |
1902 #ifndef SQLITE_DEBUG | |
1903 UNUSED_PARAMETER( pParse ); | |
1904 #endif | |
1905 assert( pRec!=0 ); | |
1906 iCol = pRec->nField - 1; | |
1907 assert( pIdx->nSample>0 ); | |
1908 assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); | |
1909 do{ | |
1910 iTest = (iMin+i)/2; | |
1911 res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec); | |
1912 if( res<0 ){ | |
1913 iMin = iTest+1; | |
1914 }else{ | |
1915 i = iTest; | |
1916 } | |
1917 }while( res && iMin<i ); | |
1918 | |
1919 #ifdef SQLITE_DEBUG | |
1920 /* The following assert statements check that the binary search code | |
1921 ** above found the right answer. This block serves no purpose other | |
1922 ** than to invoke the asserts. */ | |
1923 if( res==0 ){ | |
1924 /* If (res==0) is true, then sample $i must be equal to pRec */ | |
1925 assert( i<pIdx->nSample ); | |
1926 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) | |
1927 || pParse->db->mallocFailed ); | |
1928 }else{ | |
1929 /* Otherwise, pRec must be smaller than sample $i and larger than | |
1930 ** sample ($i-1). */ | |
1931 assert( i==pIdx->nSample | |
1932 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 | |
1933 || pParse->db->mallocFailed ); | |
1934 assert( i==0 | |
1935 || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 | |
1936 || pParse->db->mallocFailed ); | |
1937 } | |
1938 #endif /* ifdef SQLITE_DEBUG */ | |
1939 | |
1940 /* At this point, aSample[i] is the first sample that is greater than | |
1941 ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less | |
1942 ** than pVal. If aSample[i]==pVal, then res==0. | |
1943 */ | |
1944 if( res==0 ){ | |
1945 aStat[0] = aSample[i].anLt[iCol]; | |
1946 aStat[1] = aSample[i].anEq[iCol]; | |
1947 }else{ | |
1948 tRowcnt iLower, iUpper, iGap; | |
1949 if( i==0 ){ | |
1950 iLower = 0; | |
1951 iUpper = aSample[0].anLt[iCol]; | |
1952 }else{ | |
1953 i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); | |
1954 iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol]; | |
1955 iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol]; | |
1956 } | |
1957 aStat[1] = pIdx->aAvgEq[iCol]; | |
1958 if( iLower>=iUpper ){ | |
1959 iGap = 0; | |
1960 }else{ | |
1961 iGap = iUpper - iLower; | |
1962 } | |
1963 if( roundUp ){ | |
1964 iGap = (iGap*2)/3; | |
1965 }else{ | |
1966 iGap = iGap/3; | |
1967 } | |
1968 aStat[0] = iLower + iGap; | |
1969 } | |
1970 } | |
1971 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | |
1972 | |
1973 /* | |
1974 ** If it is not NULL, pTerm is a term that provides an upper or lower | |
1975 ** bound on a range scan. Without considering pTerm, it is estimated | |
1976 ** that the scan will visit nNew rows. This function returns the number | |
1977 ** estimated to be visited after taking pTerm into account. | |
1978 ** | |
1979 ** If the user explicitly specified a likelihood() value for this term, | |
1980 ** then the return value is the likelihood multiplied by the number of | |
1981 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term | |
1982 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. | |
1983 */ | |
1984 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ | |
1985 LogEst nRet = nNew; | |
1986 if( pTerm ){ | |
1987 if( pTerm->truthProb<=0 ){ | |
1988 nRet += pTerm->truthProb; | |
1989 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ | |
1990 nRet -= 20; assert( 20==sqlite3LogEst(4) ); | |
1991 } | |
1992 } | |
1993 return nRet; | |
1994 } | |
1995 | |
1996 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
1997 /* | |
1998 ** This function is called to estimate the number of rows visited by a | |
1999 ** range-scan on a skip-scan index. For example: | |
2000 ** | |
2001 ** CREATE INDEX i1 ON t1(a, b, c); | |
2002 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; | |
2003 ** | |
2004 ** Value pLoop->nOut is currently set to the estimated number of rows | |
2005 ** visited for scanning (a=? AND b=?). This function reduces that estimate | |
2006 ** by some factor to account for the (c BETWEEN ? AND ?) expression based | |
2007 ** on the stat4 data for the index. this scan will be peformed multiple | |
2008 ** times (once for each (a,b) combination that matches a=?) is dealt with | |
2009 ** by the caller. | |
2010 ** | |
2011 ** It does this by scanning through all stat4 samples, comparing values | |
2012 ** extracted from pLower and pUpper with the corresponding column in each | |
2013 ** sample. If L and U are the number of samples found to be less than or | |
2014 ** equal to the values extracted from pLower and pUpper respectively, and | |
2015 ** N is the total number of samples, the pLoop->nOut value is adjusted | |
2016 ** as follows: | |
2017 ** | |
2018 ** nOut = nOut * ( min(U - L, 1) / N ) | |
2019 ** | |
2020 ** If pLower is NULL, or a value cannot be extracted from the term, L is | |
2021 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, | |
2022 ** U is set to N. | |
2023 ** | |
2024 ** Normally, this function sets *pbDone to 1 before returning. However, | |
2025 ** if no value can be extracted from either pLower or pUpper (and so the | |
2026 ** estimate of the number of rows delivered remains unchanged), *pbDone | |
2027 ** is left as is. | |
2028 ** | |
2029 ** If an error occurs, an SQLite error code is returned. Otherwise, | |
2030 ** SQLITE_OK. | |
2031 */ | |
2032 static int whereRangeSkipScanEst( | |
2033 Parse *pParse, /* Parsing & code generating context */ | |
2034 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ | |
2035 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ | |
2036 WhereLoop *pLoop, /* Update the .nOut value of this loop */ | |
2037 int *pbDone /* Set to true if at least one expr. value extracted */ | |
2038 ){ | |
2039 Index *p = pLoop->u.btree.pIndex; | |
2040 int nEq = pLoop->u.btree.nEq; | |
2041 sqlite3 *db = pParse->db; | |
2042 int nLower = -1; | |
2043 int nUpper = p->nSample+1; | |
2044 int rc = SQLITE_OK; | |
2045 int iCol = p->aiColumn[nEq]; | |
2046 u8 aff = iCol>=0 ? p->pTable->aCol[iCol].affinity : SQLITE_AFF_INTEGER; | |
2047 CollSeq *pColl; | |
2048 | |
2049 sqlite3_value *p1 = 0; /* Value extracted from pLower */ | |
2050 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ | |
2051 sqlite3_value *pVal = 0; /* Value extracted from record */ | |
2052 | |
2053 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); | |
2054 if( pLower ){ | |
2055 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); | |
2056 nLower = 0; | |
2057 } | |
2058 if( pUpper && rc==SQLITE_OK ){ | |
2059 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); | |
2060 nUpper = p2 ? 0 : p->nSample; | |
2061 } | |
2062 | |
2063 if( p1 || p2 ){ | |
2064 int i; | |
2065 int nDiff; | |
2066 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ | |
2067 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); | |
2068 if( rc==SQLITE_OK && p1 ){ | |
2069 int res = sqlite3MemCompare(p1, pVal, pColl); | |
2070 if( res>=0 ) nLower++; | |
2071 } | |
2072 if( rc==SQLITE_OK && p2 ){ | |
2073 int res = sqlite3MemCompare(p2, pVal, pColl); | |
2074 if( res>=0 ) nUpper++; | |
2075 } | |
2076 } | |
2077 nDiff = (nUpper - nLower); | |
2078 if( nDiff<=0 ) nDiff = 1; | |
2079 | |
2080 /* If there is both an upper and lower bound specified, and the | |
2081 ** comparisons indicate that they are close together, use the fallback | |
2082 ** method (assume that the scan visits 1/64 of the rows) for estimating | |
2083 ** the number of rows visited. Otherwise, estimate the number of rows | |
2084 ** using the method described in the header comment for this function. */ | |
2085 if( nDiff!=1 || pUpper==0 || pLower==0 ){ | |
2086 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); | |
2087 pLoop->nOut -= nAdjust; | |
2088 *pbDone = 1; | |
2089 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", | |
2090 nLower, nUpper, nAdjust*-1, pLoop->nOut)); | |
2091 } | |
2092 | |
2093 }else{ | |
2094 assert( *pbDone==0 ); | |
2095 } | |
2096 | |
2097 sqlite3ValueFree(p1); | |
2098 sqlite3ValueFree(p2); | |
2099 sqlite3ValueFree(pVal); | |
2100 | |
2101 return rc; | |
2102 } | |
2103 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | |
2104 | |
2105 /* | |
2106 ** This function is used to estimate the number of rows that will be visited | |
2107 ** by scanning an index for a range of values. The range may have an upper | |
2108 ** bound, a lower bound, or both. The WHERE clause terms that set the upper | |
2109 ** and lower bounds are represented by pLower and pUpper respectively. For | |
2110 ** example, assuming that index p is on t1(a): | |
2111 ** | |
2112 ** ... FROM t1 WHERE a > ? AND a < ? ... | |
2113 ** |_____| |_____| | |
2114 ** | | | |
2115 ** pLower pUpper | |
2116 ** | |
2117 ** If either of the upper or lower bound is not present, then NULL is passed in | |
2118 ** place of the corresponding WhereTerm. | |
2119 ** | |
2120 ** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index | |
2121 ** column subject to the range constraint. Or, equivalently, the number of | |
2122 ** equality constraints optimized by the proposed index scan. For example, | |
2123 ** assuming index p is on t1(a, b), and the SQL query is: | |
2124 ** | |
2125 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... | |
2126 ** | |
2127 ** then nEq is set to 1 (as the range restricted column, b, is the second | |
2128 ** left-most column of the index). Or, if the query is: | |
2129 ** | |
2130 ** ... FROM t1 WHERE a > ? AND a < ? ... | |
2131 ** | |
2132 ** then nEq is set to 0. | |
2133 ** | |
2134 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the | |
2135 ** number of rows that the index scan is expected to visit without | |
2136 ** considering the range constraints. If nEq is 0, this is the number of | |
2137 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) | |
2138 ** to account for the range constraints pLower and pUpper. | |
2139 ** | |
2140 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be | |
2141 ** used, a single range inequality reduces the search space by a factor of 4. | |
2142 ** and a pair of constraints (x>? AND x<?) reduces the expected number of | |
2143 ** rows visited by a factor of 64. | |
2144 */ | |
2145 static int whereRangeScanEst( | |
2146 Parse *pParse, /* Parsing & code generating context */ | |
2147 WhereLoopBuilder *pBuilder, | |
2148 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ | |
2149 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ | |
2150 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ | |
2151 ){ | |
2152 int rc = SQLITE_OK; | |
2153 int nOut = pLoop->nOut; | |
2154 LogEst nNew; | |
2155 | |
2156 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
2157 Index *p = pLoop->u.btree.pIndex; | |
2158 int nEq = pLoop->u.btree.nEq; | |
2159 | |
2160 if( p->nSample>0 | |
2161 && nEq<p->nSampleCol | |
2162 && OptimizationEnabled(pParse->db, SQLITE_Stat3) | |
2163 ){ | |
2164 if( nEq==pBuilder->nRecValid ){ | |
2165 UnpackedRecord *pRec = pBuilder->pRec; | |
2166 tRowcnt a[2]; | |
2167 u8 aff; | |
2168 | |
2169 /* Variable iLower will be set to the estimate of the number of rows in | |
2170 ** the index that are less than the lower bound of the range query. The | |
2171 ** lower bound being the concatenation of $P and $L, where $P is the | |
2172 ** key-prefix formed by the nEq values matched against the nEq left-most | |
2173 ** columns of the index, and $L is the value in pLower. | |
2174 ** | |
2175 ** Or, if pLower is NULL or $L cannot be extracted from it (because it | |
2176 ** is not a simple variable or literal value), the lower bound of the | |
2177 ** range is $P. Due to a quirk in the way whereKeyStats() works, even | |
2178 ** if $L is available, whereKeyStats() is called for both ($P) and | |
2179 ** ($P:$L) and the larger of the two returned values used. | |
2180 ** | |
2181 ** Similarly, iUpper is to be set to the estimate of the number of rows | |
2182 ** less than the upper bound of the range query. Where the upper bound | |
2183 ** is either ($P) or ($P:$U). Again, even if $U is available, both values | |
2184 ** of iUpper are requested of whereKeyStats() and the smaller used. | |
2185 */ | |
2186 tRowcnt iLower; | |
2187 tRowcnt iUpper; | |
2188 | |
2189 if( pRec ){ | |
2190 testcase( pRec->nField!=pBuilder->nRecValid ); | |
2191 pRec->nField = pBuilder->nRecValid; | |
2192 } | |
2193 if( nEq==p->nKeyCol ){ | |
2194 aff = SQLITE_AFF_INTEGER; | |
2195 }else{ | |
2196 aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; | |
2197 } | |
2198 /* Determine iLower and iUpper using ($P) only. */ | |
2199 if( nEq==0 ){ | |
2200 iLower = 0; | |
2201 iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]); | |
2202 }else{ | |
2203 /* Note: this call could be optimized away - since the same values must | |
2204 ** have been requested when testing key $P in whereEqualScanEst(). */ | |
2205 whereKeyStats(pParse, p, pRec, 0, a); | |
2206 iLower = a[0]; | |
2207 iUpper = a[0] + a[1]; | |
2208 } | |
2209 | |
2210 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); | |
2211 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); | |
2212 assert( p->aSortOrder!=0 ); | |
2213 if( p->aSortOrder[nEq] ){ | |
2214 /* The roles of pLower and pUpper are swapped for a DESC index */ | |
2215 SWAP(WhereTerm*, pLower, pUpper); | |
2216 } | |
2217 | |
2218 /* If possible, improve on the iLower estimate using ($P:$L). */ | |
2219 if( pLower ){ | |
2220 int bOk; /* True if value is extracted from pExpr */ | |
2221 Expr *pExpr = pLower->pExpr->pRight; | |
2222 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); | |
2223 if( rc==SQLITE_OK && bOk ){ | |
2224 tRowcnt iNew; | |
2225 whereKeyStats(pParse, p, pRec, 0, a); | |
2226 iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); | |
2227 if( iNew>iLower ) iLower = iNew; | |
2228 nOut--; | |
2229 pLower = 0; | |
2230 } | |
2231 } | |
2232 | |
2233 /* If possible, improve on the iUpper estimate using ($P:$U). */ | |
2234 if( pUpper ){ | |
2235 int bOk; /* True if value is extracted from pExpr */ | |
2236 Expr *pExpr = pUpper->pExpr->pRight; | |
2237 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); | |
2238 if( rc==SQLITE_OK && bOk ){ | |
2239 tRowcnt iNew; | |
2240 whereKeyStats(pParse, p, pRec, 1, a); | |
2241 iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); | |
2242 if( iNew<iUpper ) iUpper = iNew; | |
2243 nOut--; | |
2244 pUpper = 0; | |
2245 } | |
2246 } | |
2247 | |
2248 pBuilder->pRec = pRec; | |
2249 if( rc==SQLITE_OK ){ | |
2250 if( iUpper>iLower ){ | |
2251 nNew = sqlite3LogEst(iUpper - iLower); | |
2252 }else{ | |
2253 nNew = 10; assert( 10==sqlite3LogEst(2) ); | |
2254 } | |
2255 if( nNew<nOut ){ | |
2256 nOut = nNew; | |
2257 } | |
2258 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", | |
2259 (u32)iLower, (u32)iUpper, nOut)); | |
2260 } | |
2261 }else{ | |
2262 int bDone = 0; | |
2263 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); | |
2264 if( bDone ) return rc; | |
2265 } | |
2266 } | |
2267 #else | |
2268 UNUSED_PARAMETER(pParse); | |
2269 UNUSED_PARAMETER(pBuilder); | |
2270 assert( pLower || pUpper ); | |
2271 #endif | |
2272 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); | |
2273 nNew = whereRangeAdjust(pLower, nOut); | |
2274 nNew = whereRangeAdjust(pUpper, nNew); | |
2275 | |
2276 /* TUNING: If there is both an upper and lower limit, assume the range is | |
2277 ** reduced by an additional 75%. This means that, by default, an open-ended | |
2278 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the | |
2279 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to | |
2280 ** match 1/64 of the index. */ | |
2281 if( pLower && pUpper ) nNew -= 20; | |
2282 | |
2283 nOut -= (pLower!=0) + (pUpper!=0); | |
2284 if( nNew<10 ) nNew = 10; | |
2285 if( nNew<nOut ) nOut = nNew; | |
2286 #if defined(WHERETRACE_ENABLED) | |
2287 if( pLoop->nOut>nOut ){ | |
2288 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", | |
2289 pLoop->nOut, nOut)); | |
2290 } | |
2291 #endif | |
2292 pLoop->nOut = (LogEst)nOut; | |
2293 return rc; | |
2294 } | |
2295 | |
2296 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
2297 /* | |
2298 ** Estimate the number of rows that will be returned based on | |
2299 ** an equality constraint x=VALUE and where that VALUE occurs in | |
2300 ** the histogram data. This only works when x is the left-most | |
2301 ** column of an index and sqlite_stat3 histogram data is available | |
2302 ** for that index. When pExpr==NULL that means the constraint is | |
2303 ** "x IS NULL" instead of "x=VALUE". | |
2304 ** | |
2305 ** Write the estimated row count into *pnRow and return SQLITE_OK. | |
2306 ** If unable to make an estimate, leave *pnRow unchanged and return | |
2307 ** non-zero. | |
2308 ** | |
2309 ** This routine can fail if it is unable to load a collating sequence | |
2310 ** required for string comparison, or if unable to allocate memory | |
2311 ** for a UTF conversion required for comparison. The error is stored | |
2312 ** in the pParse structure. | |
2313 */ | |
2314 static int whereEqualScanEst( | |
2315 Parse *pParse, /* Parsing & code generating context */ | |
2316 WhereLoopBuilder *pBuilder, | |
2317 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ | |
2318 tRowcnt *pnRow /* Write the revised row estimate here */ | |
2319 ){ | |
2320 Index *p = pBuilder->pNew->u.btree.pIndex; | |
2321 int nEq = pBuilder->pNew->u.btree.nEq; | |
2322 UnpackedRecord *pRec = pBuilder->pRec; | |
2323 u8 aff; /* Column affinity */ | |
2324 int rc; /* Subfunction return code */ | |
2325 tRowcnt a[2]; /* Statistics */ | |
2326 int bOk; | |
2327 | |
2328 assert( nEq>=1 ); | |
2329 assert( nEq<=p->nColumn ); | |
2330 assert( p->aSample!=0 ); | |
2331 assert( p->nSample>0 ); | |
2332 assert( pBuilder->nRecValid<nEq ); | |
2333 | |
2334 /* If values are not available for all fields of the index to the left | |
2335 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ | |
2336 if( pBuilder->nRecValid<(nEq-1) ){ | |
2337 return SQLITE_NOTFOUND; | |
2338 } | |
2339 | |
2340 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() | |
2341 ** below would return the same value. */ | |
2342 if( nEq>=p->nColumn ){ | |
2343 *pnRow = 1; | |
2344 return SQLITE_OK; | |
2345 } | |
2346 | |
2347 aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity; | |
2348 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); | |
2349 pBuilder->pRec = pRec; | |
2350 if( rc!=SQLITE_OK ) return rc; | |
2351 if( bOk==0 ) return SQLITE_NOTFOUND; | |
2352 pBuilder->nRecValid = nEq; | |
2353 | |
2354 whereKeyStats(pParse, p, pRec, 0, a); | |
2355 WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); | |
2356 *pnRow = a[1]; | |
2357 | |
2358 return rc; | |
2359 } | |
2360 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | |
2361 | |
2362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
2363 /* | |
2364 ** Estimate the number of rows that will be returned based on | |
2365 ** an IN constraint where the right-hand side of the IN operator | |
2366 ** is a list of values. Example: | |
2367 ** | |
2368 ** WHERE x IN (1,2,3,4) | |
2369 ** | |
2370 ** Write the estimated row count into *pnRow and return SQLITE_OK. | |
2371 ** If unable to make an estimate, leave *pnRow unchanged and return | |
2372 ** non-zero. | |
2373 ** | |
2374 ** This routine can fail if it is unable to load a collating sequence | |
2375 ** required for string comparison, or if unable to allocate memory | |
2376 ** for a UTF conversion required for comparison. The error is stored | |
2377 ** in the pParse structure. | |
2378 */ | |
2379 static int whereInScanEst( | |
2380 Parse *pParse, /* Parsing & code generating context */ | |
2381 WhereLoopBuilder *pBuilder, | |
2382 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ | |
2383 tRowcnt *pnRow /* Write the revised row estimate here */ | |
2384 ){ | |
2385 Index *p = pBuilder->pNew->u.btree.pIndex; | |
2386 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); | |
2387 int nRecValid = pBuilder->nRecValid; | |
2388 int rc = SQLITE_OK; /* Subfunction return code */ | |
2389 tRowcnt nEst; /* Number of rows for a single term */ | |
2390 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ | |
2391 int i; /* Loop counter */ | |
2392 | |
2393 assert( p->aSample!=0 ); | |
2394 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ | |
2395 nEst = nRow0; | |
2396 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); | |
2397 nRowEst += nEst; | |
2398 pBuilder->nRecValid = nRecValid; | |
2399 } | |
2400 | |
2401 if( rc==SQLITE_OK ){ | |
2402 if( nRowEst > nRow0 ) nRowEst = nRow0; | |
2403 *pnRow = nRowEst; | |
2404 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); | |
2405 } | |
2406 assert( pBuilder->nRecValid==nRecValid ); | |
2407 return rc; | |
2408 } | |
2409 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | |
2410 | |
2411 /* | |
2412 ** Disable a term in the WHERE clause. Except, do not disable the term | |
2413 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON | |
2414 ** or USING clause of that join. | |
2415 ** | |
2416 ** Consider the term t2.z='ok' in the following queries: | |
2417 ** | |
2418 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' | |
2419 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' | |
2420 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' | |
2421 ** | |
2422 ** The t2.z='ok' is disabled in the in (2) because it originates | |
2423 ** in the ON clause. The term is disabled in (3) because it is not part | |
2424 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. | |
2425 ** | |
2426 ** Disabling a term causes that term to not be tested in the inner loop | |
2427 ** of the join. Disabling is an optimization. When terms are satisfied | |
2428 ** by indices, we disable them to prevent redundant tests in the inner | |
2429 ** loop. We would get the correct results if nothing were ever disabled, | |
2430 ** but joins might run a little slower. The trick is to disable as much | |
2431 ** as we can without disabling too much. If we disabled in (1), we'd get | |
2432 ** the wrong answer. See ticket #813. | |
2433 */ | |
2434 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ | |
2435 if( pTerm | |
2436 && (pTerm->wtFlags & TERM_CODED)==0 | |
2437 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) | |
2438 && (pLevel->notReady & pTerm->prereqAll)==0 | |
2439 ){ | |
2440 pTerm->wtFlags |= TERM_CODED; | |
2441 if( pTerm->iParent>=0 ){ | |
2442 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; | |
2443 if( (--pOther->nChild)==0 ){ | |
2444 disableTerm(pLevel, pOther); | |
2445 } | |
2446 } | |
2447 } | |
2448 } | |
2449 | |
2450 /* | |
2451 ** Code an OP_Affinity opcode to apply the column affinity string zAff | |
2452 ** to the n registers starting at base. | |
2453 ** | |
2454 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the | |
2455 ** beginning and end of zAff are ignored. If all entries in zAff are | |
2456 ** SQLITE_AFF_NONE, then no code gets generated. | |
2457 ** | |
2458 ** This routine makes its own copy of zAff so that the caller is free | |
2459 ** to modify zAff after this routine returns. | |
2460 */ | |
2461 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ | |
2462 Vdbe *v = pParse->pVdbe; | |
2463 if( zAff==0 ){ | |
2464 assert( pParse->db->mallocFailed ); | |
2465 return; | |
2466 } | |
2467 assert( v!=0 ); | |
2468 | |
2469 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning | |
2470 ** and end of the affinity string. | |
2471 */ | |
2472 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ | |
2473 n--; | |
2474 base++; | |
2475 zAff++; | |
2476 } | |
2477 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ | |
2478 n--; | |
2479 } | |
2480 | |
2481 /* Code the OP_Affinity opcode if there is anything left to do. */ | |
2482 if( n>0 ){ | |
2483 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); | |
2484 sqlite3VdbeChangeP4(v, -1, zAff, n); | |
2485 sqlite3ExprCacheAffinityChange(pParse, base, n); | |
2486 } | |
2487 } | |
2488 | |
2489 | |
2490 /* | |
2491 ** Generate code for a single equality term of the WHERE clause. An equality | |
2492 ** term can be either X=expr or X IN (...). pTerm is the term to be | |
2493 ** coded. | |
2494 ** | |
2495 ** The current value for the constraint is left in register iReg. | |
