Index: src/platform/time.cc |
diff --git a/src/platform/time.cc b/src/platform/time.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..70f3202a199e77e34f00a02556b93bc830f1893b |
--- /dev/null |
+++ b/src/platform/time.cc |
@@ -0,0 +1,482 @@ |
+// Copyright 2013 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "platform/time.h" |
+ |
+#if V8_OS_POSIX |
+#include <sys/time.h> |
+#endif |
+#if V8_OS_MACOSX |
+#include <mach/mach_time.h> |
+#endif |
+ |
+#include <cstring> |
+ |
+#include "checks.h" |
+#include "cpu.h" |
+#include "platform.h" |
+#if V8_OS_WIN |
+#include "win32-headers.h" |
+#endif |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+TimeDelta TimeDelta::FromDays(int days) { |
+ return TimeDelta(days * Time::kMicrosecondsPerDay); |
+} |
+ |
+ |
+TimeDelta TimeDelta::FromHours(int hours) { |
+ return TimeDelta(hours * Time::kMicrosecondsPerHour); |
+} |
+ |
+ |
+TimeDelta TimeDelta::FromMinutes(int minutes) { |
+ return TimeDelta(minutes * Time::kMicrosecondsPerMinute); |
+} |
+ |
+ |
+TimeDelta TimeDelta::FromSeconds(int64_t seconds) { |
+ return TimeDelta(seconds * Time::kMicrosecondsPerSecond); |
+} |
+ |
+ |
+TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) { |
+ return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond); |
+} |
+ |
+ |
+TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) { |
+ return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond); |
+} |
+ |
+ |
+int TimeDelta::InDays() const { |
+ return static_cast<int>(delta_ / Time::kMicrosecondsPerDay); |
+} |
+ |
+ |
+int TimeDelta::InHours() const { |
+ return static_cast<int>(delta_ / Time::kMicrosecondsPerHour); |
+} |
+ |
+ |
+int TimeDelta::InMinutes() const { |
+ return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute); |
+} |
+ |
+ |
+double TimeDelta::InSecondsF() const { |
+ return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond; |
+} |
+ |
+ |
+int64_t TimeDelta::InSeconds() const { |
+ return delta_ / Time::kMicrosecondsPerSecond; |
+} |
+ |
+ |
+double TimeDelta::InMillisecondsF() const { |
+ return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond; |
+} |
+ |
+ |
+int64_t TimeDelta::InMilliseconds() const { |
+ return delta_ / Time::kMicrosecondsPerMillisecond; |
+} |
+ |
+ |
+int64_t TimeDelta::InNanoseconds() const { |
+ return delta_ * Time::kNanosecondsPerMicrosecond; |
+} |
+ |
+ |
+#if V8_OS_WIN |
+ |
+// We implement time using the high-resolution timers so that we can get |
+// timeouts which are smaller than 10-15ms. To avoid any drift, we |
+// periodically resync the internal clock to the system clock. |
+class Clock V8_FINAL { |
+ public: |
+ Clock() : initial_time_(CurrentWallclockTime()), |
+ initial_ticks_(TimeTicks::Now()), |
+ mutex_(OS::CreateMutex()) {} |
+ |
+ ~Clock() { delete mutex_; } |
+ |
+ Time Now() { |
+ // This must be executed under lock. |
+ ScopedLock sl(mutex_); |
+ |
+ // Calculate the time elapsed since we started our timer. |
+ TimeDelta elapsed = TimeTicks::Now() - initial_ticks_; |
+ |
+ // Check if we don't need to synchronize with the wallclock yet. |
+ if (elapsed.InMicroseconds() <= kMaxMicrosecondsToAvoidDrift) { |
+ return initial_time_ + elapsed; |
+ } |
+ |
+ // Resynchronize with the wallclock. |
+ initial_ticks_ = TimeTicks::Now(); |
+ initial_time_ = CurrentWallclockTime(); |
+ return initial_time_; |
+ } |
+ |
+ Time NowFromSystemTime() { |
+ ScopedLock sl(mutex_); |
+ initial_ticks_ = TimeTicks::Now(); |
