Index: pkg/collection_helpers/lib/algorithms.dart |
diff --git a/pkg/collection_helpers/lib/algorithms.dart b/pkg/collection_helpers/lib/algorithms.dart |
new file mode 100644 |
index 0000000000000000000000000000000000000000..acd80db5d52b6436a7259d92727891f4f705f8a0 |
--- /dev/null |
+++ b/pkg/collection_helpers/lib/algorithms.dart |
@@ -0,0 +1,310 @@ |
+// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+/** |
+ * Operations on collections. |
+ */ |
+library dart.collection_helper.algorithms; |
+ |
+import "dart:math" show Random; |
+ |
+/** Version of [binarySearch] optimized for comparable keys */ |
+int _comparableBinarySearch(List<Comparable> list, Comparable key, |
+ bool location) { |
+ int min = 0; |
+ int max = list.length; |
+ while (min < max) { |
+ int mid = min + ((max - min) ~/ 2); |
+ var element = list[mid]; |
+ int comp = element.compareTo(key); |
+ if (comp == 0) return mid; |
+ if (comp < 0) { |
+ min = mid + 1; |
+ } else { |
+ max = mid; |
+ } |
+ } |
+ if (location) return min; |
+ return -1; |
+} |
+ |
+/** |
+ * Returns the position of the [key] in [sortedList], if it is there. |
+ * |
+ * If the list isn't sorted according to the [compare] function, the result |
+ * is unpredicatable. |
+ * |
+ * If [compare] is omitted, it defaults to calling [Comparable.compareTo] on |
+ * the objects. |
+ * |
+ * Returns -1 if [key] is not in the list by default. |
+ * If [location] is true, instead returns the index where [key] would have |
+ * been. That is, where inserting the key at the returned position would keep |
+ * the list sorted. |
+ */ |
+int binarySearch(List sortedList, var key, |
+ { int compare(var a, var b), |
+ bool location: false |
Lasse Reichstein Nielsen
2013/10/03 11:17:33
I'll remove the location parameter and just return
|
+ }) { |
+ if (compare == null) { |
+ return _comparableBinarySearch(sortedList, key, location); |
+ } |
+ int min = 0; |
+ int max = sortedList.length; |
+ while (min < max) { |
+ int mid = min + ((max - min) ~/ 2); |
+ var element = sortedList[mid]; |
+ int comp = compare(element, key); |
+ if (comp == 0) return mid; |
+ if (comp < 0) { |
+ min = mid + 1; |
+ } else { |
+ max = mid; |
+ } |
+ } |
+ if (location) return max; |
+ return -1; |
+} |
+ |
+ |
+/** |
+ * Shuffles a list randomly. |
+ * |
+ * A sub-range of a list can be shuffled by providing [start] and [end].319 |
+ */ |
+void shuffle(List list, [int start = 0, int end = null]) { |
+ Random random = new Random(); |
+ if (end == null) end = list.length; |
+ int length = end - start; |
+ while (length > 1) { |
+ int pos = random.nextInt(length); |
+ var tmp1 = list[start + pos]; |
+ var tmp2 = list[start + length - 1]; |
+ list[start + length - 1] = tmp1; |
+ list[start + pos] = tmp2; |
+ length--; |
+ } |
+} |
+ |
+ |
+/** |
+ * Reverses a list, or a part of a list, in-place. |
+ */ |
+void reverse(List list, [int start = 0, int end = null]) { |
+ if (end == null) end = list.length; |
+ _reverse(list, start, end); |
+} |
+ |
+// Internal helper function that assumes valid arguments. |
+void _reverse(List list, int start, int end) { |
+ for (int i = start, j = end - 1; i < j; i++, j--) { |
+ var tmp = list[i]; |
+ list[i] = list[j]; |
+ list[j] = tmp; |
+ } |
+} |
+ |
+/** |
+ * Sort a list using insertion sort. |
+ * |
+ * Insertion sort is a simple sorting algorithm. For `n` elements it does on |
+ * the order of `n * log(n)` comparisons but up to `n` squared moves. The |