2496 ** | |
2497 ** For a constraint of the form X=expr, the expression is evaluated and its | |
2498 ** result is left on the stack. For constraints of the form X IN (...) | |
2499 ** this routine sets up a loop that will iterate over all values of X. | |
2500 */ | |
2501 static int codeEqualityTerm( | |
2502 Parse *pParse, /* The parsing context */ | |
2503 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ | |
2504 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ | |
2505 int iEq, /* Index of the equality term within this level */ | |
2506 int bRev, /* True for reverse-order IN operations */ | |
2507 int iTarget /* Attempt to leave results in this register */ | |
2508 ){ | |
2509 Expr *pX = pTerm->pExpr; | |
2510 Vdbe *v = pParse->pVdbe; | |
2511 int iReg; /* Register holding results */ | |
2512 | |
2513 assert( iTarget>0 ); | |
2514 if( pX->op==TK_EQ ){ | |
2515 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); | |
2516 }else if( pX->op==TK_ISNULL ){ | |
2517 iReg = iTarget; | |
2518 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); | |
2519 #ifndef SQLITE_OMIT_SUBQUERY | |
2520 }else{ | |
2521 int eType; | |
2522 int iTab; | |
2523 struct InLoop *pIn; | |
2524 WhereLoop *pLoop = pLevel->pWLoop; | |
2525 | |
2526 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 | |
2527 && pLoop->u.btree.pIndex!=0 | |
2528 && pLoop->u.btree.pIndex->aSortOrder[iEq] | |
2529 ){ | |
2530 testcase( iEq==0 ); | |
2531 testcase( bRev ); | |
2532 bRev = !bRev; | |
2533 } | |
2534 assert( pX->op==TK_IN ); | |
2535 iReg = iTarget; | |
2536 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); | |
2537 if( eType==IN_INDEX_INDEX_DESC ){ | |
2538 testcase( bRev ); | |
2539 bRev = !bRev; | |
2540 } | |
2541 iTab = pX->iTable; | |
2542 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); | |
2543 VdbeCoverageIf(v, bRev); | |
2544 VdbeCoverageIf(v, !bRev); | |
2545 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); | |
2546 pLoop->wsFlags |= WHERE_IN_ABLE; | |
2547 if( pLevel->u.in.nIn==0 ){ | |
2548 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); | |
2549 } | |
2550 pLevel->u.in.nIn++; | |
2551 pLevel->u.in.aInLoop = | |
2552 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, | |
2553 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); | |
2554 pIn = pLevel->u.in.aInLoop; | |
2555 if( pIn ){ | |
2556 pIn += pLevel->u.in.nIn - 1; | |
2557 pIn->iCur = iTab; | |
2558 if( eType==IN_INDEX_ROWID ){ | |
2559 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); | |
2560 }else{ | |
2561 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); | |
2562 } | |
2563 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; | |
2564 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); | |
2565 }else{ | |
2566 pLevel->u.in.nIn = 0; | |
2567 } | |
2568 #endif | |
2569 } | |
2570 disableTerm(pLevel, pTerm); | |
2571 return iReg; | |
2572 } | |
2573 | |
2574 /* | |
2575 ** Generate code that will evaluate all == and IN constraints for an | |
2576 ** index scan. | |
2577 ** | |
2578 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). | |
2579 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 | |
2580 ** The index has as many as three equality constraints, but in this | |
2581 ** example, the third "c" value is an inequality. So only two | |
2582 ** constraints are coded. This routine will generate code to evaluate | |
2583 ** a==5 and b IN (1,2,3). The current values for a and b will be stored | |
2584 ** in consecutive registers and the index of the first register is returned. | |
2585 ** | |
2586 ** In the example above nEq==2. But this subroutine works for any value | |
2587 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. | |
2588 ** The only thing it does is allocate the pLevel->iMem memory cell and | |
2589 ** compute the affinity string. | |
2590 ** | |
2591 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints | |
2592 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is | |
2593 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that | |
2594 ** occurs after the nEq quality constraints. | |
2595 ** | |
2596 ** This routine allocates a range of nEq+nExtraReg memory cells and returns | |
2597 ** the index of the first memory cell in that range. The code that | |
2598 ** calls this routine will use that memory range to store keys for | |
2599 ** start and termination conditions of the loop. | |
2600 ** key value of the loop. If one or more IN operators appear, then | |
2601 ** this routine allocates an additional nEq memory cells for internal | |
2602 ** use. | |
2603 ** | |
2604 ** Before returning, *pzAff is set to point to a buffer containing a | |
2605 ** copy of the column affinity string of the index allocated using | |
2606 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated | |
2607 ** with equality constraints that use NONE affinity are set to | |
2608 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: | |
2609 ** | |
2610 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); | |
2611 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; | |
2612 ** | |
2613 ** In the example above, the index on t1(a) has TEXT affinity. But since | |
2614 ** the right hand side of the equality constraint (t2.b) has NONE affinity, | |
2615 ** no conversion should be attempted before using a t2.b value as part of | |
2616 ** a key to search the index. Hence the first byte in the returned affinity | |
2617 ** string in this example would be set to SQLITE_AFF_NONE. | |
2618 */ | |
2619 static int codeAllEqualityTerms( | |
2620 Parse *pParse, /* Parsing context */ | |
2621 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ | |
2622 int bRev, /* Reverse the order of IN operators */ | |
2623 int nExtraReg, /* Number of extra registers to allocate */ | |
2624 char **pzAff /* OUT: Set to point to affinity string */ | |
2625 ){ | |
2626 u16 nEq; /* The number of == or IN constraints to code */ | |
2627 u16 nSkip; /* Number of left-most columns to skip */ | |
2628 Vdbe *v = pParse->pVdbe; /* The vm under construction */ | |
2629 Index *pIdx; /* The index being used for this loop */ | |
2630 WhereTerm *pTerm; /* A single constraint term */ | |
2631 WhereLoop *pLoop; /* The WhereLoop object */ | |
2632 int j; /* Loop counter */ | |
2633 int regBase; /* Base register */ | |
2634 int nReg; /* Number of registers to allocate */ | |
2635 char *zAff; /* Affinity string to return */ | |
2636 | |
2637 /* This module is only called on query plans that use an index. */ | |
2638 pLoop = pLevel->pWLoop; | |
2639 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); | |
2640 nEq = pLoop->u.btree.nEq; | |
2641 nSkip = pLoop->u.btree.nSkip; | |
2642 pIdx = pLoop->u.btree.pIndex; | |
2643 assert( pIdx!=0 ); | |
2644 | |
2645 /* Figure out how many memory cells we will need then allocate them. | |
2646 */ | |
2647 regBase = pParse->nMem + 1; | |
2648 nReg = pLoop->u.btree.nEq + nExtraReg; | |
2649 pParse->nMem += nReg; | |
2650 | |
2651 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); | |
2652 if( !zAff ){ | |
2653 pParse->db->mallocFailed = 1; | |
2654 } | |
2655 | |
2656 if( nSkip ){ | |
2657 int iIdxCur = pLevel->iIdxCur; | |
2658 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); | |
2659 VdbeCoverageIf(v, bRev==0); | |
2660 VdbeCoverageIf(v, bRev!=0); | |
2661 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); | |
2662 j = sqlite3VdbeAddOp0(v, OP_Goto); | |
2663 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), | |
2664 iIdxCur, 0, regBase, nSkip); | |
2665 VdbeCoverageIf(v, bRev==0); | |
2666 VdbeCoverageIf(v, bRev!=0); | |
2667 sqlite3VdbeJumpHere(v, j); | |
2668 for(j=0; j<nSkip; j++){ | |
2669 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); | |
2670 assert( pIdx->aiColumn[j]>=0 ); | |
2671 VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); | |
2672 } | |
2673 } | |
2674 | |
2675 /* Evaluate the equality constraints | |
2676 */ | |
2677 assert( zAff==0 || (int)strlen(zAff)>=nEq ); | |
2678 for(j=nSkip; j<nEq; j++){ | |
2679 int r1; | |
2680 pTerm = pLoop->aLTerm[j]; | |
2681 assert( pTerm!=0 ); | |
2682 /* The following testcase is true for indices with redundant columns. | |
2683 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ | |
2684 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); | |
2685 testcase( pTerm->wtFlags & TERM_VIRTUAL ); | |
2686 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); | |
2687 if( r1!=regBase+j ){ | |
2688 if( nReg==1 ){ | |
2689 sqlite3ReleaseTempReg(pParse, regBase); | |
2690 regBase = r1; | |
2691 }else{ | |
2692 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); | |
2693 } | |
2694 } | |
2695 testcase( pTerm->eOperator & WO_ISNULL ); | |
2696 testcase( pTerm->eOperator & WO_IN ); | |
2697 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ | |
2698 Expr *pRight = pTerm->pExpr->pRight; | |
2699 if( sqlite3ExprCanBeNull(pRight) ){ | |
2700 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); | |
2701 VdbeCoverage(v); | |
2702 } | |
2703 if( zAff ){ | |
2704 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ | |
2705 zAff[j] = SQLITE_AFF_NONE; | |
2706 } | |
2707 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ | |
2708 zAff[j] = SQLITE_AFF_NONE; | |
2709 } | |
2710 } | |
2711 } | |
2712 } | |
2713 *pzAff = zAff; | |
2714 return regBase; | |
2715 } | |
2716 | |
2717 #ifndef SQLITE_OMIT_EXPLAIN | |
2718 /* | |
2719 ** This routine is a helper for explainIndexRange() below | |
2720 ** | |
2721 ** pStr holds the text of an expression that we are building up one term | |
2722 ** at a time. This routine adds a new term to the end of the expression. | |
2723 ** Terms are separated by AND so add the "AND" text for second and subsequent | |
2724 ** terms only. | |
2725 */ | |
2726 static void explainAppendTerm( | |
2727 StrAccum *pStr, /* The text expression being built */ | |
2728 int iTerm, /* Index of this term. First is zero */ | |
2729 const char *zColumn, /* Name of the column */ | |
2730 const char *zOp /* Name of the operator */ | |
2731 ){ | |
2732 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); | |
2733 sqlite3StrAccumAppendAll(pStr, zColumn); | |
2734 sqlite3StrAccumAppend(pStr, zOp, 1); | |
2735 sqlite3StrAccumAppend(pStr, "?", 1); | |
2736 } | |
2737 | |
2738 /* | |
2739 ** Argument pLevel describes a strategy for scanning table pTab. This | |
2740 ** function appends text to pStr that describes the subset of table | |
2741 ** rows scanned by the strategy in the form of an SQL expression. | |
2742 ** | |
2743 ** For example, if the query: | |
2744 ** | |
2745 ** SELECT * FROM t1 WHERE a=1 AND b>2; | |
2746 ** | |
2747 ** is run and there is an index on (a, b), then this function returns a | |
2748 ** string similar to: | |
2749 ** | |
2750 ** "a=? AND b>?" | |
2751 */ | |
2752 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ | |
2753 Index *pIndex = pLoop->u.btree.pIndex; | |
2754 u16 nEq = pLoop->u.btree.nEq; | |
2755 u16 nSkip = pLoop->u.btree.nSkip; | |
2756 int i, j; | |
2757 Column *aCol = pTab->aCol; | |
2758 i16 *aiColumn = pIndex->aiColumn; | |
2759 | |
2760 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; | |
2761 sqlite3StrAccumAppend(pStr, " (", 2); | |
2762 for(i=0; i<nEq; i++){ | |
2763 char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; | |
2764 if( i>=nSkip ){ | |
2765 explainAppendTerm(pStr, i, z, "="); | |
2766 }else{ | |
2767 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); | |
2768 sqlite3XPrintf(pStr, 0, "ANY(%s)", z); | |
2769 } | |
2770 } | |
2771 | |
2772 j = i; | |
2773 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ | |
2774 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; | |
2775 explainAppendTerm(pStr, i++, z, ">"); | |
2776 } | |
2777 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ | |
2778 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; | |
2779 explainAppendTerm(pStr, i, z, "<"); | |
2780 } | |
2781 sqlite3StrAccumAppend(pStr, ")", 1); | |
2782 } | |
2783 | |
2784 /* | |
2785 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN | |
2786 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single | |
2787 ** record is added to the output to describe the table scan strategy in | |
2788 ** pLevel. | |
2789 */ | |
2790 static void explainOneScan( | |
2791 Parse *pParse, /* Parse context */ | |
2792 SrcList *pTabList, /* Table list this loop refers to */ | |
2793 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ | |
2794 int iLevel, /* Value for "level" column of output */ | |
2795 int iFrom, /* Value for "from" column of output */ | |
2796 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ | |
2797 ){ | |
2798 #ifndef SQLITE_DEBUG | |
2799 if( pParse->explain==2 ) | |
2800 #endif | |
2801 { | |
2802 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; | |
2803 Vdbe *v = pParse->pVdbe; /* VM being constructed */ | |
2804 sqlite3 *db = pParse->db; /* Database handle */ | |
2805 int iId = pParse->iSelectId; /* Select id (left-most output column) */ | |
2806 int isSearch; /* True for a SEARCH. False for SCAN. */ | |
2807 WhereLoop *pLoop; /* The controlling WhereLoop object */ | |
2808 u32 flags; /* Flags that describe this loop */ | |
2809 char *zMsg; /* Text to add to EQP output */ | |
2810 StrAccum str; /* EQP output string */ | |
2811 char zBuf[100]; /* Initial space for EQP output string */ | |
2812 | |
2813 pLoop = pLevel->pWLoop; | |
2814 flags = pLoop->wsFlags; | |
2815 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; | |
2816 | |
2817 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 | |
2818 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) | |
2819 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); | |
2820 | |
2821 sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); | |
2822 str.db = db; | |
2823 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); | |
2824 if( pItem->pSelect ){ | |
2825 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); | |
2826 }else{ | |
2827 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); | |
2828 } | |
2829 | |
2830 if( pItem->zAlias ){ | |
2831 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); | |
2832 } | |
2833 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ | |
2834 const char *zFmt = 0; | |
2835 Index *pIdx; | |
2836 | |
2837 assert( pLoop->u.btree.pIndex!=0 ); | |
2838 pIdx = pLoop->u.btree.pIndex; | |
2839 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); | |
2840 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ | |
2841 if( isSearch ){ | |
2842 zFmt = "PRIMARY KEY"; | |
2843 } | |
2844 }else if( flags & WHERE_AUTO_INDEX ){ | |
2845 zFmt = "AUTOMATIC COVERING INDEX"; | |
2846 }else if( flags & WHERE_IDX_ONLY ){ | |
2847 zFmt = "COVERING INDEX %s"; | |
2848 }else{ | |
2849 zFmt = "INDEX %s"; | |
2850 } | |
2851 if( zFmt ){ | |
2852 sqlite3StrAccumAppend(&str, " USING ", 7); | |
2853 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); | |
2854 explainIndexRange(&str, pLoop, pItem->pTab); | |
2855 } | |
2856 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ | |
2857 const char *zRange; | |
2858 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ | |
2859 zRange = "(rowid=?)"; | |
2860 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ | |
2861 zRange = "(rowid>? AND rowid<?)"; | |
2862 }else if( flags&WHERE_BTM_LIMIT ){ | |
2863 zRange = "(rowid>?)"; | |
2864 }else{ | |
2865 assert( flags&WHERE_TOP_LIMIT); | |
2866 zRange = "(rowid<?)"; | |
2867 } | |
2868 sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); | |
2869 sqlite3StrAccumAppendAll(&str, zRange); | |
2870 } | |
2871 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
2872 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ | |
2873 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", | |
2874 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); | |
2875 } | |
2876 #endif | |
2877 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS | |
2878 if( pLoop->nOut>=10 ){ | |
2879 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); | |
2880 }else{ | |
2881 sqlite3StrAccumAppend(&str, " (~1 row)", 9); | |
2882 } | |
2883 #endif | |
2884 zMsg = sqlite3StrAccumFinish(&str); | |
2885 sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); | |
2886 } | |
2887 } | |
2888 #else | |
2889 # define explainOneScan(u,v,w,x,y,z) | |
2890 #endif /* SQLITE_OMIT_EXPLAIN */ | |
2891 | |
2892 | |
2893 /* | |
2894 ** Generate code for the start of the iLevel-th loop in the WHERE clause | |
2895 ** implementation described by pWInfo. | |
2896 */ | |
2897 static Bitmask codeOneLoopStart( | |
2898 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ | |
2899 int iLevel, /* Which level of pWInfo->a[] should be coded */ | |
2900 Bitmask notReady /* Which tables are currently available */ | |
2901 ){ | |
2902 int j, k; /* Loop counters */ | |
2903 int iCur; /* The VDBE cursor for the table */ | |
2904 int addrNxt; /* Where to jump to continue with the next IN case */ | |
2905 int omitTable; /* True if we use the index only */ | |
2906 int bRev; /* True if we need to scan in reverse order */ | |
2907 WhereLevel *pLevel; /* The where level to be coded */ | |
2908 WhereLoop *pLoop; /* The WhereLoop object being coded */ | |
2909 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ | |
2910 WhereTerm *pTerm; /* A WHERE clause term */ | |
2911 Parse *pParse; /* Parsing context */ | |
2912 sqlite3 *db; /* Database connection */ | |
2913 Vdbe *v; /* The prepared stmt under constructions */ | |
2914 struct SrcList_item *pTabItem; /* FROM clause term being coded */ | |
2915 int addrBrk; /* Jump here to break out of the loop */ | |
2916 int addrCont; /* Jump here to continue with next cycle */ | |
2917 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ | |
2918 int iReleaseReg = 0; /* Temp register to free before returning */ | |
2919 | |
2920 pParse = pWInfo->pParse; | |
2921 v = pParse->pVdbe; | |
2922 pWC = &pWInfo->sWC; | |
2923 db = pParse->db; | |
2924 pLevel = &pWInfo->a[iLevel]; | |
2925 pLoop = pLevel->pWLoop; | |
2926 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; | |
2927 iCur = pTabItem->iCursor; | |
2928 pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur); | |
2929 bRev = (pWInfo->revMask>>iLevel)&1; | |
2930 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 | |
2931 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; | |
2932 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); | |
2933 | |
2934 /* Create labels for the "break" and "continue" instructions | |
2935 ** for the current loop. Jump to addrBrk to break out of a loop. | |
2936 ** Jump to cont to go immediately to the next iteration of the | |
2937 ** loop. | |
2938 ** | |
2939 ** When there is an IN operator, we also have a "addrNxt" label that | |
2940 ** means to continue with the next IN value combination. When | |
2941 ** there are no IN operators in the constraints, the "addrNxt" label | |
2942 ** is the same as "addrBrk". | |
2943 */ | |
2944 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); | |
2945 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); | |
2946 | |
2947 /* If this is the right table of a LEFT OUTER JOIN, allocate and | |
2948 ** initialize a memory cell that records if this table matches any | |
2949 ** row of the left table of the join. | |
2950 */ | |
2951 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ | |
2952 pLevel->iLeftJoin = ++pParse->nMem; | |
2953 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); | |
2954 VdbeComment((v, "init LEFT JOIN no-match flag")); | |
2955 } | |
2956 | |
2957 /* Special case of a FROM clause subquery implemented as a co-routine */ | |
2958 if( pTabItem->viaCoroutine ){ | |
2959 int regYield = pTabItem->regReturn; | |
2960 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); | |
2961 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); | |
2962 VdbeCoverage(v); | |
2963 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); | |
2964 pLevel->op = OP_Goto; | |
2965 }else | |
2966 | |
2967 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
2968 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | |
2969 /* Case 1: The table is a virtual-table. Use the VFilter and VNext | |
2970 ** to access the data. | |
2971 */ | |
2972 int iReg; /* P3 Value for OP_VFilter */ | |
2973 int addrNotFound; | |
2974 int nConstraint = pLoop->nLTerm; | |
2975 | |
2976 sqlite3ExprCachePush(pParse); | |
2977 iReg = sqlite3GetTempRange(pParse, nConstraint+2); | |
2978 addrNotFound = pLevel->addrBrk; | |
2979 for(j=0; j<nConstraint; j++){ | |
2980 int iTarget = iReg+j+2; | |
2981 pTerm = pLoop->aLTerm[j]; | |
2982 if( pTerm==0 ) continue; | |
2983 if( pTerm->eOperator & WO_IN ){ | |
2984 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); | |
2985 addrNotFound = pLevel->addrNxt; | |
2986 }else{ | |
2987 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); | |
2988 } | |
2989 } | |
2990 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); | |
2991 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); | |
2992 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, | |
2993 pLoop->u.vtab.idxStr, | |
2994 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); | |
2995 VdbeCoverage(v); | |
2996 pLoop->u.vtab.needFree = 0; | |
2997 for(j=0; j<nConstraint && j<16; j++){ | |
2998 if( (pLoop->u.vtab.omitMask>>j)&1 ){ | |
2999 disableTerm(pLevel, pLoop->aLTerm[j]); | |
3000 } | |
3001 } | |
3002 pLevel->op = OP_VNext; | |
3003 pLevel->p1 = iCur; | |
3004 pLevel->p2 = sqlite3VdbeCurrentAddr(v); | |
3005 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); | |
3006 sqlite3ExprCachePop(pParse); | |
3007 }else | |
3008 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
3009 | |
3010 if( (pLoop->wsFlags & WHERE_IPK)!=0 | |
3011 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 | |
3012 ){ | |
3013 /* Case 2: We can directly reference a single row using an | |
3014 ** equality comparison against the ROWID field. Or | |
3015 ** we reference multiple rows using a "rowid IN (...)" | |
3016 ** construct. | |
3017 */ | |
3018 assert( pLoop->u.btree.nEq==1 ); | |
3019 pTerm = pLoop->aLTerm[0]; | |
3020 assert( pTerm!=0 ); | |
3021 assert( pTerm->pExpr!=0 ); | |
3022 assert( omitTable==0 ); | |
3023 testcase( pTerm->wtFlags & TERM_VIRTUAL ); | |
3024 iReleaseReg = ++pParse->nMem; | |
3025 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); | |
3026 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); | |
3027 addrNxt = pLevel->addrNxt; | |
3028 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); | |
3029 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); | |
3030 VdbeCoverage(v); | |
3031 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); | |
3032 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); | |
3033 VdbeComment((v, "pk")); | |
3034 pLevel->op = OP_Noop; | |
3035 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 | |
3036 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 | |
3037 ){ | |
3038 /* Case 3: We have an inequality comparison against the ROWID field. | |
3039 */ | |
3040 int testOp = OP_Noop; | |
3041 int start; | |
3042 int memEndValue = 0; | |
3043 WhereTerm *pStart, *pEnd; | |
3044 | |
3045 assert( omitTable==0 ); | |
3046 j = 0; | |
3047 pStart = pEnd = 0; | |
3048 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; | |
3049 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; | |
3050 assert( pStart!=0 || pEnd!=0 ); | |
3051 if( bRev ){ | |
3052 pTerm = pStart; | |
3053 pStart = pEnd; | |
3054 pEnd = pTerm; | |
3055 } | |
3056 if( pStart ){ | |
3057 Expr *pX; /* The expression that defines the start bound */ | |
3058 int r1, rTemp; /* Registers for holding the start boundary */ | |
3059 | |
3060 /* The following constant maps TK_xx codes into corresponding | |
3061 ** seek opcodes. It depends on a particular ordering of TK_xx | |
3062 */ | |
3063 const u8 aMoveOp[] = { | |
3064 /* TK_GT */ OP_SeekGT, | |
3065 /* TK_LE */ OP_SeekLE, | |
3066 /* TK_LT */ OP_SeekLT, | |
3067 /* TK_GE */ OP_SeekGE | |
3068 }; | |
3069 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ | |
3070 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ | |
3071 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ | |
3072 | |
3073 assert( (pStart->wtFlags & TERM_VNULL)==0 ); | |
3074 testcase( pStart->wtFlags & TERM_VIRTUAL ); | |
