OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file | |
2 // for details. All rights reserved. Use of this source code is governed by a | |
3 // BSD-style license that can be found in the LICENSE file. | |
4 | |
5 /** | |
6 * Operations on collections. | |
7 */ | |
8 library dart.collection_helper.algorithms; | |
9 | |
10 import "dart:math" show Random; | |
11 | |
12 /** Version of [binarySearch] optimized for comparable keys */ | |
13 int _comparableBinarySearch(List<Comparable> list, Comparable key, | |
14 bool location) { | |
15 int min = 0; | |
16 int max = list.length; | |
17 while (min < max) { | |
18 int mid = min + ((max - min) ~/ 2); | |
19 var element = list[mid]; | |
20 int comp = element.compareTo(key); | |
21 if (comp == 0) return mid; | |
22 if (comp < 0) { | |
23 min = mid + 1; | |
24 } else { | |
25 max = mid; | |
26 } | |
27 } | |
28 if (location) return min; | |
29 return -1; | |
30 } | |
31 | |
32 /** | |
33 * Returns the position of the [key] in [sortedList], if it is there. | |
34 * | |
35 * If the list isn't sorted according to the [compare] function, the result | |
36 * is unpredicatable. | |
37 * | |
38 * If [compare] is omitted, it defaults to calling [Comparable.compareTo] on | |
39 * the objects. | |
40 * | |
41 * Returns -1 if [key] is not in the list by default. | |
42 * If [location] is true, instead returns the index where [key] would have | |
43 * been. That is, where inserting the key at the returned position would keep | |
44 * the list sorted. | |
45 */ | |
46 int binarySearch(List sortedList, var key, | |
47 { int compare(var a, var b), | |
48 bool location: false | |
Lasse Reichstein Nielsen
2013/10/03 11:17:33
I'll remove the location parameter and just return
| |
49 }) { | |
50 if (compare == null) { | |
51 return _comparableBinarySearch(sortedList, key, location); | |
52 } | |
53 int min = 0; | |
54 int max = sortedList.length; | |
55 while (min < max) { | |
56 int mid = min + ((max - min) ~/ 2); | |
57 var element = sortedList[mid]; | |
58 int comp = compare(element, key); | |
59 if (comp == 0) return mid; | |
60 if (comp < 0) { | |
61 min = mid + 1; | |
62 } else { | |
63 max = mid; | |
64 } | |
65 } | |
66 if (location) return max; | |
67 return -1; | |
68 } | |
69 | |
70 | |
71 /** | |
72 * Shuffles a list randomly. | |
73 * | |
74 * A sub-range of a list can be shuffled by providing [start] and [end].319 | |
75 */ | |
76 void shuffle(List list, [int start = 0, int end = null]) { | |
77 Random random = new Random(); | |
78 if (end == null) end = list.length; | |
79 int length = end - start; | |
80 while (length > 1) { | |
81 int pos = random.nextInt(length); | |
82 var tmp1 = list[start + pos]; | |
83 var tmp2 = list[start + length - 1]; | |
84 list[start + length - 1] = tmp1; | |
85 list[start + pos] = tmp2; | |
86 length--; | |
87 } | |
88 } | |
89 | |
90 | |
91 /** | |
92 * Reverses a list, or a part of a list, in-place. | |
93 */ | |
94 void reverse(List list, [int start = 0, int end = null]) { | |
95 if (end == null) end = list.length; | |
96 _reverse(list, start, end); | |
97 } | |
98 | |
99 // Internal helper function that assumes valid arguments. | |
100 void _reverse(List list, int start, int end) { | |
101 for (int i = start, j = end - 1; i < j; i++, j--) { | |
102 var tmp = list[i]; | |
103 list[i] = list[j]; | |
104 list[j] = tmp; | |
105 } | |
106 } | |
107 | |
108 /** | |
109 * Sort a list using insertion sort. | |
110 * | |
111 * Insertion sort is a simple sorting algorithm. For `n` elements it does on | |
112 * the order of `n * log(n)` comparisons but up to `n` squared moves. The | |
113 * sorting is performed in-place, without using extra memory. | |
114 * | |
115 * For short lists the many moves have less impact than the simple algorithm, | |