+ initial_time_ = CurrentWallclockTime(); |
+ return initial_time_; |
+ } |
+ |
+ private: |
+ // Time between resampling the un-granular clock for this API (1 minute). |
+ static const int64_t kMaxMicrosecondsToAvoidDrift = |
+ Time::kMicrosecondsPerMinute; |
+ |
+ static Time CurrentWallclockTime() { |
+ FILETIME ft; |
+ ::GetSystemTimeAsFileTime(&ft); |
+ return Time::FromFiletime(ft); |
+ } |
+ |
+ TimeTicks initial_ticks_; |
+ Time initial_time_; |
+ Mutex* mutex_; |
+}; |
+ |
+ |
+static LazyDynamicInstance<Clock, |
+ DefaultCreateTrait<Clock>, |
+ ThreadSafeInitOnceTrait>::type clock = LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
+ |
+ |
+Time Time::Now() { |
+ return clock.Pointer()->Now(); |
+} |
+ |
+ |
+Time Time::NowFromSystemTime() { |
+ return clock.Pointer()->NowFromSystemTime(); |
+} |
+ |
+ |
+// Time between windows epoch and standard epoch. |
+static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000); |
+ |
+ |
+Time Time::FromFiletime(FILETIME ft) { |
+ if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { |
+ return Time(); |
+ } |
+ if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && |
+ ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) { |
+ return Max(); |
+ } |
+ int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) + |
+ (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10; |
+ return Time(us - kTimeToEpochInMicroseconds); |
+} |
+ |
+ |
+FILETIME Time::ToFiletime() const { |
+ ASSERT(us_ >= 0); |
+ FILETIME ft; |
+ if (IsNull()) { |
+ ft.dwLowDateTime = 0; |
+ ft.dwHighDateTime = 0; |
+ return ft; |
+ } |
+ if (IsMax()) { |
+ ft.dwLowDateTime = std::numeric_limits<DWORD>::max(); |
+ ft.dwHighDateTime = std::numeric_limits<DWORD>::max(); |
+ return ft; |
+ } |
+ uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; |
+ ft.dwLowDateTime = static_cast<DWORD>(us); |
+ ft.dwHighDateTime = static_cast<DWORD>(us >> 32); |
+ return ft; |
+} |
+ |
+#elif V8_OS_POSIX |
+ |
+Time Time::Now() { |
+ struct timeval tv; |
+ int result = gettimeofday(&tv, NULL); |
+ ASSERT_EQ(0, result); |
+ USE(result); |
+ return FromTimeval(tv); |
+} |
+ |
+ |
+Time Time::NowFromSystemTime() { |
+ return Now(); |
+} |
+ |
+ |
+Time Time::FromTimeval(struct timeval tv) { |
+ ASSERT(tv.tv_usec >= 0); |
+ ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond)); |
+ if (tv.tv_usec == 0 && tv.tv_sec == 0) { |
+ return Time(); |
+ } |
+ if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) && |
+ tv.tv_sec == std::numeric_limits<time_t>::max()) { |
+ return Max(); |
+ } |
+ return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec); |
+} |
+ |
+ |
+struct timeval Time::ToTimeval() const { |
+ struct timeval tv; |
+ if (IsNull()) { |
+ tv.tv_sec = 0; |
+ tv.tv_usec = 0; |
+ return tv; |
+ } |
+ if (IsMax()) { |
+ tv.tv_sec = std::numeric_limits<time_t>::max(); |
+ tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1); |
+ return tv; |
+ } |
+ tv.tv_sec = us_ / kMicrosecondsPerSecond; |
+ tv.tv_usec = us_ % kMicrosecondsPerSecond; |
+ return tv; |
+} |
+ |
+#endif // V8_OS_WIN |
+ |
+ |
+Time Time::FromJsTime(double ms_since_epoch) { |
+ // The epoch is a valid time, so this constructor doesn't interpret |
+ // 0 as the null time. |
+ if (ms_since_epoch == std::numeric_limits<double>::max()) { |
+ return Max(); |
+ } |
+ return Time( |
+ static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond)); |
+} |
+ |
+ |