3075 pX = pStart->pExpr; | |
3076 assert( pX!=0 ); | |
3077 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ | |
3078 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); | |
3079 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); | |
3080 VdbeComment((v, "pk")); | |
3081 VdbeCoverageIf(v, pX->op==TK_GT); | |
3082 VdbeCoverageIf(v, pX->op==TK_LE); | |
3083 VdbeCoverageIf(v, pX->op==TK_LT); | |
3084 VdbeCoverageIf(v, pX->op==TK_GE); | |
3085 sqlite3ExprCacheAffinityChange(pParse, r1, 1); | |
3086 sqlite3ReleaseTempReg(pParse, rTemp); | |
3087 disableTerm(pLevel, pStart); | |
3088 }else{ | |
3089 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); | |
3090 VdbeCoverageIf(v, bRev==0); | |
3091 VdbeCoverageIf(v, bRev!=0); | |
3092 } | |
3093 if( pEnd ){ | |
3094 Expr *pX; | |
3095 pX = pEnd->pExpr; | |
3096 assert( pX!=0 ); | |
3097 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); | |
3098 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ | |
3099 testcase( pEnd->wtFlags & TERM_VIRTUAL ); | |
3100 memEndValue = ++pParse->nMem; | |
3101 sqlite3ExprCode(pParse, pX->pRight, memEndValue); | |
3102 if( pX->op==TK_LT || pX->op==TK_GT ){ | |
3103 testOp = bRev ? OP_Le : OP_Ge; | |
3104 }else{ | |
3105 testOp = bRev ? OP_Lt : OP_Gt; | |
3106 } | |
3107 disableTerm(pLevel, pEnd); | |
3108 } | |
3109 start = sqlite3VdbeCurrentAddr(v); | |
3110 pLevel->op = bRev ? OP_Prev : OP_Next; | |
3111 pLevel->p1 = iCur; | |
3112 pLevel->p2 = start; | |
3113 assert( pLevel->p5==0 ); | |
3114 if( testOp!=OP_Noop ){ | |
3115 iRowidReg = ++pParse->nMem; | |
3116 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); | |
3117 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); | |
3118 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); | |
3119 VdbeCoverageIf(v, testOp==OP_Le); | |
3120 VdbeCoverageIf(v, testOp==OP_Lt); | |
3121 VdbeCoverageIf(v, testOp==OP_Ge); | |
3122 VdbeCoverageIf(v, testOp==OP_Gt); | |
3123 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); | |
3124 } | |
3125 }else if( pLoop->wsFlags & WHERE_INDEXED ){ | |
3126 /* Case 4: A scan using an index. | |
3127 ** | |
3128 ** The WHERE clause may contain zero or more equality | |
3129 ** terms ("==" or "IN" operators) that refer to the N | |
3130 ** left-most columns of the index. It may also contain | |
3131 ** inequality constraints (>, <, >= or <=) on the indexed | |
3132 ** column that immediately follows the N equalities. Only | |
3133 ** the right-most column can be an inequality - the rest must | |
3134 ** use the "==" and "IN" operators. For example, if the | |
3135 ** index is on (x,y,z), then the following clauses are all | |
3136 ** optimized: | |
3137 ** | |
3138 ** x=5 | |
3139 ** x=5 AND y=10 | |
3140 ** x=5 AND y<10 | |
3141 ** x=5 AND y>5 AND y<10 | |
3142 ** x=5 AND y=5 AND z<=10 | |
3143 ** | |
3144 ** The z<10 term of the following cannot be used, only | |
3145 ** the x=5 term: | |
3146 ** | |
3147 ** x=5 AND z<10 | |
3148 ** | |
3149 ** N may be zero if there are inequality constraints. | |
3150 ** If there are no inequality constraints, then N is at | |
3151 ** least one. | |
3152 ** | |
3153 ** This case is also used when there are no WHERE clause | |
3154 ** constraints but an index is selected anyway, in order | |
3155 ** to force the output order to conform to an ORDER BY. | |
3156 */ | |
3157 static const u8 aStartOp[] = { | |
3158 0, | |
3159 0, | |
3160 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ | |
3161 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ | |
3162 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ | |
3163 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ | |
3164 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ | |
3165 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ | |
3166 }; | |
3167 static const u8 aEndOp[] = { | |
3168 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ | |
3169 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ | |
3170 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ | |
3171 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ | |
3172 }; | |
3173 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ | |
3174 int regBase; /* Base register holding constraint values */ | |
3175 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ | |
3176 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ | |
3177 int startEq; /* True if range start uses ==, >= or <= */ | |
3178 int endEq; /* True if range end uses ==, >= or <= */ | |
3179 int start_constraints; /* Start of range is constrained */ | |
3180 int nConstraint; /* Number of constraint terms */ | |
3181 Index *pIdx; /* The index we will be using */ | |
3182 int iIdxCur; /* The VDBE cursor for the index */ | |
3183 int nExtraReg = 0; /* Number of extra registers needed */ | |
3184 int op; /* Instruction opcode */ | |
3185 char *zStartAff; /* Affinity for start of range constraint */ | |
3186 char cEndAff = 0; /* Affinity for end of range constraint */ | |
3187 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ | |
3188 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ | |
3189 | |
3190 pIdx = pLoop->u.btree.pIndex; | |
3191 iIdxCur = pLevel->iIdxCur; | |
3192 assert( nEq>=pLoop->u.btree.nSkip ); | |
3193 | |
3194 /* If this loop satisfies a sort order (pOrderBy) request that | |
3195 ** was passed to this function to implement a "SELECT min(x) ..." | |
3196 ** query, then the caller will only allow the loop to run for | |
3197 ** a single iteration. This means that the first row returned | |
3198 ** should not have a NULL value stored in 'x'. If column 'x' is | |
3199 ** the first one after the nEq equality constraints in the index, | |
3200 ** this requires some special handling. | |
3201 */ | |
3202 assert( pWInfo->pOrderBy==0 | |
3203 || pWInfo->pOrderBy->nExpr==1 | |
3204 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); | |
3205 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 | |
3206 && pWInfo->nOBSat>0 | |
3207 && (pIdx->nKeyCol>nEq) | |
3208 ){ | |
3209 assert( pLoop->u.btree.nSkip==0 ); | |
3210 bSeekPastNull = 1; | |
3211 nExtraReg = 1; | |
3212 } | |
3213 | |
3214 /* Find any inequality constraint terms for the start and end | |
3215 ** of the range. | |
3216 */ | |
3217 j = nEq; | |
3218 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ | |
3219 pRangeStart = pLoop->aLTerm[j++]; | |
3220 nExtraReg = 1; | |
3221 } | |
3222 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ | |
3223 pRangeEnd = pLoop->aLTerm[j++]; | |
3224 nExtraReg = 1; | |
3225 if( pRangeStart==0 | |
3226 && (j = pIdx->aiColumn[nEq])>=0 | |
3227 && pIdx->pTable->aCol[j].notNull==0 | |
3228 ){ | |
3229 bSeekPastNull = 1; | |
3230 } | |
3231 } | |
3232 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); | |
3233 | |
3234 /* Generate code to evaluate all constraint terms using == or IN | |
3235 ** and store the values of those terms in an array of registers | |
3236 ** starting at regBase. | |
3237 */ | |
3238 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); | |
3239 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); | |
3240 if( zStartAff ) cEndAff = zStartAff[nEq]; | |
3241 addrNxt = pLevel->addrNxt; | |
3242 | |
3243 /* If we are doing a reverse order scan on an ascending index, or | |
3244 ** a forward order scan on a descending index, interchange the | |
3245 ** start and end terms (pRangeStart and pRangeEnd). | |
3246 */ | |
3247 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) | |
3248 || (bRev && pIdx->nKeyCol==nEq) | |
3249 ){ | |
3250 SWAP(WhereTerm *, pRangeEnd, pRangeStart); | |
3251 SWAP(u8, bSeekPastNull, bStopAtNull); | |
3252 } | |
3253 | |
3254 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); | |
3255 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); | |
3256 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); | |
3257 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); | |
3258 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); | |
3259 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); | |
3260 start_constraints = pRangeStart || nEq>0; | |
3261 | |
3262 /* Seek the index cursor to the start of the range. */ | |
3263 nConstraint = nEq; | |
3264 if( pRangeStart ){ | |
3265 Expr *pRight = pRangeStart->pExpr->pRight; | |
3266 sqlite3ExprCode(pParse, pRight, regBase+nEq); | |
3267 if( (pRangeStart->wtFlags & TERM_VNULL)==0 | |
3268 && sqlite3ExprCanBeNull(pRight) | |
3269 ){ | |
3270 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); | |
3271 VdbeCoverage(v); | |
3272 } | |
3273 if( zStartAff ){ | |
3274 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ | |
3275 /* Since the comparison is to be performed with no conversions | |
3276 ** applied to the operands, set the affinity to apply to pRight to | |
3277 ** SQLITE_AFF_NONE. */ | |
3278 zStartAff[nEq] = SQLITE_AFF_NONE; | |
3279 } | |
3280 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ | |
3281 zStartAff[nEq] = SQLITE_AFF_NONE; | |
3282 } | |
3283 } | |
3284 nConstraint++; | |
3285 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); | |
3286 }else if( bSeekPastNull ){ | |
3287 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); | |
3288 nConstraint++; | |
3289 startEq = 0; | |
3290 start_constraints = 1; | |
3291 } | |
3292 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); | |
3293 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; | |
3294 assert( op!=0 ); | |
3295 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); | |
3296 VdbeCoverage(v); | |
3297 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); | |
3298 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); | |
3299 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); | |
3300 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); | |
3301 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); | |
3302 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); | |
3303 | |
3304 /* Load the value for the inequality constraint at the end of the | |
3305 ** range (if any). | |
3306 */ | |
3307 nConstraint = nEq; | |
3308 if( pRangeEnd ){ | |
3309 Expr *pRight = pRangeEnd->pExpr->pRight; | |
3310 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); | |
3311 sqlite3ExprCode(pParse, pRight, regBase+nEq); | |
3312 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 | |
3313 && sqlite3ExprCanBeNull(pRight) | |
3314 ){ | |
3315 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); | |
3316 VdbeCoverage(v); | |
3317 } | |
3318 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE | |
3319 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) | |
3320 ){ | |
3321 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); | |
3322 } | |
3323 nConstraint++; | |
3324 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); | |
3325 }else if( bStopAtNull ){ | |
3326 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); | |
3327 endEq = 0; | |
3328 nConstraint++; | |
3329 } | |
3330 sqlite3DbFree(db, zStartAff); | |
3331 | |
3332 /* Top of the loop body */ | |
3333 pLevel->p2 = sqlite3VdbeCurrentAddr(v); | |
3334 | |
3335 /* Check if the index cursor is past the end of the range. */ | |
3336 if( nConstraint ){ | |
3337 op = aEndOp[bRev*2 + endEq]; | |
3338 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); | |
3339 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); | |
3340 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); | |
3341 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); | |
3342 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); | |
3343 } | |
3344 | |
3345 /* Seek the table cursor, if required */ | |
3346 disableTerm(pLevel, pRangeStart); | |
3347 disableTerm(pLevel, pRangeEnd); | |
3348 if( omitTable ){ | |
3349 /* pIdx is a covering index. No need to access the main table. */ | |
3350 }else if( HasRowid(pIdx->pTable) ){ | |
3351 iRowidReg = ++pParse->nMem; | |
3352 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); | |
3353 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); | |
3354 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ | |
3355 }else if( iCur!=iIdxCur ){ | |
3356 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); | |
3357 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); | |
3358 for(j=0; j<pPk->nKeyCol; j++){ | |
3359 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); | |
3360 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); | |
3361 } | |
3362 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, | |
3363 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); | |
3364 } | |
3365 | |
3366 /* Record the instruction used to terminate the loop. Disable | |
3367 ** WHERE clause terms made redundant by the index range scan. | |
3368 */ | |
3369 if( pLoop->wsFlags & WHERE_ONEROW ){ | |
3370 pLevel->op = OP_Noop; | |
3371 }else if( bRev ){ | |
3372 pLevel->op = OP_Prev; | |
3373 }else{ | |
3374 pLevel->op = OP_Next; | |
3375 } | |
3376 pLevel->p1 = iIdxCur; | |
3377 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; | |
3378 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ | |
3379 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; | |
3380 }else{ | |
3381 assert( pLevel->p5==0 ); | |
3382 } | |
3383 }else | |
3384 | |
3385 #ifndef SQLITE_OMIT_OR_OPTIMIZATION | |
3386 if( pLoop->wsFlags & WHERE_MULTI_OR ){ | |
3387 /* Case 5: Two or more separately indexed terms connected by OR | |
3388 ** | |
3389 ** Example: | |
3390 ** | |
3391 ** CREATE TABLE t1(a,b,c,d); | |
3392 ** CREATE INDEX i1 ON t1(a); | |
3393 ** CREATE INDEX i2 ON t1(b); | |
3394 ** CREATE INDEX i3 ON t1(c); | |
3395 ** | |
3396 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) | |
3397 ** | |
3398 ** In the example, there are three indexed terms connected by OR. | |
3399 ** The top of the loop looks like this: | |
3400 ** | |
3401 ** Null 1 # Zero the rowset in reg 1 | |
3402 ** | |
3403 ** Then, for each indexed term, the following. The arguments to | |
3404 ** RowSetTest are such that the rowid of the current row is inserted | |
3405 ** into the RowSet. If it is already present, control skips the | |
3406 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). | |
3407 ** | |
3408 ** sqlite3WhereBegin(<term>) | |
3409 ** RowSetTest # Insert rowid into rowset | |
3410 ** Gosub 2 A | |
3411 ** sqlite3WhereEnd() | |
3412 ** | |
3413 ** Following the above, code to terminate the loop. Label A, the target | |
3414 ** of the Gosub above, jumps to the instruction right after the Goto. | |
3415 ** | |
3416 ** Null 1 # Zero the rowset in reg 1 | |
3417 ** Goto B # The loop is finished. | |
3418 ** | |
3419 ** A: <loop body> # Return data, whatever. | |
3420 ** | |
3421 ** Return 2 # Jump back to the Gosub | |
3422 ** | |
3423 ** B: <after the loop> | |
3424 ** | |
3425 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then | |
3426 ** use an ephemeral index instead of a RowSet to record the primary | |
3427 ** keys of the rows we have already seen. | |
3428 ** | |
3429 */ | |
3430 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ | |
3431 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ | |
3432 Index *pCov = 0; /* Potential covering index (or NULL) */ | |
3433 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ | |
3434 | |
3435 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ | |
3436 int regRowset = 0; /* Register for RowSet object */ | |
3437 int regRowid = 0; /* Register holding rowid */ | |
3438 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ | |
3439 int iRetInit; /* Address of regReturn init */ | |
3440 int untestedTerms = 0; /* Some terms not completely tested */ | |
3441 int ii; /* Loop counter */ | |
3442 u16 wctrlFlags; /* Flags for sub-WHERE clause */ | |
3443 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ | |
3444 Table *pTab = pTabItem->pTab; | |
3445 | |
3446 pTerm = pLoop->aLTerm[0]; | |
3447 assert( pTerm!=0 ); | |
3448 assert( pTerm->eOperator & WO_OR ); | |
3449 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); | |
3450 pOrWc = &pTerm->u.pOrInfo->wc; | |
3451 pLevel->op = OP_Return; | |
3452 pLevel->p1 = regReturn; | |
3453 | |
3454 /* Set up a new SrcList in pOrTab containing the table being scanned | |
3455 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. | |
3456 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). | |
3457 */ | |
3458 if( pWInfo->nLevel>1 ){ | |
3459 int nNotReady; /* The number of notReady tables */ | |
3460 struct SrcList_item *origSrc; /* Original list of tables */ | |
3461 nNotReady = pWInfo->nLevel - iLevel - 1; | |
3462 pOrTab = sqlite3StackAllocRaw(db, | |
3463 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); | |
3464 if( pOrTab==0 ) return notReady; | |
3465 pOrTab->nAlloc = (u8)(nNotReady + 1); | |
3466 pOrTab->nSrc = pOrTab->nAlloc; | |
3467 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); | |
3468 origSrc = pWInfo->pTabList->a; | |
3469 for(k=1; k<=nNotReady; k++){ | |
3470 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); | |
3471 } | |
3472 }else{ | |
3473 pOrTab = pWInfo->pTabList; | |
3474 } | |
3475 | |
3476 /* Initialize the rowset register to contain NULL. An SQL NULL is | |
3477 ** equivalent to an empty rowset. Or, create an ephemeral index | |
3478 ** capable of holding primary keys in the case of a WITHOUT ROWID. | |
3479 ** | |
3480 ** Also initialize regReturn to contain the address of the instruction | |
3481 ** immediately following the OP_Return at the bottom of the loop. This | |
3482 ** is required in a few obscure LEFT JOIN cases where control jumps | |
3483 ** over the top of the loop into the body of it. In this case the | |
3484 ** correct response for the end-of-loop code (the OP_Return) is to | |
3485 ** fall through to the next instruction, just as an OP_Next does if | |
3486 ** called on an uninitialized cursor. | |
3487 */ | |
3488 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ | |
3489 if( HasRowid(pTab) ){ | |
3490 regRowset = ++pParse->nMem; | |
3491 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); | |
3492 }else{ | |
3493 Index *pPk = sqlite3PrimaryKeyIndex(pTab); | |
3494 regRowset = pParse->nTab++; | |
3495 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); | |
3496 sqlite3VdbeSetP4KeyInfo(pParse, pPk); | |
3497 } | |
3498 regRowid = ++pParse->nMem; | |
3499 } | |
3500 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); | |
3501 | |
3502 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y | |
3503 ** Then for every term xN, evaluate as the subexpression: xN AND z | |
3504 ** That way, terms in y that are factored into the disjunction will | |
3505 ** be picked up by the recursive calls to sqlite3WhereBegin() below. | |
3506 ** | |
3507 ** Actually, each subexpression is converted to "xN AND w" where w is | |
3508 ** the "interesting" terms of z - terms that did not originate in the | |
3509 ** ON or USING clause of a LEFT JOIN, and terms that are usable as | |
3510 ** indices. | |
3511 ** | |
3512 ** This optimization also only applies if the (x1 OR x2 OR ...) term | |
3513 ** is not contained in the ON clause of a LEFT JOIN. | |
3514 ** See ticket http://www.sqlite.org/src/info/f2369304e4 | |
3515 */ | |
3516 if( pWC->nTerm>1 ){ | |
3517 int iTerm; | |
3518 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ | |
3519 Expr *pExpr = pWC->a[iTerm].pExpr; | |
3520 if( &pWC->a[iTerm] == pTerm ) continue; | |
3521 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; | |
3522 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); | |
3523 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); | |
3524 if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue; | |
3525 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; | |
3526 pExpr = sqlite3ExprDup(db, pExpr, 0); | |
3527 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); | |
3528 } | |
3529 if( pAndExpr ){ | |
3530 pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); | |
3531 } | |
3532 } | |
3533 | |
3534 /* Run a separate WHERE clause for each term of the OR clause. After | |
3535 ** eliminating duplicates from other WHERE clauses, the action for each | |
3536 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. | |
3537 */ | |
3538 wctrlFlags = WHERE_OMIT_OPEN_CLOSE | |
3539 | WHERE_FORCE_TABLE | |
3540 | WHERE_ONETABLE_ONLY; | |
3541 for(ii=0; ii<pOrWc->nTerm; ii++){ | |
3542 WhereTerm *pOrTerm = &pOrWc->a[ii]; | |
3543 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ | |
3544 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ | |
3545 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ | |
3546 int j1 = 0; /* Address of jump operation */ | |
3547 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ | |
3548 pAndExpr->pLeft = pOrExpr; | |
3549 pOrExpr = pAndExpr; | |
3550 } | |
3551 /* Loop through table entries that match term pOrTerm. */ | |
3552 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); | |
3553 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, | |
3554 wctrlFlags, iCovCur); | |
3555 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); | |
3556 if( pSubWInfo ){ | |
3557 WhereLoop *pSubLoop; | |
3558 explainOneScan( | |
3559 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 | |
3560 ); | |
3561 /* This is the sub-WHERE clause body. First skip over | |
3562 ** duplicate rows from prior sub-WHERE clauses, and record the | |
3563 ** rowid (or PRIMARY KEY) for the current row so that the same | |
3564 ** row will be skipped in subsequent sub-WHERE clauses. | |
3565 */ | |
3566 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ | |
3567 int r; | |
3568 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); | |
3569 if( HasRowid(pTab) ){ | |
3570 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); | |
3571 j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); | |
3572 VdbeCoverage(v); | |
3573 }else{ | |
3574 Index *pPk = sqlite3PrimaryKeyIndex(pTab); | |
3575 int nPk = pPk->nKeyCol; | |
3576 int iPk; | |
3577 | |
3578 /* Read the PK into an array of temp registers. */ | |
3579 r = sqlite3GetTempRange(pParse, nPk); | |
3580 for(iPk=0; iPk<nPk; iPk++){ | |
3581 int iCol = pPk->aiColumn[iPk]; | |
3582 sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0); | |
3583 } | |
3584 | |
3585 /* Check if the temp table already contains this key. If so, | |
3586 ** the row has already been included in the result set and | |
3587 ** can be ignored (by jumping past the Gosub below). Otherwise, | |
3588 ** insert the key into the temp table and proceed with processing | |
3589 ** the row. | |
3590 ** | |
3591 ** Use some of the same optimizations as OP_RowSetTest: If iSet | |
3592 ** is zero, assume that the key cannot already be present in | |
3593 ** the temp table. And if iSet is -1, assume that there is no | |
3594 ** need to insert the key into the temp table, as it will never | |
3595 ** be tested for. */ | |
3596 if( iSet ){ | |
3597 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); | |
3598 VdbeCoverage(v); | |
3599 } | |
3600 if( iSet>=0 ){ | |
3601 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); | |
3602 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); | |
3603 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); | |
3604 } | |
3605 | |
3606 /* Release the array of temp registers */ | |
3607 sqlite3ReleaseTempRange(pParse, r, nPk); | |
3608 } | |
3609 } | |
3610 | |
3611 /* Invoke the main loop body as a subroutine */ | |
3612 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); | |
3613 | |
3614 /* Jump here (skipping the main loop body subroutine) if the | |
3615 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ | |
3616 if( j1 ) sqlite3VdbeJumpHere(v, j1); | |
3617 | |
3618 /* The pSubWInfo->untestedTerms flag means that this OR term | |
3619 ** contained one or more AND term from a notReady table. The | |
3620 ** terms from the notReady table could not be tested and will | |
3621 ** need to be tested later. | |
3622 */ | |
3623 if( pSubWInfo->untestedTerms ) untestedTerms = 1; | |
3624 | |
3625 /* If all of the OR-connected terms are optimized using the same | |
3626 ** index, and the index is opened using the same cursor number | |
3627 ** by each call to sqlite3WhereBegin() made by this loop, it may | |
3628 ** be possible to use that index as a covering index. | |
3629 ** | |
3630 ** If the call to sqlite3WhereBegin() above resulted in a scan that | |