+ * sorting is performed in-place, without using extra memory. |
+ * |
+ * For short lists the many moves have less impact than the simple algorithm, |
+ * and it is often the favored sorting algorithm for short lists. |
+ * |
+ * This insertion sort is stable: Equal elements end up in the same order |
+ * as they started in. |
+ */ |
+void insertionSort(List list, |
+ { int compare(a, b), |
+ int start: 0, |
+ int end: null }) { |
+ // If the same method could have both positional and named optional |
+ // parameters, this should be (list, [start, end], {compare}). |
+ if (end == null) end = list.length; |
+ if (compare == null) compare = Comparable.compare; |
+ _insertionSort(list, compare, start, end, start + 1); |
+} |
+ |
+/** |
+ * Internal helper function that assumes arguments correct. |
+ * |
+ * Assumes that the elements up to [sortedUntil] (not inclusive) are |
+ * already sorted. The [sortedUntil] values should always be at least |
+ * `start + 1`. |
+ */ |
+void _insertionSort(List list, int compare(a, b), int start, int end, |
+ int sortedUntil) { |
+ for (int pos = sortedUntil; pos < end; pos++) { |
+ int min = start; |
+ int max = pos; |
+ var element = list[pos]; |
+ while (min < max) { |
+ int mid = min + ((max - min) ~/ 2); |
+ int comparison = compare(element, list[mid]); |
+ if (comparison < 0) { |
+ max = mid; |
+ } else { |
+ min = mid + 1; |
+ } |
+ } |
+ list.setRange(min + 1, pos + 1, list, min); |
+ list[min] = element; |
+ } |
+} |
+ |
+/** Limit below which merge sort defaults to insertion sort. */ |
+const int _MERGE_SORT_LIMIT = 32; |
+ |
+/** |
+ * Sorts a list, or a range of a list, using the merge sort algorithm. |
+ * |
+ * Merge-sorting works by splitting the job into two parts, sorting each |
+ * recursively, and then merging the two sorted parts. |
+ * |
+ * This takes on the order of `n * log(n)` comparisons and moves to sort |
+ * `n` elements, but requires extra space of about the same size as the list |
+ * being sorted. |
+ * |
+ * This merge sort is stable: Equal elements end up in the same order |
+ * as they started in. |
+ */ |
+void mergeSort(List list, {int start: 0, int end: null, int compare(a, b)}) { |
+ if (end == null) end = list.length; |
+ if (compare == null) compare = Comparable.compare; |
+ int length = end - start; |
+ if (length < 2) return; |
+ if (length < _MERGE_SORT_LIMIT) { |
+ _insertionSort(list, compare, start, end, start + 1); |
+ return; |
+ } |
+ // Special case the first split instead of directly calling |
+ // _mergeSort, because the _mergeSort requires its target to |
+ // be different from its source, and it requires extra space |
+ // of the same size as the list to sort. |
+ // This split allows us to have only half as much extra space, |
+ // and it ends up in the original place. |
+ int middle = start + ((end - start) ~/ 2); |
+ int firstLength = middle - start; |
+ int secondLength = end - middle; |
+ // secondLength is always the same as firstLength, or one greater. |
+ List scratchSpace = new List(secondLength); |
+ _mergeSort(list, compare, middle, end, scratchSpace, 0); |
+ int firstTarget = end - firstLength; |
+ _mergeSort(list, compare, start, middle, list, firstTarget); |
+ _merge(compare, |
+ list, firstTarget, end, |
+ scratchSpace, 0, secondLength, |
+ list, start); |
+} |
+ |
+/** |
+ * Performs an insertion sort into a potentially different list than the |
+ * one containing the original values. |
+ * |
+ * It will work in-place as well. |
+ */ |