116 * and it is often the favored sorting algorithm for short lists. | |
117 * | |
118 * This insertion sort is stable: Equal elements end up in the same order | |
119 * as they started in. | |
120 */ | |
121 void insertionSort(List list, | |
122 { int compare(a, b), | |
123 int start: 0, | |
124 int end: null }) { | |
125 // If the same method could have both positional and named optional | |
126 // parameters, this should be (list, [start, end], {compare}). | |
127 if (end == null) end = list.length; | |
128 if (compare == null) compare = Comparable.compare; | |
129 _insertionSort(list, compare, start, end, start + 1); | |
130 } | |
131 | |
132 /** | |
133 * Internal helper function that assumes arguments correct. | |
134 * | |
135 * Assumes that the elements up to [sortedUntil] (not inclusive) are | |
136 * already sorted. The [sortedUntil] values should always be at least | |
137 * `start + 1`. | |
138 */ | |
139 void _insertionSort(List list, int compare(a, b), int start, int end, | |
140 int sortedUntil) { | |
141 for (int pos = sortedUntil; pos < end; pos++) { | |
142 int min = start; | |
143 int max = pos; | |
144 var element = list[pos]; | |
145 while (min < max) { | |
146 int mid = min + ((max - min) ~/ 2); | |
147 int comparison = compare(element, list[mid]); | |
148 if (comparison < 0) { | |
149 max = mid; | |
150 } else { | |
151 min = mid + 1; | |
152 } | |
153 } | |
154 list.setRange(min + 1, pos + 1, list, min); | |
155 list[min] = element; | |
156 } | |
157 } | |
158 | |
159 /** Limit below which merge sort defaults to insertion sort. */ | |
160 const int _MERGE_SORT_LIMIT = 32; | |
161 | |
162 /** | |
163 * Sorts a list, or a range of a list, using the merge sort algorithm. | |
164 * | |
165 * Merge-sorting works by splitting the job into two parts, sorting each | |
166 * recursively, and then merging the two sorted parts. | |
167 * | |
168 * This takes on the order of `n * log(n)` comparisons and moves to sort | |
169 * `n` elements, but requires extra space of about the same size as the list | |
170 * being sorted. | |
171 * | |
172 * This merge sort is stable: Equal elements end up in the same order | |
173 * as they started in. | |
174 */ | |
175 void mergeSort(List list, {int start: 0, int end: null, int compare(a, b)}) { | |
176 if (end == null) end = list.length; | |
177 if (compare == null) compare = Comparable.compare; | |
178 int length = end - start; | |
179 if (length < 2) return; | |
180 if (length < _MERGE_SORT_LIMIT) { | |
181 _insertionSort(list, compare, start, end, start + 1); | |
182 return; | |
183 } | |
184 // Special case the first split instead of directly calling | |
185 // _mergeSort, because the _mergeSort requires its target to | |
186 // be different from its source, and it requires extra space | |
187 // of the same size as the list to sort. | |
188 // This split allows us to have only half as much extra space, | |
189 // and it ends up in the original place. | |
190 int middle = start + ((end - start) ~/ 2); | |
191 int firstLength = middle - start; | |
192 int secondLength = end - middle; | |
193 // secondLength is always the same as firstLength, or one greater. | |
194 List scratchSpace = new List(secondLength); | |
195 _mergeSort(list, compare, middle, end, scratchSpace, 0); | |
196 int firstTarget = end - firstLength; | |
197 _mergeSort(list, compare, start, middle, list, firstTarget); | |
198 _merge(compare, | |
199 list, firstTarget, end, | |
200 scratchSpace, 0, secondLength, | |
201 list, start); | |
202 } | |
203 | |
204 /** | |
205 * Performs an insertion sort into a potentially different list than the | |
206 * one containing the original values. | |
207 * | |
208 * It will work in-place as well. | |
209 */ | |
210 void _movingInsertionSort(List list, int compare(a, b), int start, int end, | |
211 List target, int targetOffset) { | |