3631 ** uses an index, and this is either the first OR-connected term | |
3632 ** processed or the index is the same as that used by all previous | |
3633 ** terms, set pCov to the candidate covering index. Otherwise, set | |
3634 ** pCov to NULL to indicate that no candidate covering index will | |
3635 ** be available. | |
3636 */ | |
3637 pSubLoop = pSubWInfo->a[0].pWLoop; | |
3638 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); | |
3639 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 | |
3640 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) | |
3641 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) | |
3642 ){ | |
3643 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); | |
3644 pCov = pSubLoop->u.btree.pIndex; | |
3645 wctrlFlags |= WHERE_REOPEN_IDX; | |
3646 }else{ | |
3647 pCov = 0; | |
3648 } | |
3649 | |
3650 /* Finish the loop through table entries that match term pOrTerm. */ | |
3651 sqlite3WhereEnd(pSubWInfo); | |
3652 } | |
3653 } | |
3654 } | |
3655 pLevel->u.pCovidx = pCov; | |
3656 if( pCov ) pLevel->iIdxCur = iCovCur; | |
3657 if( pAndExpr ){ | |
3658 pAndExpr->pLeft = 0; | |
3659 sqlite3ExprDelete(db, pAndExpr); | |
3660 } | |
3661 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); | |
3662 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); | |
3663 sqlite3VdbeResolveLabel(v, iLoopBody); | |
3664 | |
3665 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); | |
3666 if( !untestedTerms ) disableTerm(pLevel, pTerm); | |
3667 }else | |
3668 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ | |
3669 | |
3670 { | |
3671 /* Case 6: There is no usable index. We must do a complete | |
3672 ** scan of the entire table. | |
3673 */ | |
3674 static const u8 aStep[] = { OP_Next, OP_Prev }; | |
3675 static const u8 aStart[] = { OP_Rewind, OP_Last }; | |
3676 assert( bRev==0 || bRev==1 ); | |
3677 if( pTabItem->isRecursive ){ | |
3678 /* Tables marked isRecursive have only a single row that is stored in | |
3679 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ | |
3680 pLevel->op = OP_Noop; | |
3681 }else{ | |
3682 pLevel->op = aStep[bRev]; | |
3683 pLevel->p1 = iCur; | |
3684 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); | |
3685 VdbeCoverageIf(v, bRev==0); | |
3686 VdbeCoverageIf(v, bRev!=0); | |
3687 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; | |
3688 } | |
3689 } | |
3690 | |
3691 /* Insert code to test every subexpression that can be completely | |
3692 ** computed using the current set of tables. | |
3693 */ | |
3694 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ | |
3695 Expr *pE; | |
3696 testcase( pTerm->wtFlags & TERM_VIRTUAL ); | |
3697 testcase( pTerm->wtFlags & TERM_CODED ); | |
3698 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | |
3699 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ | |
3700 testcase( pWInfo->untestedTerms==0 | |
3701 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); | |
3702 pWInfo->untestedTerms = 1; | |
3703 continue; | |
3704 } | |
3705 pE = pTerm->pExpr; | |
3706 assert( pE!=0 ); | |
3707 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ | |
3708 continue; | |
3709 } | |
3710 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); | |
3711 pTerm->wtFlags |= TERM_CODED; | |
3712 } | |
3713 | |
3714 /* Insert code to test for implied constraints based on transitivity | |
3715 ** of the "==" operator. | |
3716 ** | |
3717 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" | |
3718 ** and we are coding the t1 loop and the t2 loop has not yet coded, | |
3719 ** then we cannot use the "t1.a=t2.b" constraint, but we can code | |
3720 ** the implied "t1.a=123" constraint. | |
3721 */ | |
3722 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ | |
3723 Expr *pE, *pEAlt; | |
3724 WhereTerm *pAlt; | |
3725 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | |
3726 if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue; | |
3727 if( pTerm->leftCursor!=iCur ) continue; | |
3728 if( pLevel->iLeftJoin ) continue; | |
3729 pE = pTerm->pExpr; | |
3730 assert( !ExprHasProperty(pE, EP_FromJoin) ); | |
3731 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); | |
3732 pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); | |
3733 if( pAlt==0 ) continue; | |
3734 if( pAlt->wtFlags & (TERM_CODED) ) continue; | |
3735 testcase( pAlt->eOperator & WO_EQ ); | |
3736 testcase( pAlt->eOperator & WO_IN ); | |
3737 VdbeModuleComment((v, "begin transitive constraint")); | |
3738 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); | |
3739 if( pEAlt ){ | |
3740 *pEAlt = *pAlt->pExpr; | |
3741 pEAlt->pLeft = pE->pLeft; | |
3742 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); | |
3743 sqlite3StackFree(db, pEAlt); | |
3744 } | |
3745 } | |
3746 | |
3747 /* For a LEFT OUTER JOIN, generate code that will record the fact that | |
3748 ** at least one row of the right table has matched the left table. | |
3749 */ | |
3750 if( pLevel->iLeftJoin ){ | |
3751 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); | |
3752 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); | |
3753 VdbeComment((v, "record LEFT JOIN hit")); | |
3754 sqlite3ExprCacheClear(pParse); | |
3755 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ | |
3756 testcase( pTerm->wtFlags & TERM_VIRTUAL ); | |
3757 testcase( pTerm->wtFlags & TERM_CODED ); | |
3758 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | |
3759 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ | |
3760 assert( pWInfo->untestedTerms ); | |
3761 continue; | |
3762 } | |
3763 assert( pTerm->pExpr ); | |
3764 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); | |
3765 pTerm->wtFlags |= TERM_CODED; | |
3766 } | |
3767 } | |
3768 | |
3769 return pLevel->notReady; | |
3770 } | |
3771 | |
3772 #ifdef WHERETRACE_ENABLED | |
3773 /* | |
3774 ** Print the content of a WhereTerm object | |
3775 */ | |
3776 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ | |
3777 if( pTerm==0 ){ | |
3778 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); | |
3779 }else{ | |
3780 char zType[4]; | |
3781 memcpy(zType, "...", 4); | |
3782 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; | |
3783 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; | |
3784 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; | |
3785 sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n", | |
3786 iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, | |
3787 pTerm->eOperator); | |
3788 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); | |
3789 } | |
3790 } | |
3791 #endif | |
3792 | |
3793 #ifdef WHERETRACE_ENABLED | |
3794 /* | |
3795 ** Print a WhereLoop object for debugging purposes | |
3796 */ | |
3797 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ | |
3798 WhereInfo *pWInfo = pWC->pWInfo; | |
3799 int nb = 1+(pWInfo->pTabList->nSrc+7)/8; | |
3800 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; | |
3801 Table *pTab = pItem->pTab; | |
3802 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, | |
3803 p->iTab, nb, p->maskSelf, nb, p->prereq); | |
3804 sqlite3DebugPrintf(" %12s", | |
3805 pItem->zAlias ? pItem->zAlias : pTab->zName); | |
3806 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ | |
3807 const char *zName; | |
3808 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ | |
3809 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ | |
3810 int i = sqlite3Strlen30(zName) - 1; | |
3811 while( zName[i]!='_' ) i--; | |
3812 zName += i; | |
3813 } | |
3814 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); | |
3815 }else{ | |
3816 sqlite3DebugPrintf("%20s",""); | |
3817 } | |
3818 }else{ | |
3819 char *z; | |
3820 if( p->u.vtab.idxStr ){ | |
3821 z = sqlite3_mprintf("(%d,\"%s\",%x)", | |
3822 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); | |
3823 }else{ | |
3824 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); | |
3825 } | |
3826 sqlite3DebugPrintf(" %-19s", z); | |
3827 sqlite3_free(z); | |
3828 } | |
3829 if( p->wsFlags & WHERE_SKIPSCAN ){ | |
3830 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip); | |
3831 }else{ | |
3832 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); | |
3833 } | |
3834 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); | |
3835 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ | |
3836 int i; | |
3837 for(i=0; i<p->nLTerm; i++){ | |
3838 whereTermPrint(p->aLTerm[i], i); | |
3839 } | |
3840 } | |
3841 } | |
3842 #endif | |
3843 | |
3844 /* | |
3845 ** Convert bulk memory into a valid WhereLoop that can be passed | |
3846 ** to whereLoopClear harmlessly. | |
3847 */ | |
3848 static void whereLoopInit(WhereLoop *p){ | |
3849 p->aLTerm = p->aLTermSpace; | |
3850 p->nLTerm = 0; | |
3851 p->nLSlot = ArraySize(p->aLTermSpace); | |
3852 p->wsFlags = 0; | |
3853 } | |
3854 | |
3855 /* | |
3856 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. | |
3857 */ | |
3858 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ | |
3859 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ | |
3860 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ | |
3861 sqlite3_free(p->u.vtab.idxStr); | |
3862 p->u.vtab.needFree = 0; | |
3863 p->u.vtab.idxStr = 0; | |
3864 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ | |
3865 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); | |
3866 sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo); | |
3867 sqlite3DbFree(db, p->u.btree.pIndex); | |
3868 p->u.btree.pIndex = 0; | |
3869 } | |
3870 } | |
3871 } | |
3872 | |
3873 /* | |
3874 ** Deallocate internal memory used by a WhereLoop object | |
3875 */ | |
3876 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ | |
3877 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); | |
3878 whereLoopClearUnion(db, p); | |
3879 whereLoopInit(p); | |
3880 } | |
3881 | |
3882 /* | |
3883 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. | |
3884 */ | |
3885 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ | |
3886 WhereTerm **paNew; | |
3887 if( p->nLSlot>=n ) return SQLITE_OK; | |
3888 n = (n+7)&~7; | |
3889 paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n); | |
3890 if( paNew==0 ) return SQLITE_NOMEM; | |
3891 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); | |
3892 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); | |
3893 p->aLTerm = paNew; | |
3894 p->nLSlot = n; | |
3895 return SQLITE_OK; | |
3896 } | |
3897 | |
3898 /* | |
3899 ** Transfer content from the second pLoop into the first. | |
3900 */ | |
3901 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ | |
3902 whereLoopClearUnion(db, pTo); | |
3903 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ | |
3904 memset(&pTo->u, 0, sizeof(pTo->u)); | |
3905 return SQLITE_NOMEM; | |
3906 } | |
3907 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); | |
3908 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); | |
3909 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ | |
3910 pFrom->u.vtab.needFree = 0; | |
3911 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ | |
3912 pFrom->u.btree.pIndex = 0; | |
3913 } | |
3914 return SQLITE_OK; | |
3915 } | |
3916 | |
3917 /* | |
3918 ** Delete a WhereLoop object | |
3919 */ | |
3920 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ | |
3921 whereLoopClear(db, p); | |
3922 sqlite3DbFree(db, p); | |
3923 } | |
3924 | |
3925 /* | |
3926 ** Free a WhereInfo structure | |
3927 */ | |
3928 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ | |
3929 if( ALWAYS(pWInfo) ){ | |
3930 whereClauseClear(&pWInfo->sWC); | |
3931 while( pWInfo->pLoops ){ | |
3932 WhereLoop *p = pWInfo->pLoops; | |
3933 pWInfo->pLoops = p->pNextLoop; | |
3934 whereLoopDelete(db, p); | |
3935 } | |
3936 sqlite3DbFree(db, pWInfo); | |
3937 } | |
3938 } | |
3939 | |
3940 /* | |
3941 ** Return TRUE if both of the following are true: | |
3942 ** | |
3943 ** (1) X has the same or lower cost that Y | |
3944 ** (2) X is a proper subset of Y | |
3945 ** | |
3946 ** By "proper subset" we mean that X uses fewer WHERE clause terms | |
3947 ** than Y and that every WHERE clause term used by X is also used | |
3948 ** by Y. | |
3949 ** | |
3950 ** If X is a proper subset of Y then Y is a better choice and ought | |
3951 ** to have a lower cost. This routine returns TRUE when that cost | |
3952 ** relationship is inverted and needs to be adjusted. | |
3953 */ | |
3954 static int whereLoopCheaperProperSubset( | |
3955 const WhereLoop *pX, /* First WhereLoop to compare */ | |
3956 const WhereLoop *pY /* Compare against this WhereLoop */ | |
3957 ){ | |
3958 int i, j; | |
3959 if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */ | |
3960 if( pX->rRun >= pY->rRun ){ | |
3961 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ | |
3962 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ | |
3963 } | |
3964 for(i=pX->nLTerm-1; i>=0; i--){ | |
3965 for(j=pY->nLTerm-1; j>=0; j--){ | |
3966 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; | |
3967 } | |
3968 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ | |
3969 } | |
3970 return 1; /* All conditions meet */ | |
3971 } | |
3972 | |
3973 /* | |
3974 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so | |
3975 ** that: | |
3976 ** | |
3977 ** (1) pTemplate costs less than any other WhereLoops that are a proper | |
3978 ** subset of pTemplate | |
3979 ** | |
3980 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate | |
3981 ** is a proper subset. | |
3982 ** | |
3983 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer | |
3984 ** WHERE clause terms than Y and that every WHERE clause term used by X is | |
3985 ** also used by Y. | |
3986 ** | |
3987 ** This adjustment is omitted for SKIPSCAN loops. In a SKIPSCAN loop, the | |
3988 ** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE | |
3989 ** clause terms covered, since some of the first nLTerm entries in aLTerm[] | |
3990 ** will be NULL (because they are skipped). That makes it more difficult | |
3991 ** to compare the loops. We could add extra code to do the comparison, and | |
3992 ** perhaps we will someday. But SKIPSCAN is sufficiently uncommon, and this | |
3993 ** adjustment is sufficient minor, that it is very difficult to construct | |
3994 ** a test case where the extra code would improve the query plan. Better | |
3995 ** to avoid the added complexity and just omit cost adjustments to SKIPSCAN | |
3996 ** loops. | |
3997 */ | |
3998 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ | |
3999 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; | |
4000 if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return; | |
4001 for(; p; p=p->pNextLoop){ | |
4002 if( p->iTab!=pTemplate->iTab ) continue; | |
4003 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; | |
4004 if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue; | |
4005 if( whereLoopCheaperProperSubset(p, pTemplate) ){ | |
4006 /* Adjust pTemplate cost downward so that it is cheaper than its | |
4007 ** subset p */ | |
4008 pTemplate->rRun = p->rRun; | |
4009 pTemplate->nOut = p->nOut - 1; | |
4010 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ | |
4011 /* Adjust pTemplate cost upward so that it is costlier than p since | |
4012 ** pTemplate is a proper subset of p */ | |
4013 pTemplate->rRun = p->rRun; | |
4014 pTemplate->nOut = p->nOut + 1; | |
4015 } | |
4016 } | |
4017 } | |
4018 | |
4019 /* | |
4020 ** Search the list of WhereLoops in *ppPrev looking for one that can be | |
4021 ** supplanted by pTemplate. | |
4022 ** | |
4023 ** Return NULL if the WhereLoop list contains an entry that can supplant | |
4024 ** pTemplate, in other words if pTemplate does not belong on the list. | |
4025 ** | |
4026 ** If pX is a WhereLoop that pTemplate can supplant, then return the | |
4027 ** link that points to pX. | |
4028 ** | |
4029 ** If pTemplate cannot supplant any existing element of the list but needs | |
4030 ** to be added to the list, then return a pointer to the tail of the list. | |
4031 */ | |
4032 static WhereLoop **whereLoopFindLesser( | |
4033 WhereLoop **ppPrev, | |
4034 const WhereLoop *pTemplate | |
4035 ){ | |
4036 WhereLoop *p; | |
4037 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ | |
4038 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ | |
4039 /* If either the iTab or iSortIdx values for two WhereLoop are different | |
4040 ** then those WhereLoops need to be considered separately. Neither is | |
4041 ** a candidate to replace the other. */ | |
4042 continue; | |
4043 } | |
4044 /* In the current implementation, the rSetup value is either zero | |
4045 ** or the cost of building an automatic index (NlogN) and the NlogN | |
4046 ** is the same for compatible WhereLoops. */ | |
4047 assert( p->rSetup==0 || pTemplate->rSetup==0 | |
4048 || p->rSetup==pTemplate->rSetup ); | |
4049 | |
4050 /* whereLoopAddBtree() always generates and inserts the automatic index | |
4051 ** case first. Hence compatible candidate WhereLoops never have a larger | |
4052 ** rSetup. Call this SETUP-INVARIANT */ | |
4053 assert( p->rSetup>=pTemplate->rSetup ); | |
4054 | |
4055 /* Any loop using an appliation-defined index (or PRIMARY KEY or | |
4056 ** UNIQUE constraint) with one or more == constraints is better | |
4057 ** than an automatic index. */ | |
4058 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 | |
4059 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 | |
4060 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 | |
4061 && (p->prereq & pTemplate->prereq)==pTemplate->prereq | |
4062 ){ | |
4063 break; | |
4064 } | |
4065 | |
4066 /* If existing WhereLoop p is better than pTemplate, pTemplate can be | |
4067 ** discarded. WhereLoop p is better if: | |
4068 ** (1) p has no more dependencies than pTemplate, and | |
4069 ** (2) p has an equal or lower cost than pTemplate | |
4070 */ | |
4071 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ | |
4072 && p->rSetup<=pTemplate->rSetup /* (2a) */ | |
4073 && p->rRun<=pTemplate->rRun /* (2b) */ | |
4074 && p->nOut<=pTemplate->nOut /* (2c) */ | |
4075 ){ | |
4076 return 0; /* Discard pTemplate */ | |
4077 } | |
4078 | |
4079 /* If pTemplate is always better than p, then cause p to be overwritten | |
4080 ** with pTemplate. pTemplate is better than p if: | |
4081 ** (1) pTemplate has no more dependences than p, and | |
4082 ** (2) pTemplate has an equal or lower cost than p. | |
4083 */ | |
4084 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ | |
4085 && p->rRun>=pTemplate->rRun /* (2a) */ | |
4086 && p->nOut>=pTemplate->nOut /* (2b) */ | |
4087 ){ | |
4088 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ | |
4089 break; /* Cause p to be overwritten by pTemplate */ | |
4090 } | |
4091 } | |
4092 return ppPrev; | |
4093 } | |
4094 | |
4095 /* | |
4096 ** Insert or replace a WhereLoop entry using the template supplied. | |
4097 ** | |
4098 ** An existing WhereLoop entry might be overwritten if the new template | |
4099 ** is better and has fewer dependencies. Or the template will be ignored | |
4100 ** and no insert will occur if an existing WhereLoop is faster and has | |
4101 ** fewer dependencies than the template. Otherwise a new WhereLoop is | |
4102 ** added based on the template. | |
4103 ** | |
4104 ** If pBuilder->pOrSet is not NULL then we care about only the | |
4105 ** prerequisites and rRun and nOut costs of the N best loops. That | |
4106 ** information is gathered in the pBuilder->pOrSet object. This special | |
4107 ** processing mode is used only for OR clause processing. | |
4108 ** | |
4109 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we | |
4110 ** still might overwrite similar loops with the new template if the | |
4111 ** new template is better. Loops may be overwritten if the following | |
4112 ** conditions are met: | |
4113 ** | |
4114 ** (1) They have the same iTab. | |
4115 ** (2) They have the same iSortIdx. | |
4116 ** (3) The template has same or fewer dependencies than the current loop | |
4117 ** (4) The template has the same or lower cost than the current loop | |
4118 */ | |
4119 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ | |
4120 WhereLoop **ppPrev, *p; | |
4121 WhereInfo *pWInfo = pBuilder->pWInfo; | |
4122 sqlite3 *db = pWInfo->pParse->db; | |
4123 | |
4124 /* If pBuilder->pOrSet is defined, then only keep track of the costs | |
4125 ** and prereqs. | |
4126 */ | |
4127 if( pBuilder->pOrSet!=0 ){ | |
4128 #if WHERETRACE_ENABLED | |
4129 u16 n = pBuilder->pOrSet->n; | |
4130 int x = | |
4131 #endif | |
4132 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, | |
4133 pTemplate->nOut); | |
4134 #if WHERETRACE_ENABLED /* 0x8 */ | |
4135 if( sqlite3WhereTrace & 0x8 ){ | |
4136 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); | |
4137 whereLoopPrint(pTemplate, pBuilder->pWC); | |
4138 } | |
4139 #endif | |
4140 return SQLITE_OK; | |
4141 } | |
4142 | |
4143 /* Look for an existing WhereLoop to replace with pTemplate | |
4144 */ | |
4145 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); | |
4146 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); | |
4147 | |
4148 if( ppPrev==0 ){ | |
4149 /* There already exists a WhereLoop on the list that is better | |
4150 ** than pTemplate, so just ignore pTemplate */ | |
4151 #if WHERETRACE_ENABLED /* 0x8 */ | |
4152 if( sqlite3WhereTrace & 0x8 ){ | |
4153 sqlite3DebugPrintf(" skip: "); | |
4154 whereLoopPrint(pTemplate, pBuilder->pWC); | |
4155 } | |
4156 #endif | |
4157 return SQLITE_OK; | |
4158 }else{ | |
4159 p = *ppPrev; | |
4160 } | |
4161 | |
4162 /* If we reach this point it means that either p[] should be overwritten | |
4163 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new | |
4164 ** WhereLoop and insert it. | |
4165 */ | |
4166 #if WHERETRACE_ENABLED /* 0x8 */ | |
4167 if( sqlite3WhereTrace & 0x8 ){ | |
4168 if( p!=0 ){ | |
4169 sqlite3DebugPrintf("replace: "); | |
4170 whereLoopPrint(p, pBuilder->pWC); | |
4171 } | |
4172 sqlite3DebugPrintf(" add: "); | |
4173 whereLoopPrint(pTemplate, pBuilder->pWC); | |
4174 } | |
4175 #endif | |
4176 if( p==0 ){ | |
4177 /* Allocate a new WhereLoop to add to the end of the list */ | |
4178 *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); | |
4179 if( p==0 ) return SQLITE_NOMEM; | |
4180 whereLoopInit(p); | |
4181 p->pNextLoop = 0; | |
4182 }else{ | |
4183 /* We will be overwriting WhereLoop p[]. But before we do, first | |
4184 ** go through the rest of the list and delete any other entries besides | |
4185 ** p[] that are also supplated by pTemplate */ | |
4186 WhereLoop **ppTail = &p->pNextLoop; | |
4187 WhereLoop *pToDel; | |
4188 while( *ppTail ){ | |
4189 ppTail = whereLoopFindLesser(ppTail, pTemplate); | |
4190 if( ppTail==0 ) break; | |
4191 pToDel = *ppTail; | |
4192 if( pToDel==0 ) break; | |
4193 *ppTail = pToDel->pNextLoop; | |
4194 #if WHERETRACE_ENABLED /* 0x8 */ | |
4195 if( sqlite3WhereTrace & 0x8 ){ | |
4196 sqlite3DebugPrintf(" delete: "); | |
4197 whereLoopPrint(pToDel, pBuilder->pWC); | |
4198 } | |
4199 #endif | |
4200 whereLoopDelete(db, pToDel); | |
4201 } | |
4202 } | |
4203 whereLoopXfer(db, p, pTemplate); | |
4204 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ | |
4205 Index *pIndex = p->u.btree.pIndex; | |
4206 if( pIndex && pIndex->tnum==0 ){ | |
4207 p->u.btree.pIndex = 0; | |
4208 } | |
4209 } | |
4210 return SQLITE_OK; | |
4211 } | |
4212 | |
4213 /* | |
4214 ** Adjust the WhereLoop.nOut value downward to account for terms of the | |
4215 ** WHERE clause that reference the loop but which are not used by an | |
4216 ** index. | |
4217 ** | |
4218 ** In the current implementation, the first extra WHERE clause term reduces | |
4219 ** the number of output rows by a factor of 10 and each additional term | |
4220 ** reduces the number of output rows by sqrt(2). | |
4221 */ | |
4222 static void whereLoopOutputAdjust( | |
4223 WhereClause *pWC, /* The WHERE clause */ | |
4224 WhereLoop *pLoop, /* The loop to adjust downward */ | |
4225 LogEst nRow /* Number of rows in the entire table */ | |
4226 ){ | |
4227 WhereTerm *pTerm, *pX; | |
4228 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); | |
4229 int i, j; | |
4230 int nEq = 0; /* Number of = constraints not within likely()/unlikely() */ | |
4231 | |
4232 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ | |
4233 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; | |