+double Time::ToJsTime() const { |
+ if (IsNull()) { |
+ // Preserve 0 so the invalid result doesn't depend on the platform. |
+ return 0; |
+ } |
+ if (IsMax()) { |
+ // Preserve max without offset to prevent overflow. |
+ return std::numeric_limits<double>::max(); |
+ } |
+ return static_cast<double>(us_) / kMicrosecondsPerMillisecond; |
+} |
+ |
+ |
+#if V8_OS_WIN |
+ |
+class TickClock { |
+ public: |
+ virtual ~TickClock() {} |
+ virtual int64_t Now() = 0; |
+}; |
+ |
+ |
+// Overview of time counters: |
+// (1) CPU cycle counter. (Retrieved via RDTSC) |
+// The CPU counter provides the highest resolution time stamp and is the least |
+// expensive to retrieve. However, the CPU counter is unreliable and should not |
+// be used in production. Its biggest issue is that it is per processor and it |
+// is not synchronized between processors. Also, on some computers, the counters |
+// will change frequency due to thermal and power changes, and stop in some |
+// states. |
+// |
+// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- |
+// resolution (100 nanoseconds) time stamp but is comparatively more expensive |
+// to retrieve. What QueryPerformanceCounter actually does is up to the HAL. |
+// (with some help from ACPI). |
+// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx |
+// in the worst case, it gets the counter from the rollover interrupt on the |
+// programmable interrupt timer. In best cases, the HAL may conclude that the |
+// RDTSC counter runs at a constant frequency, then it uses that instead. On |
+// multiprocessor machines, it will try to verify the values returned from |
+// RDTSC on each processor are consistent with each other, and apply a handful |
+// of workarounds for known buggy hardware. In other words, QPC is supposed to |
+// give consistent result on a multiprocessor computer, but it is unreliable in |
+// reality due to bugs in BIOS or HAL on some, especially old computers. |
+// With recent updates on HAL and newer BIOS, QPC is getting more reliable but |
+// it should be used with caution. |
+// |
+// (3) System time. The system time provides a low-resolution (typically 10ms |
+// to 55 milliseconds) time stamp but is comparatively less expensive to |
+// retrieve and more reliable. |
+class HighResolutionTickClock V8_FINAL : public TickClock { |
+ public: |
+ explicit HighResolutionTickClock(int64_t ticks_per_second) |
+ : ticks_per_second_(ticks_per_second) { |
+ ASSERT_NE(0, ticks_per_second); |
+ } |
+ virtual ~HighResolutionTickClock() {} |
+ |
+ virtual int64_t Now() V8_OVERRIDE { |
+ LARGE_INTEGER now; |
+ BOOL result = QueryPerformanceCounter(&now); |
+ ASSERT(result); |
+ USE(result); |
+ |
+ // Intentionally calculate microseconds in a round about manner to avoid |
+ // overflow and precision issues. Think twice before simplifying! |
+ int64_t whole_seconds = now.QuadPart / ticks_per_second_; |
+ int64_t leftover_ticks = now.QuadPart % ticks_per_second_; |
+ int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) + |
+ ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_); |
+ |
+ // Make sure we never return 0 here, so that TimeTicks::HighResNow() |
+ // will never return 0. |
+ return ticks + 1; |
+ } |
+ |
+ private: |
+ int64_t ticks_per_second_; |
+}; |
+ |
+ |
+class RolloverProtectedTickClock V8_FINAL : public TickClock { |
+ public: |
+ RolloverProtectedTickClock() |
+ : mutex_(OS::CreateMutex()), last_seen_now_(0), rollover_ms_(1) { |