212 int length = end - start; | |
213 if (length == 0) return; | |
214 target[targetOffset] = list[start]; | |
215 for (int i = 1; i < length; i++) { | |
216 var element = list[start + i]; | |
217 int min = targetOffset; | |
218 int max = targetOffset + i; | |
219 while (min < max) { | |
220 int mid = min + ((max - min) ~/ 2); | |
221 if (compare(element, target[mid]) < 0) { | |
222 max = mid; | |
223 } else { | |
224 min = mid + 1; | |
225 } | |
226 } | |
227 target.setRange(min + 1, targetOffset + i + 1, | |
228 target, min); | |
229 target[min] = element; | |
230 } | |
231 } | |
232 | |
233 /** | |
234 * Sorts [list] from [start] to [end] into [target] at [targetOffset]. | |
235 * | |
236 * The `target` list must be able to contain the range from `start` to `end` | |
237 * after `targetOffset`. | |
238 * | |
239 * Allows target to be the same list as [list], as long as it's not | |
240 * overlapping the `start..end` range. | |
241 */ | |
242 void _mergeSort(List list, int compare(a, b), int start, int end, | |
243 List target, int targetOffset) { | |
244 int length = end - start; | |
245 if (length < _MERGE_SORT_LIMIT) { | |
246 _movingInsertionSort(list, compare, start, end, target, targetOffset); | |
247 return; | |
248 } | |
249 int middle = start + (length ~/ 2); | |
250 int firstLength = middle - start; | |
251 int secondLength = end - middle; | |
252 // Here secondLength >= firstLength (differs by at most one). | |
253 int targetMiddle = targetOffset + firstLength; | |
254 // Sort the second half into the end of the target area. | |
255 _mergeSort(list, compare, middle, end, | |
256 target, targetMiddle); | |
257 // Sort the first half into the end of the source area. | |
258 _mergeSort(list, compare, start, middle, | |
259 list, middle); | |
260 // Merge the two parts into the target area. | |
261 _merge(compare, | |
262 list, middle, middle + firstLength, | |
263 target, targetMiddle, targetMiddle + secondLength, | |
264 target, targetOffset); | |
265 } | |
266 | |
267 /** | |
268 * Merges two lists into a target list. | |
269 * | |
270 * One of the input lists may be positioned at the end of the target | |
271 * list. | |
272 * | |
273 * For equal object, elements from [firstList] are always preferred. | |
274 * This allows the merge to be stable if the first list contains elements | |
275 * that started out earlier than the ones in [secondList] | |
276 */ | |
277 void _merge(int compare(a, b), | |
278 List firstList, int firstStart, int firstEnd, | |
279 List secondList, int secondStart, int secondEnd, | |
280 List target, int targetOffset) { | |
281 // No empty lists reaches here. | |
282 assert(firstStart < firstEnd); | |
283 assert(secondStart < secondEnd); | |
284 int cursor1 = firstStart; | |
285 int cursor2 = secondStart; | |
286 var firstElement = firstList[cursor1++]; | |
287 var secondElement = secondList[cursor2++]; | |
288 while (true) { | |
289 if (compare(firstElement, secondElement) <= 0) { | |
290 target[targetOffset++] = firstElement; | |
291 if (cursor1 == firstEnd) break; // Flushing second list after loop. | |
292 firstElement = firstList[cursor1++]; | |
293 } else { | |
294 target[targetOffset++] = secondElement; | |
295 if (cursor2 != secondEnd) { | |
296 secondElement = secondList[cursor2++]; | |
297 continue; | |
298 } | |
299 // Second list empties first. Flushing first list here. | |
300 target[targetOffset++] = firstElement; | |
301 target.setRange(targetOffset, targetOffset + (firstEnd - cursor1), | |
302 firstList, cursor1); | |
303 return; | |
304 } | |
305 } | |
306 // First list empties first. Reached by break above. | |
307 target[targetOffset++] = secondElement; | |
308 target.setRange(targetOffset, targetOffset + (secondEnd - cursor2), | |
309 secondList, cursor2); | |
310 } | |
OLD | NEW |