4234 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; | |
4235 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; | |
4236 for(j=pLoop->nLTerm-1; j>=0; j--){ | |
4237 pX = pLoop->aLTerm[j]; | |
4238 if( pX==0 ) continue; | |
4239 if( pX==pTerm ) break; | |
4240 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; | |
4241 } | |
4242 if( j<0 ){ | |
4243 if( pTerm->truthProb<=0 ){ | |
4244 pLoop->nOut += pTerm->truthProb; | |
4245 }else{ | |
4246 pLoop->nOut--; | |
4247 if( pTerm->eOperator&WO_EQ ) nEq++; | |
4248 } | |
4249 } | |
4250 } | |
4251 /* TUNING: If there is at least one equality constraint in the WHERE | |
4252 ** clause that does not have a likelihood() explicitly assigned to it | |
4253 ** then do not let the estimated number of output rows exceed half | |
4254 ** the number of rows in the table. */ | |
4255 if( nEq && pLoop->nOut>nRow-10 ){ | |
4256 pLoop->nOut = nRow - 10; | |
4257 } | |
4258 } | |
4259 | |
4260 /* | |
4261 ** Adjust the cost C by the costMult facter T. This only occurs if | |
4262 ** compiled with -DSQLITE_ENABLE_COSTMULT | |
4263 */ | |
4264 #ifdef SQLITE_ENABLE_COSTMULT | |
4265 # define ApplyCostMultiplier(C,T) C += T | |
4266 #else | |
4267 # define ApplyCostMultiplier(C,T) | |
4268 #endif | |
4269 | |
4270 /* | |
4271 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the | |
4272 ** index pIndex. Try to match one more. | |
4273 ** | |
4274 ** When this function is called, pBuilder->pNew->nOut contains the | |
4275 ** number of rows expected to be visited by filtering using the nEq | |
4276 ** terms only. If it is modified, this value is restored before this | |
4277 ** function returns. | |
4278 ** | |
4279 ** If pProbe->tnum==0, that means pIndex is a fake index used for the | |
4280 ** INTEGER PRIMARY KEY. | |
4281 */ | |
4282 static int whereLoopAddBtreeIndex( | |
4283 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ | |
4284 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ | |
4285 Index *pProbe, /* An index on pSrc */ | |
4286 LogEst nInMul /* log(Number of iterations due to IN) */ | |
4287 ){ | |
4288 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ | |
4289 Parse *pParse = pWInfo->pParse; /* Parsing context */ | |
4290 sqlite3 *db = pParse->db; /* Database connection malloc context */ | |
4291 WhereLoop *pNew; /* Template WhereLoop under construction */ | |
4292 WhereTerm *pTerm; /* A WhereTerm under consideration */ | |
4293 int opMask; /* Valid operators for constraints */ | |
4294 WhereScan scan; /* Iterator for WHERE terms */ | |
4295 Bitmask saved_prereq; /* Original value of pNew->prereq */ | |
4296 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ | |
4297 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ | |
4298 u16 saved_nSkip; /* Original value of pNew->u.btree.nSkip */ | |
4299 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ | |
4300 LogEst saved_nOut; /* Original value of pNew->nOut */ | |
4301 int iCol; /* Index of the column in the table */ | |
4302 int rc = SQLITE_OK; /* Return code */ | |
4303 LogEst rSize; /* Number of rows in the table */ | |
4304 LogEst rLogSize; /* Logarithm of table size */ | |
4305 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ | |
4306 | |
4307 pNew = pBuilder->pNew; | |
4308 if( db->mallocFailed ) return SQLITE_NOMEM; | |
4309 | |
4310 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); | |
4311 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); | |
4312 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ | |
4313 opMask = WO_LT|WO_LE; | |
4314 }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){ | |
4315 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; | |
4316 }else{ | |
4317 opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE; | |
4318 } | |
4319 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); | |
4320 | |
4321 assert( pNew->u.btree.nEq<pProbe->nColumn ); | |
4322 iCol = pProbe->aiColumn[pNew->u.btree.nEq]; | |
4323 | |
4324 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, | |
4325 opMask, pProbe); | |
4326 saved_nEq = pNew->u.btree.nEq; | |
4327 saved_nSkip = pNew->u.btree.nSkip; | |
4328 saved_nLTerm = pNew->nLTerm; | |
4329 saved_wsFlags = pNew->wsFlags; | |
4330 saved_prereq = pNew->prereq; | |
4331 saved_nOut = pNew->nOut; | |
4332 pNew->rSetup = 0; | |
4333 rSize = pProbe->aiRowLogEst[0]; | |
4334 rLogSize = estLog(rSize); | |
4335 | |
4336 /* Consider using a skip-scan if there are no WHERE clause constraints | |
4337 ** available for the left-most terms of the index, and if the average | |
4338 ** number of repeats in the left-most terms is at least 18. | |
4339 ** | |
4340 ** The magic number 18 is selected on the basis that scanning 17 rows | |
4341 ** is almost always quicker than an index seek (even though if the index | |
4342 ** contains fewer than 2^17 rows we assume otherwise in other parts of | |
4343 ** the code). And, even if it is not, it should not be too much slower. | |
4344 ** On the other hand, the extra seeks could end up being significantly | |
4345 ** more expensive. */ | |
4346 assert( 42==sqlite3LogEst(18) ); | |
4347 if( saved_nEq==saved_nSkip | |
4348 && saved_nEq+1<pProbe->nKeyCol | |
4349 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ | |
4350 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK | |
4351 ){ | |
4352 LogEst nIter; | |
4353 pNew->u.btree.nEq++; | |
4354 pNew->u.btree.nSkip++; | |
4355 pNew->aLTerm[pNew->nLTerm++] = 0; | |
4356 pNew->wsFlags |= WHERE_SKIPSCAN; | |
4357 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; | |
4358 if( pTerm ){ | |
4359 /* TUNING: When estimating skip-scan for a term that is also indexable, | |
4360 ** multiply the cost of the skip-scan by 2.0, to make it a little less | |
4361 ** desirable than the regular index lookup. */ | |
4362 nIter += 10; assert( 10==sqlite3LogEst(2) ); | |
4363 } | |
4364 pNew->nOut -= nIter; | |
4365 /* TUNING: Because uncertainties in the estimates for skip-scan queries, | |
4366 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ | |
4367 nIter += 5; | |
4368 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); | |
4369 pNew->nOut = saved_nOut; | |
4370 pNew->u.btree.nEq = saved_nEq; | |
4371 pNew->u.btree.nSkip = saved_nSkip; | |
4372 } | |
4373 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ | |
4374 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ | |
4375 LogEst rCostIdx; | |
4376 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ | |
4377 int nIn = 0; | |
4378 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
4379 int nRecValid = pBuilder->nRecValid; | |
4380 #endif | |
4381 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) | |
4382 && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) | |
4383 ){ | |
4384 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ | |
4385 } | |
4386 if( pTerm->prereqRight & pNew->maskSelf ) continue; | |
4387 | |
4388 pNew->wsFlags = saved_wsFlags; | |
4389 pNew->u.btree.nEq = saved_nEq; | |
4390 pNew->nLTerm = saved_nLTerm; | |
4391 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ | |
4392 pNew->aLTerm[pNew->nLTerm++] = pTerm; | |
4393 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; | |
4394 | |
4395 assert( nInMul==0 | |
4396 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 | |
4397 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 | |
4398 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 | |
4399 ); | |
4400 | |
4401 if( eOp & WO_IN ){ | |
4402 Expr *pExpr = pTerm->pExpr; | |
4403 pNew->wsFlags |= WHERE_COLUMN_IN; | |
4404 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
4405 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ | |
4406 nIn = 46; assert( 46==sqlite3LogEst(25) ); | |
4407 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ | |
4408 /* "x IN (value, value, ...)" */ | |
4409 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); | |
4410 } | |
4411 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser | |
4412 ** changes "x IN (?)" into "x=?". */ | |
4413 | |
4414 }else if( eOp & (WO_EQ) ){ | |
4415 pNew->wsFlags |= WHERE_COLUMN_EQ; | |
4416 if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ | |
4417 if( iCol>=0 && !IsUniqueIndex(pProbe) ){ | |
4418 pNew->wsFlags |= WHERE_UNQ_WANTED; | |
4419 }else{ | |
4420 pNew->wsFlags |= WHERE_ONEROW; | |
4421 } | |
4422 } | |
4423 }else if( eOp & WO_ISNULL ){ | |
4424 pNew->wsFlags |= WHERE_COLUMN_NULL; | |
4425 }else if( eOp & (WO_GT|WO_GE) ){ | |
4426 testcase( eOp & WO_GT ); | |
4427 testcase( eOp & WO_GE ); | |
4428 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; | |
4429 pBtm = pTerm; | |
4430 pTop = 0; | |
4431 }else{ | |
4432 assert( eOp & (WO_LT|WO_LE) ); | |
4433 testcase( eOp & WO_LT ); | |
4434 testcase( eOp & WO_LE ); | |
4435 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; | |
4436 pTop = pTerm; | |
4437 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? | |
4438 pNew->aLTerm[pNew->nLTerm-2] : 0; | |
4439 } | |
4440 | |
4441 /* At this point pNew->nOut is set to the number of rows expected to | |
4442 ** be visited by the index scan before considering term pTerm, or the | |
4443 ** values of nIn and nInMul. In other words, assuming that all | |
4444 ** "x IN(...)" terms are replaced with "x = ?". This block updates | |
4445 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ | |
4446 assert( pNew->nOut==saved_nOut ); | |
4447 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ | |
4448 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 | |
4449 ** data, using some other estimate. */ | |
4450 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); | |
4451 }else{ | |
4452 int nEq = ++pNew->u.btree.nEq; | |
4453 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) ); | |
4454 | |
4455 assert( pNew->nOut==saved_nOut ); | |
4456 if( pTerm->truthProb<=0 && iCol>=0 ){ | |
4457 assert( (eOp & WO_IN) || nIn==0 ); | |
4458 testcase( eOp & WO_IN ); | |
4459 pNew->nOut += pTerm->truthProb; | |
4460 pNew->nOut -= nIn; | |
4461 }else{ | |
4462 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
4463 tRowcnt nOut = 0; | |
4464 if( nInMul==0 | |
4465 && pProbe->nSample | |
4466 && pNew->u.btree.nEq<=pProbe->nSampleCol | |
4467 && OptimizationEnabled(db, SQLITE_Stat3) | |
4468 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) | |
4469 ){ | |
4470 Expr *pExpr = pTerm->pExpr; | |
4471 if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){ | |
4472 testcase( eOp & WO_EQ ); | |
4473 testcase( eOp & WO_ISNULL ); | |
4474 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); | |
4475 }else{ | |
4476 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); | |
4477 } | |
4478 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; | |
4479 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ | |
4480 if( nOut ){ | |
4481 pNew->nOut = sqlite3LogEst(nOut); | |
4482 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; | |
4483 pNew->nOut -= nIn; | |
4484 } | |
4485 } | |
4486 if( nOut==0 ) | |
4487 #endif | |
4488 { | |
4489 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); | |
4490 if( eOp & WO_ISNULL ){ | |
4491 /* TUNING: If there is no likelihood() value, assume that a | |
4492 ** "col IS NULL" expression matches twice as many rows | |
4493 ** as (col=?). */ | |
4494 pNew->nOut += 10; | |
4495 } | |
4496 } | |
4497 } | |
4498 } | |
4499 | |
4500 /* Set rCostIdx to the cost of visiting selected rows in index. Add | |
4501 ** it to pNew->rRun, which is currently set to the cost of the index | |
4502 ** seek only. Then, if this is a non-covering index, add the cost of | |
4503 ** visiting the rows in the main table. */ | |
4504 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; | |
4505 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); | |
4506 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ | |
4507 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); | |
4508 } | |
4509 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); | |
4510 | |
4511 nOutUnadjusted = pNew->nOut; | |
4512 pNew->rRun += nInMul + nIn; | |
4513 pNew->nOut += nInMul + nIn; | |
4514 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); | |
4515 rc = whereLoopInsert(pBuilder, pNew); | |
4516 | |
4517 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ | |
4518 pNew->nOut = saved_nOut; | |
4519 }else{ | |
4520 pNew->nOut = nOutUnadjusted; | |
4521 } | |
4522 | |
4523 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 | |
4524 && pNew->u.btree.nEq<pProbe->nColumn | |
4525 ){ | |
4526 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); | |
4527 } | |
4528 pNew->nOut = saved_nOut; | |
4529 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
4530 pBuilder->nRecValid = nRecValid; | |
4531 #endif | |
4532 } | |
4533 pNew->prereq = saved_prereq; | |
4534 pNew->u.btree.nEq = saved_nEq; | |
4535 pNew->u.btree.nSkip = saved_nSkip; | |
4536 pNew->wsFlags = saved_wsFlags; | |
4537 pNew->nOut = saved_nOut; | |
4538 pNew->nLTerm = saved_nLTerm; | |
4539 return rc; | |
4540 } | |
4541 | |
4542 /* | |
4543 ** Return True if it is possible that pIndex might be useful in | |
4544 ** implementing the ORDER BY clause in pBuilder. | |
4545 ** | |
4546 ** Return False if pBuilder does not contain an ORDER BY clause or | |
4547 ** if there is no way for pIndex to be useful in implementing that | |
4548 ** ORDER BY clause. | |
4549 */ | |
4550 static int indexMightHelpWithOrderBy( | |
4551 WhereLoopBuilder *pBuilder, | |
4552 Index *pIndex, | |
4553 int iCursor | |
4554 ){ | |
4555 ExprList *pOB; | |
4556 int ii, jj; | |
4557 | |
4558 if( pIndex->bUnordered ) return 0; | |
4559 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; | |
4560 for(ii=0; ii<pOB->nExpr; ii++){ | |
4561 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); | |
4562 if( pExpr->op!=TK_COLUMN ) return 0; | |
4563 if( pExpr->iTable==iCursor ){ | |
4564 if( pExpr->iColumn<0 ) return 1; | |
4565 for(jj=0; jj<pIndex->nKeyCol; jj++){ | |
4566 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; | |
4567 } | |
4568 } | |
4569 } | |
4570 return 0; | |
4571 } | |
4572 | |
4573 /* | |
4574 ** Return a bitmask where 1s indicate that the corresponding column of | |
4575 ** the table is used by an index. Only the first 63 columns are considered. | |
4576 */ | |
4577 static Bitmask columnsInIndex(Index *pIdx){ | |
4578 Bitmask m = 0; | |
4579 int j; | |
4580 for(j=pIdx->nColumn-1; j>=0; j--){ | |
4581 int x = pIdx->aiColumn[j]; | |
4582 if( x>=0 ){ | |
4583 testcase( x==BMS-1 ); | |
4584 testcase( x==BMS-2 ); | |
4585 if( x<BMS-1 ) m |= MASKBIT(x); | |
4586 } | |
4587 } | |
4588 return m; | |
4589 } | |
4590 | |
4591 /* Check to see if a partial index with pPartIndexWhere can be used | |
4592 ** in the current query. Return true if it can be and false if not. | |
4593 */ | |
4594 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ | |
4595 int i; | |
4596 WhereTerm *pTerm; | |
4597 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | |
4598 if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1; | |
4599 } | |
4600 return 0; | |
4601 } | |
4602 | |
4603 /* | |
4604 ** Add all WhereLoop objects for a single table of the join where the table | |
4605 ** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be | |
4606 ** a b-tree table, not a virtual table. | |
4607 ** | |
4608 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function | |
4609 ** are calculated as follows: | |
4610 ** | |
4611 ** For a full scan, assuming the table (or index) contains nRow rows: | |
4612 ** | |
4613 ** cost = nRow * 3.0 // full-table scan | |
4614 ** cost = nRow * K // scan of covering index | |
4615 ** cost = nRow * (K+3.0) // scan of non-covering index | |
4616 ** | |
4617 ** where K is a value between 1.1 and 3.0 set based on the relative | |
4618 ** estimated average size of the index and table records. | |
4619 ** | |
4620 ** For an index scan, where nVisit is the number of index rows visited | |
4621 ** by the scan, and nSeek is the number of seek operations required on | |
4622 ** the index b-tree: | |
4623 ** | |
4624 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index | |
4625 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index | |
4626 ** | |
4627 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the | |
4628 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when | |
4629 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. | |
4630 ** | |
4631 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount | |
4632 ** of uncertainty. For this reason, scoring is designed to pick plans that | |
4633 ** "do the least harm" if the estimates are inaccurate. For example, a | |
4634 ** log(nRow) factor is omitted from a non-covering index scan in order to | |
4635 ** bias the scoring in favor of using an index, since the worst-case | |
4636 ** performance of using an index is far better than the worst-case performance | |
4637 ** of a full table scan. | |
4638 */ | |
4639 static int whereLoopAddBtree( | |
4640 WhereLoopBuilder *pBuilder, /* WHERE clause information */ | |
4641 Bitmask mExtra /* Extra prerequesites for using this table */ | |
4642 ){ | |
4643 WhereInfo *pWInfo; /* WHERE analysis context */ | |
4644 Index *pProbe; /* An index we are evaluating */ | |
4645 Index sPk; /* A fake index object for the primary key */ | |
4646 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ | |
4647 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ | |
4648 SrcList *pTabList; /* The FROM clause */ | |
4649 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ | |
4650 WhereLoop *pNew; /* Template WhereLoop object */ | |
4651 int rc = SQLITE_OK; /* Return code */ | |
4652 int iSortIdx = 1; /* Index number */ | |
4653 int b; /* A boolean value */ | |
4654 LogEst rSize; /* number of rows in the table */ | |
4655 LogEst rLogSize; /* Logarithm of the number of rows in the table */ | |
4656 WhereClause *pWC; /* The parsed WHERE clause */ | |
4657 Table *pTab; /* Table being queried */ | |
4658 | |
4659 pNew = pBuilder->pNew; | |
4660 pWInfo = pBuilder->pWInfo; | |
4661 pTabList = pWInfo->pTabList; | |
4662 pSrc = pTabList->a + pNew->iTab; | |
4663 pTab = pSrc->pTab; | |
4664 pWC = pBuilder->pWC; | |
4665 assert( !IsVirtual(pSrc->pTab) ); | |
4666 | |
4667 if( pSrc->pIndex ){ | |
4668 /* An INDEXED BY clause specifies a particular index to use */ | |
4669 pProbe = pSrc->pIndex; | |
4670 }else if( !HasRowid(pTab) ){ | |
4671 pProbe = pTab->pIndex; | |
4672 }else{ | |
4673 /* There is no INDEXED BY clause. Create a fake Index object in local | |
4674 ** variable sPk to represent the rowid primary key index. Make this | |
4675 ** fake index the first in a chain of Index objects with all of the real | |
4676 ** indices to follow */ | |
4677 Index *pFirst; /* First of real indices on the table */ | |
4678 memset(&sPk, 0, sizeof(Index)); | |
4679 sPk.nKeyCol = 1; | |
4680 sPk.nColumn = 1; | |
4681 sPk.aiColumn = &aiColumnPk; | |
4682 sPk.aiRowLogEst = aiRowEstPk; | |
4683 sPk.onError = OE_Replace; | |
4684 sPk.pTable = pTab; | |
4685 sPk.szIdxRow = pTab->szTabRow; | |
4686 aiRowEstPk[0] = pTab->nRowLogEst; | |
4687 aiRowEstPk[1] = 0; | |
4688 pFirst = pSrc->pTab->pIndex; | |
4689 if( pSrc->notIndexed==0 ){ | |
4690 /* The real indices of the table are only considered if the | |
4691 ** NOT INDEXED qualifier is omitted from the FROM clause */ | |
4692 sPk.pNext = pFirst; | |
4693 } | |
4694 pProbe = &sPk; | |
4695 } | |
4696 rSize = pTab->nRowLogEst; | |
4697 rLogSize = estLog(rSize); | |
4698 | |
4699 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | |
4700 /* Automatic indexes */ | |
4701 if( !pBuilder->pOrSet | |
4702 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 | |
4703 && pSrc->pIndex==0 | |
4704 && !pSrc->viaCoroutine | |
4705 && !pSrc->notIndexed | |
4706 && HasRowid(pTab) | |
4707 && !pSrc->isCorrelated | |
4708 && !pSrc->isRecursive | |
4709 ){ | |
4710 /* Generate auto-index WhereLoops */ | |
4711 WhereTerm *pTerm; | |
4712 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; | |
4713 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ | |
4714 if( pTerm->prereqRight & pNew->maskSelf ) continue; | |
4715 if( termCanDriveIndex(pTerm, pSrc, 0) ){ | |
4716 pNew->u.btree.nEq = 1; | |
4717 pNew->u.btree.nSkip = 0; | |
4718 pNew->u.btree.pIndex = 0; | |
4719 pNew->nLTerm = 1; | |
4720 pNew->aLTerm[0] = pTerm; | |
4721 /* TUNING: One-time cost for computing the automatic index is | |
4722 ** estimated to be X*N*log2(N) where N is the number of rows in | |
4723 ** the table being indexed and where X is 7 (LogEst=28) for normal | |
4724 ** tables or 1.375 (LogEst=4) for views and subqueries. The value | |
4725 ** of X is smaller for views and subqueries so that the query planner | |
4726 ** will be more aggressive about generating automatic indexes for | |
4727 ** those objects, since there is no opportunity to add schema | |
4728 ** indexes on subqueries and views. */ | |
4729 pNew->rSetup = rLogSize + rSize + 4; | |
4730 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ | |
4731 pNew->rSetup += 24; | |
4732 } | |
4733 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); | |
4734 /* TUNING: Each index lookup yields 20 rows in the table. This | |
4735 ** is more than the usual guess of 10 rows, since we have no way | |
4736 ** of knowing how selective the index will ultimately be. It would | |
4737 ** not be unreasonable to make this value much larger. */ | |
4738 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); | |
4739 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); | |
4740 pNew->wsFlags = WHERE_AUTO_INDEX; | |
4741 pNew->prereq = mExtra | pTerm->prereqRight; | |
4742 rc = whereLoopInsert(pBuilder, pNew); | |
4743 } | |
4744 } | |
4745 } | |
4746 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ | |
4747 | |
4748 /* Loop over all indices | |
4749 */ | |
4750 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ | |
4751 if( pProbe->pPartIdxWhere!=0 | |
4752 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ | |
4753 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ | |
4754 continue; /* Partial index inappropriate for this query */ | |
4755 } | |
4756 rSize = pProbe->aiRowLogEst[0]; | |
4757 pNew->u.btree.nEq = 0; | |
4758 pNew->u.btree.nSkip = 0; | |
4759 pNew->nLTerm = 0; | |
4760 pNew->iSortIdx = 0; | |
4761 pNew->rSetup = 0; | |
4762 pNew->prereq = mExtra; | |
4763 pNew->nOut = rSize; | |
4764 pNew->u.btree.pIndex = pProbe; | |
4765 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); | |
4766 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ | |
4767 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); | |
4768 if( pProbe->tnum<=0 ){ | |
4769 /* Integer primary key index */ | |
4770 pNew->wsFlags = WHERE_IPK; | |
4771 | |
4772 /* Full table scan */ | |
4773 pNew->iSortIdx = b ? iSortIdx : 0; | |
4774 /* TUNING: Cost of full table scan is (N*3.0). */ | |
4775 pNew->rRun = rSize + 16; | |
4776 ApplyCostMultiplier(pNew->rRun, pTab->costMult); | |
4777 whereLoopOutputAdjust(pWC, pNew, rSize); | |
4778 rc = whereLoopInsert(pBuilder, pNew); | |
4779 pNew->nOut = rSize; | |
4780 if( rc ) break; | |
4781 }else{ | |
4782 Bitmask m; | |
4783 if( pProbe->isCovering ){ | |
4784 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; | |
4785 m = 0; | |
4786 }else{ | |
4787 m = pSrc->colUsed & ~columnsInIndex(pProbe); | |
4788 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; | |
4789 } | |
4790 | |
4791 /* Full scan via index */ | |
4792 if( b | |
4793 || !HasRowid(pTab) | |
4794 || ( m==0 | |
4795 && pProbe->bUnordered==0 | |
4796 && (pProbe->szIdxRow<pTab->szTabRow) | |
4797 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 | |
4798 && sqlite3GlobalConfig.bUseCis | |
4799 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) | |
4800 ) | |
4801 ){ | |
4802 pNew->iSortIdx = b ? iSortIdx : 0; | |
4803 | |
4804 /* The cost of visiting the index rows is N*K, where K is | |
4805 ** between 1.1 and 3.0, depending on the relative sizes of the | |
4806 ** index and table rows. If this is a non-covering index scan, | |
4807 ** also add the cost of visiting table rows (N*3.0). */ | |
4808 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; | |
4809 if( m!=0 ){ | |
4810 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); | |
4811 } | |