+ // We initialize rollover_ms_ to 1 to ensure that we will never |
+ // return 0 from TimeTicks::HighResNow() and TimeTicks::Now() below. |
+ } |
+ virtual ~RolloverProtectedTickClock() { delete mutex_; } |
+ |
+ virtual int64_t Now() V8_OVERRIDE { |
+ ScopedLock sl(mutex_); |
+ // We use timeGetTime() to implement TimeTicks::Now(), which rolls over |
+ // every ~49.7 days. We try to track rollover ourselves, which works if |
+ // TimeTicks::Now() is called at least every 49 days. |
+ // Note that we do not use GetTickCount() here, since timeGetTime() gives |
+ // more predictable delta values, as described here: |
+ // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx |
+ DWORD now = timeGetTime(); |
+ if (now < last_seen_now_) { |
+ rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days. |
+ } |
+ last_seen_now_ = now; |
+ return now + rollover_ms_; |
+ } |
+ |
+ private: |
+ Mutex* mutex_; |
+ DWORD last_seen_now_; |
+ int64_t rollover_ms_; |
+}; |
+ |
+ |
+static LazyDynamicInstance<RolloverProtectedTickClock, |
+ DefaultCreateTrait<RolloverProtectedTickClock>, |
+ ThreadSafeInitOnceTrait>::type tick_clock = |
+ LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
+ |
+ |
+struct CreateHighResTickClockTrait { |
+ static TickClock* Create() { |
+ // Check if the installed hardware supports a high-resolution performance |
+ // counter, and if not fallback to the low-resolution tick clock. |
+ LARGE_INTEGER ticks_per_second; |
+ if (!QueryPerformanceFrequency(&ticks_per_second)) { |
+ return tick_clock.Pointer(); |
+ } |
+ |
+ // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter |
+ // is unreliable, fallback to the low-resolution tick clock. |
+ CPU cpu; |
+ if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) { |
+ return tick_clock.Pointer(); |
+ } |
+ |
+ return new HighResolutionTickClock(ticks_per_second.QuadPart); |
+ } |
+}; |
+ |
+ |
+static LazyDynamicInstance<TickClock, |
+ CreateHighResTickClockTrait, |
+ ThreadSafeInitOnceTrait>::type high_res_tick_clock = |
+ LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
+ |
+ |
+TimeTicks TimeTicks::Now() { |
+ // Make sure we never return 0 here. |
+ TimeTicks ticks(tick_clock.Pointer()->Now()); |
+ ASSERT(!ticks.IsNull()); |
+ return ticks; |
+} |
+ |
+ |
+TimeTicks TimeTicks::HighResNow() { |
+ // Make sure we never return 0 here. |
+ TimeTicks ticks(high_res_tick_clock.Pointer()->Now()); |
+ ASSERT(!ticks.IsNull()); |
+ return ticks; |
+} |
+ |
+#else // V8_OS_WIN |
+ |
+TimeTicks TimeTicks::Now() { |
+ return HighResNow(); |
+} |
+ |
+ |
+TimeTicks TimeTicks::HighResNow() { |
+ int64_t ticks; |
+#if V8_OS_MACOSX |
+ static struct mach_timebase_info info; |
+ if (info.denom == 0) { |
+ kern_return_t result = mach_timebase_info(&info); |
+ ASSERT_EQ(KERN_SUCCESS, result); |
+ USE(result); |
+ } |
+ ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond * |
+ info.numer / info.denom); |
+#elif V8_OS_SOLARIS |
+ ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond); |
+#elif V8_OS_POSIX |
+ struct timespec ts; |
+ int result = clock_gettime(CLOCK_MONOTONIC, &ts); |
+ ASSERT_EQ(0, result); |
+ USE(result); |
+ ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond + |
+ ts.tv_nsec / Time::kNanosecondsPerMicrosecond); |
+#endif // V8_OS_MACOSX |
+ // Make sure we never return 0 here. |
+ return TimeTicks(ticks + 1); |
+} |
+ |
+#endif // V8_OS_WIN |
+ |
+} } // namespace v8::internal |