+void _movingInsertionSort(List list, int compare(a, b), int start, int end, |
+ List target, int targetOffset) { |
+ int length = end - start; |
+ if (length == 0) return; |
+ target[targetOffset] = list[start]; |
+ for (int i = 1; i < length; i++) { |
+ var element = list[start + i]; |
+ int min = targetOffset; |
+ int max = targetOffset + i; |
+ while (min < max) { |
+ int mid = min + ((max - min) ~/ 2); |
+ if (compare(element, target[mid]) < 0) { |
+ max = mid; |
+ } else { |
+ min = mid + 1; |
+ } |
+ } |
+ target.setRange(min + 1, targetOffset + i + 1, |
+ target, min); |
+ target[min] = element; |
+ } |
+} |
+ |
+/** |
+ * Sorts [list] from [start] to [end] into [target] at [targetOffset]. |
+ * |
+ * The `target` list must be able to contain the range from `start` to `end` |
+ * after `targetOffset`. |
+ * |
+ * Allows target to be the same list as [list], as long as it's not |
+ * overlapping the `start..end` range. |
+ */ |
+void _mergeSort(List list, int compare(a, b), int start, int end, |
+ List target, int targetOffset) { |
+ int length = end - start; |
+ if (length < _MERGE_SORT_LIMIT) { |
+ _movingInsertionSort(list, compare, start, end, target, targetOffset); |
+ return; |
+ } |
+ int middle = start + (length ~/ 2); |
+ int firstLength = middle - start; |
+ int secondLength = end - middle; |
+ // Here secondLength >= firstLength (differs by at most one). |
+ int targetMiddle = targetOffset + firstLength; |
+ // Sort the second half into the end of the target area. |
+ _mergeSort(list, compare, middle, end, |
+ target, targetMiddle); |
+ // Sort the first half into the end of the source area. |
+ _mergeSort(list, compare, start, middle, |
+ list, middle); |
+ // Merge the two parts into the target area. |
+ _merge(compare, |
+ list, middle, middle + firstLength, |
+ target, targetMiddle, targetMiddle + secondLength, |
+ target, targetOffset); |
+} |
+ |
+/** |
+ * Merges two lists into a target list. |
+ * |
+ * One of the input lists may be positioned at the end of the target |
+ * list. |
+ * |
+ * For equal object, elements from [firstList] are always preferred. |
+ * This allows the merge to be stable if the first list contains elements |
+ * that started out earlier than the ones in [secondList] |
+ */ |
+void _merge(int compare(a, b), |
+ List firstList, int firstStart, int firstEnd, |
+ List secondList, int secondStart, int secondEnd, |
+ List target, int targetOffset) { |
+ // No empty lists reaches here. |
+ assert(firstStart < firstEnd); |
+ assert(secondStart < secondEnd); |
+ int cursor1 = firstStart; |
+ int cursor2 = secondStart; |
+ var firstElement = firstList[cursor1++]; |
+ var secondElement = secondList[cursor2++]; |
+ while (true) { |
+ if (compare(firstElement, secondElement) <= 0) { |
+ target[targetOffset++] = firstElement; |
+ if (cursor1 == firstEnd) break; // Flushing second list after loop. |
+ firstElement = firstList[cursor1++]; |
+ } else { |
+ target[targetOffset++] = secondElement; |
+ if (cursor2 != secondEnd) { |
+ secondElement = secondList[cursor2++]; |
+ continue; |
+ } |
+ // Second list empties first. Flushing first list here. |
+ target[targetOffset++] = firstElement; |
+ target.setRange(targetOffset, targetOffset + (firstEnd - cursor1), |
+ firstList, cursor1); |
+ return; |
+ } |
+ } |
+ // First list empties first. Reached by break above. |
+ target[targetOffset++] = secondElement; |
+ target.setRange(targetOffset, targetOffset + (secondEnd - cursor2), |
+ secondList, cursor2); |
+} |