4812 ApplyCostMultiplier(pNew->rRun, pTab->costMult); | |
4813 whereLoopOutputAdjust(pWC, pNew, rSize); | |
4814 rc = whereLoopInsert(pBuilder, pNew); | |
4815 pNew->nOut = rSize; | |
4816 if( rc ) break; | |
4817 } | |
4818 } | |
4819 | |
4820 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); | |
4821 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
4822 sqlite3Stat4ProbeFree(pBuilder->pRec); | |
4823 pBuilder->nRecValid = 0; | |
4824 pBuilder->pRec = 0; | |
4825 #endif | |
4826 | |
4827 /* If there was an INDEXED BY clause, then only that one index is | |
4828 ** considered. */ | |
4829 if( pSrc->pIndex ) break; | |
4830 } | |
4831 return rc; | |
4832 } | |
4833 | |
4834 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
4835 /* | |
4836 ** Add all WhereLoop objects for a table of the join identified by | |
4837 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. | |
4838 */ | |
4839 static int whereLoopAddVirtual( | |
4840 WhereLoopBuilder *pBuilder, /* WHERE clause information */ | |
4841 Bitmask mExtra | |
4842 ){ | |
4843 WhereInfo *pWInfo; /* WHERE analysis context */ | |
4844 Parse *pParse; /* The parsing context */ | |
4845 WhereClause *pWC; /* The WHERE clause */ | |
4846 struct SrcList_item *pSrc; /* The FROM clause term to search */ | |
4847 Table *pTab; | |
4848 sqlite3 *db; | |
4849 sqlite3_index_info *pIdxInfo; | |
4850 struct sqlite3_index_constraint *pIdxCons; | |
4851 struct sqlite3_index_constraint_usage *pUsage; | |
4852 WhereTerm *pTerm; | |
4853 int i, j; | |
4854 int iTerm, mxTerm; | |
4855 int nConstraint; | |
4856 int seenIn = 0; /* True if an IN operator is seen */ | |
4857 int seenVar = 0; /* True if a non-constant constraint is seen */ | |
4858 int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ | |
4859 WhereLoop *pNew; | |
4860 int rc = SQLITE_OK; | |
4861 | |
4862 pWInfo = pBuilder->pWInfo; | |
4863 pParse = pWInfo->pParse; | |
4864 db = pParse->db; | |
4865 pWC = pBuilder->pWC; | |
4866 pNew = pBuilder->pNew; | |
4867 pSrc = &pWInfo->pTabList->a[pNew->iTab]; | |
4868 pTab = pSrc->pTab; | |
4869 assert( IsVirtual(pTab) ); | |
4870 pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy); | |
4871 if( pIdxInfo==0 ) return SQLITE_NOMEM; | |
4872 pNew->prereq = 0; | |
4873 pNew->rSetup = 0; | |
4874 pNew->wsFlags = WHERE_VIRTUALTABLE; | |
4875 pNew->nLTerm = 0; | |
4876 pNew->u.vtab.needFree = 0; | |
4877 pUsage = pIdxInfo->aConstraintUsage; | |
4878 nConstraint = pIdxInfo->nConstraint; | |
4879 if( whereLoopResize(db, pNew, nConstraint) ){ | |
4880 sqlite3DbFree(db, pIdxInfo); | |
4881 return SQLITE_NOMEM; | |
4882 } | |
4883 | |
4884 for(iPhase=0; iPhase<=3; iPhase++){ | |
4885 if( !seenIn && (iPhase&1)!=0 ){ | |
4886 iPhase++; | |
4887 if( iPhase>3 ) break; | |
4888 } | |
4889 if( !seenVar && iPhase>1 ) break; | |
4890 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | |
4891 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ | |
4892 j = pIdxCons->iTermOffset; | |
4893 pTerm = &pWC->a[j]; | |
4894 switch( iPhase ){ | |
4895 case 0: /* Constants without IN operator */ | |
4896 pIdxCons->usable = 0; | |
4897 if( (pTerm->eOperator & WO_IN)!=0 ){ | |
4898 seenIn = 1; | |
4899 } | |
4900 if( pTerm->prereqRight!=0 ){ | |
4901 seenVar = 1; | |
4902 }else if( (pTerm->eOperator & WO_IN)==0 ){ | |
4903 pIdxCons->usable = 1; | |
4904 } | |
4905 break; | |
4906 case 1: /* Constants with IN operators */ | |
4907 assert( seenIn ); | |
4908 pIdxCons->usable = (pTerm->prereqRight==0); | |
4909 break; | |
4910 case 2: /* Variables without IN */ | |
4911 assert( seenVar ); | |
4912 pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; | |
4913 break; | |
4914 default: /* Variables with IN */ | |
4915 assert( seenVar && seenIn ); | |
4916 pIdxCons->usable = 1; | |
4917 break; | |
4918 } | |
4919 } | |
4920 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); | |
4921 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); | |
4922 pIdxInfo->idxStr = 0; | |
4923 pIdxInfo->idxNum = 0; | |
4924 pIdxInfo->needToFreeIdxStr = 0; | |
4925 pIdxInfo->orderByConsumed = 0; | |
4926 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; | |
4927 pIdxInfo->estimatedRows = 25; | |
4928 rc = vtabBestIndex(pParse, pTab, pIdxInfo); | |
4929 if( rc ) goto whereLoopAddVtab_exit; | |
4930 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | |
4931 pNew->prereq = mExtra; | |
4932 mxTerm = -1; | |
4933 assert( pNew->nLSlot>=nConstraint ); | |
4934 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; | |
4935 pNew->u.vtab.omitMask = 0; | |
4936 for(i=0; i<nConstraint; i++, pIdxCons++){ | |
4937 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ | |
4938 j = pIdxCons->iTermOffset; | |
4939 if( iTerm>=nConstraint | |
4940 || j<0 | |
4941 || j>=pWC->nTerm | |
4942 || pNew->aLTerm[iTerm]!=0 | |
4943 ){ | |
4944 rc = SQLITE_ERROR; | |
4945 sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); | |
4946 goto whereLoopAddVtab_exit; | |
4947 } | |
4948 testcase( iTerm==nConstraint-1 ); | |
4949 testcase( j==0 ); | |
4950 testcase( j==pWC->nTerm-1 ); | |
4951 pTerm = &pWC->a[j]; | |
4952 pNew->prereq |= pTerm->prereqRight; | |
4953 assert( iTerm<pNew->nLSlot ); | |
4954 pNew->aLTerm[iTerm] = pTerm; | |
4955 if( iTerm>mxTerm ) mxTerm = iTerm; | |
4956 testcase( iTerm==15 ); | |
4957 testcase( iTerm==16 ); | |
4958 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; | |
4959 if( (pTerm->eOperator & WO_IN)!=0 ){ | |
4960 if( pUsage[i].omit==0 ){ | |
4961 /* Do not attempt to use an IN constraint if the virtual table | |
4962 ** says that the equivalent EQ constraint cannot be safely omitted. | |
4963 ** If we do attempt to use such a constraint, some rows might be | |
4964 ** repeated in the output. */ | |
4965 break; | |
4966 } | |
4967 /* A virtual table that is constrained by an IN clause may not | |
4968 ** consume the ORDER BY clause because (1) the order of IN terms | |
4969 ** is not necessarily related to the order of output terms and | |
4970 ** (2) Multiple outputs from a single IN value will not merge | |
4971 ** together. */ | |
4972 pIdxInfo->orderByConsumed = 0; | |
4973 } | |
4974 } | |
4975 } | |
4976 if( i>=nConstraint ){ | |
4977 pNew->nLTerm = mxTerm+1; | |
4978 assert( pNew->nLTerm<=pNew->nLSlot ); | |
4979 pNew->u.vtab.idxNum = pIdxInfo->idxNum; | |
4980 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; | |
4981 pIdxInfo->needToFreeIdxStr = 0; | |
4982 pNew->u.vtab.idxStr = pIdxInfo->idxStr; | |
4983 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? | |
4984 pIdxInfo->nOrderBy : 0); | |
4985 pNew->rSetup = 0; | |
4986 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); | |
4987 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); | |
4988 whereLoopInsert(pBuilder, pNew); | |
4989 if( pNew->u.vtab.needFree ){ | |
4990 sqlite3_free(pNew->u.vtab.idxStr); | |
4991 pNew->u.vtab.needFree = 0; | |
4992 } | |
4993 } | |
4994 } | |
4995 | |
4996 whereLoopAddVtab_exit: | |
4997 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); | |
4998 sqlite3DbFree(db, pIdxInfo); | |
4999 return rc; | |
5000 } | |
5001 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
5002 | |
5003 /* | |
5004 ** Add WhereLoop entries to handle OR terms. This works for either | |
5005 ** btrees or virtual tables. | |
5006 */ | |
5007 static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){ | |
5008 WhereInfo *pWInfo = pBuilder->pWInfo; | |
5009 WhereClause *pWC; | |
5010 WhereLoop *pNew; | |
5011 WhereTerm *pTerm, *pWCEnd; | |
5012 int rc = SQLITE_OK; | |
5013 int iCur; | |
5014 WhereClause tempWC; | |
5015 WhereLoopBuilder sSubBuild; | |
5016 WhereOrSet sSum, sCur; | |
5017 struct SrcList_item *pItem; | |
5018 | |
5019 pWC = pBuilder->pWC; | |
5020 pWCEnd = pWC->a + pWC->nTerm; | |
5021 pNew = pBuilder->pNew; | |
5022 memset(&sSum, 0, sizeof(sSum)); | |
5023 pItem = pWInfo->pTabList->a + pNew->iTab; | |
5024 iCur = pItem->iCursor; | |
5025 | |
5026 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ | |
5027 if( (pTerm->eOperator & WO_OR)!=0 | |
5028 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 | |
5029 ){ | |
5030 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; | |
5031 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; | |
5032 WhereTerm *pOrTerm; | |
5033 int once = 1; | |
5034 int i, j; | |
5035 | |
5036 sSubBuild = *pBuilder; | |
5037 sSubBuild.pOrderBy = 0; | |
5038 sSubBuild.pOrSet = &sCur; | |
5039 | |
5040 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); | |
5041 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ | |
5042 if( (pOrTerm->eOperator & WO_AND)!=0 ){ | |
5043 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; | |
5044 }else if( pOrTerm->leftCursor==iCur ){ | |
5045 tempWC.pWInfo = pWC->pWInfo; | |
5046 tempWC.pOuter = pWC; | |
5047 tempWC.op = TK_AND; | |
5048 tempWC.nTerm = 1; | |
5049 tempWC.a = pOrTerm; | |
5050 sSubBuild.pWC = &tempWC; | |
5051 }else{ | |
5052 continue; | |
5053 } | |
5054 sCur.n = 0; | |
5055 #ifdef WHERETRACE_ENABLED | |
5056 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", | |
5057 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); | |
5058 if( sqlite3WhereTrace & 0x400 ){ | |
5059 for(i=0; i<sSubBuild.pWC->nTerm; i++){ | |
5060 whereTermPrint(&sSubBuild.pWC->a[i], i); | |
5061 } | |
5062 } | |
5063 #endif | |
5064 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
5065 if( IsVirtual(pItem->pTab) ){ | |
5066 rc = whereLoopAddVirtual(&sSubBuild, mExtra); | |
5067 }else | |
5068 #endif | |
5069 { | |
5070 rc = whereLoopAddBtree(&sSubBuild, mExtra); | |
5071 } | |
5072 if( rc==SQLITE_OK ){ | |
5073 rc = whereLoopAddOr(&sSubBuild, mExtra); | |
5074 } | |
5075 assert( rc==SQLITE_OK || sCur.n==0 ); | |
5076 if( sCur.n==0 ){ | |
5077 sSum.n = 0; | |
5078 break; | |
5079 }else if( once ){ | |
5080 whereOrMove(&sSum, &sCur); | |
5081 once = 0; | |
5082 }else{ | |
5083 WhereOrSet sPrev; | |
5084 whereOrMove(&sPrev, &sSum); | |
5085 sSum.n = 0; | |
5086 for(i=0; i<sPrev.n; i++){ | |
5087 for(j=0; j<sCur.n; j++){ | |
5088 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, | |
5089 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), | |
5090 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); | |
5091 } | |
5092 } | |
5093 } | |
5094 } | |
5095 pNew->nLTerm = 1; | |
5096 pNew->aLTerm[0] = pTerm; | |
5097 pNew->wsFlags = WHERE_MULTI_OR; | |
5098 pNew->rSetup = 0; | |
5099 pNew->iSortIdx = 0; | |
5100 memset(&pNew->u, 0, sizeof(pNew->u)); | |
5101 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ | |
5102 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs | |
5103 ** of all sub-scans required by the OR-scan. However, due to rounding | |
5104 ** errors, it may be that the cost of the OR-scan is equal to its | |
5105 ** most expensive sub-scan. Add the smallest possible penalty | |
5106 ** (equivalent to multiplying the cost by 1.07) to ensure that | |
5107 ** this does not happen. Otherwise, for WHERE clauses such as the | |
5108 ** following where there is an index on "y": | |
5109 ** | |
5110 ** WHERE likelihood(x=?, 0.99) OR y=? | |
5111 ** | |
5112 ** the planner may elect to "OR" together a full-table scan and an | |
5113 ** index lookup. And other similarly odd results. */ | |
5114 pNew->rRun = sSum.a[i].rRun + 1; | |
5115 pNew->nOut = sSum.a[i].nOut; | |
5116 pNew->prereq = sSum.a[i].prereq; | |
5117 rc = whereLoopInsert(pBuilder, pNew); | |
5118 } | |
5119 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); | |
5120 } | |
5121 } | |
5122 return rc; | |
5123 } | |
5124 | |
5125 /* | |
5126 ** Add all WhereLoop objects for all tables | |
5127 */ | |
5128 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ | |
5129 WhereInfo *pWInfo = pBuilder->pWInfo; | |
5130 Bitmask mExtra = 0; | |
5131 Bitmask mPrior = 0; | |
5132 int iTab; | |
5133 SrcList *pTabList = pWInfo->pTabList; | |
5134 struct SrcList_item *pItem; | |
5135 sqlite3 *db = pWInfo->pParse->db; | |
5136 int nTabList = pWInfo->nLevel; | |
5137 int rc = SQLITE_OK; | |
5138 u8 priorJoinType = 0; | |
5139 WhereLoop *pNew; | |
5140 | |
5141 /* Loop over the tables in the join, from left to right */ | |
5142 pNew = pBuilder->pNew; | |
5143 whereLoopInit(pNew); | |
5144 for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){ | |
5145 pNew->iTab = iTab; | |
5146 pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor); | |
5147 if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){ | |
5148 mExtra = mPrior; | |
5149 } | |
5150 priorJoinType = pItem->jointype; | |
5151 if( IsVirtual(pItem->pTab) ){ | |
5152 rc = whereLoopAddVirtual(pBuilder, mExtra); | |
5153 }else{ | |
5154 rc = whereLoopAddBtree(pBuilder, mExtra); | |
5155 } | |
5156 if( rc==SQLITE_OK ){ | |
5157 rc = whereLoopAddOr(pBuilder, mExtra); | |
5158 } | |
5159 mPrior |= pNew->maskSelf; | |
5160 if( rc || db->mallocFailed ) break; | |
5161 } | |
5162 whereLoopClear(db, pNew); | |
5163 return rc; | |
5164 } | |
5165 | |
5166 /* | |
5167 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th | |
5168 ** parameters) to see if it outputs rows in the requested ORDER BY | |
5169 ** (or GROUP BY) without requiring a separate sort operation. Return N: | |
5170 ** | |
5171 ** N>0: N terms of the ORDER BY clause are satisfied | |
5172 ** N==0: No terms of the ORDER BY clause are satisfied | |
5173 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. | |
5174 ** | |
5175 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as | |
5176 ** strict. With GROUP BY and DISTINCT the only requirement is that | |
5177 ** equivalent rows appear immediately adjacent to one another. GROUP BY | |
5178 ** and DISTINCT do not require rows to appear in any particular order as long | |
5179 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT | |
5180 ** the pOrderBy terms can be matched in any order. With ORDER BY, the | |
5181 ** pOrderBy terms must be matched in strict left-to-right order. | |
5182 */ | |
5183 static i8 wherePathSatisfiesOrderBy( | |
5184 WhereInfo *pWInfo, /* The WHERE clause */ | |
5185 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ | |
5186 WherePath *pPath, /* The WherePath to check */ | |
5187 u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ | |
5188 u16 nLoop, /* Number of entries in pPath->aLoop[] */ | |
5189 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ | |
5190 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ | |
5191 ){ | |
5192 u8 revSet; /* True if rev is known */ | |
5193 u8 rev; /* Composite sort order */ | |
5194 u8 revIdx; /* Index sort order */ | |
5195 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ | |
5196 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ | |
5197 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ | |
5198 u16 nKeyCol; /* Number of key columns in pIndex */ | |
5199 u16 nColumn; /* Total number of ordered columns in the index */ | |
5200 u16 nOrderBy; /* Number terms in the ORDER BY clause */ | |
5201 int iLoop; /* Index of WhereLoop in pPath being processed */ | |
5202 int i, j; /* Loop counters */ | |
5203 int iCur; /* Cursor number for current WhereLoop */ | |
5204 int iColumn; /* A column number within table iCur */ | |
5205 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ | |
5206 WhereTerm *pTerm; /* A single term of the WHERE clause */ | |
5207 Expr *pOBExpr; /* An expression from the ORDER BY clause */ | |
5208 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ | |
5209 Index *pIndex; /* The index associated with pLoop */ | |
5210 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ | |
5211 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ | |
5212 Bitmask obDone; /* Mask of all ORDER BY terms */ | |
5213 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ | |
5214 Bitmask ready; /* Mask of inner loops */ | |
5215 | |
5216 /* | |
5217 ** We say the WhereLoop is "one-row" if it generates no more than one | |
5218 ** row of output. A WhereLoop is one-row if all of the following are true: | |
5219 ** (a) All index columns match with WHERE_COLUMN_EQ. | |
5220 ** (b) The index is unique | |
5221 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. | |
5222 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. | |
5223 ** | |
5224 ** We say the WhereLoop is "order-distinct" if the set of columns from | |
5225 ** that WhereLoop that are in the ORDER BY clause are different for every | |
5226 ** row of the WhereLoop. Every one-row WhereLoop is automatically | |
5227 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause | |
5228 ** is not order-distinct. To be order-distinct is not quite the same as being | |
5229 ** UNIQUE since a UNIQUE column or index can have multiple rows that | |
5230 ** are NULL and NULL values are equivalent for the purpose of order-distinct. | |
5231 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. | |
5232 ** | |
5233 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the | |
5234 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is | |
5235 ** automatically order-distinct. | |
5236 */ | |
5237 | |
5238 assert( pOrderBy!=0 ); | |
5239 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; | |
5240 | |
5241 nOrderBy = pOrderBy->nExpr; | |
5242 testcase( nOrderBy==BMS-1 ); | |
5243 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ | |
5244 isOrderDistinct = 1; | |
5245 obDone = MASKBIT(nOrderBy)-1; | |
5246 orderDistinctMask = 0; | |
5247 ready = 0; | |
5248 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ | |
5249 if( iLoop>0 ) ready |= pLoop->maskSelf; | |
5250 pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; | |
5251 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ | |
5252 if( pLoop->u.vtab.isOrdered ) obSat = obDone; | |
5253 break; | |
5254 } | |
5255 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; | |
5256 | |
5257 /* Mark off any ORDER BY term X that is a column in the table of | |
5258 ** the current loop for which there is term in the WHERE | |
5259 ** clause of the form X IS NULL or X=? that reference only outer | |
5260 ** loops. | |
5261 */ | |
5262 for(i=0; i<nOrderBy; i++){ | |
5263 if( MASKBIT(i) & obSat ) continue; | |
5264 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); | |
5265 if( pOBExpr->op!=TK_COLUMN ) continue; | |
5266 if( pOBExpr->iTable!=iCur ) continue; | |
5267 pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, | |
5268 ~ready, WO_EQ|WO_ISNULL, 0); | |
5269 if( pTerm==0 ) continue; | |
5270 if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){ | |
5271 const char *z1, *z2; | |
5272 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); | |
5273 if( !pColl ) pColl = db->pDfltColl; | |
5274 z1 = pColl->zName; | |
5275 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); | |
5276 if( !pColl ) pColl = db->pDfltColl; | |
5277 z2 = pColl->zName; | |
5278 if( sqlite3StrICmp(z1, z2)!=0 ) continue; | |
5279 } | |
5280 obSat |= MASKBIT(i); | |
5281 } | |
5282 | |
5283 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ | |
5284 if( pLoop->wsFlags & WHERE_IPK ){ | |
5285 pIndex = 0; | |
5286 nKeyCol = 0; | |
5287 nColumn = 1; | |
5288 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ | |
5289 return 0; | |
5290 }else{ | |
5291 nKeyCol = pIndex->nKeyCol; | |
5292 nColumn = pIndex->nColumn; | |
5293 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); | |
5294 assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); | |
5295 isOrderDistinct = IsUniqueIndex(pIndex); | |
5296 } | |
5297 | |
5298 /* Loop through all columns of the index and deal with the ones | |
5299 ** that are not constrained by == or IN. | |
5300 */ | |
5301 rev = revSet = 0; | |
5302 distinctColumns = 0; | |
5303 for(j=0; j<nColumn; j++){ | |
5304 u8 bOnce; /* True to run the ORDER BY search loop */ | |
5305 | |
5306 /* Skip over == and IS NULL terms */ | |
5307 if( j<pLoop->u.btree.nEq | |
5308 && pLoop->u.btree.nSkip==0 | |
5309 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 | |
5310 ){ | |
5311 if( i & WO_ISNULL ){ | |
5312 testcase( isOrderDistinct ); | |
5313 isOrderDistinct = 0; | |
5314 } | |
5315 continue; | |
5316 } | |
5317 | |
5318 /* Get the column number in the table (iColumn) and sort order | |
5319 ** (revIdx) for the j-th column of the index. | |
5320 */ | |
5321 if( pIndex ){ | |
5322 iColumn = pIndex->aiColumn[j]; | |
5323 revIdx = pIndex->aSortOrder[j]; | |
5324 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; | |
5325 }else{ | |
5326 iColumn = -1; | |
5327 revIdx = 0; | |
5328 } | |
5329 | |
5330 /* An unconstrained column that might be NULL means that this | |
5331 ** WhereLoop is not well-ordered | |
5332 */ | |
5333 if( isOrderDistinct | |
5334 && iColumn>=0 | |
5335 && j>=pLoop->u.btree.nEq | |
5336 && pIndex->pTable->aCol[iColumn].notNull==0 | |
5337 ){ | |
5338 isOrderDistinct = 0; | |
5339 } | |
5340 | |
5341 /* Find the ORDER BY term that corresponds to the j-th column | |
5342 ** of the index and mark that ORDER BY term off | |
5343 */ | |
5344 bOnce = 1; | |
5345 isMatch = 0; | |
5346 for(i=0; bOnce && i<nOrderBy; i++){ | |
5347 if( MASKBIT(i) & obSat ) continue; | |
5348 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); | |
5349 testcase( wctrlFlags & WHERE_GROUPBY ); | |
5350 testcase( wctrlFlags & WHERE_DISTINCTBY ); | |
5351 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; | |
5352 if( pOBExpr->op!=TK_COLUMN ) continue; | |
5353 if( pOBExpr->iTable!=iCur ) continue; | |
5354 if( pOBExpr->iColumn!=iColumn ) continue; | |
5355 if( iColumn>=0 ){ | |
5356 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); | |
5357 if( !pColl ) pColl = db->pDfltColl; | |
5358 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; | |
5359 } | |
5360 isMatch = 1; | |
5361 break; | |
5362 } | |
5363 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ | |
5364 /* Make sure the sort order is compatible in an ORDER BY clause. | |
5365 ** Sort order is irrelevant for a GROUP BY clause. */ | |
5366 if( revSet ){ | |
5367 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; | |
5368 }else{ | |
5369 rev = revIdx ^ pOrderBy->a[i].sortOrder; | |
5370 if( rev ) *pRevMask |= MASKBIT(iLoop); | |
5371 revSet = 1; | |
5372 } | |
5373 } | |
5374 if( isMatch ){ | |
5375 if( iColumn<0 ){ | |
5376 testcase( distinctColumns==0 ); | |
5377 distinctColumns = 1; | |
5378 } | |
5379 obSat |= MASKBIT(i); | |
5380 }else{ | |
5381 /* No match found */ | |
5382 if( j==0 || j<nKeyCol ){ | |
5383 testcase( isOrderDistinct!=0 ); | |
5384 isOrderDistinct = 0; | |
5385 } | |
5386 break; | |
5387 } | |
5388 } /* end Loop over all index columns */ | |
5389 if( distinctColumns ){ | |
5390 testcase( isOrderDistinct==0 ); | |
5391 isOrderDistinct = 1; | |
5392 } | |
5393 } /* end-if not one-row */ | |
5394 | |
5395 /* Mark off any other ORDER BY terms that reference pLoop */ | |
5396 if( isOrderDistinct ){ | |
5397 orderDistinctMask |= pLoop->maskSelf; | |
5398 for(i=0; i<nOrderBy; i++){ | |
5399 Expr *p; | |
5400 Bitmask mTerm; | |
5401 if( MASKBIT(i) & obSat ) continue; | |
5402 p = pOrderBy->a[i].pExpr; | |
5403 mTerm = exprTableUsage(&pWInfo->sMaskSet,p); | |
5404 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; | |
5405 if( (mTerm&~orderDistinctMask)==0 ){ | |
5406 obSat |= MASKBIT(i); | |
5407 } | |
5408 } | |
5409 } | |
5410 } /* End the loop over all WhereLoops from outer-most down to inner-most */ | |
5411 if( obSat==obDone ) return (i8)nOrderBy; | |
5412 if( !isOrderDistinct ){ | |
5413 for(i=nOrderBy-1; i>0; i--){ | |
5414 Bitmask m = MASKBIT(i) - 1; | |
5415 if( (obSat&m)==m ) return i; | |
5416 } | |
5417 return 0; | |
5418 } | |
5419 return -1; | |
5420 } | |
5421 | |
5422 | |
5423 /* | |
5424 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), | |
5425 ** the planner assumes that the specified pOrderBy list is actually a GROUP | |
5426 ** BY clause - and so any order that groups rows as required satisfies the | |
5427 ** request. | |
5428 ** | |
5429 ** Normally, in this case it is not possible for the caller to determine | |
5430 ** whether or not the rows are really being delivered in sorted order, or | |
5431 ** just in some other order that provides the required grouping. However, | |
5432 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then | |
5433 ** this function may be called on the returned WhereInfo object. It returns | |
5434 ** true if the rows really will be sorted in the specified order, or false | |
5435 ** otherwise. | |
5436 ** | |
5437 ** For example, assuming: | |
5438 ** | |
5439 ** CREATE INDEX i1 ON t1(x, Y); | |
5440 ** | |
5441 ** then | |
5442 ** | |
5443 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 | |
5444 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 | |
5445 */ | |
5446 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ | |
5447 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); | |
5448 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); | |
5449 return pWInfo->sorted; | |
5450 } | |
5451 | |
5452 #ifdef WHERETRACE_ENABLED | |
5453 /* For debugging use only: */ | |
5454 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ | |
5455 static char zName[65]; | |
5456 int i; | |
5457 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } | |
5458 if( pLast ) zName[i++] = pLast->cId; | |
5459 zName[i] = 0; | |
5460 return zName; | |
5461 } | |
5462 #endif | |
5463 | |
5464 /* | |
5465 ** Return the cost of sorting nRow rows, assuming that the keys have | |
5466 ** nOrderby columns and that the first nSorted columns are already in | |
5467 ** order. | |
5468 */ | |
5469 static LogEst whereSortingCost( | |
5470 WhereInfo *pWInfo, | |
5471 LogEst nRow, | |
5472 int nOrderBy, | |
5473 int nSorted | |
5474 ){ | |
5475 /* TUNING: Estimated cost of a full external sort, where N is | |
5476 ** the number of rows to sort is: | |
5477 ** | |
5478 ** cost = (3.0 * N * log(N)). | |
5479 ** | |
5480 ** Or, if the order-by clause has X terms but only the last Y | |
5481 ** terms are out of order, then block-sorting will reduce the | |
5482 ** sorting cost to: | |
5483 ** | |
5484 ** cost = (3.0 * N * log(N)) * (Y/X) | |
5485 ** | |
5486 ** The (Y/X) term is implemented using stack variable rScale | |
5487 ** below. */ | |
5488 LogEst rScale, rSortCost; | |
5489 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); | |
5490 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; | |
5491 rSortCost = nRow + estLog(nRow) + rScale + 16; | |
5492 | |
5493 /* TUNING: The cost of implementing DISTINCT using a B-TREE is | |
5494 ** similar but with a larger constant of proportionality. | |
5495 ** Multiply by an additional factor of 3.0. */ | |
5496 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ | |
5497 rSortCost += 16; | |
5498 } | |
5499 | |
5500 return rSortCost; | |
5501 } | |
5502 | |
5503 /* | |
5504 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine | |
5505 ** attempts to find the lowest cost path that visits each WhereLoop | |
5506 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. | |
5507 ** | |
5508 ** Assume that the total number of output rows that will need to be sorted | |
5509 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting | |
5510 ** costs if nRowEst==0. | |
5511 ** | |
5512 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation | |
5513 ** error occurs. | |
5514 */ | |
5515 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ | |
5516 int mxChoice; /* Maximum number of simultaneous paths tracked */ | |
5517 int nLoop; /* Number of terms in the join */ | |
5518 Parse *pParse; /* Parsing context */ | |
5519 sqlite3 *db; /* The database connection */ | |
5520 int iLoop; /* Loop counter over the terms of the join */ | |
5521 int ii, jj; /* Loop counters */ | |
5522 int mxI = 0; /* Index of next entry to replace */ | |
5523 int nOrderBy; /* Number of ORDER BY clause terms */ | |
5524 LogEst mxCost = 0; /* Maximum cost of a set of paths */ | |
5525 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ | |
5526 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ | |
5527 WherePath *aFrom; /* All nFrom paths at the previous level */ | |
5528 WherePath *aTo; /* The nTo best paths at the current level */ | |
5529 WherePath *pFrom; /* An element of aFrom[] that we are working on */ | |
5530 WherePath *pTo; /* An element of aTo[] that we are working on */ | |
5531 WhereLoop *pWLoop; /* One of the WhereLoop objects */ | |
5532 WhereLoop **pX; /* Used to divy up the pSpace memory */ | |
5533 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ | |
5534 char *pSpace; /* Temporary memory used by this routine */ | |
5535 int nSpace; /* Bytes of space allocated at pSpace */ | |
5536 | |
5537 pParse = pWInfo->pParse; | |
5538 db = pParse->db; | |
5539 nLoop = pWInfo->nLevel; | |
5540 /* TUNING: For simple queries, only the best path is tracked. | |
5541 ** For 2-way joins, the 5 best paths are followed. | |
5542 ** For joins of 3 or more tables, track the 10 best paths */ | |
5543 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); | |
5544 assert( nLoop<=pWInfo->pTabList->nSrc ); | |
5545 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); | |
5546 | |
5547 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this | |
5548 ** case the purpose of this call is to estimate the number of rows returned | |
5549 ** by the overall query. Once this estimate has been obtained, the caller | |
5550 ** will invoke this function a second time, passing the estimate as the | |
5551 ** nRowEst parameter. */ | |
5552 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ | |
5553 nOrderBy = 0; | |
5554 }else{ | |
5555 nOrderBy = pWInfo->pOrderBy->nExpr; | |
5556 } | |
5557 | |
5558 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ | |
5559 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; | |
5560 nSpace += sizeof(LogEst) * nOrderBy; | |
5561 pSpace = sqlite3DbMallocRaw(db, nSpace); | |
5562 if( pSpace==0 ) return SQLITE_NOMEM; | |
5563 aTo = (WherePath*)pSpace; | |
5564 aFrom = aTo+mxChoice; | |
5565 memset(aFrom, 0, sizeof(aFrom[0])); | |
5566 pX = (WhereLoop**)(aFrom+mxChoice); | |
5567 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ | |
5568 pFrom->aLoop = pX; | |
5569 } | |
5570 if( nOrderBy ){ | |
5571 /* If there is an ORDER BY clause and it is not being ignored, set up | |
5572 ** space for the aSortCost[] array. Each element of the aSortCost array | |
5573 ** is either zero - meaning it has not yet been initialized - or the | |
5574 ** cost of sorting nRowEst rows of data where the first X terms of | |
5575 ** the ORDER BY clause are already in order, where X is the array | |
5576 ** index. */ | |
5577 aSortCost = (LogEst*)pX; | |
5578 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); | |
5579 } | |
5580 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); | |
5581 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); | |
5582 | |
5583 /* Seed the search with a single WherePath containing zero WhereLoops. | |
5584 ** | |
5585 ** TUNING: Do not let the number of iterations go above 25. If the cost | |
5586 ** of computing an automatic index is not paid back within the first 25 | |
5587 ** rows, then do not use the automatic index. */ | |
5588 aFrom[0].nRow = MIN(pParse->nQueryLoop, 46); assert( 46==sqlite3LogEst(25) ); | |
5589 nFrom = 1; | |
5590 assert( aFrom[0].isOrdered==0 ); | |
5591 if( nOrderBy ){ | |
5592 /* If nLoop is zero, then there are no FROM terms in the query. Since | |
5593 ** in this case the query may return a maximum of one row, the results | |
5594 ** are already in the requested order. Set isOrdered to nOrderBy to | |
5595 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to | |
5596 ** -1, indicating that the result set may or may not be ordered, | |
5597 ** depending on the loops added to the current plan. */ | |
5598 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; | |
5599 } | |
5600 | |
5601 /* Compute successively longer WherePaths using the previous generation | |
5602 ** of WherePaths as the basis for the next. Keep track of the mxChoice | |
5603 ** best paths at each generation */ | |
5604 for(iLoop=0; iLoop<nLoop; iLoop++){ | |
5605 nTo = 0; | |
5606 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ | |
5607 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ | |
5608 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ | |
5609 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ | |
5610 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ | |
5611 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ | |
5612 Bitmask maskNew; /* Mask of src visited by (..) */ | |
5613 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ | |
5614 | |
5615 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; | |
5616 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; | |
5617 /* At this point, pWLoop is a candidate to be the next loop. | |
5618 ** Compute its cost */ | |
5619 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); | |
5620 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); | |
5621 nOut = pFrom->nRow + pWLoop->nOut; | |
5622 maskNew = pFrom->maskLoop | pWLoop->maskSelf; | |
5623 if( isOrdered<0 ){ | |
5624 isOrdered = wherePathSatisfiesOrderBy(pWInfo, | |
5625 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, | |
5626 iLoop, pWLoop, &revMask); | |
5627 }else{ | |
5628 revMask = pFrom->revLoop; | |
5629 } | |
5630 if( isOrdered>=0 && isOrdered<nOrderBy ){ | |
5631 if( aSortCost[isOrdered]==0 ){ | |
5632 aSortCost[isOrdered] = whereSortingCost( | |
5633 pWInfo, nRowEst, nOrderBy, isOrdered | |
5634 ); | |
5635 } | |
5636 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); | |
5637 | |
5638 WHERETRACE(0x002, | |
5639 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", | |
5640 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, | |
5641 rUnsorted, rCost)); | |
5642 }else{ | |
5643 rCost = rUnsorted; | |
5644 } | |
5645 | |
5646 /* Check to see if pWLoop should be added to the set of | |
5647 ** mxChoice best-so-far paths. | |
5648 ** | |
5649 ** First look for an existing path among best-so-far paths | |
5650 ** that covers the same set of loops and has the same isOrdered | |
5651 ** setting as the current path candidate. | |
5652 ** | |
5653 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent | |
5654 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range | |
5655 ** of legal values for isOrdered, -1..64. | |
5656 */ | |
5657 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ | |
5658 if( pTo->maskLoop==maskNew | |
5659 && ((pTo->isOrdered^isOrdered)&0x80)==0 | |
5660 ){ | |
5661 testcase( jj==nTo-1 ); | |
5662 break; | |
5663 } | |
5664 } | |
5665 if( jj>=nTo ){ | |
5666 /* None of the existing best-so-far paths match the candidate. */ | |
5667 if( nTo>=mxChoice | |
5668 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) | |
5669 ){ | |
5670 /* The current candidate is no better than any of the mxChoice | |
5671 ** paths currently in the best-so-far buffer. So discard | |
5672 ** this candidate as not viable. */ | |
5673 #ifdef WHERETRACE_ENABLED /* 0x4 */ | |
5674 if( sqlite3WhereTrace&0x4 ){ | |
5675 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", | |
5676 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | |
5677 isOrdered>=0 ? isOrdered+'0' : '?'); | |
5678 } | |
5679 #endif | |
5680 continue; | |
5681 } | |
5682 /* If we reach this points it means that the new candidate path | |
5683 ** needs to be added to the set of best-so-far paths. */ | |
5684 if( nTo<mxChoice ){ | |
5685 /* Increase the size of the aTo set by one */ | |
5686 jj = nTo++; | |
5687 }else{ | |
5688 /* New path replaces the prior worst to keep count below mxChoice */ | |
5689 jj = mxI; | |
5690 } | |
5691 pTo = &aTo[jj]; | |
5692 #ifdef WHERETRACE_ENABLED /* 0x4 */ | |
5693 if( sqlite3WhereTrace&0x4 ){ | |
5694 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", | |
5695 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | |
5696 isOrdered>=0 ? isOrdered+'0' : '?'); | |
5697 } | |
5698 #endif | |
5699 }else{ | |
5700 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the | |
5701 ** same set of loops and has the sam isOrdered setting as the | |
5702 ** candidate path. Check to see if the candidate should replace | |
5703 ** pTo or if the candidate should be skipped */ | |
5704 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ | |
5705 #ifdef WHERETRACE_ENABLED /* 0x4 */ | |
5706 if( sqlite3WhereTrace&0x4 ){ | |
5707 sqlite3DebugPrintf( | |
5708 "Skip %s cost=%-3d,%3d order=%c", | |
5709 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | |
5710 isOrdered>=0 ? isOrdered+'0' : '?'); | |
5711 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", | |
5712 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, | |
5713 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); | |
5714 } | |
5715 #endif | |
5716 /* Discard the candidate path from further consideration */ | |
5717 testcase( pTo->rCost==rCost ); | |
5718 continue; | |
5719 } | |
5720 testcase( pTo->rCost==rCost+1 ); | |
5721 /* Control reaches here if the candidate path is better than the | |
5722 ** pTo path. Replace pTo with the candidate. */ | |
5723 #ifdef WHERETRACE_ENABLED /* 0x4 */ | |
5724 if( sqlite3WhereTrace&0x4 ){ | |
5725 sqlite3DebugPrintf( | |
5726 "Update %s cost=%-3d,%3d order=%c", | |
5727 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | |
5728 isOrdered>=0 ? isOrdered+'0' : '?'); | |
5729 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", | |
5730 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, | |
5731 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); | |
5732 } | |
5733 #endif | |
5734 } | |
5735 /* pWLoop is a winner. Add it to the set of best so far */ | |
5736 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; | |
5737 pTo->revLoop = revMask; | |
5738 pTo->nRow = nOut; | |
5739 pTo->rCost = rCost; | |
5740 pTo->rUnsorted = rUnsorted; | |
5741 pTo->isOrdered = isOrdered; | |
5742 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); | |
5743 pTo->aLoop[iLoop] = pWLoop; | |
5744 if( nTo>=mxChoice ){ | |
5745 mxI = 0; | |
5746 mxCost = aTo[0].rCost; | |
5747 mxUnsorted = aTo[0].nRow; | |
5748 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ | |
5749 if( pTo->rCost>mxCost | |
5750 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) | |
5751 ){ | |
5752 mxCost = pTo->rCost; | |
5753 mxUnsorted = pTo->rUnsorted; | |
5754 mxI = jj; | |
5755 } | |
5756 } | |
5757 } | |
5758 } | |
5759 } | |
5760 | |
5761 #ifdef WHERETRACE_ENABLED /* >=2 */ | |
5762 if( sqlite3WhereTrace>=2 ){ | |
5763 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); | |
5764 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ | |
5765 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", | |
5766 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, | |
5767 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); | |
5768 if( pTo->isOrdered>0 ){ | |
5769 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); | |
5770 }else{ | |
5771 sqlite3DebugPrintf("\n"); | |
5772 } | |
5773 } | |
5774 } | |
5775 #endif | |
5776 | |
5777 /* Swap the roles of aFrom and aTo for the next generation */ | |
5778 pFrom = aTo; | |
5779 aTo = aFrom; | |
5780 aFrom = pFrom; | |
5781 nFrom = nTo; | |
5782 } | |
5783 | |
5784 if( nFrom==0 ){ | |
5785 sqlite3ErrorMsg(pParse, "no query solution"); | |
5786 sqlite3DbFree(db, pSpace); | |
5787 return SQLITE_ERROR; | |
5788 } | |
5789 | |
5790 /* Find the lowest cost path. pFrom will be left pointing to that path */ | |
5791 pFrom = aFrom; | |
5792 for(ii=1; ii<nFrom; ii++){ | |
5793 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; | |
5794 } | |
5795 assert( pWInfo->nLevel==nLoop ); | |
5796 /* Load the lowest cost path into pWInfo */ | |
5797 for(iLoop=0; iLoop<nLoop; iLoop++){ | |
5798 WhereLevel *pLevel = pWInfo->a + iLoop; | |
5799 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; | |
5800 pLevel->iFrom = pWLoop->iTab; | |
5801 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; | |
5802 } | |
5803 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 | |
5804 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 | |
5805 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP | |
5806 && nRowEst | |
5807 ){ | |
5808 Bitmask notUsed; | |
5809 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, | |
5810 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); | |
5811 if( rc==pWInfo->pResultSet->nExpr ){ | |
5812 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; | |
5813 } | |
5814 } | |
5815 if( pWInfo->pOrderBy ){ | |
5816 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ | |
5817 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ | |
5818 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; | |
5819 } | |
5820 }else{ | |
5821 pWInfo->nOBSat = pFrom->isOrdered; | |
5822 if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; | |
5823 pWInfo->revMask = pFrom->revLoop; | |
5824 } | |
5825 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) | |
5826 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr | |
5827 ){ | |
5828 Bitmask revMask = 0; | |
5829 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, | |
5830 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask | |
5831 ); | |
5832 assert( pWInfo->sorted==0 ); | |
5833 if( nOrder==pWInfo->pOrderBy->nExpr ){ | |
5834 pWInfo->sorted = 1; | |
5835 pWInfo->revMask = revMask; | |
5836 } | |
5837 } | |
5838 } | |
5839 | |
5840 | |
5841 pWInfo->nRowOut = pFrom->nRow; | |
5842 | |
5843 /* Free temporary memory and return success */ | |
5844 sqlite3DbFree(db, pSpace); | |
5845 return SQLITE_OK; | |
5846 } | |
5847 | |
5848 /* | |
5849 ** Most queries use only a single table (they are not joins) and have | |
5850 ** simple == constraints against indexed fields. This routine attempts | |
5851 ** to plan those simple cases using much less ceremony than the | |
5852 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() | |
5853 ** times for the common case. | |
5854 ** | |
5855 ** Return non-zero on success, if this query can be handled by this | |
5856 ** no-frills query planner. Return zero if this query needs the | |
5857 ** general-purpose query planner. | |
5858 */ | |
5859 static int whereShortCut(WhereLoopBuilder *pBuilder){ | |
5860 WhereInfo *pWInfo; | |
5861 struct SrcList_item *pItem; | |
5862 WhereClause *pWC; | |
5863 WhereTerm *pTerm; | |
5864 WhereLoop *pLoop; | |
5865 int iCur; | |
5866 int j; | |
5867 Table *pTab; | |
5868 Index *pIdx; | |
5869 | |
5870 pWInfo = pBuilder->pWInfo; | |
5871 if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; | |
5872 assert( pWInfo->pTabList->nSrc>=1 ); | |
5873 pItem = pWInfo->pTabList->a; | |
5874 pTab = pItem->pTab; | |
5875 if( IsVirtual(pTab) ) return 0; | |
5876 if( pItem->zIndex ) return 0; | |
5877 iCur = pItem->iCursor; | |
5878 pWC = &pWInfo->sWC; | |
5879 pLoop = pBuilder->pNew; | |
5880 pLoop->wsFlags = 0; | |
5881 pLoop->u.btree.nSkip = 0; | |
5882 pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); | |
5883 if( pTerm ){ | |
5884 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; | |
5885 pLoop->aLTerm[0] = pTerm; | |
5886 pLoop->nLTerm = 1; | |
5887 pLoop->u.btree.nEq = 1; | |
5888 /* TUNING: Cost of a rowid lookup is 10 */ | |
5889 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ | |
5890 }else{ | |
5891 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | |
5892 assert( pLoop->aLTermSpace==pLoop->aLTerm ); | |
5893 assert( ArraySize(pLoop->aLTermSpace)==4 ); | |
5894 if( !IsUniqueIndex(pIdx) | |
5895 || pIdx->pPartIdxWhere!=0 | |
5896 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) | |
5897 ) continue; | |
5898 for(j=0; j<pIdx->nKeyCol; j++){ | |
5899 pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx); | |
5900 if( pTerm==0 ) break; | |
5901 pLoop->aLTerm[j] = pTerm; | |
5902 } | |
5903 if( j!=pIdx->nKeyCol ) continue; | |
5904 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; | |
5905 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ | |
5906 pLoop->wsFlags |= WHERE_IDX_ONLY; | |
5907 } | |
5908 pLoop->nLTerm = j; | |
5909 pLoop->u.btree.nEq = j; | |
5910 pLoop->u.btree.pIndex = pIdx; | |
5911 /* TUNING: Cost of a unique index lookup is 15 */ | |
5912 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ | |
5913 break; | |
5914 } | |
5915 } | |
5916 if( pLoop->wsFlags ){ | |
5917 pLoop->nOut = (LogEst)1; | |
5918 pWInfo->a[0].pWLoop = pLoop; | |
5919 pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur); | |
5920 pWInfo->a[0].iTabCur = iCur; | |
5921 pWInfo->nRowOut = 1; | |
5922 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; | |
5923 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ | |
5924 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; | |
5925 } | |
5926 #ifdef SQLITE_DEBUG | |
5927 pLoop->cId = '0'; | |
5928 #endif | |
5929 return 1; | |
5930 } | |
5931 return 0; | |
5932 } | |
5933 | |
5934 /* | |
5935 ** Generate the beginning of the loop used for WHERE clause processing. | |
5936 ** The return value is a pointer to an opaque structure that contains | |
5937 ** information needed to terminate the loop. Later, the calling routine | |
5938 ** should invoke sqlite3WhereEnd() with the return value of this function | |
5939 ** in order to complete the WHERE clause processing. | |
5940 ** | |
5941 ** If an error occurs, this routine returns NULL. | |
5942 ** | |
5943 ** The basic idea is to do a nested loop, one loop for each table in | |
5944 ** the FROM clause of a select. (INSERT and UPDATE statements are the | |
5945 ** same as a SELECT with only a single table in the FROM clause.) For | |
5946 ** example, if the SQL is this: | |
5947 ** | |
5948 ** SELECT * FROM t1, t2, t3 WHERE ...; | |
5949 ** | |
5950 ** Then the code generated is conceptually like the following: | |
5951 ** | |
5952 ** foreach row1 in t1 do \ Code generated | |
5953 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() | |
5954 ** foreach row3 in t3 do / | |
5955 ** ... | |
5956 ** end \ Code generated | |
5957 ** end |-- by sqlite3WhereEnd() | |
5958 ** end / | |
5959 ** | |
5960 ** Note that the loops might not be nested in the order in which they | |
5961 ** appear in the FROM clause if a different order is better able to make | |
5962 ** use of indices. Note also that when the IN operator appears in | |
5963 ** the WHERE clause, it might result in additional nested loops for | |
5964 ** scanning through all values on the right-hand side of the IN. | |
5965 ** | |
5966 ** There are Btree cursors associated with each table. t1 uses cursor | |
5967 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. | |
5968 ** And so forth. This routine generates code to open those VDBE cursors | |
5969 ** and sqlite3WhereEnd() generates the code to close them. | |
5970 ** | |
5971 ** The code that sqlite3WhereBegin() generates leaves the cursors named | |
5972 ** in pTabList pointing at their appropriate entries. The [...] code | |
5973 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract | |
5974 ** data from the various tables of the loop. | |
5975 ** | |
5976 ** If the WHERE clause is empty, the foreach loops must each scan their | |
5977 ** entire tables. Thus a three-way join is an O(N^3) operation. But if | |
5978 ** the tables have indices and there are terms in the WHERE clause that | |
5979 ** refer to those indices, a complete table scan can be avoided and the | |
5980 ** code will run much faster. Most of the work of this routine is checking | |
5981 ** to see if there are indices that can be used to speed up the loop. | |
5982 ** | |
5983 ** Terms of the WHERE clause are also used to limit which rows actually | |
5984 ** make it to the "..." in the middle of the loop. After each "foreach", | |
5985 ** terms of the WHERE clause that use only terms in that loop and outer | |
5986 ** loops are evaluated and if false a jump is made around all subsequent | |
5987 ** inner loops (or around the "..." if the test occurs within the inner- | |
5988 ** most loop) | |
5989 ** | |
5990 ** OUTER JOINS | |
5991 ** | |
5992 ** An outer join of tables t1 and t2 is conceptally coded as follows: | |
5993 ** | |
5994 ** foreach row1 in t1 do | |
5995 ** flag = 0 | |
5996 ** foreach row2 in t2 do | |
5997 ** start: | |
5998 ** ... | |
5999 ** flag = 1 | |
6000 ** end | |
6001 ** if flag==0 then | |
6002 ** move the row2 cursor to a null row | |
6003 ** goto start | |
6004 ** fi | |
6005 ** end | |
6006 ** | |
6007 ** ORDER BY CLAUSE PROCESSING | |
6008 ** | |
6009 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause | |
6010 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement | |
6011 ** if there is one. If there is no ORDER BY clause or if this routine | |
6012 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. | |
6013 ** | |
6014 ** The iIdxCur parameter is the cursor number of an index. If | |
6015 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index | |
6016 ** to use for OR clause processing. The WHERE clause should use this | |
6017 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is | |
6018 ** the first cursor in an array of cursors for all indices. iIdxCur should | |
6019 ** be used to compute the appropriate cursor depending on which index is | |
6020 ** used. | |
6021 */ | |
6022 WhereInfo *sqlite3WhereBegin( | |
6023 Parse *pParse, /* The parser context */ | |
6024 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ | |
6025 Expr *pWhere, /* The WHERE clause */ | |
6026 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ | |
6027 ExprList *pResultSet, /* Result set of the query */ | |
6028 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ | |
6029 int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ | |
6030 ){ | |
6031 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ | |
6032 int nTabList; /* Number of elements in pTabList */ | |
6033 WhereInfo *pWInfo; /* Will become the return value of this function */ | |
6034 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ | |
6035 Bitmask notReady; /* Cursors that are not yet positioned */ | |
6036 WhereLoopBuilder sWLB; /* The WhereLoop builder */ | |
6037 WhereMaskSet *pMaskSet; /* The expression mask set */ | |
6038 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ | |
6039 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ | |
6040 int ii; /* Loop counter */ | |
6041 sqlite3 *db; /* Database connection */ | |
6042 int rc; /* Return code */ | |
6043 | |
6044 | |
6045 /* Variable initialization */ | |
6046 db = pParse->db; | |
6047 memset(&sWLB, 0, sizeof(sWLB)); | |
6048 | |
6049 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ | |
6050 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); | |
6051 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; | |
6052 sWLB.pOrderBy = pOrderBy; | |
6053 | |
6054 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via | |
6055 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ | |
6056 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ | |
6057 wctrlFlags &= ~WHERE_WANT_DISTINCT; | |
6058 } | |
6059 | |
6060 /* The number of tables in the FROM clause is limited by the number of | |
6061 ** bits in a Bitmask | |
6062 */ | |
6063 testcase( pTabList->nSrc==BMS ); | |
6064 if( pTabList->nSrc>BMS ){ | |
6065 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); | |
6066 return 0; | |
6067 } | |
6068 | |
6069 /* This function normally generates a nested loop for all tables in | |
6070 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should | |
6071 ** only generate code for the first table in pTabList and assume that | |
6072 ** any cursors associated with subsequent tables are uninitialized. | |
6073 */ | |
6074 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; | |
6075 | |
6076 /* Allocate and initialize the WhereInfo structure that will become the | |
6077 ** return value. A single allocation is used to store the WhereInfo | |
6078 ** struct, the contents of WhereInfo.a[], the WhereClause structure | |
6079 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte | |
6080 ** field (type Bitmask) it must be aligned on an 8-byte boundary on | |
6081 ** some architectures. Hence the ROUND8() below. | |
6082 */ | |
6083 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); | |
6084 pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); | |
6085 if( db->mallocFailed ){ | |
6086 sqlite3DbFree(db, pWInfo); | |
6087 pWInfo = 0; | |
6088 goto whereBeginError; | |
6089 } | |
6090 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; | |
6091 pWInfo->nLevel = nTabList; | |
6092 pWInfo->pParse = pParse; | |
6093 pWInfo->pTabList = pTabList; | |
6094 pWInfo->pOrderBy = pOrderBy; | |
6095 pWInfo->pResultSet = pResultSet; | |
6096 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); | |
6097 pWInfo->wctrlFlags = wctrlFlags; | |
6098 pWInfo->savedNQueryLoop = pParse->nQueryLoop; | |
6099 pMaskSet = &pWInfo->sMaskSet; | |
6100 sWLB.pWInfo = pWInfo; | |
6101 sWLB.pWC = &pWInfo->sWC; | |
6102 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); | |
6103 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); | |
6104 whereLoopInit(sWLB.pNew); | |
6105 #ifdef SQLITE_DEBUG | |
6106 sWLB.pNew->cId = '*'; | |
6107 #endif | |
6108 | |
6109 /* Split the WHERE clause into separate subexpressions where each | |
6110 ** subexpression is separated by an AND operator. | |
6111 */ | |
6112 initMaskSet(pMaskSet); | |
6113 whereClauseInit(&pWInfo->sWC, pWInfo); | |
6114 whereSplit(&pWInfo->sWC, pWhere, TK_AND); | |
6115 | |
6116 /* Special case: a WHERE clause that is constant. Evaluate the | |
6117 ** expression and either jump over all of the code or fall thru. | |
6118 */ | |
6119 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ | |
6120 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ | |
6121 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, | |
6122 SQLITE_JUMPIFNULL); | |
6123 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; | |
6124 } | |
6125 } | |
6126 | |
6127 /* Special case: No FROM clause | |
6128 */ | |
6129 if( nTabList==0 ){ | |
6130 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; | |
6131 if( wctrlFlags & WHERE_WANT_DISTINCT ){ | |
6132 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; | |
6133 } | |
6134 } | |
6135 | |
6136 /* Assign a bit from the bitmask to every term in the FROM clause. | |
6137 ** | |
6138 ** When assigning bitmask values to FROM clause cursors, it must be | |
6139 ** the case that if X is the bitmask for the N-th FROM clause term then | |
6140 ** the bitmask for all FROM clause terms to the left of the N-th term | |
6141 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use | |
6142 ** its Expr.iRightJoinTable value to find the bitmask of the right table | |
6143 ** of the join. Subtracting one from the right table bitmask gives a | |
6144 ** bitmask for all tables to the left of the join. Knowing the bitmask | |
6145 ** for all tables to the left of a left join is important. Ticket #3015. | |
6146 ** | |
6147 ** Note that bitmasks are created for all pTabList->nSrc tables in | |
6148 ** pTabList, not just the first nTabList tables. nTabList is normally | |
6149 ** equal to pTabList->nSrc but might be shortened to 1 if the | |
6150 ** WHERE_ONETABLE_ONLY flag is set. | |
6151 */ | |
6152 for(ii=0; ii<pTabList->nSrc; ii++){ | |
6153 createMask(pMaskSet, pTabList->a[ii].iCursor); | |
6154 } | |
6155 #ifndef NDEBUG | |
6156 { | |
6157 Bitmask toTheLeft = 0; | |
6158 for(ii=0; ii<pTabList->nSrc; ii++){ | |
6159 Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor); | |
6160 assert( (m-1)==toTheLeft ); | |
6161 toTheLeft |= m; | |
6162 } | |
6163 } | |
6164 #endif | |
6165 | |
6166 /* Analyze all of the subexpressions. Note that exprAnalyze() might | |
6167 ** add new virtual terms onto the end of the WHERE clause. We do not | |
6168 ** want to analyze these virtual terms, so start analyzing at the end | |
6169 ** and work forward so that the added virtual terms are never processed. | |
6170 */ | |
6171 exprAnalyzeAll(pTabList, &pWInfo->sWC); | |
6172 if( db->mallocFailed ){ | |
6173 goto whereBeginError; | |
6174 } | |
6175 | |
6176 if( wctrlFlags & WHERE_WANT_DISTINCT ){ | |
6177 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ | |
6178 /* The DISTINCT marking is pointless. Ignore it. */ | |
6179 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; | |
6180 }else if( pOrderBy==0 ){ | |
6181 /* Try to ORDER BY the result set to make distinct processing easier */ | |
6182 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; | |
6183 pWInfo->pOrderBy = pResultSet; | |
6184 } | |
6185 } | |
6186 | |
6187 /* Construct the WhereLoop objects */ | |
6188 WHERETRACE(0xffff,("*** Optimizer Start ***\n")); | |
6189 #if defined(WHERETRACE_ENABLED) | |
6190 /* Display all terms of the WHERE clause */ | |
6191 if( sqlite3WhereTrace & 0x100 ){ | |
6192 int i; | |
6193 for(i=0; i<sWLB.pWC->nTerm; i++){ | |
6194 whereTermPrint(&sWLB.pWC->a[i], i); | |
6195 } | |
6196 } | |
6197 #endif | |
6198 | |
6199 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ | |
6200 rc = whereLoopAddAll(&sWLB); | |
6201 if( rc ) goto whereBeginError; | |
6202 | |
6203 /* Display all of the WhereLoop objects if wheretrace is enabled */ | |
6204 #ifdef WHERETRACE_ENABLED /* !=0 */ | |
6205 if( sqlite3WhereTrace ){ | |
6206 WhereLoop *p; | |
6207 int i; | |
6208 static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" | |
6209 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; | |
6210 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ | |
6211 p->cId = zLabel[i%sizeof(zLabel)]; | |
6212 whereLoopPrint(p, sWLB.pWC); | |
6213 } | |
6214 } | |
6215 #endif | |
6216 | |
6217 wherePathSolver(pWInfo, 0); | |
6218 if( db->mallocFailed ) goto whereBeginError; | |
6219 if( pWInfo->pOrderBy ){ | |
6220 wherePathSolver(pWInfo, pWInfo->nRowOut+1); | |
6221 if( db->mallocFailed ) goto whereBeginError; | |
6222 } | |
6223 } | |
6224 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ | |
6225 pWInfo->revMask = (Bitmask)(-1); | |
6226 } | |
6227 if( pParse->nErr || NEVER(db->mallocFailed) ){ | |
6228 goto whereBeginError; | |
6229 } | |
6230 #ifdef WHERETRACE_ENABLED /* !=0 */ | |
6231 if( sqlite3WhereTrace ){ | |
6232 int ii; | |
6233 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); | |
6234 if( pWInfo->nOBSat>0 ){ | |
6235 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); | |
6236 } | |
6237 switch( pWInfo->eDistinct ){ | |
6238 case WHERE_DISTINCT_UNIQUE: { | |
6239 sqlite3DebugPrintf(" DISTINCT=unique"); | |
6240 break; | |
6241 } | |
6242 case WHERE_DISTINCT_ORDERED: { | |
6243 sqlite3DebugPrintf(" DISTINCT=ordered"); | |
6244 break; | |
6245 } | |
6246 case WHERE_DISTINCT_UNORDERED: { | |
6247 sqlite3DebugPrintf(" DISTINCT=unordered"); | |
6248 break; | |
6249 } | |
6250 } | |
6251 sqlite3DebugPrintf("\n"); | |
6252 for(ii=0; ii<pWInfo->nLevel; ii++){ | |
6253 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); | |
6254 } | |
6255 } | |
6256 #endif | |
6257 /* Attempt to omit tables from the join that do not effect the result */ | |
6258 if( pWInfo->nLevel>=2 | |
6259 && pResultSet!=0 | |
6260 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) | |
6261 ){ | |
6262 Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet); | |
6263 if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy); | |
6264 while( pWInfo->nLevel>=2 ){ | |
6265 WhereTerm *pTerm, *pEnd; | |
6266 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; | |
6267 if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break; | |
6268 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 | |
6269 && (pLoop->wsFlags & WHERE_ONEROW)==0 | |
6270 ){ | |
6271 break; | |
6272 } | |
6273 if( (tabUsed & pLoop->maskSelf)!=0 ) break; | |
6274 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; | |
6275 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ | |
6276 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 | |
6277 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) | |
6278 ){ | |
6279 break; | |
6280 } | |
6281 } | |
6282 if( pTerm<pEnd ) break; | |
6283 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); | |
6284 pWInfo->nLevel--; | |
6285 nTabList--; | |
6286 } | |
6287 } | |
6288 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); | |
6289 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; | |
6290 | |
6291 /* If the caller is an UPDATE or DELETE statement that is requesting | |
6292 ** to use a one-pass algorithm, determine if this is appropriate. | |
6293 ** The one-pass algorithm only works if the WHERE clause constrains | |
6294 ** the statement to update a single row. | |
6295 */ | |
6296 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); | |
6297 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 | |
6298 && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ | |
6299 pWInfo->okOnePass = 1; | |
6300 if( HasRowid(pTabList->a[0].pTab) ){ | |
6301 pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; | |
6302 } | |
6303 } | |
6304 | |
6305 /* Open all tables in the pTabList and any indices selected for | |
6306 ** searching those tables. | |
6307 */ | |
6308 notReady = ~(Bitmask)0; | |
6309 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ | |
6310 Table *pTab; /* Table to open */ | |
6311 int iDb; /* Index of database containing table/index */ | |
6312 struct SrcList_item *pTabItem; | |
6313 | |
6314 pTabItem = &pTabList->a[pLevel->iFrom]; | |
6315 pTab = pTabItem->pTab; | |
6316 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
6317 pLoop = pLevel->pWLoop; | |
6318 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ | |
6319 /* Do nothing */ | |
6320 }else | |
6321 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
6322 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | |
6323 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); | |
6324 int iCur = pTabItem->iCursor; | |
6325 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); | |
6326 }else if( IsVirtual(pTab) ){ | |
6327 /* noop */ | |
6328 }else | |
6329 #endif | |
6330 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 | |
6331 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ | |
6332 int op = OP_OpenRead; | |
6333 if( pWInfo->okOnePass ){ | |
6334 op = OP_OpenWrite; | |
6335 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; | |
6336 }; | |
6337 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); | |
6338 assert( pTabItem->iCursor==pLevel->iTabCur ); | |
6339 testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 ); | |
6340 testcase( !pWInfo->okOnePass && pTab->nCol==BMS ); | |
6341 if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){ | |
6342 Bitmask b = pTabItem->colUsed; | |
6343 int n = 0; | |
6344 for(; b; b=b>>1, n++){} | |
6345 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, | |
6346 SQLITE_INT_TO_PTR(n), P4_INT32); | |
6347 assert( n<=pTab->nCol ); | |
6348 } | |
6349 }else{ | |
6350 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | |
6351 } | |
6352 if( pLoop->wsFlags & WHERE_INDEXED ){ | |
6353 Index *pIx = pLoop->u.btree.pIndex; | |
6354 int iIndexCur; | |
6355 int op = OP_OpenRead; | |
6356 /* iIdxCur is always set if to a positive value if ONEPASS is possible */ | |
6357 assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); | |
6358 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) | |
6359 && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 | |
6360 ){ | |
6361 /* This is one term of an OR-optimization using the PRIMARY KEY of a | |
6362 ** WITHOUT ROWID table. No need for a separate index */ | |
6363 iIndexCur = pLevel->iTabCur; | |
6364 op = 0; | |
6365 }else if( pWInfo->okOnePass ){ | |
6366 Index *pJ = pTabItem->pTab->pIndex; | |
6367 iIndexCur = iIdxCur; | |
6368 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); | |
6369 while( ALWAYS(pJ) && pJ!=pIx ){ | |
6370 iIndexCur++; | |
6371 pJ = pJ->pNext; | |
6372 } | |
6373 op = OP_OpenWrite; | |
6374 pWInfo->aiCurOnePass[1] = iIndexCur; | |
6375 }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ | |
6376 iIndexCur = iIdxCur; | |
6377 if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; | |
6378 }else{ | |
6379 iIndexCur = pParse->nTab++; | |
6380 } | |
6381 pLevel->iIdxCur = iIndexCur; | |
6382 assert( pIx->pSchema==pTab->pSchema ); | |
6383 assert( iIndexCur>=0 ); | |
6384 if( op ){ | |
6385 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); | |
6386 sqlite3VdbeSetP4KeyInfo(pParse, pIx); | |
6387 VdbeComment((v, "%s", pIx->zName)); | |
6388 } | |
6389 } | |
6390 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); | |
6391 notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor); | |
6392 } | |
6393 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); | |
6394 if( db->mallocFailed ) goto whereBeginError; | |
6395 | |
6396 /* Generate the code to do the search. Each iteration of the for | |
6397 ** loop below generates code for a single nested loop of the VM | |
6398 ** program. | |
6399 */ | |
6400 notReady = ~(Bitmask)0; | |
6401 for(ii=0; ii<nTabList; ii++){ | |
6402 pLevel = &pWInfo->a[ii]; | |
6403 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | |
6404 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ | |
6405 constructAutomaticIndex(pParse, &pWInfo->sWC, | |
6406 &pTabList->a[pLevel->iFrom], notReady, pLevel); | |
6407 if( db->mallocFailed ) goto whereBeginError; | |
6408 } | |
6409 #endif | |
6410 explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); | |
6411 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); | |
6412 notReady = codeOneLoopStart(pWInfo, ii, notReady); | |
6413 pWInfo->iContinue = pLevel->addrCont; | |
6414 } | |
6415 | |
6416 /* Done. */ | |
6417 VdbeModuleComment((v, "Begin WHERE-core")); | |
6418 return pWInfo; | |
6419 | |
6420 /* Jump here if malloc fails */ | |
6421 whereBeginError: | |
6422 if( pWInfo ){ | |
6423 pParse->nQueryLoop = pWInfo->savedNQueryLoop; | |
6424 whereInfoFree(db, pWInfo); | |
6425 } | |
6426 return 0; | |
6427 } | |
6428 | |
6429 /* | |
6430 ** Generate the end of the WHERE loop. See comments on | |
6431 ** sqlite3WhereBegin() for additional information. | |
6432 */ | |
6433 void sqlite3WhereEnd(WhereInfo *pWInfo){ | |
6434 Parse *pParse = pWInfo->pParse; | |
6435 Vdbe *v = pParse->pVdbe; | |
6436 int i; | |
6437 WhereLevel *pLevel; | |
6438 WhereLoop *pLoop; | |
6439 SrcList *pTabList = pWInfo->pTabList; | |
6440 sqlite3 *db = pParse->db; | |
6441 | |
6442 /* Generate loop termination code. | |
6443 */ | |
6444 VdbeModuleComment((v, "End WHERE-core")); | |
6445 sqlite3ExprCacheClear(pParse); | |
6446 for(i=pWInfo->nLevel-1; i>=0; i--){ | |
6447 int addr; | |
6448 pLevel = &pWInfo->a[i]; | |
6449 pLoop = pLevel->pWLoop; | |
6450 sqlite3VdbeResolveLabel(v, pLevel->addrCont); | |
6451 if( pLevel->op!=OP_Noop ){ | |
6452 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); | |
6453 sqlite3VdbeChangeP5(v, pLevel->p5); | |
6454 VdbeCoverage(v); | |
6455 VdbeCoverageIf(v, pLevel->op==OP_Next); | |
6456 VdbeCoverageIf(v, pLevel->op==OP_Prev); | |
6457 VdbeCoverageIf(v, pLevel->op==OP_VNext); | |
6458 } | |
6459 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ | |
6460 struct InLoop *pIn; | |
6461 int j; | |
6462 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); | |
6463 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ | |
6464 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); | |
6465 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); | |
6466 VdbeCoverage(v); | |
6467 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); | |
6468 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); | |
6469 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); | |
6470 } | |
6471 sqlite3DbFree(db, pLevel->u.in.aInLoop); | |
6472 } | |
6473 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); | |
6474 if( pLevel->addrSkip ){ | |
6475 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); | |
6476 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); | |
6477 sqlite3VdbeJumpHere(v, pLevel->addrSkip); | |
6478 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); | |
6479 } | |
6480 if( pLevel->iLeftJoin ){ | |
6481 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); | |
6482 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 | |
6483 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); | |
6484 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ | |
6485 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); | |
6486 } | |
6487 if( pLoop->wsFlags & WHERE_INDEXED ){ | |
6488 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); | |
6489 } | |
6490 if( pLevel->op==OP_Return ){ | |
6491 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); | |
6492 }else{ | |
6493 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); | |
6494 } | |
6495 sqlite3VdbeJumpHere(v, addr); | |
6496 } | |
6497 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, | |
6498 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); | |
6499 } | |
6500 | |
6501 /* The "break" point is here, just past the end of the outer loop. | |
6502 ** Set it. | |
6503 */ | |
6504 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); | |
6505 | |
6506 assert( pWInfo->nLevel<=pTabList->nSrc ); | |
6507 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ | |
6508 int k, last; | |
6509 VdbeOp *pOp; | |
6510 Index *pIdx = 0; | |
6511 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; | |
6512 Table *pTab = pTabItem->pTab; | |
6513 assert( pTab!=0 ); | |
6514 pLoop = pLevel->pWLoop; | |
6515 | |
6516 /* For a co-routine, change all OP_Column references to the table of | |
6517 ** the co-routine into OP_SCopy of result contained in a register. | |
6518 ** OP_Rowid becomes OP_Null. | |
6519 */ | |
6520 if( pTabItem->viaCoroutine && !db->mallocFailed ){ | |
6521 last = sqlite3VdbeCurrentAddr(v); | |
6522 k = pLevel->addrBody; | |
6523 pOp = sqlite3VdbeGetOp(v, k); | |
6524 for(; k<last; k++, pOp++){ | |
6525 if( pOp->p1!=pLevel->iTabCur ) continue; | |
6526 if( pOp->opcode==OP_Column ){ | |
6527 pOp->opcode = OP_Copy; | |
6528 pOp->p1 = pOp->p2 + pTabItem->regResult; | |
6529 pOp->p2 = pOp->p3; | |
6530 pOp->p3 = 0; | |
6531 }else if( pOp->opcode==OP_Rowid ){ | |
6532 pOp->opcode = OP_Null; | |
6533 pOp->p1 = 0; | |
6534 pOp->p3 = 0; | |
6535 } | |
6536 } | |
6537 continue; | |
6538 } | |
6539 | |
6540 /* Close all of the cursors that were opened by sqlite3WhereBegin. | |
6541 ** Except, do not close cursors that will be reused by the OR optimization | |
6542 ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors | |
6543 ** created for the ONEPASS optimization. | |
6544 */ | |
6545 if( (pTab->tabFlags & TF_Ephemeral)==0 | |
6546 && pTab->pSelect==0 | |
6547 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 | |
6548 ){ | |
6549 int ws = pLoop->wsFlags; | |
6550 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ | |
6551 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); | |
6552 } | |
6553 if( (ws & WHERE_INDEXED)!=0 | |
6554 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 | |
6555 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] | |
6556 ){ | |
6557 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); | |
6558 } | |
6559 } | |
6560 | |
6561 /* If this scan uses an index, make VDBE code substitutions to read data | |
6562 ** from the index instead of from the table where possible. In some cases | |
6563 ** this optimization prevents the table from ever being read, which can | |
6564 ** yield a significant performance boost. | |
6565 ** | |
6566 ** Calls to the code generator in between sqlite3WhereBegin and | |
6567 ** sqlite3WhereEnd will have created code that references the table | |
6568 ** directly. This loop scans all that code looking for opcodes | |
6569 ** that reference the table and converts them into opcodes that | |
6570 ** reference the index. | |
6571 */ | |
6572 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ | |
6573 pIdx = pLoop->u.btree.pIndex; | |
6574 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ | |
6575 pIdx = pLevel->u.pCovidx; | |
6576 } | |
6577 if( pIdx && !db->mallocFailed ){ | |
6578 last = sqlite3VdbeCurrentAddr(v); | |
6579 k = pLevel->addrBody; | |
6580 pOp = sqlite3VdbeGetOp(v, k); | |
6581 for(; k<last; k++, pOp++){ | |
6582 if( pOp->p1!=pLevel->iTabCur ) continue; | |
6583 if( pOp->opcode==OP_Column ){ | |
6584 int x = pOp->p2; | |
6585 assert( pIdx->pTable==pTab ); | |
6586 if( !HasRowid(pTab) ){ | |
6587 Index *pPk = sqlite3PrimaryKeyIndex(pTab); | |
6588 x = pPk->aiColumn[x]; | |
6589 } | |
6590 x = sqlite3ColumnOfIndex(pIdx, x); | |
6591 if( x>=0 ){ | |
6592 pOp->p2 = x; | |
6593 pOp->p1 = pLevel->iIdxCur; | |
6594 } | |
6595 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); | |
6596 }else if( pOp->opcode==OP_Rowid ){ | |
6597 pOp->p1 = pLevel->iIdxCur; | |
6598 pOp->opcode = OP_IdxRowid; | |
6599 } | |
6600 } | |
6601 } | |
6602 } | |
6603 | |
6604 /* Final cleanup | |
6605 */ | |
6606 pParse->nQueryLoop = pWInfo->savedNQueryLoop; | |
6607 whereInfoFree(db, pWInfo); | |
6608 return; | |
6609 } | |
OLD | NEW |